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Abstract—From cell phones to biomedical systems, modern
life is inexorably dependent on the complex convergence of tech-
nologies into stand-alone products designed to provide a complete
solution in small, highly integrated systems with computing,
communication, biomedical and consumer functions. The concept
of system-on-package (SOP) originated in the mid-1990s at the
NSF-funded Packaging Research Center at the Georgia Institute
of Technology. This can be thought of as a conceptual paradigm in
which the package, and not the bulky board, as the system and the
package provides all the system functions in one single module,
not as an assemblage of discrete components to be connected
together, but as a continuous merging of various integrated thin
film technologies in a small package. In the SOP concept, this
is accomplished by codesign and fabrication of digital, optical,
RF and sensor functions in both IC and the package, thus distin-
guishing between what function is accomplished best at IC level
and at package level. In this paradigm, IC’s are viewed as being
best for transistor density while the package is viewed as being
best for RF, optical and certain digital-function integration. The
SOP concept is demonstrated for a conceptual broad-band system
called an intelligent network communicator (INC). Its testbed acts
as both a leading-edge research and teaching platform in which
students, faculty, research scientists, and member companies
evaluate the validity of SOP technology from design to fabrication
to integration, test, cost and reliability. The testbed explores
optical bit stream switching up to 100 GHz, digital signals up to
5–20 GHz, decoupling capacitor integration concepts to reduce
simultaneous switching noise of power beyond 100 W/chip,
design, modeling and fabrication of embedded components for
RF, microwave, and millimeter wave applications up to 60 GHz.
This article reviews a number of SOP technologies which have
been developed and integrated into SOP test bed. These are
1) convergent SOP-based INC system design and architecture,
2) digital SOP and its fabrication for signal and power integrity,
3) optical SOP fabrication with embedded actives and passives,
4) RF SOP for high Q-embedded inductors, filters and other
RF components, 5) mixed signal electrical test, 6) mixed signal
reliability, and 7) demonstration of SOP by INC prototype system.

Index Terms—Antennas, detectors, digital system-on-package
(SOP), embedded components, embedded passives, embedded
waveguides, electromagnetic interference (EMI), microvia, mixed
signal design, optical SOP, power integrity, reliability, RF SOP,
signal integrity, SIP, SOP, switches, test.
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I. INTRODUCTION

I
N early 1970s, the single-chip packages on drilled-boards
served the needs of the industry. The unparalleled perfor-

mance needs of mainframes to meet the needs of corporate
businesses demanded more integrated systems packaging
technologies, giving rise to the birth of “MCM”, initially with
multilayer ceramic and subsequently with copper-polymer thin
films in 1980 [1]. The MCMs, however, have not emerged
to be widely accepted for two reasons: high cost, and lack of
“Known Good Bare Die”. To make it more cost effective, MCM
thin-film technology began to be processed on larger boards,
leading to build-up or surface laminar circuitry [2]. Even this
technology, which is primarily used as thin-film multilayer
wiring on packages such as BGAs, has not totally migrated to
large-area boards. Independently, the so-called System-on-Chip
or SOC became the dream of semiconductor companies in
1990s, depending less and less on packaging because of its
high cost, bulkiness, and low performance and reliability.
Over the next decade, it became clearer, however, that SOC
for a complete system, presents fundamental, engineering,
and investment barriers. This is about the time that portable
electronics such as cell phones, laptops, PDAs, smart cards,
and RF IDs began to emerge as primary consumer systems (see
Fig. 1). The systems also began to be convergent, combining
computing and communication functions in consumer-sized
systems. This led the industry to invent a different MCM
called SIP (system-in-package), one that could be stacked
with multiple ICs or multiple package-stacked ICs and this
time at much lower cost and size [3]. SIP can go one step
further in embedding both active and passive components, but
passive component embedding is largely of currently available
bulky and multilevel thick film discrete components. This
distinguishes SIP from SOP in that SOP involves embedding of
both active and passives, but the passives are by incorporation
of ultrathin films at microscale in the short term and nanoscale
in the long term with a goal of increasing component density
[4]–[7]. As pointed out in the first paper of this issue, all
the above systems packaging technologies have one major
shortcoming. They depend primarily on CMOS for the system
characteristics and packaging to simply provide interconnec-
tions. The CMOS-based evolution and systems packaging
evolution to SIP or MCM needed a different approach, one
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Fig. 1. Systems packaging has been evolving over decades consistent with systems needs as shown.

Fig. 2. SOP is about system integration by component integration.

that takes advantage of CMOS for what it is good for-namely
transistors, and packaging for what it is good for—namely inte-
gration such as RF, Optical and certain digital functions. This is
the conceptual paradigm that has become to be known as SOP
or System-on-package, proposed by Prof Tummala in October
1993 [8] that led to the formation of the largest academic Center
in the United States called the Pakaging Recearch Center (PRC)
at Georgia Institute of Technology. In this concept, the package
becomes the board and it is not simply for computing but also
for communications and perhaps biomedical systems in highly
miniaturized systems. This evolution depicting SOP for mixed
signal systems based on embedding of components in thin-film
form leading to highly miniaturized systems is shown in Fig. 2.

II. MIXED SIGNAL SOP SYSTEM DESIGN AND ARCHITECTURE

The Georgia Tech’s PRC has proposed what it calls an Intel-

ligent Network Communicator (INC) system as a demonstrator

of the SOP technology [9]. The INC system is driven by the

emerging concepts that the future networks will have to deal

with the optical, RF and digital signals in an unique and inte-

grated system with new capabilities in both computing and com-

munications. The INC system, therefore, is composed of three

subblocks: the digital, analog, and optical sections, as shown in

Fig. 3. Each of the subsystem blocks has been defined to deal

with its own barrier issues. Since the entire system is built using

a single SOP module platform, interfaces and isolation between
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Fig. 3. INC system configuration in SOP technology.

Fig. 4. INC mixed signal system with digital, optical, and RF blocks and interfaces.

the subsystem blocks become very important. The function of

the INC is to transmit and receive high-speed digital and modu-

lated RF signals, say wireless signal, concurrently over the op-

tical channel. The system specification of each block has been

defined to address the functional integration of that subsection.

The target specification of each block in INC is summarized

in Table I. The detailed configuration of the proposed system

design is presented in Fig. 4. At the digital block, the multigi-

gabit digital signal is generated by using the FPGA and com-

pared with the received-signal after passing through the analog

and optical blocks. The digital transceiver converts the multi-

channel input signals into a single data stream to feed to the

analog block. The digital signal is then combined with modu-

lated RF signal and transferred to optical block at the analog

block. To accomplish this mission, a custom-designed mixed

TABLE I
TARGET GOAL
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Fig. 5. Architecture of digital block. Layout and cross section of digital block.

signal combiner is used for the RF signal. The wireless LAN

signal is generated by the electronic generation and a single car-

rier signal is generated by the voltage controlled oscillator. At

the optical block, the mixed signal information is converted to

light wave and transmitted through the embedded optical wave-

guide or optical fiber. The embedded photodetector converts

the optical signal to electrical signal. At the receiver end of

the analog block, the electrical signal obtained after passing the

photo detector is separated into the digital and RF signals. The

FPGA compares the generated-data and received-data to eval-

uate the system performance. To enable the single packaging so-

lution, the various embedded components such as filters, mixed

signal combiner and embedded optical waveguide have been

implemented based on low-cost materials and process package

technology on 300 mm boards.

III. DIGITAL SOP: DESIGN AND FABRICATION

The primary goal of any digital system is to ensure max-

imum throughput between IC’s. One example that has plagued

the industry for decades is the data path between microproces-

sors and memory or between multiple cores within a micropro-

cessor. New architectures are being proposed for supporting ter-

abit data rate speeds between processors (such as by Hofstee in

this issue [10]. In addition, for memory channel, interconnec-

tion speeds greater than 3.2 Gb/s are being developed [11]. For

the first time, the International Technology Roadmap on Semi-

conductors (ITRS) [12] is proposing the convergence of on-chip

and off-chip clock speeds, with a goal of 5 GHz clock speed in

the near future. These data rates are placing new challenges in

the area of signal integrity, power integrity, and electromagnetic

interference (EMI) in all systems including in SOP.

These challenges increase exponentially in mixed signal

systems that integrate RF front ends with optical signaling

and digital base-band processing. Though, the digital circuits

operate at a slower speed compared to the predictions by ITRS

in mixed signal systems, managing noise becomes a funda-

mental problem. Hence, along with supporting gigabit data

rates on the interconnections, a noise free environment with

isolation levels of less than are required. This can

be a difficult problem to solve, unless integrated technologies

with good layout practices and clever architectures are used to

minimize coupling. To reduce time to market, modeling tools

supporting both prelayout analysis and post-layout verification

become an integral part of the design flow. In this section,

the design of the digital processing block in the mixed signal

system shown previously in Fig. 2 is described in detail with

emphasis on layout, modeling, technology integration, and

measurements.

A. Design and Modeling

The physical layout and cross section of the digital block is

shown in Fig. 5. The design uses microstrip lines on the top

layer for signaling with ground and power plane layers beneath

it. The 60 separation between the power and ground planes,

provides for a low impedance path for the power distribution. An

additional embedded decoupling layer using a nano-composite

material (relative permittivity of 30) with a thickness of
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Fig. 6. Design and modeling flow.

enables further lowering of the impedance. This layer, which

was patterned to minimize defects, acts as a low impedance path

for the decoupling capacitors on the top layer and provides ade-

quate isolation levels for a common power distribution network.

The dielectric material used was epoxy with copper

metallization. The design consists of split power islands to iso-

late the transmitter and receiver FPGA’s from the transceiver

chip. Ferrite bead, with an impedance of at 100 MHz

was used to isolate the power planes and provide a common dc

potential. A total of thirty-two 0402 decoupling capacitors with

capacitance ranging from 1 nF to 47 were used in the design,

to minimize the power supply noise. The microstrip lines with

impedance of were terminated using resistors. A source

synchronous design was used by transmitting the clock along

with the data on adjacent interconnection.

Modeling tools developed at Georgia Tech were used to ana-

lyze the design for ensuring signal quality and noise minimiza-

tion. The design and modeling flow is shown in Fig. 6, where

the power distribution network (PDN) was first analyzed using

the Transmission Matrix Method (TMM) [13] to extract the

frequency response. The frequency response was then approx-

imated using the Broad-band Efficient Macro-modeling Pro-

gram (BEMP) [14] developed at Georgia Tech, to automati-

cally generate a spice netlist of the power distribution. Non-

linear driver models and transmission lines were connected to

the spice model of the power distribution to model the power

supply noise. The layout in Fig. 5 was represented as a 14 port

circuit for analysis, for extracting the coupling between var-

ious parts of the structure. At frequencies beyond 1 GHz, the

inductance behavior of the power distribution is considerably

reduced with embedded decoupling due to the thin separation

between the plates of the capacitor. The time domain response

of the power supply noise in the vicinity of FPGA 1 is a 10

reduction in noise with embedded decoupling. The transceiver

output is shown in Fig. 7, demonstrating the ability to support a

2.48-Gb/s differential serial channel.

IV. DIGITAL SOP FABRICATION

The digital SOP research focuses on ultrahigh-density wiring

and low-loss dielectrics for high-speed signals and thin-film em-

bedded decoupling capacitors for suppression of power noise.

A. High Speed Wiring and Dieletrics

The primary objective of SOP-digital wiring involves the in-

tegration of (a) ultralow-loss and thin film (5–10 )

polymer dielectrics to achieve signal speeds of in the

SOP package; and (b) multiple layers of ultrafine lines (5 )

and stacked vias (10–15 ) for wiring density

and 50–100 area array pitch flip chip attach with Wafer

Level Packages. The recently released 2003 ITRS roadmap [15]

calls for package signal speeds and flip

chip pad pitch to satisfy 50 nm node requirements for future

ICs. There have been significant developments in microvia and

high-density build-up substrates and the state-of-the-art man-

ufacturing processes use line and space technology and

50–75 microvias [16]–[20]. Several low loss and low k poly-

mers including epoxy, A-PPE, Avatrel, BCB, polyimide, and

LCP have been evaluated at the PRC for signal speed and loss at

frequencies up to 20 GHz. The typical properties of these mate-

rials are shown in Table II. The impact of dielectric loss on the

signal speed is shown in Fig. 8 using measured eye diagrams

at 5 Gb/s for low-loss polymers. For future SOP applications,

thin film (10–15 ) build-up dielectrics like BCB will enable

the design of signals using lines and spaces. The

ideal dielectric for build-up SOP will combine the low loss of

PTFE for high speed with ultrathin-film processing

for maximum interconnect density.

Area array I/O pitch of 50–100 requires escape routing

with – lines and spaces and – stacked mi-

crovias. These dimensions have recently been demonstrated on

low cost build-up PWB core substrates. Fig. 9 includes an ex-

tremely fine structure with and wide lines,
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Fig. 7. 1. 6 Gb/s transceiver output.

TABLE II
PROPERTIES OF LOW-LOSS POLYMERS AT 1 GHz

spaces, and copper thickness. Precision photolithography

with negative-acting liquid photoresists, glass photomasks and

semi-additive plating processes were used to form these struc-

tures. A novel low-cost process for fabricating planar multilayer

wiring with stacked microvias without any CMP process has

been demonstrated. Fig. 9 includes a four metal layer of such

a stacked via structure with fully filled copper studs of

diameter [21].

Packages for sub area array pitch, without large

capture pads, require substrates with exceptional dimensional

stability and high modulus to prevent warpage during multilayer

thin film build-up. Fig. 10 summarizes the substrate warpage re-

quirements needed to support ultrahigh wiring density and suf-

ficient flatness for fine pitch assembly. Novel C-SiC large-area

boards are being developed with CTE as low as 3–5 ppm/C and

modulus as high as 450 GPa [22]. Such a material with excep-

tional dimensional stability will enable much tighter layer-to-

layer registration and higher pad density. The CTE-match to Si

is expected to help immensely to minimize stress on the solder

joint and perhaps may eliminate expensive underfill processing.

B. Power Integrity by Embedded Decoupling Dielectrics

Embedded high-k dielectrics are particularly useful as mid-

frequency decoupling capacitors for reducing ground bounce

and simultaneous switching noise. Current surface mount dis-

crete components are expected to reach their limit of operation

in the few hundred MHz range due to the high lead inductance

associated with solder interconnects. Novel polymer-ceramic

nanocomposite dielectrics [23] have been used to fabricate thin

film capacitors with a thickness of 10 and of 30 to achieve

capacitance density up to 2.6 . Noise levels below 90

mV peak-to-peak have been demonstrated with this approach.

To achieve noise levels below 50 mV and to support power

levels above 200 W, ultrathin-film high-k dielectrics are being

developed using novel low temperature processes. Such syn-

thesis methods as hydrothermal and sol-gel, with rapid thermal

processing, have demonstrated films with thickness and

capacitance densities of about 500 . The low process

temperatures below are well suited for integration on

low cost organic SOP substrates. Fig. 11 shows a top view of a

dense film fabricated on metal foil using hydrothermal

synthesis [24].

V. ORGANIC RF SOP

The SOP is a single component, multifunction package

solution providing the needed system functions that include

analog, digital, RF, optical and MEMS. The SOP also allows ef-

ficient integration of complete passive RF front-end functional

building blocks, such as filters and power combiners. Recent

development of thin-film RF materials and processes makes it

possible to bring the concept of SOP into the RF world to meet
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Fig. 8. Impact of dielectric loss on signal integrity for various thin-film
materials (eye diagrams at 5 Gb/s).

the stringent needs in wireless communication area [25]–[28].

Critical issues such as wideband and low-loss interconnects,

high-Q multilayer passives including R, L and C’s [29]–[32],

board-compatible embedded antennas and switches [33]–[35],

low-loss and low-cost boards, efficient partitioning of MMICs,

low crosstalk embedded transmission lines and single-moded

packages, as well as design rules for vertically integrated

transceivers are major barriers that have to be addressed over

a wide frequency range. In addition, there exists a gap in the

area of hybrid CAD needed to model novel functions that

require fast and accurate modeling of electromagnetic, circuit,

solid-state, thermal and mechanical effects.

Multilayer ceramic (LTCC) and multilayer organic (MLO)

structures with liquid crystal polymer (LCP) technology [32]

are used to embed passives efficiently, including high-Q induc-

tors, capacitors, matching networks, low-pass and band-pass fil-

ters, baluns, combiners, and antennas. The 3-D design approach

using multilayer topologies leads to high quality and compact

components to support multiband, wider-bandwidth and multi-

standards in a very compact from factor and with low cost. A

general system configuration of wireless transceiver is shown

in Fig. 12. The breadth of integration is represented schemati-

cally in Fig. 13. The Transceiver module is composed of MMIC

chipset: power amplifier (PA), low-noise amplifier (LNA), up

and down mixer (MIX) and voltage controlled oscillator (VCO),

and passive components: filter, antenna, and external high-Q

discrete passive elements for stringent block such as PA and

VCO. Some examples of passives built on SOP platform are

represented in Fig. 14.

A. Multilayer Inductors

High-Qs at the frequency range of interest can be obtained by

designing CPW inductors using multilayer organic technology.

The CPW spiral inductor, depicted in Fig. 14, avoids via losses,

has reduced dielectric losses and increased SRF. Also, the thick

copper metallization in the packaging process make it possible

to get a very high-Q. This decreases the shunt parasitic capaci-

tance and reduces the eddy current flowing in the ground plane

producing negative mutual inductance effect. As a result, higher

Q and can be achieved. The CPW inductor demonstrates a

Q of 182, SRF 20 GHz, Leff 1. 97 nH.

B. Embedded Filters

Several embedded filters were designed for the SOP process

using epoxy materials for the build-up layers. The bandpass

filter design for C band applications consists of a square patch

resonator with inset feed lines, as shown in Fig. 14. The inset

gaps act as small capacitors and cause the filter to have a pseu-

doelliptic response with transmission zeros on either side of

the passband. This structure also has a tunable bandwidth. The

length of the feed lines is determined by the input and output

matching requirements. The length of the insets and the distance

between them are the main controlling factors, effectively set-

ting the size of the mode-splitting perturbation in the field of the

resonator. Measurement result shows that bandwidth of 1.5 GHz

and a minimum insertion loss of 3 dB at the center frequency of

5.8 GHz.

C. Combiners

To overcome the weak coupling at base band and the band-

width limitation of conventional combiner, we modified the con-

ventional coupled line coupler as vertical coupling structure in

the SOP platform as shown in Fig. 15(a). The output port of

the coupled line coupler is used as the input port for the RF

signal and the isolation port is shorted to the ground. Also we

designed ninth-order Bessel LPF at the input port for the base

band, which performs as band stop filter for the 14 GHz RF

signal and reflects the RF signal at the output of the LPF. We

optimized the 14 GHz RF signal in-phase to obtain a construc-

tive effect at the output port of the combiner by adjusting the

embedded microstrip line which interconnects the LPF with ver-

tical coupling structure. The design was finalized with the 3-D

electromagnetic simulation software. The insertion loss of the

RF signal at the output port of the combiner was measured as

1.9 dB. The isolation between port 1 and port 2 of the combiner

was greater than 10 dB in base band and 38 dB at 14 GHz (VNA

HP8510). These results satisfy the requirement for the proposed

HDROS. 3 dB bandwidth of 7 GHz is achieved between port 1
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Fig. 9. Progress in lines and spaces, and microvias on low-cost organic SOP substrates at PRC.

Fig. 10. SOP substrate warpage requirements for 0. 65 mm thickness.

and port 3. Fig. 15(b) shows the measured frequency spectrum

at the output of the combiner when 7 Gb/s pseudorandom bi-

nary sequence (PRBS) with 14 GHz sinusoidal wave are sent.

Fig. 15(b) also shows the measured eye opening of the 7 Gb/s

PRBS at the output port.

D. Antennas

SOP can give flexibility to the transceiver module by inte-

grating all functional blocks using the multilayer processes and

the novel interconnection methods. One of the major issues,

however, is how to integrate antennas with a high module

efficiency and low cost, especially for the lowest frequencies

of cellular communication and WiFi, that the physical antenna

size is large. Fabricating an antenna directly on the package

has the advantages of reduced feeder loss and size of the entire

module. For the frequency band of the personal communica-

tion, WLAN and short-range broadband communications from

900 MHz to 6 GHz and 35–65 GHz, it is difficult to put an

antenna into the module, since the size of the antenna becomes

large. Moreover there are issues to be solved such as narrow

bandwidth in ceramic packaging and interference between

the antenna and other RF blocks in highly integrated module.

The prototype antennas are designed to be integrated with the

transceiver module and fabricated using multilayer package

processes, such as MLO and LCPs [36]. The principle of novel

soft–hard surfaces (SHS) was devised for the miniaturization

and elimination of the substrate-crosstalk modes improving the

efficiency of higher patch antennas [34] close to the free-space

ones and suppressing the backside radiation by 10–15 dBs from

900 MHz and 1.55 GHz (GPS) to the short-range broadband

(40–65 GHz). In addition, stacked-patch configurations allowed

for the realization of broadband radiation performances.

E. Capacitors

Embedded high-k polymer/ceramic nanocomposite capaci-

tors (dielectric constant 15–20) have been used primarily for the

decoupling applications as discussed earlier. Currently, a capac-

itance density has been reported with a thin film

of using hydrothermal synthesis [37] that can be in-

tegrated with the SOP. Dielectric constant has been re-

ported using metallic nanoparticles [38].

VI. OPTOELECTRONICS SOP

The focus of Optoelectronics SOP is the heterogeneous

integration of optically active devices such as lasers, detector

arrays, and laser amplifiers, and optically passives such as

waveguides, gratings and beam splitters onto electrically

interconnected mixed signal SOP, as shown in Figs. 16 and 17.

A. Integration of Embedded Active Optical Elements

The metal–semiconductor–metal photodetector (MSM-PD)

has attracted attention from industry in recent years because of

its simplicity in fabrication, lower capacitance than p-i-n photo-

diodes per unit area, and high alignment tolerance for assembly.

In this research, the MSM-PD is independently grown, fabri-

cated, and bonded directly onto organic boards and silicon chips.

MSM-PDs are fabricated on an layer which is

grown on lattice-matched InP. The absorbing layer thickness

can be varied between 100 and 740 nm to achieve the opti-

mized responsivity and bandwidth [39], [40]. The Schottky elec-

trode comb structure is patterned by standard photolithography

and metallized with Ti/Pt/Au using e-beam evaporator. The InP

growth substrate is removed by chemical etching, leaving a thin
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Fig. 11. SEM cross section of high K(> 350) hydrothermally grown film of BaTiO .

Fig. 12. RF transceiver architecture.

film device with a thickness of . Each individual PD is

picked and inversely bonded onto the host substrates. Thus, the

responsivity of the inverted MSM (I-MSM) is improved signif-

icantly by eliminating the electrode shadowing effect [41]. The

low temperature organic board is pretreated with a planarizing

polymer buffer layer and the metal contact pads are sputtered

or evaporated on the lower waveguide cladding. The pads are

used to either bump-bond with electronic chips or bond directly

to the I-MSM-PDs via Van der Waals attraction. Waveguide

polymer material is spin-coated directly onto the SOP substrate

and photolithographically patterned into the waveguide struc-

ture. As shown in Fig. 16, the optical signals propagate along the

polymer waveguide and are diffracted by grating couplers to a

PD array. Alternatively, the PDs are evanescently coupled to em-

bedded I-MSMs or p-i-n’s, as shown in Fig. 17. The evanescent

coupling efficiency from the waveguide to a p-i-n is measured

to be 3% at and 1.55 [42]. In this way, high speed

chip to chip data communication on SOP is realized through

the optical devices of photodetectors, waveguides, gratings and

other optical components. The bandwidth of the PD/waveguide

optical interconnect is primarily dominated by the speed of the

photodetector.
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Fig. 13. RF component integration in IC and SOP package.

Fig. 14. Components fabricated on organic SOP.

B. Integration of Optical Passives

The primary focus of embedded passives is process and mate-

rials for the fabrication of waveguides, gratings, lenses, couplers

and switches on low temperature FR-4 boards. The fabrication

process itself presents four main issues: 1) Surface roughness

of the organic board, 2) interface adhesion, 3) intrinsic and ex-

trinsic waveguide losses, and 4) reliability. Two materials were

used in this study: BCB and Siloxane. Suzuki et al. [43] reports a

surface roughness of over a distance of 5000 after

BCB planarization of a high FR-4 board. In another paper

in this issue, Chang [42] reports an average surface roughness

of 4 nm over 5 and over 500 for a low tem-

perature board planarization process. Although few researchers

report on interface adhesion, photo-definable Siloxane-based

waveguides passed the “Scotch tape” vertical pull test. The op-

tical loss at 1300 nm for BCB waveguides, prepared by RIE,

is reported to be 0.36 dB/cm [44], consistent with other reports

in the literature. For an Ultem(core)/BCB(cladding) waveguide,

prepared by RIE, the reported loss [45], [46] is 1.34 dB/cm at

1330 nm. A photodefinable, epoxy-based Siloxane Oligomer

had a measured optical loss of 1.43 dB/cm at the same wave-

length [42], and a second photodefinable polymer had a mea-

sured loss of 0.2 dB/cm at 1330 nm [42]. Reliability issues such

as thermal cycling and accelerated optical aging are seldom re-

ported. An array of 5 waveguides composed of epoxy-based

Siloxane Oligomer (Polyzet, Inc., New York) on FR-4 boards

were cycled between and 125 . Each waveguide is 5

cm long, and all had a cross section of 50 7 . After 300

cycles, no measurable change in absorption at the two wave-

lengths was observed in each of five waveguides in an array.

Accelerated optical aging test is ongoing. Fabrication and in-

tegration technologies are being developed for micro lenses,

micro mirrors, switches and couplers, as well as wavelength pro-
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(a)

(b)

Fig. 15. (a) Picture of fabricated combiner in MLO process, 5 mm in length.
(b) Frequency spectrum at the output port.

cessing components such as gratings, photonic crystals, arrayed

waveguide gratings, multimode interference. Recent global de-

velopments in this area can be found elsewhere in this issue [42].

VII. MIXED-SIGNAL SOP TEST RESEARCH

The PRC research program in mixed-signal test develops

electrical functionality validation and performance screening

methods for SOP-based systems that include not only high-per-

formance (multigigabits per second) digital signals, but also

RF, analog, and optical signals. The research provides cost-ef-

fective means to verify functionality and performance in

complex “mixed-signal” SOP systems. The Mixed-signal Test

research effort is a system level approach that incorporates

design-for-test (DFT) and built-in self-test (BIST) features

within the SOP design as well as external instrumentation and

novel methods for applying tests. To accomplish these, the

Systems Test Research involves three areas: 1) design of a

high-speed digital test support processor (TSP) for application

of multigigahertz tests at the SOP and IC levels [47]–[49]; 2)

development of test methods for embedded interconnect and

mixed digital/optical signals [48], [49]; and 3) design-for-test

methods for Built-In Test of Embedded Mixed-Signal Elec-

tronics [50], [51]. The first two research areas share the use

of a “Test Support Processor” TSP and are summarized in

Section VII-A and the third research area addresses the testing

complexities encountered in SOP systems with mixed RF,

linear, and digital technologies as outlined below.

A. Test Support Processor for High-Speed Digital and Mixed

Digital/Optical Signals

Even though existing digital devices support I/O data rates

in excess of 2 Gb/s, current automated test equipment (ATE)

is typically limited to speeds of about 1. 0 to 1. 6 Gb/s (per

channel). Furthermore, these high-end systems are expensive,

costing $5 k to $10 k per channel. The capital cost for a fully

populated system can be close to $10 M. Timing

accuracy in these systems is also limited to about 50–100 ps,

and random jitter is typically 6 ps to 10 ps. Evolution of ATE

is extending data rates to 3. 2 Gb/s and above, and optical bit

error rate test (BERT) up to 10 Gb/s and above per channel.

One of the most difficult barriers to achieving these goals is

the extremely precise timing requirement, inherent to testing

high-speed signals. Specifically, there is a need to produce much

lower-cost, high-speed (multigigahertz) test channels with low

jitter and timing accuracy of 10 to 20 ps. Re-

quired bit error rates (BERs) of require consideration of

14-sigma jitter tolerance. Integration of high-speed optical com-

ponents, and mixed digital/RF within the low-cost digital em-

bedded test electronics poses significant technical and economic

challenges.

To address these testing requirements, the PRC research pro-

gram has developed the concept of a Test Support Processor

(TSP). In this approach, the conventional ATE is supplemented

with customized electronics that provide specialized test func-

tions tailored for a specific SOP. The prototype designs use a

field-programmable gate array (FPGA) and a microcontroller as

a “Digital Test Core” (see Fig. 18). The FPGA is reprogrammed

to supplement the built-in self test (BIST) features of the SOP.

The microcontroller provides a communications port (USB) to a

personal computer (which is used to control the testing process).

Surrounding the Digital Test Core, is customized high-speed

logic that is typically needed to multiplex to higher data rates

than can be generated by the FPGA alone. In the example of

Fig. 18, this logic is implemented using PECL devices capable

of operating to about 5 Gb/s. This example TSP provides mul-

tiple 5 Gb/s data sources and receivers for testing nanowafer

level packaged IC’s. It has been adapted from earlier designs

that used the same Digital Test Core. Current efforts are cen-

tered on extending beyond 5 Gb/s. In a recent design modifica-

tion, SiGe logic is used for higher bandwidth and provisions to

connect optical transceivers have been added.

VIII. MIXED-SIGNAL SOP RELIABILITY

The mixed-signal reliability research focuses on the relia-

bility of individual digital, optical, and RF functions as well as
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Fig. 16. Optoelectronic SOP chip-to-chip concept and design.

Fig. 17. Optical component technologies embedded in SOP. (a) Waveguide array embedded in FR-4 board, (b) embedded commercial p-i-n detector, (c) polymer
microlens, (d) embedded i-MSM, (e) beam splitter, (f) curved waveguide array, (g) blazed polymer grating, blaze angle 29 .

Fig. 18. Test support processor (TSP) prototype, and 4. 4 Gb/s signal output.

the interface between these functions. For digital function relia-

bility, failure mechanisms such as microvia and global intercon-

nect fatigue failure, dielectric cracking and delamination, die-to-

substrate solder interconnect fatigue failure, underfill cracking

and delamination, etc., are being studied through physics-based

predictive models, and the onset of such failure mechanisms

is linked to digital function degradation and reliability. Simi-

larly, optical loss in waveguides, refractive index stability, mis-

registration tolerance, bandwidth limitations as a function of

distance, stress-optical effects, and waveguide delamination are

being modeled to predict the optical function reliability. Simi-

larly, the changes in inductance, capacitance, and resistance of
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Fig. 19. Reliability prediction models: (a) solder interconnect, (b) microvia, and (c) interlayer delamination.

Fig. 20. Experimental tests to assess individual function reliability.

integral passives with thermal excursions and exposure to en-

vironmental conditions are being studied with respect to RF

functions. In conjunction with the physics-based models, reli-

ability experiments using individual-function testbeds as well

as mixed-signal testbeds are being carried out to validate the

models and to enhance the modeling methodologies.

Fig. 19 shows some of the predictive modeling results and

Fig. 20 shows some of the experimental data used to validate the

predictive models. For more details on the models, experimental

reliability tests, and material characterization techniques, please

refer to [52]–[61].

In a multi-functional system like in SOP, the digital, optical,

and RF functions are inter-related, and therefore, in addition to

individual function reliability, the interaction effects should also

be studied. For example, 1) the presence of high-performance

digital function in proximity to a high flux optical domain

could overheat the optical waveguides and affect the waveguide

reliability, 2) the processing of low-loss interlayer dielectric

to achieve digital function target parameters could adversely

affect the reliabiilty of the embedded passive layers fabricated,

and 3) the warpage introduced due to the processing of different

layers and due to the operation of different functions would

adversely affect dielectric reliability, waveguide misregistation

and optical fidelity, and passive layer adhesion. Therefore, such

interaction effects of various functions are being addressed

in the system-level reliability models. Development of such

system-level reliability models with multiple functions and

failure mode interactions requires tremendous computational

resources and time. Innovative modeling techniques augmented

with high performance computing are being used to ease

Fig. 21. INC-SOP system fabricated with embedded digital, optical, and RF
mixed signal functions.

the computational complexity and reduce the time needed in

achieving acceptable results. In addition, statistical reliability

considerations are also being pursued when addressing the

system-level reliability.

IX. SOP TECHNOLOGY DEMONSTRATION

BY INC SYSTEM PROTOTYPE

The INC system design and architecture has been success-

fully fabricated, as shown in Fig. 21 by SOP designs and pro-

cesses, described above. The prototype system was tested at

the each of sub-system blocks such as at RF, digital and opto-

electronics. The INC system successfully demonstrated digital
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throughput up to 3.6 Gb/s. Optical link data rates in excess of

10 Gb/s, including butt coupling interconnection between op-

tical waveguide and optical fiber. A VCO has been developed

and fabricated as part of this INC prototype, using a MESFET

process. To reduce the phase noise of the VCO, which is critical

in the multi-carrier modulation, the high-Q embedded inductors

are built on the SOP package directly. The RF signal generated

by VCO with embedded inductor showed at 6 MHz

offset frequency and of output power. After verifying

at the sub-system levels, the overall system has been set up on an

optical table to prevent unwanted vibration from the embedded

optical waveguide interconnection. The demonstration included

the signal generated by FPGA combining with RF single car-

rier signal with optically-modulated signal by MZ modulator.

The optical signal was transmitted through the optical fiber and

embedded optical waveguide, and then converted into the elec-

trical signals. The system demonstration details can be found

elsewhere [62], [63].
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