
The Sorcerer’s Apprentice Guide to Fault Attacks

Hagai Bar-El1 Hamid Choukri2,3 David Naccache3 Michael Tunstall3,4 Claire Whelan5

1
Discretix Technologies Ltd. hagai.bar-el@discretix.com
2

University Bordeaux 1 hamid.choukri@gemplus.com
3

Gemplus Card International david.naccache@gemplus.com
4

Royal Holloway, University of London michael.tunstall@gemplus.com
5

Dublin City University claire.whelan@computing.dcu.ie

Abstract

The effect of faults on electronic systems has been stud-

ied since the 1970s when it was noticed that radioactive

particles caused errors in chips. This led to further research

on the effect of charged particles on silicon, motivated by

the aerospace industry who was becoming concerned about

the effect of faults in airborn electronic systems. Since

then various mechanisms for fault creation and propaga-

tion have been discovered and researched. This paper cov-

ers the various methods that can be used to induce faults

in semiconductors and exploit such errors maliciously. Sev-

eral examples of attacks stemming from the exploiting of

faults are explained. Finally a series of countermeasures to

thwart these attacks are described.

1. Introduction

One of the first examples of faults being injected into a

chip was accidental. It was noticed that radioactive parti-

cles produced by elements naturally present in packaging

material [24] caused faults in chips. Specifically, Uranium-

235, Uranium-238 and Thorium-230 residues present in the

packaging decay to Lead-206 while releasing α particles.

These particles create a charge in sensitive chip areas caus-

ing bits to flip. Whilst these elements were only present

in two or three parts per million, this concentration was

sufficient to affect chip behavior. Subsequent research in-

cluded studying and simulating the effects of cosmic rays

on semiconductors [34]. Cosmic rays are very weak at

ground level due to the earth’s atmosphere, but their ef-

fect becomes more pronounced in the upper atmosphere and

outer space. This problem is further compounded by the fact

that the more RAM a computer has the higher the chance of

a fault occurring. This has provoked a great deal of research

by organizations such as NASA and Boeing. Most of the

work on fault resistance was motivated by this vulnerability

to charged particles. Considerable engineering endeavors

were devoted to the ‘hardening’ of electronic devices de-

signed to operate in harsh environments. This has mainly

been done using simulators to model circuits and study the

effect of randomly induced faults. Various fault induction

methods have since been discovered but all have in com-

mon similar effects on chips. One such example is the use

of a laser to imitate the effect of charged particles [17]. The

different faults that can be produced have been character-

ized to enable the design of suitable protections. The first

attack that used a fault to derive secret information [8] tar-

geted the RSA public-key cryptosystem. Basically, a fault

was introduced to reveal the two secret prime numbers that

compromised the RSA system. This led to similar attacks

on other cryptographic algorithms. The countermeasures

that can be used to thwart fault attacks had already been

largely defined and successfully deployed.

This survey is organized as follows: In section 2 the

various methods of fault injection and their effects are de-

scribed. We then turn to theoretical (section 3) and practical

(section 4) attacks. Finally, countermeasures are described

in section 5.

2 Methods of Fault Injection

The most common fault injection techniques are:

1. Variations in Supply Voltage during execution may

cause a processor to misinterpret or skip instructions.

This method is widely researched and practiced behind

closed doors by the smart-card industry but does not

often appear in the open literature.

2. Variations in the External Clock may cause data mis-

read (the circuit tries to read a value from the data

bus before the memory had time to latch out the asked

value) or an instruction miss (the circuit starts execut-

ing instruction n+1 before the microprocessor finished

executing instruction n).

3. Temperature: circuit manufacturers define upper and

lower temperature thresholds within which their cir-

cuits will function correctly. The goal here is to

vary temperature using an alcoholic cooler until the

chip exceeds the threshold’s bounds. When conduct-

ing temperature attacks on smart-cards (never docu-

mented in the open literature to the authors’ knowl-

edge) two effects can be obtained: the random mod-

ification of RAM cells due to heating and the ex-

ploitation of the fact that read and write temperature

thresholds do not coincide in most non-volatile mem-

ories (NVMs). By tuning the chip’s temperature to

a value where write operations work but reads don’t

or the other way around a number of attacks can be

mounted (components are classified into three temper-

ature vulnerability classes which description is beyond

the scope of this survey).

Figure 1. White Light Fault Injector (View 1)

4. White Light: All electric circuits are sensitive to light

due to photoelectric effects. The current induced by

photons can be used to induce faults if a circuit is ex-

posed to intense light for a brief time period. This can

Figure 2. White Light Fault Injector (View 2)

be used as an inexpensive means of fault induction [3].

Gemplus’ white light fault injector is shown in figures

1 and 2.

5. Laser can reproduce a wide variety of faults and can

be used to simulate [17] faults induced by particle ac-

celerators [12, 30]. The effect produced is similar to

white light but the advantage of a laser over white light

is directionality that allows to precisely target a small

circuit area. Gemplus’ laser fault injection laboratory

is shown in figures 3 and 4.

6. X-rays and ion beams can also used as fault sources

(although less common). These have the advantage

of allowing the implementation of fault attacks with-

out necessarily de-packaging the chip. We recommend

[10] as further reading.

Figure 3. Laser Fault Injection Equipment

Figure 4. Laser Fault Injection Equipment (In
ner View)

2.1 The Different Types of Faults

Electronic circuits can be subject to two classes of faults:

provisional (transient) and destructive (permanent) faults.

In a provisional fault, silicon is locally ionized so as to in-

duce a current that, when strong enough, is falsely inter-

preted by the circuit as an internal signal. As ionization

ceases so does the induced current (and the resulting faulty

signal) and the chip recovers its normal behavior. By oppo-

sition, destructive faults, created by purposely inflicted de-

fects to the chip’s structure, have a permanent effect. Once

inflicted, such destructions will affect the chip’s behavior

permanently.

2.1.1 Provisional Faults (Taxonomy)

Provisional faults have reversible effects and the circuit will

recover its original behavior after the system is reset or

when the fault’s stimulus ceases.

• Single Event Upsets (SEUs) are flips in a cell’s logi-

cal state to a complementary state. The transition can

be temporary, if the fault is produced in a dynamic

system, or permanent if it appears in a static system.

SEU was first noticed during a space mission in 1975

[14, 28] and stimulated research into the mechanisms

by which faults could be created in chips. SEUs can

also manifest themselves as a variation in an analogue

signal such as the supply voltage or the clock signal.

• Multiple Event Upsets (MEUs) are a generalization of

SEUs. The fault consists of several SEUs occurring si-

multaneously. A high integration density is a risk fac-

tor that can provide conditions favorable to the genesis

of MEUs.

• Dose Rate Faults [19] are due to several particles

whose individual effect is negligible but whose cu-

mulative effect generates a sufficient disturbance for

a fault to appear.

2.1.2 Destructive Faults (Taxonomy)

• Single Event Burnout faults (SEBs) are due a parasitic

thyristor being formed in the MOS power transistors

[21, 33]. This can cause thermal runaway in the circuit

causing its destruction.

• Single Event Snap Back faults (SESs) [18] are due to

the self-sustained current by the parasitic bipolar tran-

sistor in MOS transistor channel N. This type of fault

is not likely to occur in devices with a low supply volt-

age.

• Single Event Latch-up faults (SELs) [1, 12] are propa-

gated in an electronic circuit by the creation of a self-

sustained current with the releasing of PNPN parasitic

bipolar transistors in CMOS technology. This can po-

tentially destroy the circuit.

�� ��

�� ��

�� �� �� ��

�� �� �� ��

������

����	
�	���

	�

	�

Figure 5. Single Event Latchup Parasitic

Transistors T1 and T2.

• Total Dose Rate faults [9] are due to a progressive

degradation of the electronic circuit subsequent to ex-

posure to an environment that can cause defects in the

circuit [31].

When using fault injection as an attack strategy provi-

sional faults are the method of choice. These allow for faults

under numerous experimental conditions to be attempted

until the desired effect is achieved. As a side-bonus the sys-

tem remains functional after the attack’s completion. By

opposition, a destructive fault would (usually) render the

target unusable and will necessitate the manufacturing of a

clone.

3 Fault Attacks in Theory

The first academic fault attack paper [8], proposed a

number of methods for attacking public key algorithms.

One attack focused on an implementation of RSA using

the Chinese Remainder Theorem (CRT). The attack is very

simple as it only requires one fault to be inserted in order

to factor the RSA modulus. Basically the attack works as

follows:

3.1 Fault Attack on RSA Signature

Let N = p × q, where p and q are two large prime num-

bers. Let m ∈ ZZ
∗

N be the message to be signed, d the

private key and s the RSA signature. We denote by a and b
the pre-computed values required for use in the CRT, such

that:

{

a ≡ 1 (mod p)
a ≡ 0 (mod q)

and

{

b ≡ 0 (mod p)
b ≡ 1 (mod q)

and define:

dp = d (mod p − 1)
dq = d (mod q − 1)

Using repeated squaring calculate:

sp = mdp (mod p)

sq = mdq (mod q)

The RSA signature s is then obtained by the linear com-

bination s = a × sp + b × sq (mod N)
The attack is based on being able to obtain two signatures

of the same message, where one signature is correct and

the other faulty. By “faulty” we mean that a fault injected

during the computation corrupted either the computation of

sp or sq.

Let ŝ = a × sp + b × ŝq (mod N) be the faulty sig-

nature (we arbitrarily assume that the error occurred during

the computation of sq but the attack works just as well when

sp is corrupted). Subtraction yields:

∆ = s−ŝ = (a×sp+b×sq)−(a×sp+b×ŝq) = b(sq−ŝq)

Hence, (given that b ≡ 0 (mod p)) one notes that ∆ =
b(sq− ŝq) is a multiple of p. A simple GCD calculation will

thus factor N :

GCD(∆, N) = p

In summary all that is required to break RSA is one cor-

rect signature and one faulty one. This attack will be suc-

cessful regardless of the type or number of faults injected

during the process provided that all faults affect the compu-

tation of sp or (mutually exclusive or!) sq.

Although initially theoretical, this attack (implemented

in [5]) stimulated the genesis of a variety of fault attacks

against a wide gamut of cryptographic algorithms. The fol-

lowing subsections describe some more of these attacks.

3.2 Fault Attack on RSA Decryption

Suppose that one bit in the binary representation of d
flips from from 1 to 0 or vice versa, and that this faulty

bit position is randomly located. An attacker arbitrarily

chooses a plaintext m and computes the ciphertext c. He

then injects a fault during c’s decryption and gets a faulty

plaintext m̂. Assuming that bit d[i] flips to d[i], then divi-

sion of the faulty plaintext by the correct one will yield:

m̂

m
=

c2id[i]

c2id[i]
(mod N)

Obviously, if

m̂

m
=

1

c2i
(mod N) ⇒ d[i] = 1

and if
m̂

m
= c2i

(mod N) ⇒ d[i] = 0

This process is repeated until enough information is ob-

tained on d. The attack works if and only if one bit is

changed. If for example two bits (i and j) are changed then

the result will resemble the changing of one bit (k), where

the the sign depends on how the bit is changed:

±2i
± 2j = ±2k

It should be noted that the attack also works for multiple bit

errors. The more bits that are changed the more pronounced

the effect becomes. Details and variants can be found in

[6]. This attack can also apply to discrete logarithm based

public key cryptosystems such as DSA.

3.3 Fault Attacks on Key Transfer or NVM

In this scenario [7] a fault is injected during the trans-

fer of secret data from one memory component to another.

Although the attack is applicable to any algorithm let us as-

sume that a DES key is being transferred from EEPROM to

RAM in a smart card. If we change the value of parts of the

key to some fixed value (for example one byte at a time), it

becomes possible to derive the secret key.

We DES-encrypt a message M to obtain a faultless ci-

phertext C0. Then, during the key transfer from EEPROM

to RAM, one key byte is changed to a fixed known value (00

in our example). The resulting C1 is recorded and the pro-

cess is repeated by forcing two bytes to a fixed value, then

three bytes, and so on. This continues until the whole key

but one byte has been set, byte by byte, to the fixed value.

This procedure shown in table 1, where Ci represents

the ciphertext of an unknown key with i bytes set to a fixed

value . Once this data has been collected it can be used to

derive the DES key.

Table 1. The BihamShamir Attack
Input DES Key Output

M → K0 =XX XX XX XX XX XX XX XX → C0

M → K1 =XX XX XX XX XX XX XX 00 → C1

M → K2 =XX XX XX XX XX XX 00 00 → C2

M → K3 =XX XX XX XX XX 00 00 00 → C3

M → K4 =XX XX XX XX 00 00 00 00 → C4

M → K5 =XX XX XX 00 00 00 00 00 → C5

M → K6 =XX XX 00 00 00 00 00 00 → C6

M → K7 =XX 00 00 00 00 00 00 00 → C7

Let Kn represent the original DES key with n bytes re-

placed with known values. To find K7 the 128 different

possible values for the first byte of the DES key are tried

until one produces the ciphertext C7
1. After this K6 can

be found by searching through the 128 different possible

values for the second byte, as the first byte will be known.

Finding the entire key will require a search through a key

space of 1024 different keys. This attack can also be used

when unknown data is manipulated by an known algorithm.

Historical note: An attack similar to [7] was discovered

and documented (but never published) during a code audit

in Gemplus back in 1994. The code was that of a smart-card

operating system where a special file contained DES keys

saved in records. This OS featured two commands: erase

i, a command that erases the i-th key record and encrypt

i, M a command that outputs the ciphertext of the message

M using the key contained in the i-th record. While in-

visible for the user, the OS was using the convention that

all-zero keys are free records (an encrypt command on

a zero (erased) record would return an error). The attack

here was exploiting the fact that EEPROM could only be

erased by 32-block units. In other words, upon an erase,

the OS would erase twice four bytes. The attack consisted

of encrypting a message with an unknown key and then in-

structing the OS to erase this key but cutting power just after

the first 32-bit block’s deletion. The card will then contain

a 56-bit key which rightmost half is zeroed (which is not

interpreted by the OS as an empty key record!). An encryp-

tion with this key followed by two 228 exhaustive search

campaigns would have eventually revealed the key.

1Although a byte is changed only 128 different values are possible as

the least significant bit is a parity bit.

Since that date, OSs associate a security bit σ to each

key. When a user instructs to delete a key, the σ bit is erased

first, thereby recording the information that the key cannot

be used anymore for cryptographic operations. Only then

will the OS undertake the task of erasing the key’s actual

bits. Upon reset, the OS ascertains that all σ = 0 keys

contain zero bytes if any nonzero σ = 0 keys are found, the

OS simply resumes the deletion of their bits.

3.4 Fault Attacks on DES

DES is a 16-round secret key algorithm based on a Feis-

tel structure. This attack targets DES’ fifteenth round. We

use a simplified description of the last round (figure 6) to

explain what happens when the fifteenth round does not ex-

ecute properly2.

Figure 6. Simplified DES Last Round Model.

The output of the last round can be expressed as:

R16 = S(R15 ⊕ K16) ⊕ L15

= S(L16 ⊕ K16) ⊕ L15

If a fault occurs during the execution of the fifteenth

round, i.e. R15 is changed into a faulty R̂15, then:

R̂16 = S(R̂15 ⊕ K16) ⊕ L15

= S(L̂16 ⊕ K16) ⊕ L15

If we xor R16 and R̂16 we get:

R16 ⊕ R̂16 = S(L16 ⊕K16)⊕L15 ⊕S(L̂16 ⊕K16)⊕L15

= S(L16 ⊕ K16) ⊕ S(L̂16 ⊕ K16)

This gives a relationship where only the value of the six-

teenth subkey (K16) is unknown; all the other variables be-

ing given directly as an output of the DES. For each substi-

tution table used in the last DES round this relationship will

2In figure 6 bit permutations were removed as these do not fundamen-

tally change theory although they somewhat complicate explanation.

be true. An exhaustive search of the 64 possible values that

validate this equation can be conducted for each of the six

bits corresponding to the input of each substitution table.

This will give approximately 218 different hypotheses for

the last subkey leading to a final exhaustive search through

226 DES keys to find the whole key. In practice, it is sim-

plest to conduct the attack several times either at different

positions in the fifteenth round or with a varying message.

When the lists of possible hypotheses are generated the ac-

tual subkey will show up in the intersection of all the sets of

hypotheses. If the difference between the two output values

for a given substitution table (R16 and R̂16) is zero then all

the possible values of K15 for that substitution table will be

valid. This means that it is advantageous to induce a fault as

early as possible in the fifteenth round so that the effect of

the fault spreads over as many different substitution tables

in the sixteenth round as possible.

3.5 Fault Attacks on Other Algorithm Further
Reading

While the bibliography on the matter would be too vo-

luminous to overview exhaustively, the authors attract the

reader’s attention to a more powerful attack [29] applicable

to all secret key algorithms. Several authors e.g. [13, 11]

present fault attacks on AES or RC5 [2]. The details of

these are beyond the scope of this article and are presented

as further reading.

4 Some Experimental Fault Attacks

In a glitch attack, the attacker deliberately generates a

malfunction that causes one or more flip-flops to transition

into a wrong state. The aim is usually to replace a single

critical machine instruction with an almost arbitrary one.

Glitches can also aim to corrupt data values as information

is transferred between registers and memory [20]. There are

three main techniques for creating fairly reliable malfunc-

tions that affect only a very small number of machine cycles

in smart-card processors. These are clock signal transients,

power supply transients, and external electrical field tran-

sients. All three were successfully experimentally imple-

mented by Gemplus. Particularly interesting instructions,

that an attacker might want to target with glitches, are con-

ditional jumps or the test instructions preceding them. They

create a window of vulnerability in the processing stages of

many security applications that often allow the attacker to

bypass sophisticated cryptographic barriers by simply pre-

venting the execution of the code that detects that an au-

thentication attempt was unsuccessful. Instruction glitches

can also be used to extend the runtime of loops, for instance

in serial port output routines, to see more of the memory

after output buffer, or reduce the runtime of loops, thereby

transforming an iterated block-cipher into an easy to break

single-round variant [20]. Clock-signal glitches are cur-

rently the simplest and most practical ones. They temporar-

ily increase the clock frequency for one or more half cy-

cles, such that some flip-flops sample their input before the

new state has reached them. Power analysis was used by

this survey’s authors to monitor how far a program has pro-

gressed and launch a fault as the power profile of a specific

instruction was recognized. This in turn can be used to de-

termine when, for example, a branch instruction is about to

be taken. A more rapid clock cycle at this point (a clock

glitch) may provide insufficient time for the processor to

write the jump address to the program counter, thereby an-

nulling the branch operation [25]. A similar clock-glitch at-

tack is also presented in [2]. Because of the different num-

ber of gate delays in various signal paths and the varying

parameters of the circuits on the chip, this affects only some

signals, and by varying the precise timing and duration of

the glitch, the CPU can be fooled to execute a number of

completely different, wrong instructions. These will vary

from one instance of the chip to another, but can be found

by a systematic search using specialized hardware.

The following figures illustrate different effects that

glitches can have. In this experiment power was dropped

from Vcc to 0V during a few nanoseconds. By carefully

playing with the glitch’s parameters (duration, falling edge,

amplitude etc.) two types of behavior were obtained:

• Under a first set of conditions (figure 7), the proces-

sor just skipped a number of instructions and resumed

normal execution several microseconds after the glitch.

This fault allows the selective execution of instructions

in a program.

Figure 7. Instruction Only Glitch Attack

• Under a second set of conditions, not only does the

processor skip instructions - but the value of data ma-

nipulated by the processor is also modified in a precise

manner. This is visually reflected in the power curves

of figure 8.

�����������	�
��������������

����������	��������������� ��� ������

����������������������������������

Figure 8. Instruction and Data Glitch Attack

It should be noted that a third set of conditions was tested

in this experiment. Although the results are not shown here,

the outcome was that the value of data could be corrupted

while the interpretation of instructions was left unchanged.

The following two images show glitch injection elec-

tronics used in mounting these attacks. The data aquisi-

tion board shown in figure 9 was initially developed for per-

forming differential power analysis. It was then extended to

incorprate glitch attacks. The board accepts a signal from

a CLIO reader instructing the aquisition board to apply a

lower voltage to the Vcc for the duration of that signal. The

levels of voltage that are applied during the glitch are con-

trolled via potentiometers configured with a screwdriver.

Figure 9. Data Aquisition Board with CLIO
Reader

Figure 10 shows a modified clio reader that can be used

to inject a glitch at a specific point during a command. This

setup can be configured via the network to allow for a large

number of glitch configurations to be tested when searching

for vulnerablities in new chips.

Glitch attacks have been reported against a number of

Figure 10. A Modified CLIO Reader

cryptographic systems. We will describe here a few such

attacks in further detail.

4.1 Glitch Attack on RSA

The GCD attack presented in section 3 was implemented

by [5] and others. We also refer the reader to [6] and [16]

who report clock-glitch attacks against RSA and DES.

4.2 Glitch Attack on DES

When we can cause an instruction of our choice to fail,

then there are several fairly straightforward ways to attack

DES. We can remove one of the 8-bit xor operations that

are used to combine the round keys with the inputs to the S-

boxes from the last two rounds of the algorithm, and repeat

this for each of these key bytes in turn. The erroneous ci-

phertext outputs that we receive as a result of this will each

differ from the genuine ciphertext in the output of usually

two, and sometimes three, S-boxes. Using the techniques

of differential cryptanalysis, we obtain about five bits of in-

formation about the eight key bits that were not xor’ed as

a result of the induced fault. So, for example, six cipher-

texts with faulty last rounds should leak about thirty key

bits, leaving an easy brute-force search [2]. An even faster

attack brutally reduces the number of DES rounds to one

or two by corrupting the appropriate loop variable or con-

ditional jump. As a conclusion, unprotected DES can be

compromised in a variety of ways with somewhere between

one and ten faulty ciphertexts. Analogous attacks on AES

were successfully mounted in Gemplus’ laser laboratory.

4.3 Glitch Attack on EEPROM

EPROM stores information as charges in the gate insula-

tor of a MOSFET; charge is stored on the floating gate of a

MOS transistor and the control gate is used to program the

transistor as shown in figure 11. EEPROM transfers elec-

trons by Fowler-Nordheim tunnelling and program/erase

operations are carried out by electrons tunnelling through

the thin oxide. Control gate voltage is high for program-

ming while for erasure the control gate is grounded and the

drain voltage is raised. To read information from a cell,

the cell’s static voltage is compared to a reference detec-

tion voltage Vdet (usually Vdet = Vcc/2). Consequently, if

��������	���

�������	���

���

Figure 11. EPROM

programming is done under the lowest tolerable voltage a

lesser amount of particles will be forced into the cell. Then,

if during reading Vcc is increased to the highest value toler-

ated by the circuit Vdet is artificially boosted and hence data

will be read as zero regardless it’s actual value. To attack an

n byte key one can simply subject the circuit to n−1 power

glitches to obtain the encryption of a known plaintext under

a vulnerable key of the form:

00 00 . . . 00 00 XX 00 00 . . . 00 00

The attacker will then move the glitch’s position to suc-

cessively scan the entire key. This attack was implemented

by Gemplus in the late 1990s.

4.4 Analogous Laser Attack on a Data Bus

In a specific smart card chip, a laser impact on the data

bus during information transfer has the effect of reading the

value 255 (0xFF) regardless the transferred information’s

actual value. The attack described in the previous subsec-

tion could hence be directly re-adapted in Gemplus’ laser

laboratory.

4.5 The Java Sandbox

The Java sandbox is an environment in which applets are

run without direct access to the computer’s resources. The

idea being that an applet need not be trusted as it is inca-

pable of running malicious code. The most common exam-

ple of Java programs being used is on the Internet, where

an applet is downloaded and executed on a PC to achieve

a given effect on the webpage being observed. A relatively

recent paper [15] describes a fault attack on a PC forcing

the Java Virtual Machine to execute arbitrary code. This

was done by using a spotlight to heat up the PC’s RAM to

the point where a fault (in this case a bit flip) occurs. In this

case a special applet was loaded into the computer’s mem-

ory and the RAM heated up to the point where some bits

would change their value. The expected fault was that the

address of a function a called by the applet would have one

bit changed, so that the address called was a ± 2i, where

0 ≤ i ≤ 31 (the computer’s word size). The programmer

arranges to have a function present at that address that will

return a variable of a type that is not expected by the calling

function, for example an integer to a pointer. This can then

be used to read/write to arbitrary addresses in the computers

memory. One of the possible uses of such a fault would be

to change fields in the Java runtime system’s security man-

ager to grant the applet illegal rights.

5 Countermeasures

Since the identification of faults as a problem in elec-

tronic systems several hardening methods were deployed.

These solutions help circuits to avoid, detect and/or cor-

rect faults. Hardware and software countermeasures will

be overviewed separately for the sake of clarity.

5.1 Hardware Countermeasures

Hardware protections are implemented by the chip man-

ufacturer and can be further sub-divided into two categories:

active and passive protections.

5.1.1 Active Protections:

• Light detectors detect changes in the gradient of light.

• Supply voltage detectors react to abrupt variations in

the applied potential and continuously ascertain that

voltage is within the circuit’s tolerance thresholds.

• Frequency detectors impose an interval of operation

outside which the electronic circuit will reset itself.

• Active shields are metal meshes that cover the entire

chip and has data passing continuously in them. If

there is a disconnection or modification of this mesh

the chip will not operate anymore. This is primarily a

countermeasure against probing, although it helps pro-

tecting against fault injection as it makes the location

of specific blocks in a circuit harder.

• Hardware redundancy:

1. Simple Duplication with Comparison (SDC) is a the

duplication of hardware blocks followed by a test by a

comparator. When the two blocks’ results don’t match,

an alert signal is transmitted to a decision block. Two

types of reaction can be implemented: a hardware re-

set or the activation of an interruption that triggers

dedicated countermeasures. SDC protects against sin-

gle focused errors and only permits their detection. A

feedback signal is usually triggered to stop all outgo-

ing data flows.

�������

�������

	
�
 �����

����� �

����� �
����
�����

�

�
����

	���	

��

���
	������

�
�����

Figure 12. Simple Dupilcation with Compari
son.

�������

�������

	
�
 �����

����� �

����� �

����
�����

�

�
����

	���	

��

���
	������

�
�����

�������

�������

����� �

����� �

Figure 13. Multiple Duplication with Compar
ison.

2. Multiple Duplication with Comparison (MDC): each

hardware block is duplicated at least thrice. The

comparator detects any mismatch between results and

transmits the alert signal to the decision block. As pre-

viously, two types of reaction can be implemented, a

hardware reset or the activation of an interruption. The

difference with SDC being the possibility to correct the

fault through a majority vote and correct the outgoing

signal.

3. Simple Duplication with Complementary Redundancy

(SDCR) is based on the same principles as SDC but

the two blocks store complemented data. When the

result of the two blocks match, the comparison block

transmits an alert to the system that triggers a hardware

reset or an interrupt. SDCR protects against multiple

focused errors since it is difficult to inject two different

errors with complementary effects, but (just as SDC)

SDCR only permits error detection.

�������

�������

	
�

�����

����
�����

�

�
����

	���	

��

���
	������

�
����

	
�

Figure 14. Simple Duplication with Comple
mentary Redundancy.

�������

�������

	
�
 �����

����� �

����� �

��

���
	������

�������

�������

�������

����� �

����� �

��������� �����

Figure 15. Dynamic Duplication

4. Dynamic Duplication consists of multiple redundan-

cies with a decision module, commanding a data

switch upon fault detection. The vote block is a switch,

which transmits the correct result as instructed by the

comparator. Corrupted blocks are disabled and their

results discarded. This type of implementation permits

��������

��������

	�
�

����
 �

����
 �

����
 �

��

���

	������

����
���

��������

���������

����
 �

����
 �

��
����� �����

���������

�

����
 �

��
�
����
�	�
��
�	

����

	�
�

	�
�

	�
�

	�
�

Figure 16. Hybrid Duplication.

detection and subsequent reaction to the detected error

[23].

5. Hybrid Duplication is a combination of multiple dupli-

cations with complementary redundancy and dynamic

duplication. This protects against single and multiple

focused faults, as it is very difficult to inject multiple

faults with complementary effects.

• Protection using time redundancy:

1. Simple Time Redundancy with Comparison (STRC)

consists of processing each operation twice and com-

paring results [4]. This protects against single and mul-

tiple time synchronized errors but is only capable of

detecting faults. Reaction is limited to the discarding

of the corrupted results.

�������

�	
	

����

����	����

�

�	��
�
��
��
��

��

���

�������

��	�
���

����
 �

����
 �

����
���

���	�

Figure 17. Simple Time Redundancy with
Comparison

2. Multiple Time Redundancy with Comparison is based

on the principle used by STRC but the result is pro-

cessed more than twice. This detects, reacts and possi-

bly corrects single and multiple faults.

�������
�	
���

������
��

�

������
�	�	��	�

��

�	
	�
�	��
���

�	������

����

�	���

�	���

�	���

	�	�����

Figure 18. Multiple Time Redundancy with

Comparison

3. Re-computing with Swapped Operands consists of re-

computing results with the operands’ little endian and

big endian bits swapped. The result is re-swapped and

compared to detect potential faults. This type of pro-

tection has the advantage of de-synchronizing two dif-

ferent processes and makes fault attacks very difficult.

This countermeasure protects against single and mul-

tiple time synchronized errors.

�������

�	
	

����

����	����

�

�	��
�

��
��
��

��

���

�������

��	�
���

����
 �

����
 �

����
���

�	�

Figure 19. Recomputing with Swapped
Operand

4. Re-computing with Shifted Operands: [26] opera-

tions are recomputed by shifting the operands by a

given number of bits. The result is shifted backwards

and compared to the original one.

�������

�	
	

����

����	����

�

�	��
�
��
��
��

��

���

�������

��	�
���

����
 �

����
 �

����
���

���

Figure 20. Recomputing with Shifted
Operand

5. Re-computing with Duplication with Comparison is a

combination of time redundancy and hardware redun-

dancy. This protects against single, multiple and time

synchronized faults but the time penalty and the in-

crease in block size limit this countermeasure’s use.

�������

�������

������	

�������

���

����������

����������

����������

����������

����

����

����

����

���������

����
������

��

�����

�������

Figure 21. Recomputing with Duplication
with Comparison

• Protection by Redundancy Mechanisms such as Ham-

ming codes [22], hardwired checksums and error cor-

rection codes are also used to avoid or detect faults

[27]. The typical example being checksums attached

to each machine word in RAM or EEPROM to ensure

integrity.

5.1.2 Passive Protections:

The second class of hardware protection mechanisms con-

sists of passive protections that increase the difficulty of

successfully attacking a device. These protections can be

self-activated or managed by the device’s programmer:

• Mechanisms that introduce dummy random cycles dur-

ing code processing.

• Bus and memory encryption. Let h be a hard-

wired keyed permutation and f a simple hardwired

block-cipher. Upon power-on, the chip generates an

ephemeral key k. When the microprocessor wishes to

write the value m at RAM address i, the system stores

v = fk(m, i) at address hk(i). When the micropro-

cessor requires the contents of address i, the system

recomputes hk(i), fetches v from address hk(i), de-

crypts m = f−1
k (v, i) and hands m to the micropro-

cessor. This makes laser or glitch targeting of a spe-

cific memory cell useless as successive computations

with identical data use different memory cells.

• Passive shield: a full metal layer covers some sensitive

chip parts, which makes light or electromagnetic beam

attacks more difficult as the shield needs to be removed

before the attack can proceed. This also allows to con-

tain information leakage through electromagnetic radi-

ations (i.e. thwart some side-channel attacks).

• Unstable internal frequency generators protect against

attacks that need to be synchronized with a certain

event, as events occur at different moments in differ-

ent executions.

���������	
� �
���������	
�

Figure 22. Unstable Internal Frequency Gen
eration Reflected in Power Consumption.

5.2 Software Countermeasures

Software countermeasures are implemented when hard-

ware countermeasures are insufficient or as cautious pro-

tection against future attack techniques that might defeat

present-generation hardware countermeasures. The advan-

tage of software countermeasures is that they do not in-

crease the hardware block size, although they do impact the

protected functions’ execution time.

• Checksums can be implemented in software. This is

often complementary to hardware checksums, as soft-

ware CRCs can be applied to buffers of data (some-

times fragmented over various physical addresses)

rather than machine words.

• Execution Randomization: If the order in which op-

erations in an algorithm are executed is randomized it

becomes difficult to predict what the machine is doing

at any given cycle. For most fault attacks this counter-

measure will only slow down a determined adversary,

as eventually a fault will hit the desired instruction.

This will however thwart attacks that require faults in

specific places or in a specific order, such as the trans-

ferring of secret data attack described previously.

• Variable redundancy is nothing but SDC in software.

• Execution redundancy is the repeating of algorithms

and comparing the results to verify that the correct re-

sult is generated. As SDCR, redundancy is more se-

cure if the second calculation is different than the first

(for example its inverse3) so that two identical faults

cannot be used at different times.

• Ratification counters and baits: baits are small (<
10 byte) code fragments that perform an operation

and test it’s result. A typical bait writes, reads and

compares data, performs xors, additions, multiplica-

tions and other operations whose results can be easily

checked. When a bait detects an error it increments an

NVM counter and when this counter exceeds a toler-

ance limit (usually three) the card ceased to function.

In theory all data redundancy method used in hardware

can be implemented in software. The problem then be-

comes execution time rather than block size. As some of

the proposed hardware designs become extremely time con-

suming when imitated by software. We recommend [32] as

further reading

6 Conclusion

Various methods for creating faults were presented.

Practical applications of these attacks were presented.

These applications included attacks on keys and symmet-

ric and asymmetric cryptosystems. Finally, hardware and

software countermeasures were overviewed. Unfortunately,

these countermeasures never come for free and impact the

cost of the system being developed. Also, the resulting sys-

tem will be slower and may feature an increased block size.

There will always be a tradeoff between cost, efficiency and

security, and it will be a judgement call by designers, de-

velopers and users to choose which of these requirements

best suit their needs. There is still much work to be done

in this area with the ultimate goal being an optimal balance

between security, efficiency and cost.

References

[1] L. Adams, E. J. Daly, R. Harboe-Sorensen, et al. “A

verified Proton Induced Latchup in Space”, In IEEE

Transactions on Nuclear Science, vol. 39, pp. 1804-

1808, 1992.

[2] R. Anderson and M. Kuhn. “Low Cost Attacks

on Tamper Resistant Devices”, IWSP: 5th Interna-

tional Workshop on Security Protocols, LNCS 1361,

Springer-Verlag, pp. 125-136, 1997.

3Encrypt-decrypt, sign-verify etc.

[3] R. Anderson and S. Skoroboatov.“Optical Fault In-

duction Attacks”, In Workshop on Cryptographic

Hardware and Embedded Systems (CHES 2002),

LNCS 2523, Springer-Verlag, ISBN 3-540-00409-2,

pp. 2-12, 2002.

[4] L. Anghel and M. Nicolaidis. “Cost Reduction and

Evaluation of a Temporary Faults Detecting Tech-

nique”, in Proceedings of Design, Automation and

Test in Europe (DATE ’00), pp. 591-597, 2000.

[5] C. Aumüller, P. Bier, P. Hofreiter, W. Fischer and J.-

P. Seifert. “Fault attacks on RSA with CRT: Concrete

Results and Practical Countermeasures”, Cryptology

ePrint Archive: Report 2002/073. http://www.iacr.org.

[6] F. Bao, R.H. Deng, Y. Han, A. Jeng, A.D.

Narasimhalu and T. Ngair. “Breaking Public Key

Cryptosystems on Tamper Resistant Devices in the

Presence of Transient Faults”, the Proceedings of

the 5th Workshop on Secure Protocols, LNCS 1361,

Springer-Verlag, pp. 115-124, Paris, April 7-9, 1997.

[7] E. Biham and A. Shamir. “Differential Fault Anal-

ysis of Secret Key Cryptosystems”, in Prceedings of

Advances in Cryptology - CRYPTO ’97, LNCS 1294,

pp. 513-525, 1997.

[8] D. Boneh, R. DeMillo and R. Lipton. “On the Im-

portance of Checking Cryptographic Protocols for

Faults”, Journal of Cryptology, Springer-Verlag, Vol.

14, No. 2, pp. 101-119, 2001.

[9] Ph. Cazenave, P. Fouillat, X. Montagner, H. Barnaby,

R. D. Schrimpf, L. Bonora, J. P. David, A. Touboul,

M. -C. Calvet and P. Calvel. “Total dose effects on

gate controlled lateral PNP bipolar junction transis-

tors”, In IEEE Transactions on Nuclear Science, vol.

45, pp. 2577-2583, 1998.

[10] J. Colvin. “Functional Failure Analysis by Induced

Stimulus”, ISTFA 2002 Proceedings, Ed. ASM Inter-

national, pp. 623-630, 2002.

[11] P. Dusart, G. Letourneux and O. Vivolo. “Differ-

ential Fault Analysis on A.E.S.”, Cryptology ePrint

Archive: Report 2003/010. http://www.iacr.org.

[12] P. Fouillat. “Contribution à l’étude de l’interaction

entre un faisceau laser et un milieu semiconducteur”,

Applications à l’étude du Latchup et à l’analyse

d’états logiques dans les circuits intégrés en tech-

nologie CMOS, Thèse de doctorat de l’université

Bordeaux I, 1990.

[13] Ch. Giraud, “DFA on AES”, Cryptology ePrint

Archive: Report 2003/008. http://www.iacr.org.

[14] T. J. O’Gorman. “The effect of cosmic rays on soft

error rate of a DRAM at ground level”, In IEEE

Transactions On Electronics Devices, vol. 41, pp.

553-557, 1994.

[15] S. Govindavajhala and A. W. Appel. “Using Mem-

ory Errors to Attack a Virtual Machine”, in the 2003

IEEE Symposium on Security and Privacy, pp. 154-

165, 2003.

[16] O. Grabbe. “Smartcards and Private Currencies”,

http://www.aci/net/kalliste/smartcards.htm

[17] D.H Habing. “The Use of Lasers to Simulate

Radiation-Induced Transients in Semiconductor De-

vices and Circuits”, In IEEE Transactions On Nu-

clear Science, vol.39, pp. 1647-1653, 1992.

[18] R. Koga and W. A. Kolasinski. “Heavy ion induced

snapback in CMOS devices”, In IEEE Transactions

on Nuclear Science, vol. 36, pp. 2367-2374, 1989.

[19] R. Koga, M. D. Looper, S. D. Pinkerton, W. J. Stapor,

and P. T. McDonald. “Low dose rate proton irradi-

ation of quartz crystal resonators”, In IEEE Trans-

actions on Nuclear Science, vol. 43, pp. 3174-3181,

1996.

[20] O. Kommerling and M. Kuhn. “Design Principles for

Tamper Resistant Smartcard Processors”, Proceed-

ings of the USENIX Workshop on Smartcard Tech-

nology, pp. 9-20, 1999.

[21] S. Kuboyama, S. Matsuda, T. Kanno and T. Ishii.

“Mechanism for single-event burnout of power

MOSFETs and its characterization technique”, In

IEEE Transactions On Nuclear Science, vol. 39, pp.

1698-1703, 1992.

[22] F. Lima, E. Costa, L. Carro, M. Lubaszewski,

R. Reis, S. Rezgui and R. Velazco. “Designing

and Testing a Radiation hardened 8051-like Micro-

Controller”, in the 3rd Military and Aerospace Appli-

cations of Programmable Devices and Technologies

International Conference, 2000.

[23] J. Losq. “Influence of fault detection and switching

mechanisms on reliability of stand-by systems”, In

Digest 5th International Symp Fault-Tolerant Com-

puting, pp. 81-86, 1975.

[24] T. May and M. Woods. “A New Physical Mechanism

for Soft Errors in Dynamic Memories”, in the Pro-

ceedings of the 16th International Reliability Physics

Symposium, April, 1978.

[25] S. Moore, R. Anderson and M. Kuhn. “Improving

Smartcard Security using Self-Timed Circuit Tech-

nology”, IEEE International Symposium on Ansych-

nronous Circuits and Systems, pp. 120-126, 2002.

[26] J. H. Patel and L. Y. Fung. “Concurrent Error

Detection in ALU’s by Recomputing with Shifted

Operands”, In IEEE Transactions On Computers,

vol. C-31, pp. 589-595, 1982.

[27] M. Pflanz, K. Walther, C. Galke and H. T. Vierhaus.

“On-Line Detection and Correction in Storage Ele-

ments with Cross-Parity Check”, In Proceedings of

the 8th IEEE International On-Line Testing Work-

shop (IOLTW’02), pp. 69-73, 2002.

[28] J. C. Pickel and J. T. Blandford, Jr. “Cosmic ray

induced errors in MOS memory circuits”, In IEEE

Transactions On Nuclear Science, vol. NS-25, pp.

1166-1171, 1978.

[29] G. Piret and J. J. Quisquater. “A Differential Fault At-

tack Technique Against SPN Structure, with Appli-

cation to the AES and KHAZAD”, in Cryptographic

Hardware and Embedded Systems (CHES 2003),

LNCS 2779, Springer-Verlag, pp. 77-88, 2003.

[30] V. Pouget. “Simulation expérimentale par impul-

sions laser ultra-courtes des effets des radiations ion-

isantes sur les circuits intégrés”, Thèse de doctorat

de l’Université de Bordeaux I, 2000.

[31] B. G. Rax, C. I. Lee, A. H. Johnston and C. E.

Barnes. “Total dose and proton damage in optocou-

plers”, In IEEE Transactions on Nuclear Science,

vol. 43, pp. 3167-3173, 1996.

[32] M. Rebaudengo, M. Sonza Reorda, M. Torchi-

ano and M. Violente. “Soft-error Detection Through

Software Fault-Tolerance Techniques”, IEEE Inter-

national Symposium on Defect and Fault Tolerance

in VLSI Systems, November 1-3 1999, Albuquerque,

New Mexico (USA), pp. 210-218, 1999.

[33] E. G. Stassinopoulos, G.J. Brucker, P. Calvel, A.

Baiget, C. Peyrotte and R. Gaillard. “Charge gen-

eration by heavy ions in power MOSFETs, burnout

space predictions and dynamic SEB sensitivity”, In

IEEE Transactions On Nuclear Science, vol. 39, pp.

1704-1711, 1992.

[34] J. Ziegler. “Effect of Cosmic Rays on Computer

Memories”, Science , Vol. 206, pp. 776-788, 1979.

