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The sorghum SWEET gene family: 
stem sucrose accumulation as revealed 
through transcriptome pro�ling
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Abstract 

Background: SWEET is a newly identified family of sugar transporters. Although SWEET transporters have been 

characterized by using Arabidopsis and rice, very little knowledge of sucrose accumulation in the stem region is avail-

able, as these model plants accumulate little sucrose in their stems. To elucidate the expression of key SWEET genes 

involved in sucrose accumulation of sorghum, we performed transcriptome profiling by RNA-seq, categorization 

using phylogenetic trees, analysis of chromosomal synteny, and comparison of amino acid sequences between SIL-05 

(a sweet sorghum) and BTx623 (a grain sorghum).

Results: We identified 23 SWEET genes in the sorghum genome. In the leaf, SbSWEET8-1 was highly expressed 

and was grouped in the same clade as AtSWEET11 and AtSWEET12 that play a role in the efflux of photosynthesized 

sucrose. The key genes in sucrose synthesis (SPS3) and that in another step of sugar transport (SbSUT1 and SbSUT2) 

were also highly expressed, suggesting that sucrose is newly synthesized and actively exported from the leaf. In the 

stem, SbSWEET4-3 was uniquely highly expressed. SbSWEET4-1, SbSWEET4-2, and SbSWEET4-3 were categorized into 

the same clade, but their tissue specificities were different, suggesting that SbSWEET4-3 is a sugar transporter with 

specific roles in the stem. We found a putative SWEET4-3 ortholog in the corresponding region of the maize chromo-

some, but not the rice chromosome, suggesting that SbSWEET4-3 was copied after the branching of sorghum and 

maize from rice. In the panicle from the heading through to 36 days afterward, SbSWEET2-1 and SbSWEET7-1 were 

expressed and grouped in the same clade as rice OsSWEET11/Xa13 that is essential for seed development. SbSWEET9-3 

was highly expressed in the panicle only just after heading and was grouped into the same clade as AtSWEET8/RPG1 

that is essential for pollen viability. Five of 23 SWEET genes had SNPs that caused nonsynonymous amino acid substi-

tutions between SIL-05 and BTx623.

Conclusions: We determined the key SWEET genes for technological improvement of sorghum in the production 

of biofuels: SbSWEET8-1 for efflux of sucrose from the leaf; SbSWEET4-3 for unloading sucrose from the phloem in the 

stem; SbSWEET2-1 and SbSWEET7-1 for seed development; SbSWEET9-3 for pollen nutrition.
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Background
Sorghum (Sorghum bicolor) accumulates sucrose in the 

stem. �is feature is rare among plants, making sor-

ghum a useful source of bioethanol [1–5]. To enhance 

bioethanol production, it is important to understand and 

manipulate sucrose phloem loading, unloading, metabo-

lism, and signaling [6–9] and improve the efficiency of 

bioethanol production [10–13]. Sucrose content gen-

erally depends on its metabolism, transport, and stor-

age [14, 15]. �e key genes in sucrose metabolism are 

sucrose phosphate synthase (SPS) and sucrose synthase 

(SUS); their products catalyze rate-limiting steps in this 

metabolic pathway. �e key genes in transport and thus 

sucrose movement between tissues via the phloem are 
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sugars will eventually be exported transporters (SWEET) 

and sucrose transporters (SUT) [16]. Invertase (INV) is 

responsible for the degradation of sucrose to glucose and 

fructose, thus influencing whether sugar molecules are 

stored as sucrose or starch. �ese factors synergistically 

contribute to the stem sucrose content.

SWEET is a newly identified family of sugar trans-

porters [17, 18]. SWEET family genes are duplicated, 

with a diversity of functions: 21–23 SWEET genes are 

known in S. bicolor, 17 in Arabidopsis thaliana, 18 in 

Brachypodium distachyon, 23 in rice (Oryza sativa), 52 

in Glycine max, and 24 in Zea mays [19, 20]. Our knowl-

edge of SWEET has been expanded by using model 

plants such as Arabidopsis [21] and O. sativa [22, 23]. 

In Arabidopsis thaliana, SWEET proteins are located 

in the plasma membrane or vacuolar membranes and 

transport sucrose, glucose, fructose, or 2-deoxyglucose; 

SWEET genes are expressed in the leaf, root, flower, 

seed, and/or pollen [21]. �e functions of some of the 

SWEET proteins have been elucidated: for example, 

AtSWEET11 and 12 are sucrose transporters respon-

sible for the efflux of photosynthesized sucrose from 

the leaf, and the double mutant accumulates sugar in 

the leaf [24]. OsSWEET11, which is essential for repro-

ductive development, are used by the pathogenic bac-

terium to invade its host [25]. However, because these 

model plants accumulate little sucrose in their stems, 

no information on the relationship between SWEET 

and stem sucrose accumulation is available. Expression 

of the other sorghum sucrose transporter gene family, 

SUT, differs between Rio (sweet) and BTx623 (grain) 

sorghum stems [26], but does not differ between Wray 

(sweet) and Macia (grain) sorghum stems [27]. �ese 

findings suggest that SUT expression is not a pivotal 

rate-limiting factor for sucrose transport. To elucidate 

the mechanism of sucrose accumulation in the stem, it 

is therefore important to further characterize sorghum 

SWEET family genes.

Our aim here was to characterize sorghum SWEET 

genes using gene expression profiling during the stage of 

sucrose accumulation. We also used phylogenetic trees to 

characterize genes and analyzed the synteny of SWEET 

genes between the sorghum and rice chromosomes. We 

compared the amino acid sequence of SWEET of sor-

ghum SIL-05 (a sweet sorghum used as a material for 

bioethanol production; [28] and BTx623 (for which a ref-

erence genome sequence is available [29], but which is a 

grain sorghum with lower sucrose content than SIL-05). 

We also analyzed the expression of other sugar-related 

genes: SUT, SPS, SUS, and INV. We then consider all of 

the results together to discuss the key genes in phloem 

loading and unloading and thus accumulation of sucrose 

in sorghum stems.

Results and discussion
Quanti�cation of gene expression during the stage 

of sucrose accumulation in the stem

In the sweet sorghum SIL-05, total sugar content increased 

after heading, reaching 18.9  % on day 64 after heading, 

whereas the glucose and fructose contents decreased 

slightly from day 17 (Fig.  1). To identify differentially 

expressed genes, tissue samples were obtained from the 

leaf, stem, and panicle on days 1, 17, and 36, respectively, 

after heading. �eir RNAs were then sequenced.

We focused on genes encoding proteins for sugar 

transport (SWEET, SUT), sugar metabolism (SPS, SUS), 

and sucrose degradation (INV) (Table  1). We plotted 

the chromosomal locations of these genes (Fig.  2) on 

the basis of their chromosomal locations in the BTx623 

genome (Table 1). Quantitative trait loci (QTL) for sugar-

related traits that were previously analyzed by using 

a cross of SS79 (a sweet sorghum) ×  M71 (a grain sor-

ghum) [30] and R9188 (a sweet sorghum) ×  R9403463-

2-1 (a grain sorghum) [31] are also shown in Fig. 2.

FPKM values were calculated to compare the expres-

sion level of each gene. �e FPKM of 23 SWEET genes, 

6 SUT genes, 5 SPS genes, 3 SUS genes, and 4 INV genes 

are shown in Fig. 3. We then focused on the highly and/

or differentially expressed genes.

Identi�cation of SNPs in SIL-05 and BTx623

Single nucleotide polymorphisms (SNPs) were found 

between SIL-05 and BTx623. Five SWEET genes had 

SNPs that caused nonsynonymous amino acid substitu-

tions between SIL-05 and BTx623 (Table 2). �ese amino 

acid substitutions might affect the transport activity of 

SWEET proteins.

Genes potentially responsible for sucrose accumulation 

in the stem of sorghum

SbSWEET8‑1 (Sobic.008G094000)

We examined the genes potentially responsible for 

sucrose synthesis and efflux from the leaf. SbSWEET8-1 
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Fig. 1 Sugar contents after heading. Y-axis indicates sugar content 

(weight/volume). X-axis indicates the number of days after heading, 

and the arrow indicates the point of sampling for RNA-seq
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was extremely highly expressed in the leaf from the start 

of heading through to 36  days after heading (Fig.  3). 

It was grouped in the same clade as AtSWEET11 and 

AtSWEET12 (Fig.  4). AtSWEET11 and AtSWEET12 

play a role in the efflux of photosynthesized sucrose to 

the apoplast in the leaves of Arabidopsis [21]. Although 

Table 1 Sorghum SWEET genes, other sugar-related genes, and constitutively expressed genes

Chromosomal locations are based on the reference genome Sbicolor_v2.1_255

Function Gene name Gene ID (ver. 2.1) Gene ID (ver. 1.4) Chromosomal location

Sugar transporter SbSWEET1-1 Sobic.001G373600 Sb01g035490 Chr 1: 58,985,432–58,988,278

SbSWEET1-2 Sobic.001G377600 Sb01g035840 Chr 1: 59,380,534–59,384,540

SbSWEET2-1 Sobic.002G259300 Sb02g029430 Chr 2: 64,413,792–64,416,541

SbSWEET3-1 Sobic.003G015200 Sb03g001520 Chr 3: 1,356,535–1,358,800

SbSWEET3-2 Sobic.003G038700 Sb03g003470 Chr 3: 3,617,943–3,620,183

SbSWEET3-3 Sobic.003G038800 Sb03g003480 Chr 3: 3,622,464–3,625,366

SbSWEET3-4 Sobic.003G149000 Sb03g012930 Chr 3: 15,675,845–15,681,441

SbSWEET3-5 Sobic.003G182800 Sb03g024250 Chr 3: 48,309,667–48,324,107

SbSWEET3-6 Sobic.003G213000 Sb03g027260 Chr 3: 54,756,647–54,760,169

SbSWEET3-7 Sobic.003G269300 Sb03g032190 Chr 3: 60,633,184–60,636,494

SbSWEET3-8 Sobic.003G377700 Sb03g041740 Chr 3: 69,215,104–69,218,784

SbSWEET4-1 Sobic.004G133500 Sb04g012910 Chr 4: 20,553,590–20,558,352

SbSWEET4-2 Sobic.004G133600 Sb04g012920 Chr 4: 20,691,080–20,696,805

SbSWEET4-3 Sobic.004G136600 Sb04g015420 Chr 4: 35,162,670–35,166,305

SbSWEET4-4 Sobic.004G157100 Sb04g021000 Chr 4: 49,118,793–49,122,120

SbSWEET5-1 Sobic.005G123500 Sb05g018110 Chr 5: 44,351,922–44,354,521

SbSWEET7-1 Sobic.007G191200 Sb07g026040 Chr 7: 61,176,996–61,180,220

SbSWEET8-1 Sobic.008G094000 Sb08g013620 Chr 8: 36,493,752–36,496,643

SbSWEET8-2 Sobic.008G094300 Sb08g013840 Chr 8: 36,993,118–36,995,615

SbSWEET8-3 Sobic.008G094400 Sb08g014040 Chr 8: 37,249,178–37,251,607

SbSWEET9-1 Sobic.009G080900 Sb09g006950 Chr 9: 11,309,919–11,312,702

SbSWEET9-2 Sobic.009G143500 Sb09g020860 Chr 9: 50,116,198–50,119,686

SbSWEET9-3 Sobic.009G252000 Sb09g030270 Chr 9: 58,680,303–58,682,170

Sugar transporter SbSUT3 Sobic.001G254000 Sb01g022430 Chr 1: 28,168,652–28,172,476

SbSUT1 Sobic.001G488700 Sb01g045720 Chr 1: 68,703,383–68,709,450

SbSUT5 Sobic.004G190500 Sb04g023860 Chr 4: 53,509,428–53,512,882

SbSUT4 Sobic.004G353600 Sb04g038030 Chr 4: 67,476,512–67,481,811

SbSUT6 Sobic.007G214500 Sb07g028120 Chr 7: 63,062,892–63,066,154

SbSUT2 Sobic.008G193300 Sb08g023310 Chr 8: 55,332,646–55,338,922

Sugar degradation INV1 Sobic.001G099700 Sb01g008910 Chr 1: 7,615,347–7,617,621

INV2 Sobic.003G440900 Sb03g047060 Chr 3: 73,993,613–73,997,226

INV3 Sobic.004G004800 Sb04g000620 Chr 4: 439,003–443,225

INV4 Sobic.006G255600 Sb06g031930 Chr 6: 60,211,622–60,214,854

Sugar synthesis SPS1 Sobic.003G403300 Sb03g043900 Chr 3: 71,135,755–71,141,978

SPS2 Sobic.004G068400 Sb04g005720 Chr 4: 5,592,102–5,599,224

SPS3 Sobic.005G089600 Sb05g007310 Chr 5: 12,955,276–12,961,424

SPS4 Sobic.009G233200 Sb09g028570 Chr 9: 57,284,130–57,297,240

SPS5 Sobic.010G205100 Sb10g025240 Chr 10: 54,483,016–54,493,428

Sugar synthesis SUS1 Sobic.001G378300 Sb01g035890 Chr 1: 59,452,295–59,460,141

SUS2 Sobic.004G357600 Sb04g038410 Chr 4: 67,754,722–67,766,746

SUS3 Sobic.010G276700 Sb10g031040 Chr 10: 60,830,697–60,835,335

Control actin Sobic.008G047000 Sb08g003970 Chr 8: 4,615,047–4,617,619

EF1alpha Sobic.010G182100 Sb10g023330 Chr 10: 51,879,475–51,882,620

GAPDH Sobic.010G262500 Sb10g029870 Chr 10: 59,688,771–59,701,308
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there were three tandemly duplicated SWEET genes 

(SbSWEET8-1, SbSWEET8-2, and SbSWEET8-3; Fig.  2) 

in the same clade (Fig.  4), SbSWEET8-1 was the only 

one expressed at extremely high levels (FPKM  >  800 

in the leaf; Fig.  3). We therefore consider that it plays 

a major role in sucrose efflux from the leaf (Fig.  5a, 

b). Moreover, the gene encoding the enzymes SPS3 

(Sobic.005G089600) was highly expressed in the leaf. 

SbSUT1 (Sobic.001G488700), a gene encoding an SUT 

transporter, was highly expressed in the leaf from the 

start of heading through to 36  days after heading, sug-

gesting that sucrose is taken up and concentrated in the 

sieve element–companion cell complex (Fig.  5b). �ese 

data suggested that sucrose is newly synthesized and 

actively exported from the leaf at this stage (Fig. 5a).

SWEET9-1 (Sobic.009G080900) was expressed at 

higher levels in the leaf than in the stem and panicles 

from the start of heading through to 36 days after head-

ing (Fig.  3). SWEET9-1 had no potential orthologs in 

Arabidopsis or rice (Fig. 4). Because the expression level 

of SWEET8-1 was massively higher in the leaf through to 

36 days after heading than that of SWEET9-1, SWEET8-1 

may function mainly in phloem loading in the leaf.

SbSWEET4‑3 (Sobic.004G136600)

We next examined the genes potentially responsible for 

sucrose accumulation in the stem. SbSWEET4-3 was 

expressed more highly in the stem than in the other tis-

sues during the stage of sucrose accumulation (Fig.  3). 

Although SWEET expression is diverse in the vari-

ous tissues of sorghum, this potent expression in the 

stem is unique to SbSWEET4-3 (Fig.  3). SbSWEET4-1, 

SbSWEET4-2 and SbSWEET4-3 were located on chro-

mosome 4 (Fig.  2) and categorized into the same clade 
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Fig. 2 Chromosomal locations of sugar-related genes in sorghum. Chromosomal locations of SWEET, SUT, INV, SPS, and SUS genes are shown. The 

positions are based on the reference genome BTx623. Duplicated genes focused in this study are linked by red lines. QTLs for sugar-related traits in 

sweet × grain sorghums are also shown on the basis of two independent QTL analyses: SS79 (sweet sorghum) × M71 (grain sorghum) (green bars 

[30]; and R9188 (sweet sorghum) × R9403463-2-1 (grain sorghum) (blue bars [31]). Numbers in the column at the left indicate the physical lengths of 

the chromosome [Mb megabase]



Page 5 of 12Mizuno et al. Biotechnol Biofuels  (2016) 9:127 

(Fig. 4). �e products of these three SbSWEET genes had 

high levels of amino acid identity with each other (Addi-

tional file 1: Fig. S1A), but the tissue specificity was dif-

ferent: SbSWEET4-3 was expressed mainly in the stem, 

whereas SbSWEET4-1 and SbSWEET4-2 were expressed 

mainly in the panicles (Fig. 3). We therefore hypothesized 

that SbSWEET4-3 is a sugar transporter with specific 

roles in the stem.

We compared the coded sequence and expression of 

SbSWEET4-3 between SIL-05 and BTx623. One amino 

acid substitution (D229E) was found between SIL-05 and 

BTx623 (Table 2). �e aspartic acid (D) residue at 229 is 

conserved as D in the paralogs of SIL-05 (in the case of 

SbSWEET4-1, SbSWEET4-2, and SbSWEET4-3) (Addi-

tional file  1: Fig. S1A), and in other SWEET homologs 

in Brachypodium distachyon, Oryza sativa, Setaria 

italica, and Zea mays (Additional file 1: Fig. S1B). D229 

has also been found in SbSWEET4-3 of other sweet sor-

ghums (Cowley and Top76-6 [32]). We therefore con-

sider that the D residue is necessary for efficient sucrose 

transport, although some SWEETs might function in 

tissues other than the stem. Because of the D229E sub-

stitution, SbSWEET4-3 in BTx623 might have relatively 

low sucrose transport activity. Moreover, the relatively 

high level of expression in the stem of SIL-05 (more 

than ten times that in the panicle; Fig.  3) differs from 

that in BTx623: the expression levels of SbSWEET4-3 

in the stem of BTx623 at the time of anthesis (150 days 

after sowing) are as low as those in the panicle [33]. We 

therefore consider that the amino acid substitution at 

229 and the higher level of expression of SbSWEET4-3 

in the stem than in the panicle might explain the higher 

leaf stem panicle

1 day 17day 36day 1 day 17 day 36 day 1 day 17 day 36 day

SbSUT1 537.6 374.4 252.3 301.5 184.4 142.4 100.3 35.3 42.9

SbSUT2 94.5 98.7 95.4 140.2 120.3 132 35.4 59.2 35.6

SbSUT3 0 0 0 0 0 0 101.1 0 0

SbSUT4 5.5 5.4 7 39.8 28.2 27.5 13.2 21.1 19.8

SbSUT5 0 0 0 0 0 0 13.2 23 0.6

SbSUT6 0 0.1 0.1 0 0 0 0 0.1 0

leaf stem panicle

1 day 17day 36day 1 day 17 day 36 day 1 day 17 day 36 day

INV1 0 0 0 0 0 0 0.5 0 0

INV2 10.8 16.1 15.2 1.8 5.2 7.7 10.1 14.8 4

INV3 1.6 1.3 3.7 0.4 0.2 0.1 216.8 62.4 5

INV4 2.4 3.3 1 5.1 4.4 2.5 22.7 5.7 5.8

leaf stem panicle

1 day 17day 36day 1 day 17 day 36 day 1 day 17 day 36 day

SPS1 88.8 75.4 83.4 63.2 63.7 72.1 209.3 128.2 45.2

SPS2 34.2 37.8 24.9 39.4 54.5 42.1 42.6 31.9 17.4

SPS3 141.8 94.5 79.3 19.1 39.8 27.6 24.1 14.7 9.5

SPS4 18.8 26.3 33.7 61.2 71.2 89.3 35.5 51.8 40.8

SPS5 20.9 11.8 11.6 14.7 14.3 11.9 11.1 12.4 10

leaf stem panicle

1 day 17day 36day 1 day 17 day 36 day 1 day 17 day 36 day

SUS1 35.5 41 54.2 70.1 101 90.8 92.1 65.1 44.3

SUS2 0.1 0.1 0.2 0.4 0.3 0.2 0.6 1 6.3

SUS3 0 0.1 0.1 0.1 0.1 0.1 0.6 0.1 0.2

leaf stem panicle

1 day 17day 36day 1 day 17 day 36 day 1 day 17 day 36 day

SbSWEET8-3 62.8 30 43.5 30.5 16.2 14.5 8.1 1.3 1

SbSWEET8-1 1243.1 808.2 1152.1 218.9 347.6 352.1 111.8 50.4 24.8

SbSWEET8-2 14 7.2 2.4 7.8 3.9 3.9 2 0.4 0.1

SbSWEET3-1 0 0 0 0.8 0.5 0 0 0 0

SbSWEET3-3 0 0 0 0 0 0 0 0 0

SbSWEET4-4 0 0.1 0 1.1 0.1 0 218.1 371.5 190.3

SbSWEET1-2 0 0 0.2 0.8 1.5 1.4 22 102.3 35.1

SbSWEET3-7 36.2 21 80 2.9 8.2 6.1 11.3 3.9 2.2

SbSWEET5-1 0 0.1 5.1 2.9 0.2 5.8 0.7 1.3 33.9

SbSWEET7-1 0 0 0 0.6 0.3 0.9 36.5 107.9 18.9

SbSWEET2-1 0 0 0 0 0 0 26.4 10.2 14

SbSWEET1-1 0 0 0 0 0 0 0 0 0.1

SbSWEET9-2 42.6 39.1 14.2 0.5 0.2 0.1 7.3 2.8 7.7

SbSWEET3-8 22.9 36.8 14.1 29.1 27.4 49 39.3 123.7 53.4

SbSWEET9-1 81.5 99.4 72.1 27.2 26 31.4 5 8.8 16.5

SbSWEET3-4 12.9 12 4.2 12.6 15.7 10.5 38 0.1 0.1

SbSWEET3-2 0 0 0 0 0 0 0 0 0.1

SbSWEET3-5 2.1 1.3 1.5 2.3 2.9 5.6 14.5 5.7 7.3

SbSWEET9-3 0 0 0 0 0 0 245.6 0 0

SbSWEET3-6 2.7 2.7 2.3 0.6 0.4 0.4 74.8 7.1 5.5

SbSWEET4-2 0.1 0.1 0 0 0 0 1.4 67.8 59.1

SbSWEET4-3 52.9 49 36.2 325.6 236.8 278.3 19.6 3.2 3.2

SbSWEET4-1 22.5 11.6 30.1 15.4 22.2 46.2 186.6 70 100.3

FPKM  0 50 100 150 200

leaf stem panicle

1 day 17day 36day 1 day 17 day 36 day 1 day 17 day 36 day

actin 426.6 384.9 286.8 287.6 200.3 168.5 130.6 138.5 140.4

EF1alpha 207.3 257.5 244.6 491.4 547.1 430.3 356.6 765.5 458.3

GAPDH 1259 1246 1172 1673 1681 1501 1017 1670 777

Fig. 3 FPKM values of sugar-related genes at the sucrose accumulation stage. FPKM (fragments per kilobase of exon per million mapped sequence 

reads) values reflect the quantities of existing RNA of each paralog in the cells or tissues. FPKM values for SWEET, SUT, INV, SPS, SUS, actin, elongation 

factor 1-alpha (EF1alpha), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are shown as heatmaps. Actin, EF1alpha, and GAPDH are constitu-

tively expressed controls. The number in each box indicates the FPKM value of each gene. Boxes at the bottom indicate the reference color intensities 

of FPKM values. Samples were extracted from the leaf, stem, or panicle on days 1, 17, and 36 after heading (the stage of sucrose accumulation in the 

stem). Phylogenetic trees of 23 putative sorghum SWEET genes are also shown on the left side

Table 2 SNPs and amino acid substitutions in SWEET pro-

teins between the cultivars SIL-05 and BTx623

Gene name Chromosomal 
location

Nucleotide Amino acid

BTx623 SIL-05 BTx623 SIL-05

SbSWEET1-2 Chr 1: 59,381,183 A T F Y

SbSWEET3-7 Chr 3: 60,636,090 G A V I

SbSWEET4-1 Chr 4: 20,557,328 G C L V

SbSWEET4-3 Chr 4: 35,163,171 C G E D

SbSWEET9-3 Chr 9: 58,680,805 C G G A
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sucrose accumulation in the stem of SIL-05 than in that 

of BTx623.

We analyzed the synteny of SWEET genes between 

the sorghum and rice chromosomes using the Plant 

Genome Duplication Database [34]. �e region of 

chromosome 4 of sorghum had synteny with chromo-

some 2 of rice, but large insertions/deletions were pre-

sent, and SbSWEET4-3 had no corresponding SWEET 

genes on chromosome 2 of rice (Fig.  6). In the region 

corresponding to SbSWEET4-3, there were three genes 

instead of putative SWEET homologs; the functions of 

LOC_Os02g26294 and LOC_Os02g26300 are unknown, 

and LOC_Os02g26310 functions as a leucine-rich 

repeat receptor-like protein kinase (Fig.  6). We consid-

ered that LOC_Os02g19820 (OsSWEET4) of rice was 

the ortholog of SbSWEET4-1. LOC_Os02g19820 was 

expressed in leaf, stem, and tissues in the panicle [35]. 

As the N-terminal region of SbSWEET4-3 was similar 

Fig. 4 Evolutionary tree of SWEET. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to 

infer the phylogenetic tree. This analysis involved 63 amino acid sequences (23 of Sorghum bicolor, 17 of Arabidopsis thaliana, 23 of Oryza sativa). Sor-

ghum SWEET genes focused in this study are underlined by red and functionally validated Arabidopsis or rice SWEET genes are underlined by blue
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to that of SbSWEET4-1 (Additional file  1: Fig.S1A), we 

thus considered that SbSWEET4-3 was duplicated from 

SbSWEET4-1 after the branching of sorghum and rice 

(Fig. 6).

�e region also had synteny with chromosome 5 of Zea 

mays. �e three sorghum SWEET paralogs (SbSWEET4-1, 

SbSWEET4-2 and SbSWEET4-3) corresponded to the 

three respective maize SWEET genes (GRZM2G144581, 

GRZM2G137954 and GRMZM2G000812, respectively; 

Fig.  6). A comprehensive phylogenetic tree includ-

ing 777 putative SWEET genes of 131 species supports 

this correspondence [19]. �e tissue specificity of the 

genes was similar to that in sorghum: GRZM2G144581 

is expressed mainly in the embryo; GRZM2G137954 in 

the seed and endosperm; GRMZM2G000812 in the stem 

0–30 days after pollination (DAP) [36]. �e stem-specific 

expression after DAP strongly supports the hypothesis 

that GRMZM2G000812/SbSWEET4-3 has specific roles 

in the stem. �erefore, gene duplication occurred before 

the branching of sorghum and maize. Why, then, does 

maize not accumulate as much sucrose in the stem as 

sorghum? One hypothesis is that there is a difference in 

the stem’s capacity to accumulate juice. Some cultivars 

(such as SIL-05) have a juicy parenchyma in the stem that 

can effectively accumulate sugar juice, but sorghum cul-

tivars with a dry pith do not [37]. We therefore consider 

that because maize has a dry pith in the stem, it does not 

effectively accumulate sugar juice there. We consider that 

the trait of juicy stem in sorghum is necessary for the 

accumulation of large amounts of sucrose in this tissue.

We therefore consider that SbSWEET4-3 plays a pivotal 

role in sweet sorghums because of its potent expression 

SbSWEET4-3

SbSUT1, 2, 4

SUS1 

SbSWEET8-1
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Fig. 5 Schematic models of gene expression and roles of SWEET proteins in phloem loading and unloading. a Representative genes highly 

expressed in each tissue during the sucrose accumulation stage; those likely involved in phloem loading of sucrose in the leaf and unloading and 

accumulation in the stem are shown. b Sucrose efflux associated with SWEET proteins in the leaf. Sucrose is synthesized in leaf mesophyll cells and 

diffuses through the plasmodesmata. SWEET proteins facilitate sucrose efflux into the apoplast. Subsequently, sucrose is taken up and concen-

trated in the sieve element–companion cell complex by SUT sucrose symporters. Sucrose is transported through the sieve elements out of the 

leaves to the stem, roots, and seeds. SbSWEET8-1 (Sobic.008G094000) may play a role in the efflux of photosynthesized sucrose to the leaf apoplast. 

This model was constructed on the basis of an analogy to that in Arabidopsis. c SWEET-dependent sucrose accumulation in the stem. Synthe-

sized sucrose is transported from the leaf through the sieve element, and SWEET proteins might facilitate sucrose efflux into the stem apoplast. 

SbSWEET4-3 (Sobic.004G136600) is a sugar transporter that might contribute to phloem unloading
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in the stem, the amino acid substitution between SIL-05 

and BTx623, and the absence of an orthologous gene in 

the syntenic region of O. sativa. SbSWEET4-3 is a strong 

candidate for a sucrose transporter that unloads sucrose 

from the phloem to the stem apoplast during the sucrose 

accumulation stage (Fig. 5a, c).

Other SWEET genes

On the basis of their analogy to Arabidopsis or rice genes, 

we examined SWEET genes with functions other than 

sucrose accumulation.

SbSWEET2-1 (Sobic.002G259300) and SbSWEET7-1 

(Sobic.007G191200) were expressed only in the pani-

cle from the start of heading through to 36  days 

afterward (Fig.  3); these genes are in the same clade as 

rice OsSWEET11/Xa13 (Fig.  4). OsSWEET11/Xa13 is 

expressed in the panicle and is essential for reproductive 

development [23, 25], suggesting that these SbSWEET2-1 

and SbSWEET7-1 have roles in seed development 

(Fig. 5a).

SbSWEET9-3 (Sobic.009G252000) was highly 

expressed in the panicle only just after heading, after 

which their expression decreased (Fig.  3). �ese 

SWEET genes are grouped into the same clade as 

AtSWEET8/RPG1 (Fig.  4). AtSWEET8/RPG1 is essen-

tial for pollen viability through the transport of glucose 

across the plasma membranes of tapetum cells and pol-

len cells [21, 38]. We thus consider that SbSWEET9-3 
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are involved in the transport of glucose and contribute to 

pollen nutrition in sorghums (Fig. 5a).

SUT

SUT genes are in another sugar transporter family. SUT 

paralogs had tissue-specific expression in sorghum cul-

tivars. In SIL-05, SbSUT1 and SbSUT2 were expressed 

highly in the leaf; SbSUT1, SbSUT2, and SbSUT4 in 

the stem; and SbSUT1, SbSUT2, SbSUT3, SbSUT4, and 

SbSUT5 in the panicle. SbSUT3 was expressed in the 

panicle just after heading (Fig.  3). In Rio (a sweet sor-

ghum), SUT2 and SUT5 are expressed relatively highly 

in the stem, whereas in BTx623, SUT5, and SUT6 are 

expressed relatively highly in the inflorescence sink [26]. 

�is tissue-specific expression suggests that SUT para-

logs function in different sinks—i.e., in either the stem 

(for sucrose accumulation) or the grain or inflorescence 

(for starch synthesis or pollen nutrition). However, SUT 

genes are not differentially expressed between Wray 

(a sweet sorghum) and Macia (a grain sorghum) [27]. 

�erefore, the high level of expression of SUT genes in 

the stem [26] might be specific to Rio, and not a general 

feature of sweet sorghums.

INV

Invertase converts sucrose to glucose and fructose. All 

four sorghum INV genes were hardly expressed, or not 

expressed in the stem (Fig. 3). Given this absence of INV 

activity, loaded sucrose would not be hydrolyzed to glu-

cose and fructose, and sucrose would therefore accu-

mulate in the apoplast (Fig. 5). �is is consistent with a 

previous analysis of INV enzymatic activity in the sor-

ghum stem: INV activity in sorghum differs from that in 

sugarcane, as sugarcane also transfers sucrose to storage 

parenchyma, with hydrolysis to hexoses by cell-wall INV 

in the stem [39, 40]. In the panicle just after heading, one 

sorghum INV3 (Sobic.004G004800) was highly expressed 

(Fig.  3); this is consistent with a previous report of the 

occurrence of cell-wall INV activity in developing seeds 

[41], suggesting that sorghum INV contributes to starch 

synthesis in developing seeds.

SUS

SUS is a sucrose-cleaving enzyme that provides UDP-

glucose and fructose [42]. SUS1 was expressed in all tis-

sues at the sugar accumulation stage (Fig. 3). What is the 

effect of the sucrose-cleaving enzyme SUS1 in the stem 

of SIL-05? One hypothesis is that SUS1 provides energy 

and materials (e.g., cellulose) for construction of the sink 

structure of the internodes, which in turn increases the 

sucrose accumulation capacity in the stem of SIL-05. �e 

SUS gene in sugarcane (called SS) is expressed at high 

levels in immature (developing) internodes, but at low 

levels in mature internodes [42]. A second hypothesis is 

that SUS1 production increases the hexose content of the 

stem of SIL-05. �e hexose (glucose and fructose) con-

tent of the stem of SIL-05 (2–3 % each; Fig. 1) is uniquely 

high among high-Brix sorghums [43]. SUS1 expression 

was higher in the stem of SIL-05 (Fig. 3) than in that of 

BTx623 [33]. �e relatively high level of expression of 

SUS1 in the stem might therefore relate to the high hex-

ose content of SIL-05.

Other genes that might contribute to sucrose accumulation 

in stems

Expression diversity in sorghum cultivars might be 

responsible for the characteristic differences in sucrose 

accumulation between sweet and grain sorghums. 

Between BTx623 and Keller (a sweet sorghum), 3436 

genes are differentially expressed, although 80 % of these 

differentially expressed genes have orthologs in rice [44]. 

Sugar-related traits have also been analyzed by quanti-

tative trait locus (QTL) analysis using a cross of SS79 (a 

sweet sorghum) × M71 (a grain sorghum) [30] or R9188 

(a sweet sorghum)  ×  R9403463-2-1 (a grain sorghum) 

[31]. �ese traits have been assigned to the ten sorghum 

chromosomes (Fig. 2), but the genes responsible for the 

traits have not yet been identified. Here, we showed the 

chromosomal locations of SWEET, SUT, SPS, SUS, and 

INV (Fig.  2). Some of these genes might be identical to 

those that were the targets of these previous QTL anal-

yses. However, these genes are not located on the short 

arm of chromosome 6, even though a QTL analysis [30] 

indicated that this region was associated with sugar con-

tent (Fig. 2). Genes for heading date, plant height, stem 

diameter, tiller number per plant, panicle weight, and 

juice weight might also contribute to the final sugar con-

tent in sorghum stems. �erefore, genes for these sugar-

related agronomic traits will need to be analyzed in the 

future.

Conclusions
We determined the expression of key SWEET genes 

for phloem loading and unloading (and thus sucrose 

accumulation) in sorghum stems. We consider that 

SbSWEET8-1 plays a key role in the efflux of photosyn-

thesized sucrose from the leaf and that SbSWEET4-3 

is a sugar transporter that unloads sucrose from the 

phloem to the stem apoplast during the sucrose accu-

mulation stage. We also consider that SbSWEET2-1 and 

SbSWEET7-1 play a key role in seed development and 

SbSWEET9-3 in pollen nutrition. �ese SWEET genes 

will be the targets for technological improvement in the 

production of biofuels.
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Methods
Plant materials and quanti�cation of stem sugar content

�e sorghum cultivar SIL-05 (line number 89) was 

obtained from Shinshu University in Nagano, Japan. 

Stem sugar content was measured during the stage at 

which sucrose is considered to accumulate in the stem 

(1, 17, 36 and 64 days after heading). �e volume/weight 

of total sugar content, sucrose, fructose, and glucose was 

measured by capillary electrophoresis and calculated 

using protocols previously described [43].

RNA sequencing

RNA was extracted from the second leaf from the flag 

leaf, the stem (internode only), and the panicle during 

the stage of sucrose accumulation in the stem (1, 17, and 

36 days after heading). Each tissue was immediately fro-

zen in liquid nitrogen and mixed to minimize the effect 

of transcriptome unevenness among plants. RNA quality 

was calculated with a Bioanalyzer 2100 algorithm (Agi-

lent Technologies, Palo Alto, CA, USA); high-quality 

(RNA Integrity Number >8) RNA was used. Sequencing 

of each 100 bp using an Illumina Hiseq 2000 sequencer 

(Illumina, San Diego, CA, USA) has been described pre-

viously [45, 46].

Data analysis

Low-quality nucleotides (<Q15) from both the 5′- and 

the 3′-ends, and adaptors, were trimmed using Cuta-

dapt version 1.0 (https://cutadapt.readthedocs.org/en/

stable/). Reads were aligned against sorghum rRNA gene 

sequences [47] using Bowtie 2 version 2.0.0 beta6 [48]; 

aligned reads were removed. �e remaining reads were 

aligned to the sorghum reference genome of BTx623 

(Sbicolor_v2.1_255) [29] using TopHat version 2.0.4 [49] 

and Cufflinks version 2.2.0 [50]. FPKM (fragments per 

kilobase of exon per million mapped sequence reads) 

values were calculated for each gene model annotated in 

Phytozome ver.10.3 [51].

Categorization of the sorghum SWEET gene family

We chose 23 putative sorghum SWEET genes in the 

BTx623 reference genome using the EggNOG database 

[19]. Even though the number of SWEET family genes 

differs depending on the database (e.g., 21 homologs, 

[20]; 22 in phytozome 10.3, [51]), the members are 

nearly consistent. Evolutionary analyses were conducted 

in MEGA7 [52]. �e evolutionary history was inferred 

using the neighbor-joining method [53]. �e evolution-

ary distances were computed using the Poisson correc-

tion method [54] and are in the units of the number of 

amino acid substitutions per site. All positions contain-

ing gaps and missing data were eliminated. �e data on 

chromosomal synteny were based on the Plant Genome 

Duplication Database [34].

Abbreviations

SPS: sucrose phosphate synthase; SUS: sucrose synthase; SWEET: sugars will 

eventually be exported transporters; SUT: sucrose transporter; INV: invertase; 

SNP: single nucleotide polymorphism.
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