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Abstract

An operation that is frequently needed during the creation and manipulation of

~ m e t r i c models is the sorting of points along an algebraic cwve. Given a se~ent

AB of an algebraic curve, a set of points on the curve is sorted from A to B along AB by

putting them into th..!:....order that they would be encountered in traveling continuously

from A to B along AB. A new method for sorting points along an algebraic curve is
presented. Key steps in this method are the decomposition of a plane algebraic curve

into convex segments and point location in this decomposition. This new method can
sort an nrbitrary algebraic curve and it is particularly efficient because of its p r e p r o c e s s ~

iog, both of which make it superior to conventional methods. The complexity of the
new method is analyzed, and execution times of various sorting methods on a number
of algebraic curves are presented. The theory developed for sorting can also be used to
locate points on an arbitrary segment of an algebraic curve and to decide whether two

points lie on the same connected component.
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ON THE SORTING OF POINTS ALONG AN ALGEBRAIC

CURVE

JOHN K. JOHNSTONE" and CHANDERJIT L. BAJAJ!

Abstract. An operation that is frequently needed during the creation and manipulation of

geometric models is the sorting of points along an algebraic curve. Given a segment AB of an

algebraic curve, a. set of points on the curve is sorted from A to B along AB by putting them into-
the order that they would be encountered in travelling continuously from A to B along AB. A

new method for sorting points along an algebraic curve is presented. Key steps in this method

are the decomposition of a plane algebraic curve into convex segments and point location in this

decomposition. This new method can sort an arbitrary algebraic curve and it is particularly

efficient because of its p r e p r o c e ~ s i n g . both of which ma.ke it superior to conventional methods. The

complexity of the new method is analyzed, and execution times of various sorting methods on a.

number of algebraic curves are presented. The theory developed for sorting can also be used to

locate points on an arbitrary segment of an algebraic curve and to decide whether two points lie

on the same connected component.

Key words. Sorting, decomposition, point location, convexity, algebraic curves, geometric

modeling, solid modeling.

AMS(MOS) subject classifications. 68U05, 68Q25, 68PIO, I4H99.

1 Introduction

The soding of numbers into increasing order or words into alphabetical order is one of the basic

problems of computer science. The purpose of this paper is to establish that the sorting of points

along a. curve is a. basic problem in geometric modeling and computational geometry, and to present
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a universal and efficient method for this sorting. This method relies upon the solution of ~ w o

problems ~ h a t are very useful in their own right: convex decomposition of a curve and point

location on a segment.

To sort a set of points from A to B along the curve segment AB means to put the points into the

order that they would be encountered in travelling continuously from A to B along AB (Figure 1).

-Poims that do not lie on AB are never encountered and are thus ignored. .A. vector at A is provided

to indicate the direction in which the sort is to proceed from A. This vector is especially important

when the curve is closed, since there are then two segments between A and B to choose from. All

of the points, including A and B, are assumed to be nonsingular, since otherwise their order might

be ambiguous.

IL A
II

IV
III

B

Figure 1: The s o r ~ e d order from A to B is III, II, IV

OUI treatment shall be of irreducible algebraic plane curves (a curve that lies in a plane and

is described by an irreducible polynomial l /(x, y) = 0); in the rest of this paper, all curves are

assumed to be of this type and nonlinear. An extension of the methods to algebraic space curves

is possible using a suitable projection of the space curve ~ o a plane curve [161·

The next section establishes that sorting is a fundamental operation of geometric modeling.

After discussing previous s o r ~ i n g methods in Section 3, we introduce our new sorting method in

Section 4. Convex decomposition of a curve and point location on a convex segment are discussed

in Sections 5 and 6. Complexity issues and execution times of the various sorting methods are

presented in Sections 7 and 8. The relative advantages of the sorting methods are weighed in

Section 9 and Section 10 ends with some conclusions.

lThe toefficient domain of the polynomk..t tan be the i n t e g e r ~ , r a t i o n : l . l ~ , algebr:lit real number:s, or :my other ~ e t

of number:! that hiU :I finite represent:l.tion.
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2 The importance of sorting

The sorting of points along a curve has many applications in geometric modeling. The following

problem is the most natural applica.tion.

Restriction

INSTANCE: A set S of point::! on a curve C and a segment EF of C.
~

qUESTION: Which points of 5 lie on EF?-
SOLUTION: Sort S along EF.

Since an edge of a. solid model is often defined by a curve and a. pair of endpoints, restriction

is a. very basic problem in geometric modeling. For example, the following edge intersection and

bounding box problems are two important problems that can be solved with restriction.

Edge intersection

lL""fSTANCE: Edges E and F on curves C and D, respectively.

qUESTION, What j, En F?

SOLUTION: Compute G n D by well-known methods and restrict to the edges.

Bounding box

INSTANCE: Edge E on curve C with endpoints El and El,.

QUESTION: Find t.he smallest rectangle wit.h sides parallel t.o the coordinate axes that cont.ains

E.

SOLUTION: Comput.e the local extrema of the curve and restrict to the edge, yielding S. Find

the minimum x ~ v a l u e (xmin) in S U {El , E:!}, and so on. The desired box is defined by the lines

x = Xm.in, X = X ma:' Y = Yrnin,·and Y = Ym.a:·

The bounding box (see [20, p. 372]) is useful for interference detection: the expensive int.ersection

of edges can be reserved for those situations when the edges are dose enough that their bounding

boxes interfere. Bounding regions are also useful for problems such as the restriction problem,

because they allow points that clearly do not sat.isfy a condition to be discarded quickly.

Another fundamental use of sorting:: is to introduce an even-odd parity to a set of points, as. .
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illustrated by the following problem.

Solid model intersection

INSTANCE: Two solid models M and N.

qUESTION: What is the intersection of M and N?

SOLUTION: An important step of this computation is to find the segments of an edge of one model

tha.t lie in the inloersection. This is done by finding and sorting the points of intersection of this edge

with a face of lohe oloher model. The segments of the edge between the ilk and i + l ~ t intersedions,

for i odd, are contained in the intersection of the models.

Another application of even-odd parity is to decide whether a point lies within a piecewise-algebraic

plane patch (or a piecewise-algebraic convex surface patch). This problem, which is fundamental

to the display of a geometric model, is fully discussed in [16]. Having established the importance

of sorting, in the next sedion we proceed to a discussion of methods for 50rloing.

3 Previous work on sorting

There is no serious sloudy of sorloing in the literaloure. This can be explained by the fact that

nonlirivial sorting problems arise only with curves of degree three or more, and unliil recently,

almost all of the curves in solid models were linear or quadratic. However. as the science of

geometric modeling matures and grows more ambitious, curves of degree three and higher are

becoming common. For example, the introduction of blending surfaces [151 into a model creates

curves and surfaces of high degree.

The lack of a sloudy of sorting caD also be explained by the presence of an obvious method for

sorting points, which tends to obviate a search for any other method. This obvious method uses a

rational parameterizatioD of the curve (i.e., a parameterization (x(t), y(t)) such that both :z:(t) and
~

y(t) can be expressed as the quotient of two polynomials in t), sorting a set of points S along AB

as follows.

The parameterization method of sorting

(Preprocessing]

1. Parameterize the curve.

4



[Solve]

2. Find the parameter values of A and B, say tl and t:.

3. Find the parameter value of each point in S.

[Sort numbers]

4. Sort the parameter values of S from tl to t2, discarding those outside this interval.

We insist upon a rational parameterization because a nonrational parameterization is difficult to

represent and difficult to solve. With a nonrational parameterization (such as x(t) ;:: ..fi or x(t) ;::

sin(t)), two different points may have the same parameter value, which complicates sorting. Finally,

there is no algoritbm for the automatic parameterization of a curve that does not have a rational

parameterization, whereas there is such an algorithm for rational curves [11·

There are many reasons to be dissatisfied with the parameterization method. It is not 2. universal

method, since not all algebraic curves have a rational parameterization. Indeed, a plane algebraic

curve has a rational parameterization ii and only ii its genus is zero, ii and only if it has the

maximum number of singularities allowable for a curve of its degree [26J. Secondly, even for those

curves that do have rational parameterizations, the parameterization method will be slow if the

degree of the parameterization is high, since the computation of the parameter values of the points

will be expensive. Other weaknesses of the parameterization method will become dear as we

compare it with the new method.

There is also a brute-force sorting method, which uses techniques for tracing along a curve [7].

The order of the points is the order in which they are encountered during a trace of the segment.

This method is not satisfactory, because its implementation, although robust, is inherently very

slow. Moreover, its complexity depends upon the length of the segment that is being sorted rather

than upon the number of points in the sort, which is undesirable.

The weaknesses of the parameterizatio[l and tracing methods of sorting suggest that another

method is necessary: one that will perform more efficiently on a wider selection of algebraic curves.

The next section presents such a method. This method works with the implicit representation

I{x, y) = a of a. curve (as opposed to the parametric representation), thus allowing the use of tools

from algebraic geometry.
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4 The convex segment method of sorting

The observation that motivates the new method is that a convex segment can be sorted easily.

Since every curve is a collection of convex segments, this suggests a divide and conquer strategy. A

segment of a plane algebraic curve is convex if no line has more than two distinct intersections with

it. (Alternatively, a planar segment is convex if it lies entirely on one side of the closed halfplane

determined by the tangent line at any point of the segment [121.) The following theorem shows

tha.t sorting a. convex segment is simple.

Theorem 1 Let pl, ... , pn be points on a convex segment AB} and let H be the convex hull of A,

B, PI, ... , pn (Figure 2). The order (from A to B) of pl, ... , p.. is simply the order (from A to B)

of the vertices on the boundary of H.

Proof, [16, p. 201 .•

8

A

Figure 2: The sorting of a convex segment

Suppose that a curve can. be decomposed into convex segments. Also suppose that we can

identify the convex segment in this decomposition that contains a query point (point location in

convex decomposition). These key problems will be discussed in Sections 5 and 6. The following
~

algorithm shows how to sort a. set of points S along the segment AB.

The convex segment method of sorting

[PrepJ;ocessing]

~

1. Decompose the curve into convex segments (say W1W::, W::W3, ..., Wp_1Wp).
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[Locate first convex segment1

2. Find the convex segment that contains A (say Wi_lWi).

3. Decide whether AB leaves A along AWi_l or AWi (say AWd·3

. 4. PresentConvexSegment::;:: AWj ; j :::: i ; SortedSet ::;:: 0 ; FoundB ;::: false

[Sort one convex segment at a time]

5. Repeat until FoundB

(a) Find the points of S that lie on PresentConvexSegment.

If B is one of these points. then FoundB ::;:: true.

(b) Sort these points along PresentConvexSegrnent, using Theorem 1.

(c) IT not FoundB.

then SortedSet ::;:: Append(SortedSet,{sorted points on PresentConvexSegment})

else SortedSet :::: Append(SortedSet,{sorted points on PresentConvexSegment before B})

(d) PresentConvexSegment::;:: WjWj+1 ; j :::::: j + 1

[Output]

6. Return SortedSet.

The expense of this method is concentrated in the preprocessing phase. which is done once off~

line. The run-time operations (convex-segment sorting and locating a point on a. convex segment)

are usually very simple. Therefore, the efficiency of this method is very competitive. The coverage

of the convex segment method is the entire set of algebraic curves. since it works directly from the

implicit representa.tion of the curve.

Example 4.1 Cons1'der the sorting of points Pl•.. ·' P6 along the segment AB of Figure 9. The-
curve is decomposed into conve:z: segments by the dotted lines (Section 5). A lies on W l ~ V 8 and- -
the vector at A identifies that AWl is the first convex segment. There are no points on AWl, so- -
we move on. The next convex segment is W1WZ• Only Pl lies on W1WZ and it becomes the first

element of the sorted list. We jump to the next convex segment WZW3 and sort the two points P2

and P3 by creating the conve:z: hull ofW2 , W3, P2, and P3· P2 and P3 are added to the global sort.

We move on to the next conve:z: segment W3W41 and then W4.Ws· The presence of B indicates that

~ I f V i~ the '/ec:or ::Lt A th::Lt is given :15 p::Lrt of the input. then AB l e : : L v e ~ A ::Llong AW; if ::Lnd only if V points to

the h31fpbne defined by AW; tha.t c o n t : : L i n ~ AW;.

7



this is the ll1St conve:t' segment. Upon sorting Band P41 P4 is discarded because it comes after B.

The final sorted list is Pll Pz, P3·

---

---

--- --W
7

-----

'" p-W. 1_°__
------------------

---------11z'

---

------

w,

~ i -
-_ W

- I-----

--

Figure 3: Sorting a curve by convex segments

It remains to discuss how a curve can be decomposed into convex segments and how a point

can be located in this convex decomposition. These two problems, which are at the heart of the

convex segment method of sorting, are solved in the following two sections.

5 Convex decomposition of a curve

The decomposition of an object into simple objects is an important theme in computational geome

try. Decomposition proves to be particularly useful in divide-and·conquer algorithms, since simple

objects are easily conquered. There has been a good deal of work on the decomposition of (simple,

multiply connected, or rectilInear) polygons into simple components (e.g., triangles [10,13,14,24],

quadrilaterals [23], trapezoids [5], convex polygons [9,25], and star-shaped polygons [6D, sometimes

with added criteria (e.g., minimum decomposition (9,17], minimum covering [21], no Steiner points

[17]). However, all of this work bas been in the polygonal (or at best polyhedral) domain. The

decomposition of a plane algebraic curve of arbitrary degree into convex. segments is an extension

of decomposition to the curved world.

A.-version of Bezout's Theorem states that two irreducible plane algebraic curves of degree

m and n have ex.actly mn intersections (properly counted), unless the curves are identical [261·

Therefore, all plane algebr<lic curves of degree one (lines) and two (conics) are already convex.
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For the convex decomposition of curves of degree three and higher, the singularities and points of

inflection are instrumental. A singular£ty of the curve f(x, y) = a is a point P of the curve such

that 1z:(P) = flf(P) = a (where I: is the derivative of f with respecf; to x). It is a point where the

curve crosses itself or changes direction sharply. A nonsingular point is also called a s£mple point.

A poi'nt of £njleet£on is a simple point P of the curve whose tangent has three or more intersections

with the curve at P. (It is also a point of zero curvature.) We restrict our attention to points of

inflection P such that P's tangent has an odd number of intersections with the curve at P, which

we call f t e ~ e s for short. Fundamental in algebraic and differential geometry, singularities and Hexes

form a skeleton of the curve and can be used in many useful ways. (For example, singularities can

be used to parameterize a plane algebraic curve [1].) Their use in convex decomposition underlines

their importance to computational geometry of higher degrees.

The tangents at the singularities and flexes of a curve form an arrangement of lines that sub

divide the plane of the curve into several cells, called a cell part£t£on (Figures 3-4). The tangents

also split the curve into several segments. The following theorem establishes that each of these

segments is convex.

" " "
" " "

Figure 4: Convex segmentation of limacon of Pascal

Theorem 2 The tangents of the singular£tzes and j l e ~ e s 01 a plane algebraic curve sHce the curve

into convex segments. That is, if Pq £s a nonconve::z: segment, then some tangent of a singularity

or flex w£lI intersect p'-'q.-I

Proof:

Let PO be a nonconvex segment of an algebraic curve. Assume without loss of generality that

Pq does not contain a singularity or a flex. It can be shown that there exists a line L that crosses

~ T h e ~ i m p t e points :J.t which a singul~rity/liex tangent touches, but d o e ~ not c r o ~ ~ , the curve are redund:l.nt :l.nd

should not be treated :u convex ~ e g m e n t endpoint3 in the d e c o m p o ~ i t i o n .
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Pq at three (or more) distinct points [16, p. 1171.5 Let Xl> X2, and Xs be three of these points, such

that :1:2 E :I:~S and z ~ s n L = {Xl, Z ~ , XS}. XIZS does not change its direction of curvature, since

there is no singularity or flex on PO. x~s is not a line segment, otherwise Bezout's Theorem would

imply that the algebraic curve that contains x ~ s is a line, which it cannot be since it contains a

nonconvex segment. Therefore, it can be assumed without loss of generality that X ~ 3 looks like

Figure 5(80). Let R be the closed region bounded by ::ci2:3 and XlXS· We will show that R contains

a singularity or a flex. This will complete the proof, since the tangent of a point inside R must

intersect xi2:s c pq at least once. (The tangent must cross the boundary of R twice, and at most

one of these intersections can be with XIZ3.) The curve lies inside ofR as it leaves zl.Xs from Xl and

outside of R as it leaves xl.Xs from xs. Therefore, the curve must cross the boundary of R after it

leaves X;;:3 from Xl> either because it must join with xs (if the curve is closed) or because an infinite

segment of an algebraic curve cannot remain within a closed region (if the curve is open) [161. The

curve cannot intersect the x;:Xs boundary of R, since xi2:s c PO is nonsingular by assumption.

Therefore, the curve must cross 'X"i'X3 after it leaves :z:i2:s from Xl·

As the curve leaves xl:"'xs from Xl> it lies on the opposite side of Zl'S tangent from X1XS· Therefore,

after the curve leaves Z;;:3 from Xl and before it leaves R, the curve must cross Zl'S tangent inside

of R, in order to reach Xl:1:S' In order to cross over Xl'S tangent, the curve must cross itself or

change its curvature inside of R (Figure 5(b)), otherwise it will spiral around inside R forever.

Therefore, R contains a singularity or a flex. •

(b)
(0.)

Figure 5: (a) xl.Xs and R (b) travelling from Xl to Xl::1:'3

We include here a word about robustness. Consider the accuracy required in the computation

of the singularities, flexes, and their tangents in order to guarantee a true division into convex

:;Alre:Ldy, by the definition of convexity, there mU3t exi3t :l. line that inter:lecb P-Q three (or more) times.
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segments, Suppose that, in the proof of Theorem 2, the tangent of a singularity/Hex inside the

region R is used to split a nonconvex segment. Any line through a point in the interior of R would

work equally well in splitting the nonconvex segment. Thus, in this case the method is robust under

slight errors in tangents, singularities, and Hexes. The other case is if a nonconvex segment S is

split' into convex segments by a singularity or Hex lying on S. The computed convex segmeat will

differ from the actual convex segment by the same amount as the computed flex (say) differs from

the actual Hex. The only points that might be treated improperly are those that lie on the segment

between the computed and actual Hex. In other words, points that are within (some function of)

machine precision of each other cannot be distinguished by the method and must be considered

equivalent. This equivalence of points within machine precision is inherent to any sorting algorithm.

Theorem 2 does not solve the convex decomposition problem, because it yields a confused col

lection of endpoints of convex segments, not a collection of convex segments. The more challenging

step of pairing up the endpoints remains, where two endpoints are partners if they define a convex

segment of the decomposition. This pairing problem will be attacked in Sections 5.3 and 5.4, but

first the collection of convex segments must be refined.

5.1 Refinement of convex segments I: Singularities

Many of the endpoints of the convex segments created by Theorem 2 are singularities. However,

singular endpoints cause problems in pairing. Consider a convex segment whose two endpoints are

the same point, which mighl; occur around a singularity (Figure 4). This situation is to be avoided,

since pairing will turn out to be easier if the two endpoints of a convex segment are different. It

is also possible for a singularity to have more than two partners and, in particular, two partners

ia the same cell. This situation is also to be avoided, since it is easier to find the partner of an

endpoint in a cell if this partner is unique.

Another problem with singular endpoints is that the ordering of points about a singularity

can be ambiguous. Does P2 or P3 follow A in Figure 6(a)? What is the order of the points in

Figure 6(b): S,Pl,P2,P3,S or S,P3,P2,Pl,S? .As a result of these problems, all convex segments

with singular endpoints will be replaced by convex segments with nonsingular endpoiats.

A pair of points will be found on each branch of the curve that passes through a singularity,

one on either side of (and very close to) the singularity. The added points will receive the convex

segments that enter the singularity. After each singularity of the curve has been decomposed in

this manner, every convex segment of the curve will be bounded by simple points, as desired.

11
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( 3) (b)

Figure 6: Ambiguity about a singularity

Example 5.1 Four points are associated with the singularity A of FigTLre 1: VI and Vz from ont!
~ ~ ~

branch, WI and Wz from the other. The cantle:.: segments of the two cells aTt! now PVI , V1Vz, VzQ,
~ ~ ~

RW
1

, W1Wz, and WzS. Notice that this refinement makes it deBT that Q (nat 5) must follow P.

R s

A

p a

Figure 7: The refinement of a. singularity

Consider the problem of finding two points on each branch, one on either side of the singularity.

We would like to do this by tracing a small distanc.e along the branch in both directions from the

singularity. However, there is no reliable way of tracing along a branch as it passes through a

singularity, because the other branches create too much confusion. Therefore, each branch of the

singularity must be isolated so that it can be traced robustly. This isolation is accomplished by

12



blowing up the curve at the singularity by a series of quadratic transformations [7,26]. as follows.

The firs\; step in blowing up a singularity is to translate it to the origin.
6

Let the new equation of

the curve be /(x, y) = O._A quadratic transformation is applied to the curve. The affine quadratic

trans/ormation x =xl. Y =XIYl [26J has three important properties:

• It maps the origin to the entire Yl-axis and the rest of the y-a.xis to infinity: Yl = ~ so (0, b)

maps to (0, ~ ) , which is a point at infinity unless b = o.

• It is one-to-one for all points (x, y) with x o:f; o.

• Y = mx, a line through the origin, is mapped to the horizontal line Yl - m: Y = mx -

XIYl = mXl - Yl = m.

Thus, a quadratic transformation maps distinct tangent directions of the various branches of / at

the origin to different points on the ezceptionalline Xl = o. The intersections of the transformed

branches with the exceptional line correspond to the transformed points of the origin (Figure 8).

If a. point of {(Xl, xlyd on the exceptional line is singular, then the procedure is applied recur

sively (Figure 9). The following lemma establishes that the various branches of the curve in the

neighbourhood of the singularity eventually get transformed to separate branches.

<aJ (b)

Figure 8: (a) node and (b) its quadratic transformation

Lemma 1 ([1,26J) A singularity can be redu.ced to a number of simple points by a finite number

0/ applications of the quadratic. trans/ormation. An ordinary singularity can be reduced to simple

points by a single qu.adratic transformation, where a singularity of multiplicity r is ordinary if its T

tangents are all distinct.

GSince the quadratic tran,formation doe' not map the line :l: = 0 properly, the curve should also be rotated (if

neces, ... ry) ~ o ~ h a t it i, not tangent to :l: = 0 at the origin ( ~ e e [101).

13
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A

a

'---- A ;8----..)

c

Figure 9: (a) the original singularity (b) aiter one quadratic transformation (c) after a second

transformation: the original singularity successfully transformed into two simple points

14



/

To summarize, each singularity is translated to the origin and transformed into a set of 000

singular points through the application of a series of quadratic transformations. Each branch of

the transformed curve intersects the e;tceptional line in a simple point, so this image branch can

be traced from the image singularity without confusion. Therefore, upon each image branch, two

p o i n ~ s are found by tracing a very short distance in either direction from the image singularity.

Fina.lly, these points are ma.pped back to the original curve to become Dew endpoints, replacing the

singularity. These new endpoints clarify the branch connectivity at the singularity and simplify the

job of pairing.

Care must be taken with the short segment that is essentially sliced out of t.he curve during the

refinement of the singularity, such as VIV2 in Figure 7. It is a special convex segment and points

that lie on it are sorted in a special way. by mapping them to the blown-up, desingularized, image

curve and using the tracing method. This is not expensive because the sliced-out segment is very

short and very few steps are needed to trace over it.

5.2 Refinement of convex segments II: lD.finite segments

Convex segments with singular endpoints are not the only ones that must be refined: infinite convex

segments are also problematic. The pairing process is simplified if each convex segment has two

endpoints, but an infinite convex segment has only one endpoint. Therefore, an artificial endpoint

is added to each infinite segment, as follows.

Every open cell is artificially closed by a collection of line segments (Figure 10). These line

segments are chosen carefully 50 that they only intersect infinite convex segments (if any) in the

cell, and each of these exactly once (unless the infinite segment is entirely contained in the cell and

thus proceeds to infinity at both ends, in which case two intersections are allowed). The resulting

artificially-closed cell should also be a convex polygon. A point of intersection of an infinite convex

segment with the new boundary of its cell becomes an (artificial) endpoint (Figure 18). Thus,

infinite convex segments are transformed into finite convex segments with two endpoints. After

every endpoint has been assigned a partner, pairs that contain an artificial endpoint are recognized

as infinite convex segments. A pair of artificial endpoints represents an entire connected component

that does not cross any of the singularityjfiex tangents.

After the above two refinements, the set of endpoints of convex segments assumes the following

normal form:
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• every endpoint has exactly two partners

• every cell is a closed polygon

The normalization stage not only makes pairing easier: it also creates a cleaner set of convex

s e g ~ e n t s that better reflects the curve. For example, due to the first normal condition, pairing will

create a collection of convex segments with an implicit order.

------------

Figure 10: The artificial closure of an open cell

5.3 Pairing of endpoints I: Properties of the partner

We are now ready to show how to pair the endpoints of convex segments. Consider a convex segment

in cell C and an endpoint E of this segment. E's partner in C must obviously be another endpoint

in C. Therefore, the determination of partners in all single-segment cells is trivial. Corollary 1 will

present other conditions that E's partner must satisfy and Theorem 3 will show how to isolate the

partner if several endpoints satisfy all of these conditions. In preparation, some terminology must

be introduced and a cruciallemrna proved.

Definition

If P is a singularity or flex, then P's tangent is a cell wall and the inside 0/ P's tangent w.r.t.

(with respect to) a cell C is the halfpIane that contains C. Otherwise, the inside is the halfplane that

contains aU of the curve in the neighbourhood of P (Figure 11). The inside includes the tangent,

while the strict inside does not.

Let P be a flex that lies on the wall W of cell C, and let P f be a point of the curve inside cell

C at distance E > 0 from P. (P€ may be found by tracing the curve into C from P.) The ou.tside

wallpoint of W w.r.t. C is the endpoint of W that lies outside of P;.'s tangent, for E small (E in

Figure 12).
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IT P is not a flex, then P faces Q if Q lies aD the inside of P's tangent (Figure ll(a)). Otherwise,

P faces Q w.r.t. cell C if (1) Q lies: strictly inside P's: tangent w.r.t. C or (2) Q lies on P's tangent

and on the opposite side of P from the outside wallpoint of P's wall w.r.t. C (Figure 12).

Notation 1 #{S} is the number of elements in the set Sand -zy is the line segment between x and

y. xy does not include its endpoints x and y.

c o
---- -----

p p

Figure 11: The inside of P's tangent
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Figure 12: P faces both Ql and Qz with respect to C

Lemma 2 Consider the cell partition of a curve F. Let X and Y be two nonsingular points of a

convex segment in the cell C. Then

1. The curve crosses1 XV at an even number of points, ignoring singularities.

TU P i~ 3. point of inteNection of the curve with XY, then the curve c r a ~ ~ c ~ XY :J.t P if it lies on both sides of

XY in :J.ny neighbourhood of Pj otherwise it only touches XY :J.t P.

1,



2. ;{P E XY n F: P laces X UJ.r.t. C} ;:: ;{P E XY n F : Places Y w.r.t. C}

3. Va. E XY, #{P E Xan F: P laces X w.r.t. C} ~ #{P E Xan F: Places Y w.r.t. C}

Example 5.2 Figure 19 is a hypothetical example lor Lemma 2. The curve F crosses XY an even

numher 01 times. {P E XY n F: P laces X} = {P:, P5, Pii} is oj the same size as

{P E Xy n F: P faw Y} ; {P
"

P" P,}. Momo"" {P E Xc< n F: P fam X} {P,} "

smaller than {P E Xa n F: Places Y} ;:: {PI, Ps, P.,t}.

Figure 13

Proof of Lem:ma 2:

Consider the dosed region Rxy bounded by XY and XY. Since XY lies in the cell C and C

is a convex polygon, XY must also lie in C. Therefore, again by convexity, Rxy must lie in C.

Since X and Y al.'e nonsingular and the rest of XY lies in the interior of the cell, XY does not

contain a singularity. Therefore, the curve can only cross into Rxy through XY. If the curve

enters Rxy, then it must also leave, since an infinite segment cannot remain within a closed region

and an algebraic curve of finite length is closed (viz., the curve cannot stop short in the middle of

Rxy). We claim that the point of departure D must be distinct from the point of entry E, unless

-all of the tangents at D ;:: E are XY, as in Figure 14. Otherwise, if D ;:: E, then at least one of

the tangents of the singularity D will cross into Rxy and form a wall of the cell partition which

will split Rxy in two, contradicting the fact that all of Rxy lies in the same cell. Therefore, with

the exception of the special singularities of Figure 14, the crossings of XY by the curve occur in

pairs, caned couple.!!. This establishes condition (1) of the lemma.

Consider condition (2). The special singulal.'ities of Figure 14 (as well as the points whel.'e the

curve only touches XY) can be ignored during the consideration of conditions (2) and (3L since
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Figure 14: The only type of singularity that can lie on Xy

they face both X and Y and contribute the same amount to the leit-hand side and right-hand

side of the expressions of conditions (2) and (3). Therefore, we can concentrate on the remaining

crossings of XY: the distinct couples. Let A, B E XY be a couple and assume, without loss of

generality, that A lies closer to X than B does. AB is a convex segment since it lies within a cell

of the cell partition. Therefore, A and B face each other (w.r.t. cell C). Since A faces B, A faces

Y. Similarly, since B faces A, B faces X. Therefore, one member of each couple faces X and the

other faces Y, yielding condition (2). Moreover, the point of a couple that faces Y (A) is closer to

X than the point that faces X (B), yielding condition (3). •

Corollary 1 Let WI be an endp01"nt £n the cell C. W t 's partner W : ~ £n C must sat£sfy the follounng

properties:

1. W
t

and W2 must face each other (w.r.t. C)

2. the curve must c r o , ~ s W1W:: at an even number of points, ignoring s£ngularit£es

3. the nu.mber of these cross£ngs that" face WI (w.r.t. C) £s equal to the number that face W2

(w.d. C)

4. for any Ct: E W
1
W

Z1
the number of crossings £n the interval W1Ct: that face WI is bounded by

the number of crossings, in this interuo.l that face W2

These conditions, which capture the fact that the intersections of the curve with W1W2 pair up

into couples that face each other, will often isolate the partner.

Example 5.3 Consider the cdl partih"on of Figure 15 and the cell containing the convex segments

~

W1W:: and W
3
W.j. Suppose that we wish to find the partner of WI' W3 violates condition (1) and

W-I violates condition (2), so W:: must be W1's partner.

The following technical lemma is necessary for later proofs.

Lemma 3 ([16]) Let WI and W:: be partners. If W:: lies on WI'S tangent, then WI must be a flex.
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Figure 15

5.4 Pairing of endpoints II: Distinguishing between candidates

The remaining question in endpoint.pairing is how to find the partner of a.n endpoint Wi in C if

severa.l endpoints in C satisfy all of the conditions of Corollary 1. This will be done by sorting the

candidates about the cell boundary (Theorem 3). Unfortunately, the refinement of singularities

moved some of the endpoints of convex segments into the interior of cells. Therefore, in order to

allow sorting about the boundary, we must associate a point WI on the cell boundary with each

endpoint W that was created in the singularity refinement stage, as follows. If W f:. WI, then WI is

the intersection of the ray W ~ W with the cell boundary (Figure 16(80)). IT W = Wi, then W' is one

of the (two) intersections of Wi'S tangent with the cell boundary: the one that lies on a tangent of

the singularity from which WI was derived (Figure 16(b)). For notational consistency, WI = W if

W is an endpoint that already lies on the cell boundary.

Theorem 3 Let WI be an endpoint in cell C of the cell partition of a curve F, R(Wd the set of

endpoints in C that satisfy the conditions of Corollary 1 (w.r.t. WI)I and S(Wl) the set of endpoints

in R(W
i

) that lie strictly inside of WI 's tangent (w.r.t. e).

If S(Wd t- 0
1

let S'(W
1

) := { W': W E S(WI ) }. If WI is not a fle'J:, let X # WI' be the other

intersection of WI 's tangent with the cell boundary, otherwise let X be the outside wallpoint of WI 's

wall w.r.t. C (Figure 17). Wi' and X split fhe cell boundary into two halves. Since every endpoint in

S'(W
1

) will lie on the same hal/, a sort of S'(W1) from WI' to X is well-defined. Let SL S~, ... , S;

be the result of this sort (i.e'
l

S; is encountered before S;+1 in a traversal of the cell boundary from

WI' to·X). The partner of WI in Cis 5" (the endpoint associated with S;J.

If S(W
I
) = 0, let TrWl) be the set of endpoints in R(Wl) that lie on the same wall as WI· The

partner of Wi in C is the element of TrWI) that is closest to Wi'
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Fig~re 16: The boundary points W{

Example 5.4 Consider the computation of WI'S partner in Figure 18, where WI is the endpoint

of an infinite conuez s e g m e ~ t . R(W1);;: S(Wd ::;:: {W2 , W3 , W.i} and S'(W1) ::;:: {Wz, W3 , Wn· The

sorted order of S'(W
1

) along the boundary from WI' ::;:: WI to X is W3 , W~, W 2 , so W 2 is the partner

a/WI. Since W
2

is an artificial endpoint, WI must be the endpoint of an infinite convex segment.

Consider the computation of the partner of WI in Figure 19, where S(W1 )::;:: 0. VI, V:: and V"

are ruled out by condition (1) of R(Wl), while V3 and Va are ruled out by con_dillon (2). Therefore,

T(W
1

) ::;:: {Vs , W::}. W:: is the closest element of T(W l ) to WI, SO it is WI '$ partner.

Proof of Theorem 3: Suppose that S{W1) # 0. Let W:: be WI'S partner, and let l-¥;W2 be the

boundary of the cell from W{ to Wf, such that X E;:: W;W2 (Figure 20(a)). I claim that it is sufficient

to show that W
2

' E S'(lV
1

) c l-~z. Suppose that this is true, and consider a traversal of the

cell boundary from W1' to X. Since Wz' is an endpoint of l-V;W2 and X E;:: W-;Wz (by definition),

W
2

' must be the last element of S'(W1 ) that is met during this traversal. In other words, W ~ = s;
(W

2
= Sp) as desired. (Since it can be shown that 5: f; Sj whenever i '# i, there is no ambiguity

in choosing the last member of 5'(Wd or in associating S: with Sj [16\.)

We,will first show that S'(W
1

) c ~VJ"Vz. Let S E S(Wt}. Suppose, for the sake of contradiction,

that W ~ s crosses W ~ W 2 at y '# W:: (Figure 20(b-c)). There are two cases to consider: y E Wts and
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Figure 17: Partitioning the boundary of a. cell

s E WlY' Suppose that y E W1s (Figure 20(b)). By Lemma 2,

#{peW1ynF: PfacesW1}=#{PEW1ynF: Pfacesy}

But y faces WI, since WI and yare on the same convex segment. Therefore, there exists Ct' E Wis

such that

#(P E Wia n F: P faces WI} > #{P E Wia n F: P faces s}

in contradiction of s E S(W1). Now suppose that s E W1Y (Figure 20(c)). By the argument of

the proof of Lemma 2, the points of intersection of the curve F with WlY pair up. Let t be the

partner of 5 . Since;t is convex,s faces t; since s E S(WI}, 5 faces WI' Therefore, t E WIS. Since

'E S(W,),

#{peWrsnF: PfacesWd=#{PEW1snF: Pfacess}

Noting that W1s = WIt U ts U {t} and t faces s, this becomes

#{PeW1tnF: P faces Wt}+#{FetsnF: P faces W1}+O==
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W

2

x

W,

Figure 18: Computing the partner of the endpoint of an open convex segment

n
Figure 19: Partner computation when S(W1) ;::: 0
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Figure 20, (aJ fV,fV, is dotted (b) y E Wl ,- (cJ 'E Wly
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#{P E WIt n F: P fa.ces s} +#{P E ts n F: P fa.ces s} + 1

Moreover, by Lemma 2 (;t is convex),

#{P E tsnF: P faces s} =

;'{P E tsn F: P faces t} =

#{P E ts n F: P faces WI}

Upon cancelling terms in the above equation, we conclude that

#{P E WIt n F: P faces WI} >

-f!"{P E WIt n F: P faces 5} =

#{P E WItnF: P faces y}

~

initial assumption. We conclude that W 2 does not lie on Wl'S tangent. Since WlWz is a convex

segment, W2 lies on the inside of WI'S tangent, and thus on the strict inside.

The statement of the th:orem has been verified if S(Wr) 'f. 0, Now suppose that S(WI ) = 0. If

WI is a refined singularity, then Wz E 5(W1): W z E R(Wl ) (as WI'S partner)j Wz does not lie on
~

WI'S tangent (Lemma 3); and W2 lies inside Wl'S tangent (because WIWz is convex). This would

contradict the S(Wr) = 0 assumption, so WI cannot be a. refined singularity. Therefore, WI must

lie on a wall of t.he cell and T(Wr} is well-defined. If W2 lies strictly inside WI'S wall (w.r.t. C), it

also lie's strictly inside WI'S tangent (Lemma 3). Therefore, if W2 ¢ T(WIl, then W z E S(Wr). But

S(W.) = 0, so W, E T(W,).

But this contradicts condition (3) of Lemma 2 (convex segment W1W2, X = WI, Y = y). These

contradictions lead us to conclude that W ~ s does not cross W;W2 \ {W2 }. In particular, by the

definition of 5', Wis' does not cross W;W2 \ {W2}. Therefore, Sf must either lie outside of WI'S

tangent or on ~ 2 ( F i g u r e 20(80)). Since 5, as a member of S(WI), lies on the strict inside of WI'S

tangent, so must s'. Therefore,s' E WJVz and 5
f
(W1) C W;W-2, as desired.

We now show that W
2

E S(Wr). W2 E R(WI ) by Corollary 1, so it suffices to show that W2 lies

strictly inside of WI'S tangent. Suppose, for the sake of contradiction, that W2 lies on WI'S tangent.

By Lemma 3, WI must be a flex (whose tangent is a cell waUl· Thus, the wall segment W1W2

is a subsegment of WI'S tangent and S(WI) n W1Wz = 0 (by definition of S(W1)). Therefore,

S'(Wr) n W1W2 = 0. But 5'(Wr} C ~2 = W1Wz. Thus, S'(W1) = 0, which contradicts our
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Suppose that W2 is not the closesG member of T(Wtl to WI, and let U #:- Wz be the closest.

Since WI faces U I U must lie on WI W::. By the proof used in Lemma 2, the nonsingular points

of intersection of the curve with W1W 2 must pair up into couples. In particular, the endpoints on

W1U C W1W2 (all of which are nonsingular because of refinement) that face WI must pair with the

equal.nurnber of endpoints on W1U that face U. But U must also pair with an endpoint on W1U

that faces U, and there are no such endpoints remaining without a partner. This contradiction

leads us to conclude that WI'S partner W2 must be the closest element ofT(W1) to WI .•

5.5 Computation of Singularities and Flexes

The above convex decomposition of an algebraic curve requires the singularities and flexes of the

curve, as well as their tangents. The singularities of a curve f(x, y) = 0 are the solution set of the

system {f-r. =0, f'J =0, f =O}, while the points of inflection are the nonsingular intersections of the

curve with its Hessian (the determinant: of the matrix of double derivatives of the curve's equation)

[ ~ 6 1 . The restricGion of points of inflection to flexes (see page 9) is straightforward (16J. The tangents

of a singularity of the curve f = 0 can be found by translating the singularity to the origin! The

equations of the tangents are the factors of the tra.nslated f's order form (the polynomial consisting

of the terms of lowest degree) [26]. Finally, after the curve has been translated to projective space

by homogenizing its equation to J(x, y, z) = 0 (where z is the homogenizing variable)' the tangent

of a flex P is f:(P)x + f,AP)y + f:(P)z = 0 [26). This completes our description of the convex

decomposition of an algebraic curve.

6 Point location

The second key problem in the convex segment method of sorting is point location in the convex

decomposition: given a point, identify the convex segment that contains it. This is an e.'Ctension to

the curved domain of the well-known problem of point location in a planar subdivision. We show

how to locate points on both a convex segment and a general curve segment.

6.1 Point location I: On a convex segment

A decomposition is not very useful unless it is possible to locate points in it. In the case of sorting,

point location is necessary to divide a set of points into convex segments for conquering. Since

a conve~ segment is identified by its endpoints, finding the convex segment that contains a point

is equiva.lent to finding the endpoints that bound this convex segment. Fortunately, this problem
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is entirely analogous to finding the partners or a given endpoint as explained in Section 5.4, since

both problems are instances of the more general question: "what are the two endpoints associated

with a given point?" It is easy to locate a point in the proper cell, using well-known algorithms for

point location in a planar subdivision [18,22].8 If, as is orten the case, a point lies in a cell with only

one cpnvex segment, then it is obvious what convex segment it belongs to. Otherwise, Theorem 4

and Lemma 4 can be used to locate a point on the proper convex segment.

Definition: A connected component of a curve is a maximal subset of the curve such that there

exists a continuous path on the curve between any two points of the subset. For example, a

hyperbola has two connected components. A type of connected component that requires special

treatment is one that lies entirely inside of a cell, intersecting none of the walls (including artificial

walls) of the cell partition. We call this a nu.de connected component since, unlike other connected

components, it does not. cont.ain any endpoints of convex segments. Since it does not contain any

singularit.ies or flexes, a nude component is convex. It must also be closed (i.e., homeomorphic to

a circle), otherwise it would intersect an artificial wall as it proceeded to infinity.

Theorem 4 Consider a point x of curve F that lies in cell C and £s not an endpoint of a convex

segment.9 Let S(x) ;:: {endpoints Win C I

1. x l£es on the strict inside of W's tangent

2. W lies on the strict inside of :1/S tangent

3. #{P E x~·V n F : P faces x} ;:: ;{P E xW n F : P faces W}

4. V aE xW, ,;'{P E ron F: P faces x} $. ,;'{P E ronF: P faces W}}

If 5(x) ;:: 0, then x lies on a nude connected component. Otherwise, let 5" (x) ;:: { W" : W E 5(x) },

where W" is the intersection of xW with the cell boundary. Let Xl and Xz be the two points of

intersection of x's tangent with the cell bou.ndary. Xl and X2 split the cell boundary into two halves,

and every endpo£nt in 5"(x) lies on one of these halves. Let Sr, 5 ~ ' , ... ,5; be the result of a sort-
of 51/(x) from Xl to X2. Then 8 1 and Sop are partners and x l£es on the convex segment 51 S

p.

Proof: If x does not lie on a. nude component, tben 5(x) '# 0, since it will contain the two

endpoints of x's convex segment. (One can also quite easily establish the converse: if x lies on a

• Attific:i:d boundaries ;l.re ignored when loc:Lting points in;l. cell: :L point is considered to lie in an :o.rtilici:o.lly closed

cell C :-:s long :L.:l it lies in the open cell :L.:lsociated with C.
•~If:: is an endpoint of;l. convex segtllent, then TheorelZl 3 can be used to deterlZline x's partner in C, :md thus its

convex ~ e g r n e n t in C.
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nude component, then 8(x) = Q.) The resto of tohe proof i.s similar to the proof of Theorem 3, and

the interested reader is referred to [16]. •

Example 6.1 In Figure 21(a), 8(::z:) = {I and:z: lies on a nude component.
~

Consider the cell 01 Figure 15 that contains the convex segments W1W2 a.nd Wsw't. WI does

not sat2'sfy condition (2) of 5(x) and Wz does not sa.tisly condition (9). Thus, 8(x) = {Wz, W4 }

and x must lie an W 3W4 •

Consider the cell partition oj Figure 9. S(P1) = {WI, W2 , Ws,W6 }, which does not resolve the

question of PI'S conve: segment. Let Xl and :2 be the two points 01 intersection of PI'S tangent

with the cell boundary. The sort of 5"(Pl ) from ::Z:1 to Xz is WI, We, Ws, W2 , 80 P L must lie on

~

W IW2 ·

(a.)

,
,
,

w,

\,

o
,,------ "/,

/
/

/
/

( b)

Figure 21: (a) x lies on a nude component (b) two overlapping segments

If there is only one nude component in a cell, then Theorem 4 can successfully locate a point

on this convex segment. However, if there is more than one nude component in the cell, then the

following lemma must be used to distinguish these nude components.

Lemma 4. Let P and Q be points that lie on nude componentJ of a curve and in the same cell. P

and Q lie on the same nude component if and only if Q lies in S(P), where sO is as £n Theorem 4·

Proof': Let P and Q lie on nude components M and N, respectively. If lv! = N, then P and q lie

on the same convex segment, so Q E S(P) by Lemma 2. Suppose that i\-t -::f:. N. Nude components

do not intersect, since they do not contain any singularities. Therefore, there are only three cases



to consider: M lies inside N, N lies inside M, and neither lies inside the other. In all three cases, it

is straightforward to show that Q violates one of the conditions of S(P).•

Point location can be made faster through two observations, both of which make use of the

endpoint pairings already computed; The idea is to eliminate endpoints from S(::z:) in Theorem 4

faster. First, as soon as the endpoint W is eliminated, W's partner can also be eliminated, since the

two desired endpoints are partners. Second, by convexity, the curve segment between an endpoint

WI and its partner W 2 lies on one side of W1W'2. Thus, if x does not lie on the appropriate side

of W I W2 , then both W1 and W:: can be eliminated. These observations should be used along wit.h

conditions (1-2) to eliminate as many endpoints as possible from S(x) (in the best case, leaving only

two). Conditions (3-4) should only be used when absolutely necessary, because they involve the

expensive solution of an equation of degree n (where n is the degree of the curve F). Fortunately,

the only time that conditions (3-4) will be needed to locate a point on a conve.'C: segment is for a

point that lies on one of two overlapping convex segments in the same cell, as in Figure 21(b): ::z: lies

inside all four endpoint's tangents and all four endpoints lie inside x's tangent. Experience with

algebraic curves (e.g. Lawrence's catalog of algebraic curves [19j), combined with experimental

evidence, indicates that this situation is very rare: a wall of the cell partition will almost always

separate overlapping parts of the curve. Therefore, a point can usually be located on a convex

segment very cheaply.

This completes our description of techniques that are needed for sorting by the convex segment

method. We digress for a moment to show how the theory that we have developed can be used to

solve two important problems (although they are not needed for sorting): locating a point on an

arbitrary segment and deciding whether two points lie on the same connected component.

6.2 Point location II: On an arbitrary segment

Once it is known how to locate a point on a. convex segment of a curVe's convex decomposition, it is

straightforward to solve the more general problem of locating a point on an arbitrary segment of the

curve. Recall that every endpoint of a convex segment in our (normalized) convex decomposition

has exactly two partners. Therefore, every convex segment has a unique predecessor and successor,

and it is trivial to order the convex segments. Consider a segment AB of curve C and a point P on

C. To decide if P lies on AB, we compute the convex segments of C's decomposition that contain

-
P, A, and B (say Cp , Ca, and C ~ , respectively). Then, P lies on AB if and only if Cp lies in between

Ca and C ~ . If P lies on the same convex segment as A and/or B J then the decision requires more

subtlety. For example, if P lies on the sa.me convex segment EF as A (but not B), then the decision



is made by sorting P, A, E, and F along EF, using Theorem 1: P E AB if and only if the order

is E, P, A, F (resp., E, A, P, F) and AB leaves A towards E (resp., F). (A method for deciding if

AB leaves A towards E or F is described in a footnote on page T.) In short, point location on an

arbitrary segment is easily reducible to point location on a convex segment.

6.3 Curves with many connected components

It should now be clear that the convex segment method can sort points on any algebraic curve.

In particular, it can sort points that are strewn over several connected components of a curve,

with no more difficulty than sorting points on a. single component. This is another advantage

of the convex segment method over the parameterization method, because it is not dear how

the fat.ter method could deal with points on several components, even if we allow nonrational

parameterizations. Would each connected component have a separate parameterization? If so,

how would the single equation of a curve produce several independent parameterizations? If not,

how would one determine the range of parameter values that is associated with each connected

component?

A very useful test for a curve with several components is whether two points lie on the same

connected component. For example, with this capability it is reasonable to define an edge of a solid

model as a particular connected component of a multi-component curve, since the test allows you

to restrict intersections with the curve to this connected component. The following lemma shows

that our decomposition of the curve into convex segments makes it simple to perform this test.

(Lemma 4 can be used for points on nude components.)

Lemm.a 5 Let P and Q be points of Go ctLrve, not both of which lie on a nude component. Let P

and Q lie on convex segments AB and C....D 1 respectively. to P and Q lie on the same connected

component if and only if A =: C, wheTe v := w if and only if ~ £s a convex segment of OUT cell

part£tion or v == z and w == z fOT some z.

Two other decompositions of an algebraic curve, Collins' cylindrical algebraic decomposition [11,41

and Canny's stratification [8J, can also be used to separate a curve into connected components and

thus decide whether two points lie on the same connected component.

Ililf P (re9p., Q) lie.9 on a. nude component, then A a.nd B (re9p_, C and D) are null 9ymbol.9.
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6.4 Broad comparison of methods

Let us compare the convex segment method of sorting with the others that were mentioned in

Section 3. Like the brute-force tracing method, the convex segment method leaps from one point

to another along the curve (viz., from an endpoint to its partner). However, its jumps are large

while· the tracing method's jumps must be very small. Moreover, once the partner of each convex

segment endpoint of the cell partition has been computed (which can be done once and for all

in a preprocessing step), each jump of the convex segment method can be done very quickly;

whereas, the tracing method must grope for some time (by applying Newton's method) to find the

destination of each jump. In short, the convex segment method makes large, bold jumps while the

tracing method makes small, timid ones.

The convex segment method is similar to the parameterization method because they both reduce

the sorting problem to an easier one. The parameterization method observes that the sorting of

points on a line is simple and tries to unwind the curve into a line by parameterizing it. Rather

than trying to reduce the entire problem, the convex segment method divides the problem up into

many smaller ones (viz., the sorting of points on a convex segment). We shall see that the many

small reductions of the convex segment method can be done more quickly than the single, large

reduction of the parameterization method.

The convex segment method incorporates preprocessing, since the convex decomposition of a

curve can be done at any time. As a result, the actual sorting is usually very efficient. One

might consider the parameterization of a curve to be preprocessing, but the subsequent runtime

steps (solving for the parameter value of each point) are usually more expensive than those for the

convex segment method (following pointers, locating points, and sorting convex segments).

7 Complexity

In this section, we analyze the complexity of the convex segment method of sorting. We base our

complexity analysis on the RAM model, where basic arithmeliic operaliions a.re of unit cost [21·

7.~ Complexity of convex decomposition

Theorem 5 A curve of order n (a curve whose defining polynomial is degree n) can be decomposed

into co.nvex ~egments in O(cr:[n:!] + nZo:[AJA..:'( * nl + n60:[nlJ time, where o:[n] is the time required

to find the real roots 01 a univariate polynomial equation of degree n, and MAX is the maximum

number 01 quadratic transformations that are necessary to decompose any singularity of the curve
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into simple points. ll

Proof:

Computation 01 singularities, fieus. Consider the curve {(Xl y) = °of order n. Its singularities

are found by solving the simultaneous system of equations U= =0, Iv =0, I =o}. One method

is to use resultants [26]. The resultant of two polynomials with respect to the variable x", is a

polynomial whose roots are the projection onto the hyperplane x", = 0 of the intersections of the

two polynomials. Let X (resp., Y) be the real roots of the resultant of fro and Iv with respect to

Y (resp., x), which is a univariate polynomial in x (resp., y) of degree O(n2
). Since singularities

at infinity are not of interest, those roots in X (reap., Y) that cause the terms of highest degree

of {f= = 0 1 Iv = O} to simultaneously vanish are not of interest. (The terms of highest degree of a

polynomial are intimately related to its solutions at infinity, since they dominate the polynomial as

solutions get large.) Therefore, before computing the roots of the resultant, the GCD of the leading

term polynomials of 1= and Iv is computed and divided out of the resultant, all in O(n log2 n) time

[3\. Now X (resp., Y) is the collection of abscissae (resp., ordinates) of the finite-solution set of

{f: =0, Iv =O}. X (and Y) can be computed in O(n4 tog 3 n+a[n2
]) time, since the resultant of a

pair of polynomials of degree at most n. in r variables can be computed in O(n2r tog 3 n) time (2]. The

singularities of the curve are { (x, y) : x E X, Y E Y and {(x, y) =1=(x, y) = Iv(x, y) =0 }. This

pairwise substitution takes O(n6
) time, since X and Yare each of size 0(n2

) and the evaluation of

an equation of degree n requires O(n2
) time. Hence, all singularities of the curve can be computed

in O(a[n2J + n6
) time. With similar techniques, the flexes can also be computed in O(a[n2

J + n6)

time.

Computation 01 their tangents. Recall that the tangents at a singularity (a, b) are computed

by translating the singularity to the origin and factoring the polynomial consisting of the terms of

lowest degree of the translated f(x,y) into linear factors. (For example, the lines x - y = 0 and

x+ y = 0 are the tangents of the curve xJ
- x2+ y2 = 0.) A translation is simply a linear substitution

Xt = X - a, Yt =Y- b, which takes 0(11.4 ) time for a bivariate equation of order n. The factorization

of a homogeneous bivariate polynomial is equivalent to the solution of a univariate polynomial.

Therefore, the computation of the tangents at a singularity requires O(n-t + a(nJ) time. A curve of

order n has at most O(n2
) singularities (261, so all of the tangents at singularities can be computed

in O(n6 +n2 a[nJ) time. The computation of the tangent at a flex is easier, only involving the O(n::)

operation of bivariate (or homogeneous trivariate) polynomial evaluation (Section 5.5). A curve of

I l ~ 1 A X i9 1 if ench 9ingularity h:l.9 di9tinct t:r.ngenh, :>.nd MAX will u9ually be 1 Qr 2 in geometric modeling

applic:r.tion9.
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order n also has at most O(n Z
) flexes [261, so all of the tangents at flexes can be computed in O(n"')

time.

Computation of inter3ec.tions of singular£ty/ftex. tangents with curve. The intersections of the

singularity Iflex tangents with the curVe are needed to create the convex decomposition. Consider

the number of tangents. There are at most O(nZ) tangents at flexes. A curve of order n has at

most en IVn-:n double points, where a singularity of multiplicity t counts as If
t
;1) double points

and has OCt) tangents [26]. Consequently, there are t/ frl
;1) < 2 tangents per double point, or at

most O(nZ) singularity tangents. The intersection of a tangent with the curve involves a linear

substitution and a solution of the resulting polynomial, thus O(n'" + a[n]) time or O(n6 + nZa[nJ)

for all tangents. Note that the O(n:!) tangents generate O(n3
) endpoints on the curve, since each

tangent intersects the curVe in at most n points (Bezout's Theorem).

Refinement of singular£ties and infinite segments. A singularity of multiplicity t is refined into

O(2t) endpoints, meaning 2t/(t2"1) .:::; 4 refined endpoints per double point, or a total of O(nZ)

refined endpoints at singularities. Thus, the number of endpoints of convex segments (and the

number of convex segments) remains O(n3
) after refinement. Consider the time that is required

to refine the singularities. Each singularity is translated to the origin and subject.ed to quadratic

transformations (perhaps translating the singularity back to the origin after certain quadratic

transformations). O(nZ
) quadratic transformations are sufficient to reduce all of the singularities

to simple points, since the singularities of a curve of order 11. account in total for O(n') double

points and the application of each quadratic transformation removes at least one double point, in

a global amortized counting [11. We have seen that the translation of a curve requires O(n"') time,

amounting to a total 0(11.6 ) translation time. Each quadratic substitution x. = Xl> Y = X.IYl takes

O(n:!) time (there are O(n:!) terms in the original equation of the curve). Therefore, all of the

quadratic transformations take 0(n4
) time.

During the reduction of a singularity to simple points, each quadratic transformation can in

c:ease the degree of the curve's equation, since xiyi becomes :ci(xi-dyi) = x.i+i-dyi, where d is

the multiplicity of the singularity. I:! In other words, the degree of the polynomial caD increase

by O(j), where j is the highest degree of y in any term of the polynomial undergoing quadratic

transformation. Since j = n for the polynomial of the original curve and the y-degree of every

term remains invariant under quadratic transformation (and does not increase under translation

I ~ I t lllight appe3r that '1/yi should become ztz:iyi). However, redundant f:l.ctoI'9 must be removed from the

polynomtal. For example, z: - y= = 0 becomes 1 - =y~ =0, not z: - 'Z=y~ =o. The equ;:..tion of a curve with ;:..

sino;ul...rity of multiplicity d 3t the origin n:l..S no terms of degree less th:l.n d, ~o ... r...ctor of zJ c ~ J . n a l w a y ~ be removed.
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of the cl!:rve either), the degree of ~he polynomial can only increase by O(n) with each quadratic

transformation. Therefore, by the end of the reduction of a singularity to simple points, the curve's

equation can be of degree 0 (A1AX * n).

Finally, after a quadratic transformation where the multiplicity of the singularity drops, one

computes the intersections of the new curve of order i with the y-axis, which takes a[iJ time.

Again, since this is computed after at most O(nZ
) quadratic transformations, the total time taken

by all of the intersection computations is at most O(nZa!l',.fAX * nJ) time. We conclude that

a (pessimistic) bound on the time for refining the convex segment endpoints at singularities is

O(nG + nZa[l\1AX * n]). There are at most two infinite segments, which are comparatively simple

to refine.

Pairing endpoints. Consider the time required to compute the partners of the O(n
3

) endpoints.

The dominating expense is the computa.tion of the set R(Wd of Theorem 3 for each endpoint WI·

It takes O(ko:[nj) time to compute R(W1) for an endpoint in a cell with k endpoints, 0(k
2
a[nJ)

time to compute R(WI ) for every endpoint in a cell with k endpoints, and 0(2: k;a(nJ) time to

compute R(Wd for every endpoint in every cell, where ki is the number of endpoints in cell Cj and

the sum is over aU cells Cj. Since L/ci = O(n3 )J O(I:k;o:[nJ) = O(n6a[nJ). Therefore, partner

computation takes O(nGo:[n]) time.•

It must be emphasized that the n of the above analysis is the order of the curve. This makes

the analysis fundamentally different from those that we are familiar with, such as O(nlogn) for

sorting numbers (where n is the number of points) or O(nloglogn) for triangulating a simple

polygon (where n is the number of edges of the polygon). (For example, in the above analysis, n

is the constant 1 for all polygons.) ki a. result, the complexity of an operation such as the convex

decomposition of an algebraic curve can be misleading, since it is very easy (although wrong)

to compare it with familiar complexities of discrete (rather than continuous) a.lgorithms such as

number sorting or polygon rr:anipulation.

It should also be noted that the above a.nalysis is pessimistic. The worst case time will be

reached only by the most pathologicat curves: the time to decompose curves that arise in practice

in geometric modeling is much more reasonable. For example, a typical endpoint will lie on the

boundary of a single-segment cell and its partner will be computed in 0(1), not O(ko:[n]), time.

This observation has been borne out in practice, with the testing of t.he algorithms on various curves

(see Section 8). The efficiency will be even further improved by the fact that the singularities and

flexes,'which are important to other geometric algorithms, may already be available in many cases.
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7.2 Comple.··dty of sorting

We now consider the complexity of sorting points along a curve after its convex decomposition is

a.vailable. This sorting (s usually very efficient, because the traversal of a curve by convex segments

has been reduced to the traversa.l of a doubly linked list, and it is usually simple to find the points

on each convex segment. Once again, the following worst-case analysis is unrealistically pessimistic

for geometric modeling applications.

Theorem 6 After the curve has been decomposed into convex segment3, m points on a plane al

gebraic curve of order n can be sorted by the convex segment method in O(mn3a[n] + m log m)

time. If the curve does not have overlapping segments (see page 28), then m points can be sorted

in O(mn3 +mlogm) time.

Proof: The dominating expense of sorting is to locate every point on a convex segment, since the

convex segments are already implicitly sorted (by endpoint pairing) and the sorting of points along

a convex. segment is simple (by Theorem 1, it is equivalent to the O(k log k) operation of finding and

sorting a. set of angles). A point can easily be located in the proper cell of the cell partition. A vector

of size 0(n2) is associa.ted with each of the m points and each cell: this vector specifies the side

(inside or outside) of each singularity/flex tangent tha.t the point or cell lies on. A point lies in a cell

if and only if their two vectors match.13 Therefore, the only potentially challenging step is locating

the convex segment in the cell that contains the point. In the worst case, it requires O(ko:[n]) time

to compute the set 5(x) of Theorem 4 for a point in a cell with k endpoints, since the intersection

of line segments with the curve is required. There are 0(n3
) endpoints, so point location requires

0(n3 0:[nJ) time per point and 0(mn3 o:fn]) time for all points.u After adding O(mlogm) time

for sorting the points along the convex segments, the convex segment method requires worst-case

O(mn3 0:[nj + mlogm) time to sort m points by traversing 0(n3) convex segments. If the curve

does not have overlapping segments, then curve-line intersection can be avoided in the computation

of the set 5(x), thus dropping the o:[nl factor .•

l=The vector of a. cell need not, :md will not, be complete. Only the e n t r i e ~ for the cell'~ wnll~ nre nece9~ary.

H'Ob~er/e the w o r ~ t - c : l . l l e p n ~ i m i ~ m of thb a n a l Y 9 i ~ . It i! unlikely that there are O(n.=) re:l.1 endpoinh, since mo.ny

of the It i n t e r s e d i o n ~ of a ~ingulari~/llex tangent with the curve will be complex. It is extremely unlikely th::Lt 0.11

of thege endpoints ::Lre in the ~ o . m e cell and that none of these e n d p o i n t ~ would be eliminr.ted by the cheo.p 0(1)

condition9 of Theorem 4.
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8 Execution times

Twa section presents execution times for the sorting of some representative curves by the convex

segment and parameterization methods. These empirical results are a good complement to the

complexity analysis of Section i, since they capture the expected case, rather than the WOrst

case, behaviour of the methods. The source code was written in Common Lisp and execution

times are in seconds on a Symbolics Lisp Machine, not including time for disk faults and garbage

collection. Times for the convex segment method are the aVera.ge of twelve trials, while times for

the p a r a m e ~ e I i z a t i o n method are the average of three trials. Preprocessing time is the time required

to create the cell partition and find the partners of all of the endpoints. Five curves are examined:

two rational cubic and three non-rational quartic.

We do no~ consider the time required to find a parameterization of the curve or to find the flexes

and s i n g u l a r i ~ i e s of the curve. Each of these computations is a preprocessing step that is entirely

independent: of sorting, and often the parameterization, singularities, and flexes of a curve will

already be available. Moreover, the computation of a curve's parameterization is of approximately

the same complexity as the computation of a curve's singularities and flexes, so our comparison of

sorting methods should not be biased.

The first example illustrates the superiority of the convex segment method: even when the

preprocessing Hme is added to the sorting time, it is more efficient. Also notice that the rate of

growth of the convex segment method is much smaller. The inferiority of the tracing method (see

end of Section 3) is obvious from this example, and we do not consider it further.

Example S.l A sem£·cub£cal parabola

Equat£on of the curlle: 2Ty:l - 2x3 = a

Preprocessing time: 0.21 seconds

Parameterization: {x(t) = 6t :l
J

y(t) = 4t3 t E (-oo,+oo)}

621

contJe:z: segment .01 .08 .08 I
conve:z: segment + preprocessing I .28 .80 .80 I

paramete r£=atio n .,7 .68 1.0,[

traci';'g 9.1, 2.89 ,.77

!number of sortpoints

35



. The second example illustrates the tradeoff between a very fast sort that requires preprocessing

(convex segment method) and a moderately fast sort that does not require preprocessing (param

eterization method).

Example 8.2 Folium of Descartes

Equa'tion 0/ the curve: :z:3 + y3 - 15:z:y = 0

Preprocessing time: 2.81 seconds

. . {( ) 'S< ( ) 1St:
Parametenzatlon: :z: t = l+t~' Y t = 1+t3 t E (-00,+00))

9521

convex segment I 0.01 j 0.01 10.05 I 0.0..f

conve::z: segment + preprocessing! 2.821 2_821 2.851 2.85

parameterization ~ 1.0711. 761 $.17

I number 0/ sortpoints

The remammg three curves are non-ra.tional, so they are only sorted with the convex segment

method.

Example 8.3 Devil's Curve (with several connected components)

Equation of the curve: y" - 4y2 - ::z:4 + 9:z:
2 = 0

Preprocel3sing time: 2.20 l3econd3

71

0.09 1

,

convex l3egment 0.09 0.10

conve::z: l3egment + preproctl3l3ing 2.291 2.29 2.90

I number of l3ortpoints

Example 8.4 Limacon

Equation of the curve: x 4 + y4 + 2x2y2 _ 12x3 - 12xy2+ 27x
2

- 9y2 = 0

Preprocel3sing time: ..f.B2 seconds

number of sortpo£nts 0 5 ! 8

conve:c segment ~ .55

convex segment + preprocessing 1-1.70 1..f·g2 5.171
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Example 8.5 Cassinian oval

Equation of the curve: :1:'4 + y" + Zx:!y:! +Say:! - sax:! - 611 = a

Preprocessing time: 5.36 seconds

number of sortpoints 2 6

conve:z: segment 1 .14 .11 1 .19

conl1ez segment + preprocessing I 5.50 5.531 5.55-

9 Comparison of sorting methods

In this section, we consider the relative merits oC the parameterization and conVex segment methods

of sorting. Certain curves cannot, or should not, be sorted by the parameterization method: curves

that do not possess a rational parameterization and curves Cor which a rational parameterization

cannot be efficiently obtained. Therefore, the convex segment method is often the only viable way

to sort points along a curve.

For those curves that can be .=orted in either way, the convex segment method is generally far

more efficient than the parameterization method at the actual sorting of the points. However,

the parameterization method does not have the expense of preprocessing that the convex segment

method does. Therefore, when only a few pornts need to be sorted (over the entire lifetime of the

curve) and the sorting of these points must be done soon after the definition of the (rational) curve,

the parameterization method will usually be the method of choice. (However, we have seen an

example where -the convex segment method is superior to parameterization even when we include

preprocessing time.) The expense of preprocessing will be warranted whenever sorting time is a

valuable resource, as in a real-time application, or when the number of points that will be sorted is

large. The convex segment method will also be preferable when the curve is defined long before it

is ever sorted (as with a complex solid model that requires several days, weeks, or even months to

develop), since the preprocessing can be done at any time that processing time becomes available

before the sort. We conclude that the convex segment method is an effective new method for

sorting points along an algebraic curvel and that in many situations it is either the only or the best

method.
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10 Conclusions

We have developed a. new method of sorting points along an algebraic curve that is superior to the

conventional methods of sorting. Many curves that could not be sorted, or that could only be sorted

slowly, can now be sorted efficiently. The development of our new method has also illustrated how

an algebraic curve can be decomposed into convex segments, how to locate points on segments of

algebraic curves, and how to decide whether two points lie on the same connected component.

This work is one of the first solutions of a. computational geometry problem that is applicable

to curves of arbitrary degree. Methods are usually restricted to curves/surfaces of some specific

or bounded degree, such as polygons/polyhedra or quadrics. The creation and manipulation of

curves and surfaces is of major importance to geometric modeling. A sophistica.ted geometric

modeling system should offer a rich collection of tools to aid this manipulation. This paper has

been an examination of one of these tools. The progress of geometric modeling depends upon the

development of more tools and upon the extension of more computational geometry algorithms

from polygons to curves and surfaces of higher degree.
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