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Abstract

All organisms possess a diverse set of genetic programs that are used to alter cellular physiology

in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is

known as the “SOS response” following DNA damage, replication fork arrest, and a myriad of

other environmental stresses. For over 50 years, E. coli has served as the paradigm for our

understanding of the transcriptional, and physiological changes that occur following DNA damage

(400). In this chapter, we summarize the current view of the SOS response and discuss how this

genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a

discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on

how prokaryotes respond to DNA damage.

OVERVIEW OF THE SOS RESPONSE

In E. coli, DNA damage and replication perturbations results in the SOS response, a genetic

program that transcriptionally up-regulates over 50 unlinked genes (Table 1). The term

“SOS” was coined by Miroslav Radman in 1974 when he postulated the existence of the

pathway on the basis of a set of physiological responses induced by DNA damage whose

regulation was controlled by the lexA+ and recA+ gene products (300). Radman defined

“SOS” as a distress signal used to sense DNA damage or replication fork blockages.

Since the original hypothesis, the distress signal has been shown to be the accumulation of

single stranded DNA (ssDNA). As described in greater detail below, LexA protein is a

negative regulator of the SOS response by acting as a transcriptional repressor. RecA is a

positive regulator of this response, and the interaction between LexA and RecA polymerized

on ssDNA is required to relieve LexA-dependent transcriptional repression of SOS genes.

Of the >50 unlinked genes that comprise the SOS response, several are directly involved

DNA repair, DNA damage tolerance or inducing a DNA damage checkpoint by blocking

cell division.

The SOS response is wired to allow for high fidelity repair to take place before giving way

to a more mutagenic mode that allows for cell survival. When the SOS response is induced

the first set of genes to be expressed are gene products involved in high fidelity DNA repair.

Further into SOS induction, sulA gene expression is induced and this protein causes a DNA

damage checkpoint by inhibiting cell division. The SulA-dependent checkpoint allows cells
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time to repair their DNA before damaged chromosomes are segregated into daughter cells.

Late in the SOS response, umuC and umuD genes are expressed and these gene products

assemble into a translesion polymerase that has mutagenic potential, as high fidelity repair

gives way to lower fidelity damage toleraence. This lower fidelity DNA damage tolerance

pathway, is so named because the damage is not removed, but instead tolerated.

Below, we review and discuss the experiments leading toward our current understanding of

the SOS response. We also provide a comprehensive summary (Table 1) of all the genes

known to be LexA regulated bringing the total number 57. Moreover, we include a table of

genes that are potentially LexA regulated, but have yet to be verified (Table 2).

THE GENETICS OF SOS REGULATION

The SOS response is a genetic circuit that is regulated by the LexA and RecA proteins (4,

46, 47, 56, 91, 194, 211–214) (Fig. 1). LexA is a transcriptional repressor that occupies its

cognate operator binding site (SOS box) as a homodimer thereby blocking RNA polymerase

(RNAP) binding and transcription (1, 33, 34, 161, 218). LexA has a cryptic autocleavage

activity that is activated when LexA interacts with a RecA/ssDNA nucleoprotein filament.

Expression of recA+ and lexA+ gene products are regulated in an SOS dependent fashion,

and RecA is rather abundant in the non-induced state (331). Considerable in vitro and in

vivo evidence has shown that when bacterial DNA is damaged, ssDNA is generated (See

Section: Mechanisms Generating ssDNA). RecA binds ssDNA forming a nucleoprotein

filament (104, 147, 347, 419). Interaction between the RecA/ssDNA nucleoprotein filament

and LexA activates LexA auto-digestion, thereby inactivating LexA as a repressor and

leading to the transcription of LexA repressed genes (46, 47, 91, 162, 215). Below, we

review the sophisticated network of proteins that influence the magnitude and timing of SOS

induction.

The recA+ gene product

RecA, a key player in DNA repair, is required for homologous recombination, SOS

induction, and translesion synthesis (TLS). Many of the original recA mutant allele studies

suggested that RecA is a positive regulator of SOS because these alleles were defective in

recombination and SOS induction (257, 408). It is now known that RecA is required to

facilitate LexA autocleavage and thus is a coprotease. The role of RecA in SOS induction

was genetically defined when alleles of recA were isolated that result in constitutive SOS

induction in the absence of exogenous DNA damage (192, 409). These coprotease

constitutive recA alleles [recA(Cptc)] induced SOS during normal growth conditions, or in

the case of recA441 a temperature shift to 42°C to induce SOS (61, 409). Biochemical

examination of the proteins encoded by recA441 and recA730 showed that these proteins

displayed an exceptionally high affinity for ssDNA and are able to displace single-strand

binding protein (SSB), an activity that is not observed with wild-type RecA protein (192,

201). It is hypothesized that recA coprotease constitutive mutants are able to compete with

SSB for the low levels of ssDNA present at the replication fork during normal replication. It

should be noted that RecA803 is capable of SSB displacment under specific in vitro

conditions, but does not result in consitutive SOS in vivo (201, 229, 230). These results can

be explained by the idea that more than ssDNA binding is important for SOS induction or by
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the observation that RecA803 displaces SSB in vitro only under certain conditions that are

not mimicked in vivo (201, 229, 230). Taken together, RecA binding to ssDNA is a critical

step towards SOS induction, but more than ssDNA binding is involved including proper

protein-protein interaction between RecA/ssDNA and LexA.

Other classes of recA point mutants that interfere with the ability of RecA to regulate SOS

have also been described (90). For example, RecA430 is proficient for homologous

recombination, but inefficient as a LexA coprotease (90, 244). To date several hundred recA

alleles have been isolated and examined for repair and SOS defects [for review (239)].

The lexA+ gene product

Alleles of the lexA gene have been identified that are defective in SOS induction

[lexA(Ind−)] (146, 210, 258), as well as alleles that encode variants of the LexA protein that

fail to act as a repressor thereby resulting in constitutive SOS induction [lexA(Def)] (55).

The lexA(Ind−) class are dominant alleles so named for their lack of SOS induction. These

alleles encode mutations that prevent autocleavage by altering the LexA cleavage site, or by

altering the interaction between LexA and the RecA/ssDNA nucleoprotein filament.

lexA(Def) alleles are lethal in an otherwise wild-type E. coli genetic background, a factor

that complicated their original isolation (259). LexA protein represses sulA+ (also called

sfiA+) (70), which inhibits cell division by blocking FtsZ ring assembly (35) . Therefore,

lexA(Def) mutations must be propagated in a sulA deficient background to prevent a SulA-

dependent block to cell division. The lexA(Def) mutation alone results in excessive SulA-

dependent filamentation and cell death. SulA homologs are not as wide-spread as LexA

homologs. For example, in Bacillus subtilis, SOS dependent cell filamentation is mediated

by YneA a protein that interferes with FtsZ ring polymerization, but does not share sequence

similarity to E. coli SulA (179).

These genetic studies established that RecA/ssDNA nucleoprotein filament formation

activates the cryptic protease activity of LexA resulting in cleavage, and derepression of

LexA-regulated genes. Although recA+ and lexA+ are the two key regulatory elements of the

SOS regulon, a growing list of other proteins are involved in modulating SOS induction

through positive or negative regulation of RecA/ssDNA nucleoprotein filament formation,

LexA cleavage or both (for an overview of the SOS response see Fig. 1).

LexA binds to SOS boxes and inhibits transcription

In addition to genetic studies, which indicated that LexA is a negative regulator of SOS, in

vitro studies have demonstrated that purified LexA protein can bind to operator sites

resulting in inhibition of transcription (45, 47, 120, 218, 325, 326, 335). Comparisons of

these sequences led to the discovery of a LexA binding site known as an SOS box, with a

consensus sequence of TACTGTATATATATACAGTA in E. coli (120). All known SOS

operators contain a 5´ CTGT consensus sequence with some preference for alternating

(AT)4 sequence. Within the 5´ CTGT consensus sequence, the central T and G bases are

absolutely required for LexA binding. Mutations that lead to an operator-constitutive

phenotype have also been isolated, resulting in increased expression of the affected LexA

controlled gene (69, 241, 402, 403). Diversity within SOS boxes contributes to temporal
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activation of gene expression as well as final induced levels. Induction ranges from about

100 fold in the case of sulA+, one of the most tightly repressed SOS genes, to 4–5 fold in the

case of uvrA+, uvrB+ and uvrD+, ruvAB+, and lexA+ (335). Many parameters may be

attributed to the differences in expression besides operator strength, such as location of

operator relative to the promoter, promoter strength, and existence of additional, constitutive

promoters. SOS boxes have been mapped to many locations, including overlapping with the

−35 promoter region (uvrA+), between the −10 and −35 regions (recA+, uvrB+), overlapping

with the −10 region (sulA+, umuDC+) as well as downstream of the transcriptional start site

(uvrD+, cea+, and caa+) (120, 335) thus, allowing for a multivariable coordination of

expression throughout the SOS response (for SOS box locations throughout the genome see

Tables 1 and 2).

In vitro studies have shown that LexA binds to DNA as a dimer. Dimerization has proven

critical for the repression of the SOS response. LexA consists of two structurally defined

domains joined by a relatively flexible hinge region (227). The N-terminal domain, amino

acids 1–84, specifically recognizes SOS boxes, although at a lower affinity than the intact

protein (34, 161, 162, 186). The C-terminal domain is necessary for dimerization, with both

intact and C-terminal fragments forming dimers in solution, with a dissociation constant <20

pM (253, 334). LexA cleavage of the Ala84-Gly85 bond located within the hinge region

during SOS induction separates the two domains, inactivating LexA as a transcriptional

repressor. This cleavage not only regulates LexA activity, lowering LexA’s affinity for

DNA, but also LexA’s stability by exposing residues that target LexA for degradation by

ClpXP protease (268) (see below: Post-Translational Regulation of SOS Induced Proteins).

VARIOUS MECHANISMS OF SOS INDUCTION

Extensive analyses have shown that several seemingly unrelated stresses result in DNA

lesions that impede replication, ultimately resulting in SOS induction. Experimental

evidence suggests that these lesions are processed to ssDNA leading to SOS induction

through RecA/ssDNA nucleoprotein filament-mediated cleavage of the transcriptional

repressor LexA. The mechanisms ultimately leading to the formation of ssDNA is not well

understood for all the SOS inducing stresses. Furthermore, it is becoming more apparent that

many bacterial species utilize the SOS response to promote cell survival in a variety of

stressful environmental conditions.

DNA damaging agents

A myriad of DNA altering or damaging agents have been shown to induce the SOS response

in E. coli including: nalidixic acid, 3’-azido-3’-deoxythymidine (AZT), nitrofurazone,

mitomycin C, benzo[a]pyrene diol epoxide, hydrogen peroxide, and 4-nitroquinoline among

many others (20, 131, 140, 141, 164, 270, 295, 339, 361). The lesions created by these

agents (altered nucleotides, ssDNA nicks, gaps, dsDNA breaks etc.) can impede DNA

replication and must be removed by DNA repair mechanisms or tolerated by using DNA

damage tolerance pathways, which are integrated into the SOS circuit. However, over 1000

E. coli genes are regulated in response to mitomycin C exposure suggesting that SOS

induced genes may not be sufficient for recovery after treatment (184).
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High Pressure

Hydrostatic pressure was recently shown to induce a recA+, recB+, and lexA+-dependent

SOS response in E. coli (3). The requirements for RecB suggests that ssDNA is formed

through the processing of a double-strand break intermediate. Subsequent experiments

revealed that an endogenous restriction endonuclease Mrr generates a double strand break

after high pressure stress (2). The mechanism responsible for high pressure stress activation

of Mrr is unknown, but represents an example of self targeted DNA restriction, a rather

unusual method to manage stress. Although E. coli is not naturally subjected to high

pressure environments, foods are often subjected to a combination of bacterial stresses, such

as high pressure, to inactivate food-borne pathogens such as E. coli O157:H7, Salmonella,

and Listeria monocytogenes (7, 66, 129, 261, 282, 412).

Antibiotics

Cell wall stress induced by treatment with β-lactam antibiotics or by compromising

penicillin-binding protein 3 (ftsI+) activity induces the DpiBA two component signal

transduction system in E. coli (246, 247). DpiA binds A+T rich sequences thereby

preventing DnaA and DnaB activity at the origin of replication resulting in SOS induction

(246). Induction of SOS leads to the transcriptional up regulation of the sulA+ gene. SulA

binds to FtsZ thereby blocking FtsZ ring formation which temporarily prevents cell division

and provides protection against cell death (260, 369, 401). Many recent studies suggest that

the pathogens Staphylococcus aureus and Pseudomonas aeruginosa utilize the SOS

response as a mechanism to promote antibiotic resistance (37, 67, 68, 232). For example,

SOS induction by antibiotics not only results in increased TLS-dependent mutagenesis, but

can also lead to transfer of pathogenicity islands (232, 374).

Starvation

Under starvation conditions in late stationary phase, the mechanistically controversial

phenomenon known as adaptive mutagenesis is observed. An increase in-1-bp frameshift of

lacZ revertants is used to measure adaptive mutagenesis. This is measured when cells are

starved for lactose using a genetic system harboring F´ plasmids with an inactive lactose

gene (lac) that can revert to lac+ by a specific mutation (116, 117, 315, 316, 318). The −1

frameshift reversion is dependent on DNA Pol IV encoded by the dinB gene. Several studies

suggest that the SOS response is required for the increase in point mutations by DinB (54,

240). It is possible that DinB maybe induced by the production of ssDNA during F´

amplification segregation (318). However, it has also been shown that the stress regulator

RpoS may result in DinB induction (226). In addition to carbon limitation, amino acid

starvation also triggers the SOS response upon resumption of growth on glycerol (167).

Intracellular pH

E. coli cells regulate their intracellular pH through redox and proton pumps (276, 277).

However, improper regulation can lead to SOS induction (336). The mechanism for pH

induced expression of SOS regulated genes might be explained by the result that pH alters

the structure of the transcriptional repressor LexA (100, 355). It has been proposed that the
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structurally altered LexA leads to aggregates, degradation, and ultimately a derepression of

LexA regulated genes (355).

MECHANISMS GENERATING ssDNA

The major SOS inducing signal is the accumulation of ssDNA which is generated by a

number of different mechanisms that ultimately result in SOS induction. During normal

growth, the limited amount of ssDNA generated during DNA replication is tolerated in vivo.

However, an increase in the amount of ssDNA provides a sensitive signal that requires a

very low threshold for SOS induction. The most common situation that results in an increase

in ssDNA occurs when the cell attempts to replicate damaged DNA (see below). However,

generation of the SOS response by conversion of dsDNA to ssDNA can occur by a number

of other mechanisms.

Replication of damaged DNA

Replication is required to induce the SOS response following UV irradiation. Evidence that

DNA lesions were not sufficient to induce the SOS response was obtained in experiments in

which a dnaC28TS derivative in a nucleotide excision repair defective genetic background

was exposed to UV light (324). The dnaC28TS strain has impaired DNA replication at 42°

due to its temperature sensitive helicase loader allele. When shifted to 42° after UV

exposure, the uvrB dnaC28TS double mutant fails to induce SOS, implying a role for DNA

replication in the induction of the SOS response (324). Furthermore, following a 70 minute

shift to 42°, UV irradiated dnaC28TS cells fail to cleave LexA protein, in comparison to

70% cleavage of LexA in a wild-type strain within 10 minutes at the permissive temperature

of 30° (331). These results indicate that the presence of UV lesions is not sufficient to

induce SOS in cells lacking nucleotide excision repair, and that an active replication fork

must attempt to replicate over DNA lesions for SOS induction to occur. A slight SOS

induction does occur in dnaC28TS strains at high UV doses at the restrictive temperature,

implying either that removal of lesions results in gaps that are sufficient for SOS induction

(324) or that a low level of replication is supported by the dnaC28TS allele at the restrictive

temperature.

Double-strand breaks are processed by RecBCD

The rate of formation of double-strand breaks under normal growth conditions is very low

with 0.01 breaks detected per genome for E. coli (285). Several stresses, however, including

nalidixic acid, high pressure, and gamma irradiation, result in SOS induction as the result of

a dsDNA break intermediate processed to ssDNA (101, 131, 353, 361). Experimental

evidence suggests that the RecBCD helicase/exonuclease degrades and unwinds dsDNA

creating a 3´ ssDNA tail that induces SOS (Fig. 1) (149, 177). A crystal structure of the

RecBCD enzyme suggests that, once the enzyme complex binds blunt-ended DNA,

unwinding is initiated by the two helicases RecB and RecD and splits the two strands around

the pin of RecC (350). RecB, a helicase and nuclease, initially degrades the 5´ tail less

efficiently than the 3´ tail, which is channeled into the nuclease active site. As the 3´ tail is

moved toward the nuclease active site, RecC scans the DNA and binds when it recognizes a

chi (5´ – GCTGGTGG) sequence. Binding to a chi sequence prevents further degradation of
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the 3´ tail and allows the 5´ tail to be degraded, thus creating a 3´ ssDNA tail for RecA

binding. An in vitro reconstitution assay consisting of RecA, RecBCD, SSB, and LexA

recapitulated the LexA derepression of an SOS promoter in the presence of a double-

stranded break on DNA containing a chi site (10).

RecFOR-mediated processing of arrested replication forks generates ssDNA

Replication forks frequently stall because of physical blocks. The formation of an activated

RecA/ssDNA nucleoprotein filament in response to a replication fork encountering a

physical block, such as a UV photoproduct, requires processing by the RecFOR complex

(Fig.1 )(described in detail below). recF, recO, and recR are sensitive to DNA damaging

agents, and exhibit delayed SOS induction (73, 305, 372). Several studies suggest that these

proteins form a complex that enhance and stabilize RecA binding to ssDNA, in part through

clearing SSB from ssDNA to nucleate RecA/ssDNA binding (43, 73, 256)

Furthermore, RecFOR function is required to prevent inappropriate RecQ and RecJ

dependent degradation of the nascent strand at stalled replication forks. However, some

RecQ and RecJ dependent processing of nascent DNA is required for replication restart

following UV irradiation (73, 74). A current model, based on in vitro data, for nascent strand

processing suggests that RecQ, a 3´ to 5´ helicase, unwinds template dsDNA ahead of the

fork to remove impeding structures. RecQ then switches to the lagging strand and begins to

unwind creating a ssDNA substrate for RecJ. Limited RecJ degradation of nascent DNA

provides an area of ssDNA for RecA filament formation (154) which in turn prevents

extensive DNA degradation (73).

Foreign DNA

Indirect SOS induction occurs when UV irradiated foreign DNA such as F or F´plasmids,

P1, M13, bacteriophage λ, and Hfr DNA is introduced into cells (41, 42, 80, 89, 133, 317).

The kinetics of SOS induction by plasmid P1 and λ are similar as measured by sulA::lac

fusion expression. However, induction of SOS is markedly reduced without bacteriophage λ

DNA replication, suggesting that replication of damaged DNA and subsequent processing of

the lesion are necessary at least for bacteriophage λ (80).

DNA metabolism mutants

Mutations in genes encoding proteins that participate in DNA metabolism can result in SOS

induction; these include dam (223, 287), dnaQ (208, 351), polA (23), priA (271, 329), and

uvrD (275). Point mutants in essential genes encoding components of the replicative

polymerase DNA Pol III and those necessary for chromosome segregation can also induce

the SOS response. Mutants of Pol III subunits, including dnaN159 (the β processivity

clamp), display a partial chronic induction of SOS due to an impaired ability to interact with

the catalytic subunit (363). xerCD, div, and ftsK mutants suffer from a more acute induction

after the dividing septum shears chromosomes that fail to properly segregate (152, 219).

Single cell studies of mutants expressing SulA::GFP suggests that in the case of DNA

metabolism mutants, SOS induction only occurs in a subpopulation. In contrast, SOS

induction in lexA(Def) mutants occurs uniformly in all cells within the culture (238), an

issue that is discussed below in more detail (please see Single Cell Analysis of the SOS
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Response). It was suggested that SOS induction occurs in a subpopulation of the DNA

metabolism mutants because the cell has several pathways to process DNA intermediates.

The non-induced cells may not have experienced enough DNA damage or the cell utilized a

pathway that does not require the mutated gene product for repair (238).

Decreased nucleotide pools result in SOS induction

Exposing E. coli cells to hydroxyurea, a specific inhibitor of ribonucleotide reductase,

decreases the intracellular concentration of dNTPs resulting in replication fork pausing and

SOS induction (20). RecA, SulA, and λ prophage induction as a result of hydroxyurea

exposure is RecBC-independent. Although RecA requires ATP for LexA cleavage,

intracellular ATP pools are not a limiting factor for SOS induction (20, 213, 383). Survival

during nucleotide starvation is enhanced by the SOS regulated Y-family polymerases UmuC

and DinB (138), possibly due to their higher affinity for dNTPs as compared with Pol III.

Interestingly, in the opportunistic pathogen Serratia marcescens, hydroxyurea treatment

results in the LexA-dependent induction of an exocellular nuclease scavenging pathway

(166).

STRUCTURAL INSIGHTS INTO RECA/DNA NUCLEOPROTEIN FILAMENT

Structural data is available for both the E. coli (Fig. 2) and an inactive compact M.

smegmatis complex with a bound nucleotide between RecA monomers (84–86, 358–360)

showing 6 RecA monomers per turn (Fig. 2). Furthermore, conserved residues in all

bacterial RecA proteins lie along the RecA monomer interface, highlighting their

importance for filament formation. The recent advances in optical techniques have allowed

for the real time visualization of RecA or Rad51 polymerization on ssDNA and suggest that

nucleation is the rate limiting step (127, 170, 292). A reconstruction of electron micrographs

with RecA bound to dsDNA in the presence of LexA has also been generated (418). These

results show that LexA is bound to a deep groove of the RecA/dsDNA (418). LexA contacts

two adjacent RecA monomers within the 61 helical structure composed of 6 RecA

monomers. These studies have collectively provided a picture of how RecA and RecA-like

proteins form filaments on DNA in vivo.

RecA MODULATING PROTEINS

Proteins RecX, DinI, PsiB, RdgC, RecFOR, SSB, RecBCD, HU and UvrD affect the

formation or disassembly of RecA/ssDNA nucleoprotein filaments, thereby modulating the

magnitude of the SOS response (Fig. 1). In this section we will discuss the current view of

how these proteins affect SOS and direct readers to reviews that provide an in-depth view of

how these proteins regulate RecA-mediated repair.

Antagonistic functions of RecX and DinI modulate the stability of RecA filaments

RecX prevents RecA/ssDNA nucleoprotein filament extension, thereby decreasing SOS

induction (357). In contrast, DinI stabilizes the filament, increasing SOS induction (413–

415). RecX is an SOS induced gene product that caps the RecA filament, preventing

polymerization (98, 99, 379). In vivo, RecX overexpression decreases SOS induction in

some bacteria (362, 381) and in Mycobacterium smegmatis, overexpression of MsRecA is
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toxic in the absence of MsRecX (279, 280). However, recX E. coli strains fail to show an

observable phenotype, suggesting that any RecX effect in E. coli is subtle (278, 357). It

should be noted here that RecF has an inhibitory affect on RecX (228). RecF interacts with

RecX and prevents RecX from exerting a negative affect on RecA (228).

The SOS-regulated DinI protein binds to and stabilizes RecA/ssDNA nucleoprotein

filaments (206, 413, 414). In addition to this function, DinI interferes with UmuD cleavage

to UmuD´ (269, 366, 367, 386). As discussed previously, the differential affinity of LexA

for SOS boxes allows for genes to be turned on early or late in the SOS response. DinI is

expressed early in SOS to stabilize RecA/ssDNA nucleoprotein filaments and may thus

inhibit UmuD cleavage, thereby delaying mutagenic TLS and allowing for higher fidelity

repair to take place prior to lower fidelity TLS (182, 413, 415). The affect of DinI on RecA

and UmuD is an excellent example of how many different layers of regulation help make the

E. coli SOS response a sophisticated physiological response to genotoxic stress.

Recently, RecA has been fused to green fluorescent protein (GFP) to visualize localization

during normal growth and following challenge with DNA damaging agents. These

experiments have revealed that the appearance and longevity of RecA-GFP foci (185, 307,

348) are altered by the absence of both dinI and recX (308). These experiments show that

although the phenotype of dinI and recX strains is subtle, the absence of these proteins

affects RecA-GFP focus formation in vivo.

PsiB limits SOS induction during plasmid conjugation

PsiB protein, expressed from conjugative plasmids including F and IncN, is a potent

inhibitor of the SOS response (15, 16, 18, 103, 142). During conjugation the psiB gene is

located in the leading region of DNA that is transferred allowing for early expression in the

recipient cell (15). The transferred ssDNA in principle could be considered “excess” and

results in RecA binding and SOS induction. The early expression of PsiB protein prevents

induction of the SOS response. Although the mechanistic details of this inhibition remain to

be elucidated, the current model postulates that PsiB interferes with RecA function [for

review (76)].

RdgC competes with RecA for binding and inhibits LexA cleavage in vitro

Recombination-dependent growth (RdgC) is a DNA binding protein that binds both single

and double stranded DNA, prevents RecA function by competing for binding sites on DNA

(97, 323). The crystal structure of the RdgC dimer suggests dsDNA binding takes place in

the central hole of the ring-shaped dimer (50). Binding of RdgC has been shown in vitro to

inhibit RecA-dependent cleavage of LexA (97). Genetic experiments have demonstrated that

the rdgC+ gene product is required for viability in priA mutant strains, which are deficient

for replication fork restart (255). recF, recO, or recR mutants alleviate the growth phenotype

of a rdgC strain, suggesting that RdgC might function in blocking aberrant RecA loading in

certain genetic backgrounds (255).
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RecFOR, SSB, RecBCD and HU influence RecA’s access to ssDNA

An underlying theme in this section is that SOS induction is mediated by RecA filament

formation. The RecFOR, SSB and RecBCD proteins all influence SOS by affecting the

accumulation of ssDNA in vivo. As mentioned above, the RecFOR proteins stimulate the

loading of RecA onto ssDNA generated during replication of damaged templates (150, 151,

158, 320, 321, 328). E. coli strains that lack RecFOR function are delayed for SOS induction

(231, 404). Genetic experiments have demonstrated that these proteins are in the same

epistasis group, (328) and biochemical studies have shown that RecO and RecR, or RecFOR

load RecA onto SSB covered ssDNA in purified enzyme assays (43, 338, 376, 377).

In undamaged cells, single strand binding protein (SSB) affects SOS induction by

outcompeting RecA for ssDNA at the replication fork, thereby preventing SOS induction

(43, 197, 202). There are approximately 7500–15,000 RecA monomers in E. coli when the

SOS response is repressed (331, 357). In log phase cultures there are approximately 7000

SSB monomers (∼1750 tetramers), an in vivo observation suggesting that SSB must have a

stronger affinity for ssDNA to allow for normal replication to proceed in undamaged cells

(382). Indeed, SSB has a strong affinity for ssDNA and SSB prevents RecA binding to

ssDNA in vitro (43, 338, 376, 377). It has also been shown in vitro that RecA will only

displace prebound SSB from ssDNA if RecO and RecR are added to the reaction (43, 155,

338, 376, 377). In limited circumstances, SSB can aid in RecA filamentation by removing

hairpins (or other secondary structures) from ssDNA (197).

As previously discussed, the RecBCD helicase/nuclease enzyme can have a positive affect

on SOS induction. E. coli RecBCD and B. subtilis AddAB are enzymes that process double-

strand breaks to yield a 3´ ssDNA segment that is required for RecA filament formation (9,

11, 64, 65, 92, 350).

Many bacteria, including E. coli, contain the histone-like protein HU. HU is a heterodimer

composed of Hupα and Hupβ (172–175). HU is important for maintenance of DNA

topology involved in several aspects of DNA metabolism, including replication initiation

(38, 39). Although HU binds DNA non-specifically, HU binds to both recombination and

replication intermediates with a higher affinity than it has for B-form DNA. Strains deficient

for both the hupA and hupB genes show sensitivity to both UV and ionizing radiation. There

are two possible reasons for this. One report shows that HU is important for SOS induction

(252). A second report has shown the possibility of a direct role for HU in DNA repair. This

report describes that HU binds preferentially to AP sites and contains AP lyase activity

(196). However, more experiments are required to understand mechanistically how HU

contributes to SOS.

POST-TRANSLATIONAL REGULATION OF SOS INDUCED PROTEINS

The SOS response is also regulated by post-translational protein modification. Interestingly,

some of the first insights into regulation of the SOS response by post-translational

modifications came from studies on λ prophage, which can induce its lytic cycle upon

sensing ssDNA. Early work by Roberts and colleagues demonstrated that exposure of λ

lysogens to UV-irradiation or mitomycin C results in a RecA-dependent cleavage of λcI, a
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repressor of phage lytic genes, resulting in induction of the lytic cycle. Experiments using

recA(Def) and λcI(Ind−) strains suggested that λcI cleavage activates expression of phage

genes and that RecA acts as a regulator of the protease or was the protease itself (309).

Subsequent studies established that λcI is cleaved between the Ala111-Gly112 bond

generating two nearly equal proteolytic fragments in an ATP/ssDNA dependent reaction

(78, 79, 157, 332). This cleavage prevents the formation of a λcI homodimers that bind to λ

operator sequences because the cleavage separates the operator binding domain and the

dimer interface domain (217). These results led to the conclusion that RecA is activated for

an ATP-dependent role in λ repressor cleavage when bound to ssDNA in a ternary complex.

The ternary complex, the RecA/ssDNA nucleoprotein filament, is now understood to be a

co-protease required to induce and stabilize a conformational change in λcI that brings the

self-cleavage site in close proximity to the serine protease active site (187, 267).

As described earlier in this chapter, SOS controlled genes are induced when the LexA

repressor undergoes an autoproteolytic cleavage event similar to that of λ repressor. Like λ

repressor, the cleavage of LexA is facilitated by the RecA nucleoprotein filament on ssDNA

(46, 157, 213, 214, 217, 218). Experiments using extracts from cells containing radiolabeled

LexA demonstrated that the protein is cleaved nearly in half. The cleavage of the 22.7 kDa

protein occurs between the Ala84-Gly85 bond, and the kinetics suggest a more rapid

cleavage event than λ phage (157, 218). In vivo, the half-life of LexA is approximately 1

hour in uninduced cells, however, cleavage begins one minute after UV exposure and is

complete within 5 minutes. The in vitro kinetics of LexA cleavage are first order and are

independent of protein concentration suggesting an intramolecular reaction with respect to

the homodimer (331).

The domains necessary for RecA-mediated cleavage and autodigestion are located in the C-

terminal domain of LexA (Fig. 3). Indeed, crystal structure analysis of the LexA C-terminus

suggests that the protein exists in two states, non-cleavable and cleavable (227, 393). In the

non-cleavable form, the cleavage site is positioned 20 Å away from the Ser-Lys dyad

cleavage active site. In the cleavable conformation, the Ala84-Gly85 bond is positioned to

participate in the autoproteolytic cleavage reaction catalyzed by the Ser-Lys dyad. In the

Ser-Lys dyad model of LexA cleavage, the uncharged Lys156 removes a proton from Ser119

creating a nucleophile to attack the Ala84-Gly85 bond (209, 210, 306, 311). Isolation of

lexA(IndS) mutants that increase the rate of LexA cleavage support the existence of two

LexA structural conformations in vivo (312, 352). These results suggest that the RecA

nucleoprotein filament does not participate directly in the proteolysis reaction, but instead

induces a conformational change favoring LexA cleavage. For this reason RecA is termed a

co-protease. In addition to the co-protease activity of RecA, full induction of the SOS

response is ensured by ClpXP mediated degradation of LexA fragments preventing repressor

activity mediated by the LexA N-terminal fragment (268).

UmuD also undergoes a similar Ser-Lys dyad catalyzed proteolysis event (Fig. 3) that

regulates TLS and a DNA damage prokaryotic checkpoint (see Bacterial Cell Cycle

Checkpoints). The catalytic core of UmuD shares structural homology to LexA and forms

homodimers in solution (112, 284, 365). Like LexA, the proteolysis event is catalyzed by a

Ser60-Lys97 dyad that is within hydrogen bonding distance with the cleavage site, Cys24-
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Gly25, in the presence of the RecA co-protease (53, 284, 341). Unlike LexA, UmuD

structural studies support an intermolecular reaction due to the N-terminal arms folding in

such a way as to then cleave sites in close proximity to the Ser-Lys dyad of the partner in the

homodimer (365). The UmuD2 proteolysis event, removes the unstructured N terminal 24

amino acids generating UmuD′2. After cleavage the new N-terminus is able to move more

freely and a large conformational change occurs presumably activating the protein for TLS

(168, 284).

IDENTIFICATION OF GENES IN SOS NETWORK

To understand the breadth of E. coli responses to DNA damage, a genetic approach was

used in a systematic search for genes induced as part of the SOS network. The Mu d1

bacteriophage (59), which generates chromosomal operon fusions to lacZ, was used to

create a set of random transcriptional fusions. These fusion strains were screened for genes

that expressed a higher level of β-galactosidase when treated with UV or mitomycin C

(MMC). From this experiment a set of din (damage inducible) genes were isolated (182),

whose expression was not detected in genetic backgrounds containing recA (Def) and lexA

(Ind−) alleles. Later genetic and biochemical studies showed that LexA was the direct

repressor of the din genes (181). This technique was also used in a more directed experiment

to generate fusions to genes suspected to be controlled by the SOS regulon. Such genes

include uvrA+ (183), uvrB+ (115, 183), sulA+ (160), umuDC+ (17), uvrD+ (12, 345), himA+

(250), ruvA+ and ruvB+ (344), recA+ (60) and recN+ (222). At the time this chapter was

written, 57 genes have been shown to be repressed by LexA (Table 1).

A computational search for LexA regulated genes was enabled by identifying a consensus

sequence for the LexA box and the complete genome sequence of E. coli (113). In this

study, LexA regulated genes were identified by searching the E. coli genome for potential

LexA binding sites. These LexA regulated genes were then verified to be damage inducible,

and LexA regulated in vivo. This work also showed that LexA bound several of these

promoter regions in vitro (113).

While lacZ transcriptional fusions, and computational analysis were important

breakthroughs in understanding the genes that comprise the SOS response, microarrays and

chromatin immunoprecipitation followed by microarray analysis (ChIP-on-chip) now serve

as a high-throughput method for monitoring changes in gene expression, and promoter

occupation by LexA (75, 388). One microarray analysis (75) examined changes in gene

expression following UV irradiation in wild-type and lexA(Ind−) genetic backgrounds. These

results confirmed the induction of known lexA+ regulated genes, and also identified 17

previously unidentified lexA+ regulated genes. In addition, genes up-regulated by a lexA+-

independent mechanism and genes down regulated in response to SOS induction were also

identified. Transcripts expressed independently of LexA can be explained by downstream or

secondary affects of genes regulated directly by LexA. For example, LexA may repress a

gene that is required to regulate expression of a second gene. It is still unknown if transcripts

downregulated by UV irradiation occur through a lexA+- dependent or independent

mechanism. Other microarray studies have examined the transcriptional response to UV and

mitomycin C (184, 296).
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While it has been known for many years that LexA acts as a transcriptional repressor of the

SOS response, recent studies suggest that sole repression of the SOS response by LexA may

be an over-simplification. The SOS regulatory system has been used to construct synthetic

gene networks, and in E. coli some lexA+ regulated genes have been shown to have another

regulatory component (130, 193). For example, the dinB+ gene is a member of the SOS

regulon, which is repressed by lexA+, but its expression is also regulated by the stress

response sigma factor RpoS, thereby inducing dinB+ transcript levels in stationary phase

independently of LexA (203).

Similar efforts have been made to characterize the SOS response in a variety of other

bacteria [for review (110)]. Microarray data show that B. subtilis contains a recA+/lexA+-

dependent SOS system, although only 8 genes out of 62 induced by the SOS have analogous

counterparts in E. coli (13). Interestingly, studies in Mycobacterium tuberculosis and

Myxococcus xanthus imply both a lexA+-dependent and an uncharacterized lexA+-

independent mechanism for induction of the DNA damage response (57, 302).

SINGLE CELL ANALYSIS OF THE SOS RESPONSE

The application of fluorescent microscopy to SOS studies has demonstrated the limitations

of measuring SOS induction at the population level in cultures (51, 238). For example, when

β-galactosidase activity is measured in cell culture using a lacZ transcriptional fusion to an

SOS regulated promoter, the results represent a population average. In such experiments, it

had not been clear if a given promoter’s activity is similar in every cell or differentially

expressed in subpopulations of cells (182, 324, 331). These models have been described as

the “uniform expression model” or the “two population model,” respectively (238). To

determine SOS induction at the single cell level, gfp+ was fused to the SOS regulated sulA+

promoter. GFP fluorescence was measured in a comprehensive set of genetic backgrounds

that have previously been shown to result in chronic SOS induction. Analysis of these

results led to the conclusion that the “two population model” can explain most strains

deficient or conditional for genes involved in DNA metabolism. The exception to this

conclusion are strains deficient for lexA+ or recA+ because these cells are either never

induced or induced constitutively giving a uniform gene expression pattern (238).

SOS MUTAGENESIS

Mutagenesis, induced by UV as well as a variety of chemical agents, is an active process

(105, 120, 221, 262, 390–392, 408). This active cellular process involves specialized DNA

polymerases, which are capable of inserting nucleotides opposite a misinstructional or

noninstructional lesion, allowing continuation of replicative DNA synthesis. These

polymerases, termed translesion DNA polymerases are the main contributors to the process

referred to as SOS mutagenesis, error-prone repair, SOS repair, misrepair, and SOS

processing. UV induced mutagenesis can be blocked by certain lexA and recA alleles,

implying a role for SOS induced gene products in SOS mutagenesis (49, 258, 395, 405,

406).
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UmuD´2C (Pol V)-dependent mutagenesis

A screen for non-mutable E. coli strains lead to the discovery of the umuD+ and umuC+

genes. umuD+ and umuC+ are located in an operon, within the SOS regulon, and encode

proteins with molecular weights of 15,000 and 45,000 Da respectively (107, 342). UmuD

protein is present at ∼180 copies per uninduced lexA+ cell and ∼2,400 copies per lexA(Def)

cell (411). The levels of UmuC protein in a lexA(Def) background is ∼200 molecules per

cell and was too low to be measured under non-SOS induced conditions (411). UmuD forms

dimers, which undergo RecA mediated autocleavage, to form UmuD'2 homodimers. It is

these UmuD'2 homodimers that function together with UmuC to form the active version of

E. coli TLS polymerase Pol V (UmuD´2C). Deletion of either the umuD+ or umuC+ genes

abolishes the mutagenic affect of a wide-variety of agents including: UV, 4-

nitroquinoline-1-oxide, and methyl methanesulfonate (88, 107, 120, 178, 342, 356, 391, 400,

407, 408). Strains defective in umuC or umuD, however, retain the ability to be mutated by

certain agents including the methylating agent N-methyl-N'-nitro-N-nitrosoguanidine

(MNNG). MNNG generates O6-methylguanine which has the potential to result in direct

mispairing during replication because O6-methylguanine can pair with either C or T.

Although umuD or umuC strains are UV sensitive, it is a modest phenotype, and not nearly

as sensitive as uvr mutants. In addition, Pol V dependent mutagenesis requires RecA to

regulate the cleavage of UmuD to UmuD´ (24, 53, 269, 341, 368). Recent results have

shown that two RecA molecules are important for mediating Pol V lesion bypass (289, 333).

Taken together, RecA and Pol V collaborate to form a complex capable of lesion bypass.

Finally, the molecular chaperones GroES and GroEL are required for Pol V dependent UV

induced mutagenesis possibly functioning to help stabilize UmuC by facilitating correct

folding (94, 95, 220). Consistent with this conclusion, the half-life of UmuC decreases in

groE strains (95).

DinB (Pol IV)-dependent mutagenesis

Another E. coli TLS polymerase, Pol IV, encoded by dinB+, was identified among a series

of damage inducible (din) genes and plays a role in SOS mutagenesis (182). DinB has a

molecular weight of ca. 40,000 Da, and is present at ∼250 molecules per lexA+ cell and

∼2500 molecules per lexA(Def) cell (189). While dinB phenotypes have been more elusive

than those of umuDC, dinB+ is required for λ untargeted mutagenesis. Untargeted

mutagenesis of bacteriophage λ DNA is observed when UV irradiated E. coli are transfected

with unirradiated λ phage (52). DinB is also important for adaptive mutagenesis. Adaptive

mutagenesis has been measured using reversion of a −1 frameshift in a lacI lacZ fusion. In

this assay, cells are plated on minimal lactose medium, under non-lethal selection, resulting

in the appearance of lac+ revertants over several days (153). Although the mechanism by

which adaptive mutations occur is controversial, it is clearly DinB-dependent, because dinB

strains result in a 5–10 fold reduction in adaptive mutants (153). DinB activity is modulated

by a host of other proteins in vivo (389). In particular, RecA, UmuD and UmuD´ have been

shown to regulate the −1 frameshift activity of Pol IV in vivo and in vitro (137). These

results demonstrate that RecA, UmuD and UmuD´ act as accessory factors for Pol IV,

modulating the mutagenic capability of this polymerase. Furthermore, DinB allows for

resistance to N2-dG adducts including N2-furfuryl-dG (169). It was shown that DinB
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preferentially bypassed N2-furfuryl-dG with higher proficiency than an undamaged dG,

suggesting that DinB homologs are specialized for bypass of bulky N2-dG adducts in vivo

(169).

Pol II-dependent mutagenesis

DNA Pol II is encoded by the polB+ (or dinA) gene, which is damage inducible (40, 294).

Pol II translesion synthesis is often accurate across from 3, N(4) ethenocytosine adducts (5)

and Pol II efficiently bypasses abasic as well as interstrand crosslinks (32, 176). Pol II

contains the 3´–5´ proofreading exonuclease activity present in high fidelity polymerases,

yet Pol II can be mutagenic. A rather striking observation is that Pol II is more mutagenic at

AT rich sites rather than in GC rich sites which is unexpected for a proofreading polymerase

(398). It was reasoned that Pol II has a preference for extension in AT-rich sequences owing

to the higher mutation frequency (398).

Also, challenge of E. coli with N2-acetylaminofluorene (AAF) results in −1 and −2

frameshift mutagenesis by both Pol II and Pol V (265). Although this review does not cover

the topic of replication fork restart, it should be noted that Pol II has an established role in

this process. The action of Pol II is coordinated with primosomal protein PriA and the

RecFOR proteins (303–305).

BACTERIAL CELL CYCLE CHECKPOINTS

Cell cycle checkpoints have been well studied in eukaryotic organisms because of their

importance in understanding cell cycle regulation and the clear links between the bypass of

checkpoints and the development of cancer (14, 224, 301, 397). E. coli spatially regulates

the cell cycle, i.e. DNA replication can occur at the ¼ and ¾ positions in the cell while cell

division mechanisms occur at mid-cell (136, 200, 235, 319, 322, 340). This spatial

separation of cell cycle events allows for initiation of a new round of replication before the

previous round has completed (71, 93). The spatial regulation also allows arrest of certain

cell cycle processes, but not necessarily arrest of all cell cycle processes (118). The lack of

temporal cell cycle stringency has resulted in qualifying prokaryotic checkpoints as:

‘primitive checkpoints’ and ‘checkpoint-like’(48, 119, 273, 367).

The purpose of checkpoints, in both eukaryotes and prokaryotes, is to maintain genomic

integrity and avoid cell death by preventing the overlap of cell cycle events. The cell is

particularly vulnerable to loss of genomic integrity at ssDNA regions near stalled replication

forks. Furthermore, formation of the RecA/ssDNA nucleoprotein filament results in the

induction of prokaryotic checkpoints that prevent overlap of cell cycle events. The DNA

damage, and cell division checkpoints are regulated by the SOS response specifically by

inducing the umuDC+ and sulA+ (273, 369) gene products. Like their eukaryotic

counterparts, these gene products are not necessary for the cell cycle events themselves but

enforce proper execution, which is especially important following DNA damage.

The SulA-dependent DNA damage prokaryotic checkpoint

Expression of the cell division inhibitor SulA (also sfiA+) is controlled by LexA and is up

regulated following DNA damage. SulA directly prevents cell division by binding to FtsZ
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(35, 72, 369). FtsZ, a tubulin homolog, forms a ring at midcell (Z-ring) providing a scaffold

for other cell division proteins to bind and promote cytokinesis (401). X-ray crystallography

data shows that SulA binds to FtsZ as a dimer (72). This direct interaction presumably

prevents FtsZ polymerization into a Z-ring, thereby acting as a prokaryotic cell division

checkpoint. The block to septation results in the formation of cellular filaments, cells that

continue to grow but fail to divide, and was one of the first phenotypes observed in SOS

induced cells.

The presumed purpose of the SulA-dependent checkpoint is to prevent distribution of

damaged chromosomes to daughter cells. This allows sister chromosomes to be used for

homologous recombination pathways that can be used to repair double-strand breaks and to

tolerate DNA lesions. In addition, SulA helps temporally coordinate repair functions and

cell division. Without proper coordination, nucleoids can be guillotined, meaning that the

cell division plane closes on unsegregated chromosomes resulting in a double-strand break.

This phenotype is observed in xerCD, div, ftsK and sulA mutants (30, 219, 394, 401). As

mentioned above, FtsK is an SOS inducible ATP-dependent DNA pump that is required for

cell division and chromosome localization under normal growth conditions. However,

increased resistance to UV radiation and mitomycin C exposure have been observed after

over-expression of FtsK (394). The mechanism for FtsK mediated increase in survival is not

known.

The UmuDC-dependent DNA damage prokaryotic checkpoint

A model for a umuDC+-dependent prokaryotic checkpoint was proposed on the basis of

studies demonstrating cold sensitivity caused by UmuDC+ overexpression (236, 237).

UmuDC’s role in this cold-sensitive growth phenotype is distinct from UmuDC’s role in

SOS mutagenesis (237, 274). A umuD missense mutation (S60A) results in a noncleavable

UmuD that prevents SOS mutagenesis, but has no adverse effect on UmuDC+-mediated cold

sensitivity (274). Subsequent experiments with umuD (S60A) revealed that expression of the

noncleavable UmuD protein resulted in increased survival following UV irradiation and a

modest decrease in DNA replication in a uvr+-dependent manner (273). The increase in UV

resistance and a decrease in DNA replication occurred despite the inability of a noncleavable

UmuD to participate in translesion synthesis. In addition, kinetics of UmuD cleavage to

UmuD´ was comparable to the kinetics of UV-induced lesion removal by UvrA, and the

kinetics of cleavage was UV dose dependent.

These observations led to the umuDC+-dependent, DNA damage prokaryotic checkpoint

model in which UmuD has two distinct roles. First, the UmuD2 dimer in complex with

UmuC delays the recovery of DNA replication and cell growth after DNA damage possibly

by inhibiting Pol III at replication forks. This DNA damage checkpoint allows accurate

repair of DNA damage before replication is attempted. If accurate repair mechanisms are

insufficient, the eventual RecA-mediated cleavage of UmuD2 to UmuD´2 then permits

UmuD´2C (DNA Pol V) to carryout TLS over any remaining damage (273).

The umuDC+ DNA damage checkpoint model suggests that both UmuD2C and UmuD2´C

have access to the replication fork and slow or arrest Pol III. Indeed, UmuD and UmuD´

have been shown to interact with various subunits of the Pol III holoenzyme (364). Affinity
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chromatography has shown that UmuD2 has a greater affinity for the β processivity clamp

than does UmuD´2. In contrast, UmuD´2 interacts more strongly than UmuD2 with the

catalytic subunit, while both proteins interact equally with the epsilon proofreading subunit.

Subsequent genetic analysis demonstrated that co-overexpression of β or epsilon with

UmuDC abrogated the cold-sensitive phenotype (366).

INDUCIBLE GENE EXPRESSION INDEPENDENT OF THE CLASSICAL SOS

REGULON

It has become increasingly clear that many bacteria mount a robust transcriptional response

to DNA damage independently of recA+ and lexA+. Although a large proportion of the DNA

damage-inducible genes in E. coli and B. subtilis are regulated by recA+ and lexA+ others are

not, Table 1 (75, 144, 184). In both of these organisms, many genes that lack an identifiable

SOS box are expressed following challenge with DNA damaging agents in lexA (Ind−) or

recA strains. In E. coli, transcription of approximately one third of the open reading frames

in the genome is altered following mitomycin C challenge (184). This could be explained by

the fact that mitomycin C is not specific for DNA and it reacts with other cellular

components including proteins contributing to alterations in gene expression. Other DNA

damaging agents such as UV irradiation are much more specific for DNA (102) and it is this

difference that likley accounts for the gene expression data that was observed following

challenge with MMC. In B. subtilis, the expression of 668 genes is altered following

replication fork arrest with HPUra, 500 of which are regulated by recA+ and/or lexA+ (144).

Most of these 500 genes are thought to be regulated indirectly since SOS boxes are located

upstream of only a subset of these genes.

DnaA protein is required for the initiation of DNA replication and it acts as a transcription

factor. DnaA is an example of a transcription factor that affects gene expression in response

to DNA damage and replication fork arrest independent of the lexA and recA genes. In B.

subtilis, DnaA regulates 12 genes following treatment with mitomycin C and 57 genes

following replication fork arrest with the selective replicative polymerase inhibitor HPUra

(13, 143, 144).

Microarrays have been used to characterize the DNA damage response in several bacteria

including: Mycobacterium tuberculosis, Myxococcus xanthus and Bdellovibrio

bacteriovarus. These studies have shown that damage-inducible gene expression, in these

species can also occur independently of the recA+ or lexA+genes (57, 58, 87, 302). Taken

together, the transcriptional response to DNA damage encompasses more than just lexA+

recA+ regulated genes.

THE DNA DAMAGE RESPONSE REGULATES VIRULENCE FACTORS

In several pathogenic bacteria, mobile genetic elements encode virulence factors. In

addition, many of these elements are regulated by the DNA damage response [for review

(180)]. In Staphylococcus aureus, bacteriophage φ11 and 80α are under control of SOS

(139, 232, 233, 373–375). Replication and transfer of these phages results in horizontal gene

transfer of virulence factors (373). Vibrio cholerae contains SXT, an integrative conjugative
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element (ICE) that contains several genes encoding antibiotic resistance to chloramphenicol,

trimethoprim, streptomycin and sulphamethoxazole. Transfer of SXT is regulated by the

DNA damage response (25–28, 156). The element encodes SetR which interacts with the

RecA/ssDNA nucleoprotein filament resulting in cleavage of SetR. SetR normally represses

the expression of several activators that are required for SXT transfer. RecA/ssDNA

cleavage of SetR thereby alleviates repression of the activators necessary for transfer of the

element (27, 28). V. cholerae also encodes CTXφ, a temperate filamentous phage that

encodes cholera toxin (298, 299). LexA cleavage through interaction with RecA/ssDNA

nucleoprotein filament is required for CTXφ induction. The LexA binding site overlaps with

the promoter region recognized by the alpha C-terminal domain of RNA polymerase

preventing gene activation (298).

In enteropathogenic E. coli, the locus of enterocyte effacement (LEE) is SOS regulated and

responds to positive regulation by Ler and negative regulation by LexA (243). The LEE

locus also encodes the type III secretion system responsible for secretion of virulence-

associated factors into host cells. The components of the type III secretion are encoded by

the divergently transcribed LEE2 and LEE3 operons contained within LEE (108). LexA

occupies the divergent promoter region repressing transcription of LEE2/3 (243).

Furthermore, the expression of LEE2/3 requires a cleavable LexA. These examples

demonstrate that the DNA damage response regulates the dissemination of antibiotic

resistance genes, genes encoding the cholera toxin, and the type III secretion system in some

bacteria.

CONCLUSIONS

The SOS response in E. coli is a complex genetic circuit that allows cells to sense damage to

their genetic material and respond with both high and low fidelity repair. This chapter

highlights many experiments that have shaped our understanding of the SOS response in E.

coli and other organisms. We hope that readers have gained not only an appreciation for

what is known about the response, but also an appreciation for the complexity of this

response and the work that has yet to be done. Two of the major challenges will be to

understand how cells coordinate DNA damage recognition with DNA replication, and the

second will be to provide a structural basis for how protein-protein interactions contribute to

regulation of the pathway. Other challenges in understanding the SOS response in E. coli

will be to determine how the SOS response is coordinated with other physiological

responses.

The analysis of SOS in other bacteria has opened an entirely new area of investigation. We

think it is clear that many gram-positive and gram-negative bacteria respond to DNA

damage by affecting gene expression, but the specific genes affected vary considerably from

organism to organism. Detailed examination of SOS in a variety of bacterial species will

considerably add to our knowledge of the mechanisms regulating SOS and the genes under

SOS control. These studies will help determine how the SOS circuitry is plugged into other

gene networks that allow for a given bacterium to thrive within it’s niche.
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Fig. 1. A model for SOS induction
A. In the uninduced state, replication proceeds unperturbed and the limited amount of

ssDNA present at the replication fork is not available for RecA binding. Transcription of

lexA+ (green), recA+ (purple), sulA+ (orange) and other SOS regulated genes is largely

repressed. After DNA damage (red circle), RecA binds to the increasing amount of ssDNA

in the cell creating the RecA/ssDNA nucleoprotein filament (purple and yellow). The RecA/

ssDNA nucleoprotein filament acts as a co-protease to cleave LexA resulting in the

expression of the SOS regulon. As the gene products of the SOS regulon repair the DNA

damage, the cell will return to the uninduced state as normal replication proceeds and the
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switch is reset. B. Generation and stabilization of a RecA nucleoprotein filament is regulated

by a number of cellular factors. RecBCD and RecFOR can act at a stalled replication fork

(left) to generate ssDNA for RecA binding. RecA binding and filamentation can be aided by

RecFOR or prevented by RecX (center). Once formed, the RecA filament can be stabilized

by DinI binding (right).
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Fig. 2. Model of the RecA filament
Using electron microscopy, a model of the RecA filament was generated that positions the

ATP between RecA subunits. A. The RecA filament is shown to display the DNA binding

channel (left) and then subsequently turned 90º (right). B. An ATP molecule (shown) binds

at the interface of two RecA subunits, positioning it to explain the cooperative nature of

ATP hydrolysis observed for RecA-DNA filaments. Conserved residues in bacterial RecA

proteins (green) are positioned along the subunit interface near the ATP binding pocket. The

figure was generated using PyMOL and PDB file 1N03 (379, 380)
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Fig. 3. Structural analysis of post-translationally modified SOS proteins reveals catalytically
competent and non-competent protein conformations
LexA (A) and UmuD (B) proteins undergo a large rearrangement from a non-cleavable

conformation (NC) to a cleavable conformation (C). A. LexA crystal structures indicate that

the Ala84-Gly85 residues (purple) can be positioned 20 Å away from Lys156 (green) and

Ser119 (orange) in the NC form (left) to a position allowing for an autoproteolytic cleavage

event in the cleavable form (right) (227). B. Full length models of the non-cleavable (left)

and cleavable (middle) UmuD2 dimer. The N-terminal arms of UmuD2 (purple) fold to

present the cleavage site (C24 purple spheres) to Ser60 (orange) and Lys97 (blue) (compare

left and middle). NMR data suggest that after the cleavage event forming UmuD’2 (right),

the dimer undergoes a significant conformational change that consequently alters cellular

activity (112, 284, 365).
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Table 1

SOS regulated genes

LexA-dependent genes Function Identification as LexA
dependent

LexA Box(es)a

polB (dinA) −2 Frameshifts and replication restart after UV
treatment (29, 126, 304, 305)

Mud1(Ap lac)
(182)

−71 (75, 113)

dinB (dinP) Translesion synthesis of N2-dG adducts and −1
frameshifts (169, 188)

Mud1(Ap lac)
(182)

−32 (75, 113)

hokE
(ybdY)

Killing protein (113) Northern Analysis (113) −97 (75, 113)

uvrB Involved in nucleotide excision repair (159) UV resistance during Hfr
mating;
Mud1 (Ap lac) (115, 159, 182)

−92 (75, 113)

dinG 5´–3´ ssDNA helicase (195, 385, 387) Galactokinase gene fusion (207) −105/−34 (75, 113)

ftsK (dinH) Chromosome segregation at cell division plane
(96)

Galactokinase gene fusion (207) −96 (75, 113, 207)

sulA Inhibitor of cell division (132) SOS chromtest; Mud1(Ap lac)
(160, 295)

−42 (75, 113)

dinI Stabilizes RecA/ssDNA filaments (386, 413) Mud1(Ap lac);
Suppressor dinD68;
lacZ fusion (182, 413, 415)

−37 (75, 113)

umuCD DNA pol V involved in SOS mutagenesis and
translesion DNA synthesis (266, 286, 354)

LexA inhibition of in vitro
transcription; MudI (17, 190)

−331,−351/−57,−37 (75,
113, 190)

yebG Unknown Operon Fusion (225) −35 (75, 113, 225)

ruvAB Holliday junction branch migration (RuvA DNA
binding/RuvB helicase motor) (370, 371)

LexA repression of in vitro
RNA
pol. Assay; LacZ fusion (343,
344)

−67 (75, 113)

sbmC DNA gyrase inhibitor (19, 63, 264) Microcin resistance (19) −32 (75, 113)

ssb Single stranded binding protein (6, 245, 346) S1 mapping;
Galactokinase gene fusion (44)

−170 (113)

molR (dinOsosF) Molybdate transport (205) Northern Analysis (113) −27 (75, 113)

recN Involved in recombinational repair (222, 242,
290, 330, 396)

2D–gel electrophoresis;
Mu (Ap lac) fusion (114, 222,
291)

−28, −46, −66 (75, 113)

recA SOS regulation and mutagenesis/homologous
recombination (36, 52, 77, 109, 148, 157, 198,
211, 213, 216, 218)

Dnase I protection assay; LacZ
fusion (60, 218)

−77 (75, 113)

pcsA (dinD) Unknown Mud1(Ap lac) (182) −61 (75, 113)

uvrD DNA helicase II (272) Complementation UVs and
MMSs

(234)

−74 (75, 113)

dinF Unknown down stream of LexA Mud1(Ap lac) (182) −24,−45 (75, 113)

LexA Transcriptional repressor of SOS genes (45, 46,
128, 157, 214, 218)

Dnase I protection assay (218) −24,−45 (75, 113)

uvrA (dinE) Involved in nucleotide excision repair (159) UV resistance during Hfr
mating;
Mud1 (Ap lac) (159, 183)

−101/−168 (75, 113)

dinQ Unknown Northern Analysis (113) −139 (113)

ydjQ Putative UvrC homolog, function unknown
(254)

Northern Analysis (113) −33 (75, 113)

ysdAB (tisAB) Toxic protein expressed under stress conditions
(384)

Northern Analysis (113) −142 (113)
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LexA-dependent genes Function Identification as LexA
dependent

LexA Box(es)a

ydjM Inner membrane protein (83) Northern Analysis (113) −52 (113)

dinS Putative transposase (113) Northern Analysis (113) −74 (113)

yigN Unknown Microarray (75) −55 (75, 113)

ybfE Unknown Northern Analysis (113) −136 (113)

yjiW (dinLsosC) Unkown Northern Analysis (113) −95 (75, 113)

borD Homolog of prophage protein expressed during
lysogeny (21, 22)

Microarray (75) ND

ybiN Unknown Microarray (75) ND

grxA Glutoredoxin; Hydrogen donor for
ribonucleotide reductase (293)

Microarray (75) ND

yccF Unknown Microarray (75) ND

ymfD Unknown Microarray (75) ND

ymfE Unknown Microarray (75) −280

Lit Protease for EF-Tu (134) Microarray (75) −193

intE Predicted phage integrase Microarray (75) 84, −192, −195
(75)

ymfG Unknown Microarray (75) ND

ymfH Unknown Microarray (75) ND

ymfI Unknown Microarray (75) 84

ymfJ Unknown Microarray (75) ND

ycgH Unknown Microarray (75) ND

ydeO Unknown Microarray (75) −272

ydeS Unknown Microarray (75) −43

ydeT Unknown Microarray (75) ND

ydeR Unknown Microarray (75) ND

arpB Unknown Microarray (75) ND

yoaB Unknown Microarray (75) −123

ogrK Regulate gene transcription of phage P2 (145,
410)

Microarray (75) −193, 8

yqgC Unknown Microarray (75) −41, −193

yqgD Unknown Microarray (75) ND

yhiJ Unknown Microarray (75) ND

yhiL Unknown Microarray (75) −63, −187

glvB Unknown Microarray (75) −174

ibpB Heat inducible chaperone (199) Microarray (75) ND

ibpA Heat inducible chaperone (199) Microarray (75) −249

yifL Unknown Microarray (75) ND

LexA-independent genes Function Identification as SOS induced

dinY Mutant defective in Weigle reactivation of UV-
irradiated bacteriophage λ (288)

Mu d1(Ap lac) (288)

dnaA Initiation protein for chromosomal replication
(399)

Transcriptional fusions; S1 nuclease mapping,
immunoblot analysis (297)

dnaB Replicative DNA helicase (204) lacZ fusion (191)
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LexA-dependent genes Function Identification as LexA
dependent

LexA Box(es)a

dnaN Pol III processivity factor; β-subunit (171) lacZ fusion (171)

dnaQ Pol III proofreading factor; ε-subunit (171) lacZ fusion (171)

hga 2-Keto-4-hydroxyglutarate adolase; respiration
recovery after UV exposure (106, 281)

2D–Gel Electrophoresis, Peptide Sequencing, and O2

consumption (62)

ihfA (himA) Site-specific recombination (248, 249, 251) lacZ fusion; Radiolabled 2D–Gele electrophoresis
(250)

nrdAB Ribonucleotide reductase (121–125) lacZ fusion (135)

phr DNA photolyase (327) lacZ fusion (163, 283)

hslVU Protease of SulA (310, 337, 416, 417) Microarray (75)

cvpA Colicin production (111) Microarray (75)

purF Purine biosynthesis (313) Microarray (75, 314)

upp Pyrimidine scavaging (8) Microarray (75)

rpoD RNA polymerase sigma factor (263) Microarray (75)

dnaG DNA primase (31, 349) Microarray (31, 75)

rpsU Ribosomal subunit (82) Microarray (75)

yfaE Unknown Microarray (75)

recX Inhibitor of RecA (357) Microarray (75)

recQ DNA helicase (378) Suppression dnaE486; in vitro helicase assays (165)

sfiC Inhibition of cell division (81) Cell Filamentation in recAsfiA99::Mu d(Ap lac)
strain (81)

a
Distance from ATG start codon.
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>Table 2

Potential SOS regulated genesa

Genes with potential SOS boxes LexA Box(es) relative to
promoter +1 start site

ydiM −34

ilbL −330

minC −277

ycgJ −262

yafL −193

dinJ (sosA) −32

ybiA −105

tyrS (dinNsosE) 275

ORF within yeeI −55, 118

ORF within ycgM −57

mug (tngygjF) −69

ORF within ydbK −122

ygiS −157

ORF within ygiT −45

xylE −23

ydbH 1

creA −145

rob −81

brnQ −87

yiaO −92

hofQ −100

metE −205

metR −51

ORF within ydcL −101

yhiX −47

pshM −89

ycgL −57

rfaJ −39

yjgN −55

ybiT −3

ilvD −19

yecS −73

ecpD −79

ydeJ −62

ycbU −100

yfiK −30

ymfM −122, −222, −173

ymfN −152, −312
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Genes with potential SOS boxes LexA Box(es) relative to
promoter +1 start site

ymgF −105

ymgH 6

yoaA −24

yneL −57

glvG 0, 211

glvC 214, 578

yfiE −92

a
Location of potential SOS box from Woodgate 2000 (113) and Courcelle 2001 (75)
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