

University of Groningen

The sound of high winds

van den Berg, G.P.

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version Publisher's PDF, also known as Version of record

Publication date: 2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA): van den Berg, G. P. (2006). The sound of high winds: The effect of atmospheric stability on wind turbine sound and microphone noise. s.n.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

RIJKSUNIVERSITEIT GRONINGEN

The sound of high winds: the effect of atmospheric stability on wind turbine sound and microphone noise

Proefschrift

ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 12 mei 2006 om 16:15 uur

door

Godefridus Petrus van den Berg geboren op 7 januari 1952 te Rotterdam

Promotores:

prof dr ir H. Duifhuis prof dr A.J.M. Schoot Uiterkamp

Beoordelingscommissie:

prof dr ir G.A.M. van Kuik prof dr V. Mellert prof dr ir H.P. Wit The sound of high winds:

the effect of atmospheric stability on wind turbine sound and microphone noise

G.P. van den Berg

Cover photograph by Richard de Graaf

Contents

Ι	WIND POWER, SOCIETY, THIS BOOK:			
	an introduction			
	I.1	A 'new' phenomenon	1	
	I.2	Digging deeper	4	
	I.3	Commercial and policy implications	6	
	I.4	Large scale benefits and small scale impact	9	
	I.5	Microphone wind noise	12	
	I.6	Research aims	13	
	I.7	Text outline and original work	13	
II	ACOUSTICAL PRACTICE AND SOUND RESEARCH			
	II.1.	Different points of view	17	
	II.2	Results from our wind turbine research	18	
	II.3	Early warnings of noisy wind turbines?	19	
	II.4	The use of standard procedures	21	
	II.5	Modelling versus measurements	23	
	II.6	Conclusion	24	
III	BASIC FACTS:			
	wind power and the origins of modern wind turbine sound		27	
	III.1	Wind energy in the EU	27	
	III.2	Wind profiles and atmospheric stability	27	
	III.3	Air flow on the blade	32	
	III.4	Main sources of wind turbine sound	33	
IV	LOUD SOUNDS IN WEAK WINDS:			
1 V	effect of the wind profile on turbine sound level		39	
	IV.1	The Rhede wind farm	39	
	IV.2	Noise impact assessment	41	
	IV.3	Wind turbine noise perception	42	
	IV.5	Measurement instruments and method	43	
	IV.6	Results: sound emission	43	
	IV.7	Results: sound immission	45	

	IV.8	Comparison of emission and immission sound levels	51		
	IV.9	Atmospheric stability and Pasquill class	52		
	IV.10	Additional measurements	53		
	IV.10	.1 Measured and calculated immission sound levels	54		
	IV.10	.2 Immission level increase due to inversion layer?	58		
	IV.11	Conclusion	59		
V	THE BEAT IS GETTING STRONGER:				
	low fre	quency modulated wind turbine sound	61		
	V.1	Effects of atmospheric stability	61		
	V.2	Measurement results	66		
	V.2.1	Locations	66		
	V.2.2	Frequency response of instruments	67		
	V.2.3	Measured emission and immission spectra	68		
	V.2.4	Beats caused by interaction of several wind turbines	74		
	V.2.5	Summary of results	78		
	V.3	Perception of wind turbine sound	80		
	V.4	Conclusion	84		
VI	STRON	NG WINDS BLOW UPON TALL TURBINES:			
	wind st	atistics below 200 m altitude	87		
	VI.1	Atmospheric stability in wind energy research	87		
	VI.2	The Cabauw site and available data	87		
	VI.3	Reference conditions	88		
	VI.4	Results: wind shear and stability	90		
	VI.4.	1 Wind velocity shear	90		
	VI.4.2	2 Shear and ground heat flux	94		
	VI.4.3	3 Wind direction shear	95		
	VI.4.4	4 Prevalence of stability	96		
	VI.5.	Results: effects on wind turbine performance	97		
	VI.5	5.1 Effect on power production	97		
	VI.5	5.2 Effect on sound production	99		
	VI.6	Other onshore results	102		
	VI.7	Conclusion	104		

VII THINKING OF SOLUTIONS:

measures to mitigate night time wind turbine noise		105
VII.1 M	Aeeting noise limits	105
VII.2 I	Reduction of sound level	106
VII.2.1	Wind velocity controlled sound emission	107
VII.3.2	Ambient sound level controlled sound emission	110
VII.4	Reduction of fluctuations in sound level	113
VII.4.1	Pitch angle	113
VII.4.2	Rotor tilt	114
VII.4.3	Desynchronization of turbines	115
VII.5	Conclusion	116

VIII RUMBLING WIND:

IX

wind in	duced sound in a screened microphone	119
VIII.1	Overview of microphone noise research	119
VIII.2	Atmospheric turbulence	121
VIII.2	.1 Turbulence spectra	122
VIII.2	.2 Effect on microphone in wind screen	124
VIII.2	.3 Frequency regions	126
VIII.2	.4 Wind induced broad band A-weighted pressure level	127
VIII.3	Comparison with experimental results	129
VIII.3	.1 Measured spectral pressure levels	129
VIII.3	.2 Measured broad band pressure levels	134
VIII.3	.3 Screen reduction	136
VIII.4	Discussion	137
VIII.5	Applications	139
VIII.6	Conclusion	139
GENEF	RAL CONCLUSIONS	141
IX.1	Effect of atmospheric stability on wind turbine sound	141
IX.2	Effect of stability on ambient background sound	143
IX.3	Wind noise on a microphone	143
IX.4	Magnitude of atmospheric stability	144
IX.5	Measures to mitigate stability related effects	145
IX.6	Recommendations	146

Х	EPILO	GUE	149
	ACKNOWLEDGMENTS		153
	SUMMARY		
	SAMENVATTING		
	REFERENCES		
	APPENDICES		
	A: List of symbols		
	B: Dominant sources of wind turbine sound		
	B.1	Infrasound: thickness sound	
	B.2	Low frequencies: in-flow turbulent sound	
	B.3	High frequencies: trailing edge sound	
	C: Simultaneous sound level registrations		
	D: Publications by the author		
	D1	Published and conference papers	
		D1.1 Single author	
		D1.2 Co-author	
	D2	Science Shop reports and memoranda	
		D2.1 Single author, reports	
		D2.1 Single author, memoranda	
		D2.2 Co-author	