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The South Atlantic Subtropical Anticyclone (SASA) is the main feature of the atmospheric

circulation over the South Atlantic Ocean, and its study is of great importance to explain

many characteristics of the Brazilian weather and climate. Therefore, this study aims to

present (1) a review of the literature on SASA including the drivers of the semi-permanent

anticyclones and (2) the main features of the SASA in the future climate obtained

through the projections of three global climate models (HadGEM2-ES, GFDL-ESM2M,

and MPI-ESM-MR), from the Coupled Model Intercomparison Project (CMIP5), using the

Representative Concentration Pathway 8.5 (RCP8.5) scenario. SASA is zonally wider in

winter and retracted to the east in summer, when it presents a more circular format.

These features of the SASA in the present climate (1979–2005) are well represented by

the three global climate models, which also project this same SASA seasonal pattern

for the future climate (2065–2095). Considering the projections, they indicate a slightly

poleward expansion of the SASA, which is associated with the widening of the Hadley

cell. At the SASA core, the pressure can be similar or slightly more intense than the

present climate.

Keywords: South Atlantic Subtropical Anticyclone, Hadley cell, climate change, RCP8.5, CMIP5 models

INTRODUCTION

Mean sea level pressure (MSLP) charts show closed isobars, some with values that increase from
the center to the periphery, characterizing cyclones, and others in which the pressure decreases
from the center to the periphery, characterizing anticyclones. There are two types of anticyclones:
migratory (or transient) and semi-permanent. The former, which occurs eventually, is associated
with baroclinic waves and has a reduced lifetime (2–6 days; Sinclair, 1996; Ioannidou and Yau,
2008; Pepler et al., 2018). The latter persists for most of the year over subtropical latitudes and is
usually called subtropical anticyclone or subtropical high (Chen et al., 2001; Ynoue et al., 2017).
Subtropical anticyclones are characterized by anticyclonic wind curl, subsidence and divergence at
lower levels of the atmosphere (He et al., 2017). The center of these systems is a region of calm while
their borders have more intense winds.

Frontiers in Earth Science | www.frontiersin.org 1 February 2019 | Volume 7 | Article 8

https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2019.00008
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/feart.2019.00008
http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2019.00008&domain=pdf&date_stamp=2019-02-26
https://www.frontiersin.org/articles/10.3389/feart.2019.00008/full
http://loop.frontiersin.org/people/123102/overview
http://loop.frontiersin.org/people/112125/overview
http://loop.frontiersin.org/people/678295/overview
http://loop.frontiersin.org/people/627761/overview
http://loop.frontiersin.org/people/117704/overview
https://www.frontiersin.org/journals/earth-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/earth-science#articles


Reboita et al. SASA Climate Projections

According to Mächel et al. (1998), the geographic location
of subtropical highs varies little throughout the year, around an
average position that is in some way related to the apparent
path of the sun. Rodwell and Hoskins (2001) mention that
the subtropical anticyclones cover 40% of the earth’s surface
while Josey et al. (1998) indicate that in the regions with these
systems evaporation exceeds precipitation by up to 5 mm/day.
Therefore, the subtropical anticyclones are responsible for the
formation of the subtropical deserts and also have great influence
on monsoons (He et al., 2017).

There is no unique mechanism that explains the genesis and
maintenance of the subtropical anticyclones; here we summarize
the findings of the literature: (a) subsidence of the polar branch
of the Hadley cell (Namias, 1972; Rodwell and Hoskins, 2001;
Dima and Wallace, 2003; Seager et al., 2003) located at about 30
degrees latitude in both hemispheres (Guo et al., 2016); (b) sea-
air interactions (Seager et al., 2003); and (c) subsidence over the
ocean caused by monsoons over adjacent continents during the
summer season (Rodwell and Hoskins, 1996, 2001; Chen et al.,
2001; Liu et al., 2004), as well as by teleconnection effects from the
Northern Hemisphere monsoon (Kosaka and Nakamura, 2010;
Lee et al., 2013; Ji et al., 2014). More details about these items will
be presented in the Section “Literature Review.”

In the Southern Hemisphere, there are three subtropical
anticyclones located over the oceans (Miyasaka and Nakamura,
2010): the South Atlantic Subtropical Anticyclone (hereinafter
referred as SASA), the Indian (also called Mascarene High,
Cherchi et al., 2018), and the South Pacific. SASA, which is the
focus of this study, has a seasonal variability extending over
southeastern Brazil during the winter and retracting eastward
during the summer. This feature greatly affects the Brazilian
weather and climate (Reboita et al., 2010, 2015, 2017; Degola,
2013; Silva et al., 2014; Gilliland and Keim, 2018a,b). For example,
in the southeastern region of Brazil, the SASA seasonality
contributes to drier conditions in winter and moister in summer.
However, in summer 2014, the SASA had a westward anomalous
position, which led to an intense drought in southeastern Brazil
(Coelho et al., 2016). Once SASA is an important climate control
in Brazil, its behavior in the future climate should be studied.
Seth et al. (2010), Degola (2013), He et al. (2017), and Reboita
et al. (2017) are the few studies that showed some features of
this system in climate projections (more details in Section “SASA
Position and Intensity”).

As there is little literature that addresses SASA, and even
less in terms of climate projections of this system, this study
aims to contribute with: (1) a review of the literature on the
genesis andmaintenancemechanisms of subtropical anticyclones
focusing on the SASA as well as the main features of this
anticyclone; and (2) an analysis of the SASA seasonal features
in the present climate and in projections of three global climate
models from the Coupled Model Intercomparison Project –
Phase 5 (CMIP5) using the Representative Concentration
Pathway 8.5 (RCP8.5) scenario from the Intergovernmental
Panel on Climate Change (IPCC). We will also present some
comments on future projections of the Hadley cell. The present
study complements that of He et al. (2017) from a regional
point of view.

LITERATURE REVIEW

Maintenance Mechanisms of the
Subtropical Anticyclones
The Hadley Cell

In the first instance, subtropical anticyclones are associated with
the subsidence of the polar branch of the Hadley cell (Namias,
1972; Rodwell and Hoskins, 2001; Dima and Wallace, 2003;
Seager et al., 2003), which is a dominant driver in winter,
while in summer other mechanisms also support these high-
pressure systems. Over the Southern Hemisphere, the subtropical
anticyclones are more intense at the end of the austral winter
(Seager et al., 2003; Lee et al., 2013), when the surface atmospheric
pressure is maximized due to the greater intensity of the Hadley
cell (Rodwell and Hoskins, 2001; Seager et al., 2003). On the
other hand, during spring-summer is when the subtropical
anticyclones are better configured in terms of circular form
(Seager et al., 2003). Seager et al. (2003) further suggest that the
seasonal cycle of subtropical anticyclones is associated with the
seasonal variation of the sea surface temperature (SST).

Sea-Air Interactions

In summer, warmer waters predominate in the western sector
of the ocean basins, while colder waters predominate in the
eastern sector (Seager et al., 2003). Thus, on the eastern side of
the anticyclones, there are atmospheric subsidence and advection
of cold oceanic waters toward the equator. Dry air subsidence
intensifies the latent heat fluxes, which help to keep the colder
SST. On the other hand, on the west of the anticyclones, there
are convection and advection of warmer waters toward the
pole. Because of the east-west SST gradient in the ocean basins,
the anticyclonic circulation in spring and summer is less wide
zonally, and the higher pressure displaces from the west toward
the center of the ocean basins. In this way, the subtropical
anticyclones appear between the center and eastern side of the
ocean basins and with a more circular form than in winter.
Considering the SASA, it is bordered by the Brazilian warm
current in its western sector and by the Benguela cold current in
its eastern sector (Peterson and Stramma, 1991).

For Miyasaka and Nakamura (2010), the subtropical
anticyclones, over the Southern Hemisphere in summer, are
a response to local thermal forcing, i.e., there are sea cooling
in the eastern sector of the oceanic basins and heating in the
adjacent continental areas by sensible heat fluxes. The cooling
is mainly due to the radiative loss produced by stratus and/or
stratocumulus maritime clouds. These clouds make it difficult
for solar radiation to reach the surface, which is not favorable
to the increase in SST; furthermore, the southern winds cause
advection of the cold waters in the eastern sector of the ocean
basins. Therefore, the land–sea heating–cooling contrasts
across the west coasts of the three continents of the Southern
Hemisphere can propitiate planetary waves at the upper levels of
the atmosphere. These waves configure a zonal wavenumber 3
pattern in the subtropics and contribute to the existence of the
anticyclones. In short, there is a feedback between the ocean and
the atmosphere.
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Monsoons

Chen et al. (2001), using a linear quasi-geostrophic model,
observed that in the boreal summer the subtropical anticyclones
over the North Pacific and North Atlantic Oceans may be
a remote response of Rossby waves forced by the large-scale
heat sources over Asia. Rodwell and Hoskins (1996, 2001),
Shaffrey et al. (2002), and Liu et al. (2004) also suggest that the
subtropical anticyclones in the eastern sector of the ocean basins
are directly related to the adjacent monsoon heating (located
on the continent at the right side of the oceans); i.e., the latent
heat release over the continental monsoon produces a region of
descendingmovements northwest of the heating. The descending
motion over the eastern ocean causes an increase in the air
temperature and a decrease in relative humidity near the ocean
surface (Rodwell andHoskins, 2001; Liu et al., 2004). This process
stabilizes the air and forms low stratus clouds in the planetary
boundary layer, which favors radiative cooling near the top of
this layer and the development of diabatic descending motion,
reinforcing the descent movement produced by themonsoon and
then strengthening the subsidence. Therefore, the maintenance
of the subtropical anticyclones in summer is closely associated
with the land-sea distribution and can be interpreted in terms of
the atmospheric adaptation to diabatic heating (Liu et al., 2004).
Kosaka and Nakamura (2010) and Ji et al. (2014) also suggested a
possible remote influence of theNorthernHemispheremonsoons
on the southern subtropical anticyclones.

SASA Position and Intensity
Hastenrath (1991) and Mächel et al. (1998) presented one of
the first studies on the SASA climatology. Both showed that in
winter the SASA reaches its most northerly and westerly position
compared to the other seasons. Mächel et al. (1998) determined
the SASA position from 1881 to 1989 based on the monthly
MSLP data in the region between 15◦

−45◦ S and 45◦ W–15◦

E. The SASA changes its east-west position, being wider toward
the west in July and August (central position at 13◦ W) and more
retracted to the east in October and April (central position at 8◦

W). Regarding the latitude, the SASA varies its position between
32.5◦ S in March and 28.7◦ S in August. SASA central pressure is
about 1021 hPa from December to April and 1026 hPa in August,
and this variability is associated with its north–south migration.

While the previous studies of the SASA climatology used
MSLP data, Sun et al. (2017) employed geopotential height at
850 hPa from 1979 to 2015, stating that in summer the SASA
covers a smaller area, retracting to the east; in autumn, it expands
westward until covering the maximum area (∼10.6 × 106 km2)
and intensity in winter. The highest value of geopotential
height occurs in winter and is more displaced to the west (17◦

W) compared to the other seasons. Throughout the year, the
SASA longitudinal variability is about 14◦, while the latitudinal
variability is about 6◦. However, the SASA central position
shows great variability (Degola, 2013; Sun et al., 2017), which
can be correlated with the Southern Annular Mode (Sun et al.,
2017). When this mode is positive (negative), SASA is shifted to
the south (north). Regarding the El Niño-Southern Oscillation
phenomenon, the SASA is more displaced to south during

periods of La Niña. In addition, the extratropical cyclonic activity
may influence the east-west position of SASA mainly in winter
(Sun et al., 2017). This was also highlighted by Degola (2013),
while Ito (1999) showed that the SASA is more displaced to
the east (west) of its climatological position when the passage
of frontal systems near the east coast of South America is more
frequent (less frequent).

While the SASA on the surface is well represented by closed
isobars, at upper levels it is characterized by a ridge (Vianello and
Maia, 1986). On the surface, the SASA seasonal cycle presents
two peaks: one in intensity and other in the area occupied by the
system (Sun et al., 2017). Both occur during the austral winter
when SASA is more intense and wider. Large-scale subsidence
(Hadley cell) on the subtropical South Atlantic Ocean is the
main mechanism associated with the SASA in winter (Rodwell
and Hoskins, 2001; Richter et al., 2008), and this subsidence
may also be influenced by those produced by the Asian and
West African monsoons (Richter et al., 2008; Ji et al., 2014).
The monsoons contribute to intensifying the subsidence in the
eastern sector of the Atlantic basin, and, consequently, to increase
SASA intensity.

Richter et al. (2008) also investigated other factors that
determine the SASA position and intensity in the austral winter.
In a numerical experiment, they removed the South America
topography, and they found that the SASA is practically connected
with the South Pacific subtropical anticyclone. It confirmed that
topography is important indisrupting thehigh-pressure zonal belt
in the subtropics, generating circulation cells. Moreover, Rodwell
and Hoskins (2001) indicated that the longitudinal mountain
chains act to block the westerly flow and also tend to produce
air subsidence. Richter et al. (2008) also verified whether the
presence of horizontal east-west SST gradients is important for
winter SASA intensity.They showed that theSSTgradient removal
implies a less configured system, which agrees with the hypothesis
of Seager et al. (2003), but it is still of secondary importance for
the SASA intensity and position. This result is consistent once
the SASA is mainly driven by the Hadley cell in winter. However,
Cabos et al. (2017) suggest that the Richter et al. (2008)’s study
may have some inconsistences due to the possible absence of
air-sea interactions in their uncoupled model.

In summary, in winter the SASA is mainly influenced by
the subsidence of the Hadley cell and by the heat sources from
the Northern Hemisphere. On the other hand, from Section
“Maintenance Mechanisms of the Subtropical Anticyclones,”
during the summer SASA is mainly influenced by the monsoon
heating in the Southern Hemisphere continents (Rodwell and
Hoskins, 2001; Seager et al., 2003; Miyasaka and Nakamura,
2010; Lee et al., 2013) and by the zonal SST gradient and air-sea
interactions (Seager et al., 2003; Miyasaka and Nakamura, 2010).

The response of subtropical anticyclones to global warming
has received less attention than the tropical circulation (He et al.,
2017). Indeed, there are few studies that evaluate the features of
the SASA in the future climate. Seth et al. (2010), using some
global climate models from CMIP3 and A2 scenario from IPCC,
found a small westward and southward expansion of SASA in
the period 2071–2100 compared to 1971–2000. Degola (2013)
also identified a SASA expansion to the west with the ECHAM5
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FIGURE 1 | Seasonal and annual climatologies of the mean sea level pressure (hPa) in the present climate (1979–2005) from ERA-Interim (a,f,k,p,u) and ERA-20C

(b,g,l,q,v) reanalyses, and HadGEM (c,h,m,r,w), GFDL (d,i,n,s,x), and MPI global climate models (e,j,o,t,y). Isobars interval is 2 hPa.

and MPI projections considering the A1B scenario. Similar
results were obtained by Reboita et al. (2017), who analyzed
three regional climate projections carried out with the Regional
Climate Model (RegCM4) and the RCP8.5 scenario. This same
scenario was used by He et al. (2017) to investigate the responses
of the summertime subtropical anticyclones to global warming
in the CMIP5 models, obtaining a projection of reduction in the
intensity of the subtropical anticyclones over the North Pacific,
the South Atlantic, and in the southern Indian Ocean. Moreover,
subtropical anticyclones show a slightly poleward shift in the
RCP8.5 scenario. Similar results were also obtained by Cherchi
et al. (2018) using a CMIP5 multi-model mean and RCP8.5
scenario. The slightly poleward shift of the SASA seems to be an
answer to the poleward expansion of the Hadley cell (Lu et al.,
2007, 2008; Choi et al., 2014; Lucas and Nguyen, 2015; Tao et al.,
2016; Kim et al., 2017). More details about this relation will be
presented in Section “Future Climate.”

SASA Influence on Brazilian Weather and
Climate
Considering the seasonal variability of the SASA, in winter this
system is more zonally expanded so that its western sector lies
over the southeastern Brazil, which hinders convective activity
and, consequently, precipitation (Reboita et al., 2010; Silva et al.,
2014; Correa et al., 2018). On the other hand, in summer the
SASA is less expanded and located away from the Brazilian coast.
So, in this season SASA circulation contributes to the humidity
transport from the Atlantic Ocean to the continent and favors
the precipitation in southeastern Brazil (Vianello andMaia, 1986;

Reboita et al., 2010, 2015, 2017). Over the northeastern coast,
in winter, the SASA contributes to more intense easterlies that
converge over the coast and favor precipitation (Reboita et al.,
2016b). Indeed, winter is the rainy season over the eastern coast of
the northeast of Brazil (Reboita et al., 2016b). Some similar results
were obtained by Gilliland and Keim (2018b), who presented the
climatology of the wind intensity at 10 m high over Brazil from
1980 to 2014 using different datasets.

Degola (2013) correlated the monthly longitude time series
of the SASA with different atmospheric variables (analyses were
not performed to latitude time series) over the ocean and
South America. When the SASA is displaced to the west of
its climatological position, there is an intensification of trade
winds throughout the northeastern region of Brazil, especially in
spring and summer (Degola, 2013). Moreover, the northeastern
coast of Brazil suffers cooling while the south and southeast
Brazilian regions undergo warming. This temperature pattern
is directly associated with the temperature advection produced
by the anticyclone circulation. When the SASA is located to
the east of its climatological position, the patterns described
are opposite (Degola, 2013). Gilliland and Keim (2018a) have
also calculated the correlation between longitude (latitude) and
wind intensity over Brazil, considering the daily mean location
of the SASA from 1980 to 2014. In terms of longitude, there
is negative correlation throughout the year, which indicates
that when the SASA is more displaced to the west (east),
the winds over the continent are more (less) intense. For the
latitude, when the SASA displaces to lower latitudes (winter), the
wind intensity increases in northeastern Brazil and decreases in
southern Brazil.
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METHODOLOGY

Data
Monthly MSLP and vertical velocity (omega) from ERA-20C
(Poli et al., 2016) and ERA-Interim (Dee et al., 2011) reanalyses
from European Centre for Medium-Range Weather Forecast
(ECMWF) with a horizontal resolution of 1o, from 1979 to
2005, were used. For this same period, simulations of three
global climate models from Coupled Model Intercomparison
Project - Phase 5 (CMIP5) were obtained: Max Planck Institute
for Meteorology - Earth systemmodel (MPI-ESM-MR; Giorgetta
et al., 2013), Geophysical Fluid Dynamics Laboratory global
model (GFDL-ESM2M, Dunne et al., 2012) and Hadley Global
Environment Model 2-Earth System (HadGEM2-ES; Jones et al.,
2011). Although these simulations were initialized at the same
year (1850), they were performed with different spatial resolution
and physical parameterization schemes. Among the several
models from CMIP5 (Taylor et al., 2012), GFDL-ESM2M,
HadGEM2-ES, and MPI-ESM-MR were chosen for this study
because they presented a good performance in the validation
carried out by Phase I Coordinated Regional Climate Downscaling
Experiment Project (CORDEX; Giorgi et al., 2009). Indeed,
they are the models used by CORDEX to drive some regional
climate models.

From the three global climate models, we also obtained
the climate projections from 2065 to 2095 considering the
Representative Concentration Pathways 8.5 (RCP8.5) scenario
developed for the IPCC - Fifth Assessment Report (AR5). While
the historical simulations are forced with observed atmospheric
composition changes (Taylor et al., 2012), the projections using
RCP8.5 scenario have a radiative forcing that stabilizes at 8.5 W
m−2 (∼4 times more than the current value) in the 2100-year
(Moss et al., 2010; van Vuuren et al., 2011). Among the 2.6, 4.5,
6, and 8.5 RCP scenarios, RCP8.5 corresponds to the highest
greenhouse gas emissions (Riahi et al., 2011) due to intensive use
of fossil fuels, with little mitigation stringency. Once RCP8.5 is
the most pessimistic scenario, it was chosen to analyze the SASA
projections in this study.

Mean sea level pressure and vertical velocity from reanalyses
and models were all gridded to the same horizontal resolution of
1◦

× 1◦ to allow the results comparison. This procedure is similar
to other studies as Alkama et al. (2013), Joetzjer et al. (2013), He
et al. (2017), and Santos et al. (2017). Hereafter, for brevity, the
global models are called HadGEM, GFDL and MPI.

SASA Central Position
The SASA spatial configuration in hourly and daily MSLP fields
can be disrupted due to the influence of transient systems. Cold
fronts and cyclones can fragment the SASA [different situations
of the SASA fragmentation are illustrated by Degola (2013) in
his Figure 2.3], while transient anticyclones around the SASA
can show higher pressure than this semi-permanent system. For
example, Gilliland and Keim (2018a) observed that the transient
anticyclones are subject to be included in the dataset when the
SASA position is identified using daily data. This shows that
climatology obtained with daily data may have inconsistencies.
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As the presented facts can hinder the identification of the highest-
pressure position (core) of the SASA (Pezza and Ambrizzi, 2005),
we used monthly data, which is similar to the methodology
employed by Mächel et al. (1998).

In order to find the highest-pressure position (core) of the
SASA, we used an algorithm developed by the first author of
the present study, which was previously used by Degola (2013).
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TABLE 1 | Seasonal climatology of the highest SASA pressure center (latitude and

longitude) in the present climate (1979–2005) obtained from ERA-Interim, ERA20C

and the literature (see text citations).

Seasonal central position of SASA - Historical

Season Hastenrath (1991) Mächel et al. (1998) Ito and Ambrizzi (2000)

Lat Lon Lat Lon Lat Lon

Summer −31.3 −3.6 −31.0 −8.1 − −

Autumn −29.3 −2.3 −31.1 −8.0 − −

Winter −27.3 −12.6 −29.0 −11.5 −30.0 0

Spring −29.0 −5.1 −30.0 −6.6 −30.0 −7.0

Season Degola (2013) ERA-Interim ERA-20C

Lat Lon Lat Lon Lat Lon

Summer −31.0 −9.0 −31.6 −6.3 −31.9 −4.3

Autumn −31.0 −2.5 −31.6 −4.4 −32.0 −2.1

Winter −28.0 −11.0 −29.1 −6.9 −29.5 −5.6

Spring −30.0 −6.0 −31.1 −3.9 −31.8 −3.0

This algorithm utilizes the nearest neighbor technique (Lambert,
1988; Murray and Simmonds, 1991; Sinclair, 1994; Sugahara,
2000), which compares a grid point with those around it to find
the highest-pressure value than the neighbors. This methodology
was applied to the MSLP monthly data in the area of 40◦ S–
20◦ S e 42◦ W–12◦ E. Each grid point was compared with its 48
neighboring points. Some details of the algorithm are: (a) one grid
point is a candidate to be the SASA core if its MSLP is higher or
equal than that of the first 8 neighboring points and higher than
the other 40 points around; (b) in the case that more than one
grid point presents the same maximum pressure value, the grid
point that presents the lowest latitude is considered the SASA
center. The algorithm allowed the identification of the geographic

coordinates (latitude and longitude) of the grid point with the
highest-pressure value, which will be considered as the SASA
central position.

Analysis
In order to evaluate the performance of the three global
climate models in simulating the present climate (1979–
2005), we compared the seasonal and annual MSLP from the
simulations with ERA-Interim and ERA-20C reanalyses, which
are considered as the reference datasets. The studied period stops
in 2005 because afterwards, the radiative climate forcing starts
to act according to the specifications in the RCP8.5 scenario
(van Vuuren et al., 2011).

The analyses in this study follow two approaches: (a) the SASA
area and (b) the highest-pressure center (core). For the former,
we consider some isobars in order to delimit the SASA domain,
while for the latter we use the algorithm information. With the
SASA location (coordinates), it was possible to construct similar
figures to those of Hastenrath (1991) and Mächel et al. (1998), in
which the monthly mean position of the SASA is presented.

The SASA climate change response is defined as the difference
between the MSLP in the future minus the present climate.
Moreover, we present the 1018 and 1020 hPa isobars in order to
compare the changes projected in the SASA area. As the SASA
future changes can be a consequence of the changes projected
in Hadley cell, we plotted vertical cross sections of the vertical
velocity (omega) seasonal mean, in order to know more details
about the Hadley circulation.

RESULTS

Present Climate
Figure 1 shows the seasonal and annual average of the MSLP
in the present climate (1979–2005) obtained from the reanalyses

TABLE 2 | Seasonal climatology of the position of the highest SASA pressure center and its pressure (hPa) in the present (1979–2005) and future climate (2065–2095),

considering the RCP8.5 scenario.

Season Historical Projection

Lat Lon Pressure Lat Lon Pressure

HadGEM2-ES

Summer −32.2 −7.0 1020.9 −34.5 −5.4 1021.9

Autumn −32.5 −7.9 1021.0 −32.3 −9.6 1020.9

Winter −28.5 −13.0 1024.8 −28.4 −15.7 1024.7

Spring −30.9 −5.7 1024.3 −31.4 −7.7 1024.6

GFDL-ESM2M

Summer −31.8 −6.2 1022.9 −33.1 −7.9 1024.4

Autumn −32.5 −8.9 1023.1 −32.6 −12.5 1023.7

Winter −27.4 −19.6 1027.1 −27.7 −21.4 1027.9

Spring −29.6 −11.3 1026.2 −30.3 −12.6 1027.5

MPI-ESM-MR

Summer −33.2 −6.1 1021.3 −33.8 −6.7 1021.1

Autumn −32.4 −12.5 1021.8 −32.8 −16.8 1022.2

Winter −28.5 −20.8 1025.3 −29.9 −18.9 1026.8

Spring −31.0 −8.6 1024.2 −30.9 −11.0 1024.6
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and simulations. SASA is well configured in a circular form and
retracted to the eastern sector of the South Atlantic Ocean in the
austral summer (DJF), which agrees with Seager et al. (2003) and
Sun et al. (2017). From autumn (MAM) to winter (JJA), the SASA
intensifies and expands to the west. In winter, the SASA is more
intense, and its western sector lies over eastern Brazil (northern,
southeastern, and southern regions). The SASA action over Brazil
is responsible for inhibiting convection and the frontal systems
passage, which affects precipitation in the southeastern region of
Brazil (Reboita et al., 2010; Silva et al., 2014). In this same region,
SASA contributes to thermal inversion episodes that increase the
concentration of pollutants in the lower troposphere (Ribeiro
et al., 2015; Rozante et al., 2017; Correa et al., 2018). Another
way to show the seasonal variability of the SASA area is by
drawing a specific isobar. In Figure 2, the 1018 hPa isobar shows
clearly the SASA position over eastern Brazil during winter. In
spring (SON), the SASA begins to weaken, and its west-east
size is reduced.

As shown by Reboita et al. (2016a), the validation of the
simulations is a hard task once there are differences between the
observed data (reanalyses), which can be seen, for example, by
comparing ERA-Interim and ERA-20C. Although the seasonal
spatial pattern of the SASA is similar in both, the MSLP values
(Figure 1) and the area covered by 1018 hPa isobar (Figure 2)
are slightly lower in ERA-20C than in ERA-Interim. In this
way, the performance of the models can be better or worse
depending on the dataset used in the validation. Here, we are
considering both reanalyses in the comparisons with the models.

The seasonal spatial pattern of the SASA is well simulated by
the three models, however, there are some differences in the
simulated intensity compared to the reanalyses (Figure 1). While
HadGEM overestimates the MSLP in the western sector of the
SASA in winter and spring, GFDL overestimates it in all the
SASA area and seasons (Figure 1). MPI simulates the SASA with
lower meridional amplitude and with the highest-pressure center
displaced to the west compared to the reanalyses and simulations
(Figure 1). The reported results can also be observed in Figure 2.
Considering the 1018 hPa isobar, three simulations show the
SASA with a larger area than in the reanalyses. In summary,
comparing the performance of the three models, HadGEM is that
which simulates the SASA closest to the reanalyses.

For a more detailed evaluation of the SASA position (core
with the highest-pressure), we searched the monthly SASA
position through an algorithm (see section “Methodology”) and
performed the seasonal average of the latitude and longitude.
These results and those obtained from the literature are shown
in Table 1, while the results of the projections in Table 2. SASA
reaches the most northerly position in winter, but its latitude
differs in the literature: 27◦ S in Hastenrath (1991), 28◦ S in
Degola (2013), 29◦ S in ERA-Interim, ERA-20C and Mächel et al.
(1998) and 30◦ S in Ito and Ambrizzi (2000). Regarding the global
climate models, GFDL simulates the northern latitude at 27◦ S,
and HadGEM and MPI at 28◦ S. Therefore, the models agree
with the observations. The most southerly position is registered
in summer: 31◦ S in Hastenrath (1991), Mächel et al. (1998),
and Degola (2013), and approximately 32◦ S in ERA-Interim and

FIGURE 3 | Monthly climatology of the highest SASA pressure center position (latitude and longitude) in the present and future climates (black and blue lines,

respectively) from (A) reanalyses (only for present), (B) HadGEM, (C) GFDL, and (D) MPI. Numbers from 1 to 12 refer to the months of the year and the vertical black

line indicates the longitude 0◦.
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FIGURE 4 | Monthly climatology of the pressure (hPa) of the SASA center.

ERA-20C (Table 1). MPI simulates the most southerly position
in 33◦ S while GFDL and HadGEM show it in autumn (32.5◦ S,
respectively). In these two models, in summer the SASA position
is approximately 32◦ S. While in the present study (reanalyses
and models) the SASA latitude is similar to the literature, the
longitude is more variable. SASA is in the most westerly position
in winter: 12.6◦ W in Hastenrath (1991), 11.5◦ W inMächel et al.
(1998), 11◦ W in Degola (2013), 7◦ W in ERA-Interim, and 6◦ W
in ERA-20C. Ito and Ambrizzi (2000) obtained the most westerly
position of the SASA in spring (7◦ W) compared to winter (0◦).
The models simulate the SASA position displaced to the west in
relation to these studies, i.e., 20.8◦ W in MPI, 19.6◦ W in GFDL,
and 13◦ W in HadGEM. Although Figure 1 shows the SASA
center displaced to east in summer, the highest-pressure center
(core) is not necessarily located in the most easterly position
in this season. Hastenrath (1991) and Degola (2013) found the
most easterly position to the core in autumn (2.3◦ W and 2.5◦

W, respectively), and Mächel et al. (1998) in spring (6.6◦ W).
Here, ERA-Interim and ERA-20C registered it in spring (3.9◦

W) and autumn (2.1◦ W), respectively. On the other hand, two
global climate models simulated the most easterly position in
summer (∼6◦ W in GFDL and MPI), and one in spring (∼6◦ W
in HadGEM).

To provide more details about the monthly position of
the SASA core, we constructed graphs (Figure 3) similar to
Hastenrath (1991) and Mächel et al. (1998). Models show higher
spatial variability of the SASA core compared to the reanalyses.
An interesting feature in Figure 3 is the more westerly position
of the SASA in February in ERA-Interim and ERA-20C but not
in the simulations. This February pattern was also obtained by
Mächel et al. (1998) and Degola (2013). It may be caused by
the transition of summer to autumn, and it certainly deserves

further investigation. Sun et al. (2017), using geopotential height,
indicated that the SASA longitudinal variability throughout the
year is about 14◦, while the latitudinal variability is about 6◦.
Here, using the MLSP of ERA-Interim and ERA-20C (Figure 3),
we found a lower longitudinal variability (approximately 10◦),
being similar to that obtained by Mächel et al. (1998). For the
latitudinal variability, our result is similar to Sun et al. (2017) and
Mächel et al. (1998). Regarding the simulations, the longitudinal
variability is about 8◦ higher than the reanalyses while the
latitudinal variability is only about 1◦ (Figure 3).

In terms of the intensity of the SASA core, in winter the MSLP
is about 1024 hPa in ERA-Interim and ERA-20C,1025 hPa in
HadGEM and MPI, and 1027 hPa in GFDL (Table 2). These
values are lower in summer: 1021 hPa in all datasets, except in
GFDL (1023 hPa). Monthly values are shown in Figure 4, and
the reanalyses are in agreement with Mächel et al. (1998) and
Degola (2013), who indicated that the maximum pressure value
does not surpass 1025 hPa in winter and does not decrease less
than 1021 hPa in summer. The models reproduce the annual
cycle of the MSLP (Figure 4), with HadGEM and MPI showing
values similar to the reanalyses, and GFDL overestimating it.
To end this section, we present in Figure 5 the scatterplot
of the SASA core monthly position. While the reanalyses
(Figure 5A) show the more concentrated SASA position, it
is more spread westward in the simulations, agreeing with
Figure 3. Both reanalyses and models show a negative linear
trend, indicating that in the present climate there is a slightly
southward displacement of the highest SASA pressure center.
In all datasets from Figure 5, Mann–Kendall test indicates that
the negative trends are statistically significant at the 0.05 level.
This result is concordant with studies that indicate a poleward
expansion of the Hadley cell in the present climate, such as Hu
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FIGURE 5 | Scatter diagram for monthly latitude and longitude of the SASA in the present and future climates from (A) reanalyses (only for present), (B) HadGEM,

(C) GFDL, and (D) MPI. Regression equations are also shown in the plots.

and Fu (2007) and Hu et al. (2018), and the associated poleward
displacement of the other atmospheric systems like the tropical
cyclones (Sharmila and Walsh, 2018).

Although the global climate models show some differences in
the latitude and longitude of the SASA core, they were able to
reproduce the seasonal spatial pattern of this system. This result
gives confidence to study the SASA in the climate projections.

Future Climate
Figure 6 shows the seasonal and annual average of the MSLP
projected for 2065–2095, while Figure 7 presents the difference
between future and present. The spatial pattern of the MSLP
(Figure 6) is similar to that of the present climate with the
SASA being zonally wider and more intense in winter (Figure 1).
However, there are some changes in the MSLP values (Figure 7).
In general, an increase in the MSLP in the southern sector of the
South Atlantic Ocean and a decrease in the tropical sector, mainly

toward Africa, are projected. These changes appear more intense
in summer (Figure 7).

To simplify the evaluation of the MLSP future changes in the

SASA, we analyzed the spatial pattern of two specific isobars

(1018 and 1020 hPa) in summer and winter (Figure 8). Both

isobars indicate that the SASA can become wider due to an

expansion westward and southward. Only MPI does not indicate

a widening of the SASA in summer in the future (Figures 8C–F).

The SASA expansion in the future climate was also obtained by

Seth et al. (2010) and Reboita et al. (2017). This expansion seems

to influence the position of the highest-pressure center (core)

of the SASA (Table 2) once in the RCP8.5 scenario it appears

slightly displaced southward in all seasons (except in autumn and

winter in HadGEM2) which agrees with He et al. (2017). This

feature also appears in the comparison of the monthly SASA

position between the present and the future (Figure 3) and in

the scatterplot of the SASA position (Figure 5). The slightly
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southward displacement can be an answer for the changes in the
MSLP field shown in Figure 7 (pressure reduction in the tropical
sector toward Africa and an increase south of 30◦ S), which in
turn may be a Hadley cell response.

The projection of the SASA core intensity is similar to the
present or slightly higher (Table 2 and Figure 4), differing from
He et al. (2017), who found a weakening of the SASA in the future
climate. The projections reproduce the annual cycle of the MSLP
registered in the present climate (Figure 4), but with the GFDL
showing higher pressure values.

To know more about the SASA vertical structure, latitude-
height cross sections of the vertical velocity (omega) considering
the future and present climate and the difference between
them are presented for summer (Figure 9) and winter
(Figure 10). The longitude used in the cross sections is that
identified by the algorithm in the present climate (Table 2).
The SASA is represented by a descending motion (positive
values in the vertical velocity). Figures 9, 10 are also a
representation of the atmospheric circulation in the Southern

Hemisphere, which includes the Hadley cell. This cell is a
thermally direct tropospheric circulation with the rising motion
of warm air near the equator and a descending motion
in the subtropics in both hemispheres. Therefore, the polar
branch of the Hadley cell is one of the main drivers of the
SASA (Rodwell and Hoskins, 2001; Dima and Wallace, 2003;
Seager et al., 2003), consequently, changes in this cell affect
the SASA.

Figures 9, 10 show a decrease in the subsidence in the RCP8.5
scenario, in general between 20◦ and 30◦ S, and an increase at
higher latitudes (until ∼45◦ S in summer and 40◦ S in winter).
Therefore, this result agrees with the literature in which there will
be a poleward expansion of the Hadley cell (Deser and Phillips,
2009; Son et al., 2009, 2010; Polvani et al., 2011; Nguyen et al.,
2013, 2015; Allen et al., 2014; Davis et al., 2016; Grise and Polvani,
2016; Tao et al., 2016; Hu et al., 2018) and, consequently, of the
SASA. Comparing summer and winter (Figures 9, 10), in winter
the subsidence associated with the Hadley cell is more intense and
reaches lower latitudes.
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FIGURE 9 | Latitude-height cross sections of the vertical velocity (omega; Pa s−1) in summer for the future, present and the difference future minus present. The

black line indicates the zero value.

The poleward expansion of the Hadley cell is documented for
the present climate and future projections. In the present climate,
different reanalyses show an expansion of about 1◦ in latitude per
decade (Hu and Fu, 2007; Hu et al., 2018), while CMIP5 historical
simulations underestimate it, showing an expansion that ranges
from 0.17◦ (Hu et al., 2013) to 0.2◦ (Tao et al., 2016) in latitude per
decade. For the future climate, the expansion increases to about
0.27◦ in latitude per decade (Hu et al., 2013). But what are the
causes of theHadley cell expansion? Some numerical experiments
indicate that this expansion is associated with the stratospheric
ozone depletion (Son et al., 2009, 2010; Polvani et al., 2011; Min
and Son, 2013;Waugh et al., 2015), the increase of the greenhouse

gasses (Allen et al., 2012; Nguyen et al., 2015; Davis et al., 2016)
or by both forcings (Tao et al., 2016). On the other hand, natural
forcing or anthropogenic aerosols do not generate significant
trends in the Hadley cell expansion (Tao et al., 2016).

The mentioned forcings firstly affect the horizontal
temperature gradients (the physical mechanisms that explain
this are not fully known), that become displaced poleward. It has
an impact in the global atmospheric circulation with a poleward
displacement of the upper level jets and storm tracks (Catto,
2016; Reboita et al., 2018) and an expansion of Halley cell (Lu
et al., 2007, 2008; Hu et al., 2013, 2018; Lucas et al., 2014; Seo
et al., 2014; Lau and Kim, 2015; Nguyen et al., 2015; Davis et al.,
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FIGURE 10 | Similar to Figure 9 but for winter.

2016; Grise and Polvani, 2016; Tao et al., 2016; Lipat et al., 2017).
This expansion can be associated with the ability of the Hadley
cell to maintain angular momentum conservation in front of
the poleward displacement of the other systems (Korty and
Schneider, 2008). In this way, in climate scenarios, latitudes
toward the extratropical region will present higher pressure than
in the present climate and it may explain the increase of the
surface pressure toward the mid-latitudes reported in Figure 7.

In terms of the more intense changes in the surface pressure
showed in summer (Figure 7), it may be a relation with the
higher stratospheric ozone depletion in this same season (Son
et al., 2009, 2010; Polvani et al., 2011; Min and Son, 2013;
Waugh et al., 2015). The ozone depletion is a consequence
of strong stratospheric vortex that difficulties the exchange
of the polar air with midlatitudes during winter and spring.
Then, the ozone is more easily consumed during these seasons
reaching the maximum depletion in summer (Pazmiño et al.,
2005; Davis et al., 2016). The ozone depletion causes a cooling
of the stratosphere in high latitudes leading to more intense
meridional temperature gradients between the tropospheric polar
region and the extratropics (Polvani et al., 2011). It helps the
poleward displacement of the westerly winds and the Haddley
cell in summer. Therefore, these results may provide a possible
explanation of why surface pressure is higher in summer as
indicated in Figure 7.

CONCLUSION

This study complements the work of He et al. (2017), providing
a regional point of view of the South Atlantic Subtropical
Anticyclone (SASA). Moreover, a thorough review of the
literature was also done, in order to better discuss the semi-
permanent anticyclones maintenance.

The SASA seasonal variability is characterized by a wider
zonally and intense system during the winter. Regressing analysis
using present climate data indicates a small, but statistically

significant, trend of the southward displacement of the SASA
core. These features were well reproduced by the CMIP5
models (MPI-ESM-MR, HadGEM2-ES and GFDL-ESM2M) in
the present climate with HadGEM2-ES showingmore similarities
with the reanalyses.

In terms of climate projections, the main results are:

• Regarding the MSLP spatiality, an increase of the MSLP in
the south sector of the South Atlantic Ocean and a decrease
in the tropical sector, mainly toward Africa, are projected;

• The area of the SASA shows an expansion southward and
westward compared to the present climate;

• The SASA core (the highest-pressure position) presents
a slightly, but statistically significant, southward
displacement in future climate scenarios, and

• The SASA core intensity does not show any significant
change in the future.

We suggest that the changes projected for the SASA are
directly related to the southward expansion of the Hadley cell,
which in turn is associated with the changes in the horizontal
temperature gradients (Lu et al., 2007, 2008; Allen et al., 2012; and
see a review in Reboita et al., 2018) in climate change scenarios.
Therefore, the poleward shift of the Hadley cell and the storm
tracks will affect the SASA.

It is important to emphasize that projections have
uncertainties, which are associated with different models,
physical parameterizations etc., generating different climate
responses (see, for instance, Cherchi et al., 2018). However,
besides the uncertainties, this study is relevant to indicate
possible changes in the future climate providing a guidance to
the decision makers to implement measures of mitigation and/or
adaptation. For example, the SASA expansion can shift dry zones
southward, which will have an impact on agriculture, energy,
population health, and others.
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