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FOREWORD

Daniel Friedan

I met Dima Knizhnik only three times — first in Moscow in the spring of 1983,
again in Moscow at the Landau-Nordita meeting in June, 1984 and, finally, at the
Yukawa Symposium in Kyoto in October, 1987. Because of the political situation
in those years, direct contacts were infrequent between physicists working in the

Soviet Union and physicists working in the U.S. or even Europe.

On several occasions Dima and [ were thinking independently about the same
subjects at the same times, usually from somewhat different points of view. It
might have been interesting if we had had more freedom to interact. Beginning in
1984, Steve Shenker and I made Dima a standing offer of a position, but he was

not able even to consider visiting until just before his death.

Consequently, 1 was forced to know Dima mostly from his published work. It
is clear that he was in a state of explosive intellectual growth throughout his short

career. It is impossible to imagine where time might have led him.

Theoretical physics is, by and large, an improvisational ensemble work, al-
though the psychology of physicists seems to require that the official history be
written otherwise. When such a creative voice as Dima Knizhnik is lost, we are all

irreversibly diminished.



1. INTRODUCTION

A succinct abstract characterization of the space of conformal field theories —
and of its close relative, the space of classical ground states of string — might help
with the classification of these objects and might also provide a starting point for

a characterization of the quantum ground state of string.

This note is a formal and speculative attempt at such a characterization. The
space CFT. of unitary conformal field theories with conformal central charge ¢
is conjectured to be exactly the spectrum Spec(A.) of a certain commutative *-
algebra A, constructed (formally) using only intrinsic structure in a line bundle
L. over the space of all closed Riemann surfaces. Recall that the spectrum of a
commutative *-algebra is the space of all characters or, equivalently, irreducible
representations of the algebra. The algebra can be interpreted as the algebra of
functions on its spectrum. In other words, CFT. is to be constructed by construct-
ing its function algebra A; from a certain line bundle over the space of all closed

Riemann surfaces.

Similarly, the space CGS of all classical ground states of string is constructed
(formally and speculatively) by constructing its function algebra A, from the space
of all closed Riemann surfaces. This construction is purely intrinsic; it does not

even refer to the fact that the points of the space stand for Riemann surfaces.

Both constructions are formal and both beg a crucial analytic question. The

present goal is only to make a simple formulatio'n; all the hard worlk is left for later.

The basic underlying suppositions are (1) that the partition function of a con-
formal field theory for all closed Ricinann surfaces determines the conformal field
theory uniquely, i.e., that no two conlormal field theories have the same partition
function, and (2) that any section of a cecrtain line bundle over the space of closed
Riemann surfaces satisfying a small number of intrinsic conditions is the partition

function of some conformal field theory.
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The reason for basing the construction on the closed Riemann surfaces is that
it avoids introducing a Hilbert space of states as a fundamental object. In string
theory, the Hilbert space varies with the classical ground state and might not even
make sense in the full quantum theory. It seems attractive to have the Hilbert

space be a derivative object in the classical theory.

It should be mentioned that the approach described in the present note has
not yet led to any concrete progress on the problem of classifying conformal field
theories in general nor on the problem of describing the quantum ground state of
string.

The abstract characterization of conformal field theory and classical string
theory sketched in this note is essentially a refined version of that given in references
1-3 several years ago. More details on some points can be found there. The idea of
seeing the string partition function as an object on the moduli space of Riemann

surfaces was independently arrived at by Belavin and Knizhnik4.

2. THE UNIVERSAL MODULI SPACE

We start by defining the universal moduli space of Riemann surfaces, M, It
is the space of all smooth, compact, not necessarily connected Riemann surfaces
without boundary, none of whose connected components are 2-spheres, plus one
extra point, the 2-sphere itself. We will see that M has the structure of a connected,

analytic, commutative *-semigroup with the 2-sphere P as its identity element.

It is convenient to define A/ by way of two larger moduli spaces. Let Mym
be the space of all smooth, compact, not necessarily connected Riemann surfaces
without boundary. Let A7 be the space of all compact, not necessarily connected
Riemann surfaces without boundary, which are smooth except for at most a finite

number of nodes. The space of surfaces with at least one node is D = M — Mym.



A node in a Riemann surface can be thought of as a circle on the surface which
has been pinched down to a single point. Equivalently, a node can be pictured as

an infinitely long tube. A more detailed description is given below.

The partition function Z of a conformal field theory is a section of the line
bundle L, = (EE*)/* over M,m. Here E = (Ag)'? is the holomorphic line bundle
over M formed by taking the 12t% power of the determinant of the holomorphic
differentials on the Riemann surfaces comprising M; E* is the complex conjugate
of £ and c is the conformal central charge of the theory. In reference 1 the holo-
morphic line bundle £ is defined in a way more natural to conformal field theory,

in terms of families of projective connections on Riemann surfaces.

The partition function satisfies

(I)  Z is nonsingular on the surfaces with nodes and thus

extends to M ,

I 2(E) = Z(v%),

(V) Z(E1UL,) = Z(%1) Z(Ea),

where £, ¥y and X, are arbitrary Riemann surfaces (in ﬂ), 3* is the complex
conjugate of ¥ and vX is the smooth Riemann surface obtained by removing all
nodes in I (the normalization of ). These conditions make sense because (Lo)p =
C, the complex numbers; (Lc)gs = (L2)s: L extends to M and (Le)gus, =

(Le)gy ®(Le)s,-

Condition (I} follows from locality, homogeneity and the fact that the confor-
mal weights of the field theory are nonnegative. This is discussed in more detail

below.



Condition (II} follows from locality, homogeneity and the uniqueness of the

ground state. This is also discussed below.

Condition (III) follows from the fact that the vacuum state of the conformal
field theory has nonzero norm. The partition function can then be normalized to

take the value 1 on the 2-sphere.

Condition (IV) follows from CPT invariance. In a functional integral formu-
lation of the field theory, CPT invariance means that the action is invariant under

complex conjugation combined with orientation reversal of the surface.

Condition (V) is a kind of cluster decomposition property. It states the ob-
vious fact that disconnected components of a Riemann surface are decoupled in a

conformal field theory.

To explain conditions (I} and (II) we need a detailed description of a node
in a Riemann surface. The neighborhood of a node can be parametrized by two
local coordinates z; and z; satisfying a patching equation (21 — 21)(z2 — 22) =
0. The neighorhood of the node thus consists of the two smooth neighborhoods
parametrized by z1 and z; with the point z; = z; in the first neighborhood glued

to the point z; = 27 in the second neighborhood.

Now restrict the coordinates 2, and z; to annuli [¢| < |2;~ z;| < 1 and replace
the above patching equation by {21 — @1)(2; — 22) = ¢. For ¢ # 0 the patching
equation is nowhere singular, Then the two coordinates z; and z, can be replaced
by a single coordinate z = ¢~ 12(z; —ay) = ¢V/%(2y — 22)7! ranging over the annulus
lg]'/* < {z] < |g|"/%. The node has become a tube of length —In|q). The limit

g — 0 exhibits the node as an infinitely long tube.

The space D of Riemann surfaces with nodes is generically of complex codi-
mension 1 in M, because the surfaces with node are specified by the one equation
g = 0. The surfaces with n nodes are specified by n equations of the form ¢; = 0,
with ¢; — 0 describing the closing of the /*® node. It is crucial that the closing of

multiple nodes is described by the vanishing of independent parameters g;.



Because of the locality and homogeneity of the conformal field theory, the
annulus or tube parametrized by ¢ can be represented in the operator formulation
of the theory as c;gL"(ﬁ)jr:0 acting on the states flowing through the tube (Lg and I,
being the usual Virasoro operators). At ¢ = 0 this operator becomes the projection
on the ground state(s) of the theory, assuming that Lg and Ty are both nonnegative
(which follows from unitarity). The partition function is thus nonsingular in the

limit ¢ — 0. This gives condition (I).

Assuming that the ground state is unique, the node is represented by the
projection [0)(0| on the SL, x SLy-invariant ground state [0). The ground state is
thus the only state which flows through a node. Picturing the node as an infinitely

long tube makes this obvious.

By the operator analysis, the partition function of the Riemann surface with
node, i.e., at ¢ = 0, is the same as the partition function of the surface ohtained
by forgetting the identification of the two points 2y = zq, 23 = z3, and using the
ground state to provide bouﬁdary conditions at the two punctures z; = z; and
zz2 = z3. The ground state boundary condition at a puncture is equivalent to
1nsertion of the identity quantum field at the puncture, which in turn is equivalent

to forgetting the puncture entirely.

The partition function of a Riemann surface £ with nodes is therefore the
same as the partition function of the smooth surface v obtained by forgetting
the patching equations for the nodes, i.e., by removing the nodes and filling in the

resulting punctures. This is condition (IT).

Now define an equivalence relation on A7 by requiring that, for all Riemann

surfaces % in M ,

E~pY ~ZUP. (1)

The universal moduli space is defined to he the quotient M = M/~. The line
bundle L. respects the equivalence relation and can be regarded as a line bundle

over M.
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Under the equivalence relation, every Riemann surface is equivalent to a
smooth surface, and every surface except P is equivalent to a smooth surface
none of whose connected components are 2-spheres. Thus, as a point set, M is the
space of all smooth, compact, not necessarily connected Riemann surfaces with-
out boundary, none of whose connected components are 2-spheres, plus one extra

point, the 2-sphere itself,

It follows from conditions (I)-(III) and (V) that the partition function of a

conformal field theory is a section of the line bundle L. — M.

Henceforth, when we write ¥ we mean the equivalence class in M. The equiv-
alence relation respects complex conjugation and disjoint union, so £* and £, U,
still make sense. In fact, the operation of disjoint union makes M into a commu-

tative *-semigroup with product

L1 = L UL, (2)

identity element
1=P (3)

and conjugation
L=, (4)

In addition to this algebraic structure, the universal moduli space M is a
connected analytic space. This was shown in reference 1 by constructing M from
the stable compactifications of the moduli spaces M g of smooth, connected coinpact
Riemann surfaces of genus g. A more efficient way is to observe* that M is the
direct limit as ¢ — oo of the Satake compactification M’;“‘ of the moduli space
Mgy. The Satake compactification® is constructed by embedding Mg in the moduli
space of abelian varieties and compactifying that space by algebraic means. The

result is that A% is a connected projective algebraic variety for each genus g.

*as was pointed out by S. Bloch and by P. Deligne.
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What is added to M, to obtain M’;“‘ is precisely the set of Riemann surfaces
obtainable from those in M} by forming and removing nodes and then discarding
the genus 0 components (2-spheres) of the resulting surface. In particular, there is
a consistent system of natural embeddings M;% — M}*. The universal moduli

space is the direct limit

M = lim M (5)

F—ro0
M is thus a connected analytic space and, in fact, the direct limit of projective

varieties.

The line bundle L, is real-analytic on M since E = (Ag)'? is a well-defined
holomorphic line bundle on M. L. is itself a commutative *-semigroup with iden-
tity, since (Lo)z 5, = (Le)s, @(Le)s,, (Le)p = C and (Lo)ge = (L3)g. The line
bundle map Le — M respects the semigroup structures, with the multiplication

and conjugation laws in L. being linear in the fibers.

Given that M is a connected topological semigroup with identity, elementary
algebraic topology tells us that 7;(34) is abelian and thus equal to the first ho-
mology group Hy(M). It should be possible to show that Hy(M) = 0 and thus
that M is simply-connected. This seems a fundamental point to establish, since 2
non-contractible loop in A would allow global anomalies which could not be elim-
inated by conditions local on M. Establishing (M) = 0 would have the added
benefit of leaving the holomorphic line bundles on A classified by H*(M). It seems
possible to show that H?(M) = Z (sce reference 1), which would then imply that
the powers of £ = {Ag)'? are the only holomorphic line bundles nonsingular on

M. The line bundle L. could then be said to be intrinsic to M.
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3. THE SPACE OF CONFORMAL FIELD THEORIES

We have seen that the universal moduli space of Riemann surfaces, M, is
a connected, analytic, commutative *-semigroup with identity and that the line
bundle L, — M is a morphism of commutative *-semigroups with identity such

that the multiplication and conjugation laws in L. are linear in the fibers.

Conditions (I)-(V) on the partition function Z of a conformal field theory
can now be condensed into the condition that Z: M — I, should be a section of

w1 Lo — M which is at the same time a morphism of *-semigroups, i.e.,

(1) moZ=1id,
(2 z(1)=1,
(3)  Z(Z%)=2z(Z),

(4)  Z(5:T2) = Z(51) Z(5s).

Conditions (1)-(4) become a formal characterization of the space of conformal

field theories, given two suppositions which were made in reference 1:

(51) A conformal field theory is completely determined by
its partition function Z: Af — L,. No two conformal

field theories have the same partition function.

(S2)  There exist some intrinsic criteria which specify a linear
subspace of the local analytic sections of L, — M such
that every global analytic section satisfying Z those lo-
cal criteria and also satisfying conditions (2)-(4) above

is the partition function of some unitary conformal field



theory. That is, conditions (1)-{4) plus some appropri-
ate local analyticity condition suffice to permit recon-
structing a unique conformal field theory from Z. (The
idea that unitarity should follow automatically was not
suggested in reference 1. Some support for the idea is

given below.)

Given (51) and (§2), the space CFT, is exactly the space of analytic (in an as
yet unspecified sense) sections of L, — M which are morphisms of *-Semigroups.
Not least of the remarkable consequences would be that any such section, restricted
to genus 1 surfaces, would have an expansion in powers of ¢ and § with nonnegative
integer coefficients, since the coefficients would be the multiplicities of representa-

tions of the Virasoro algebras.

Neither of these suppositions has been proved (but see reference 1 and below
for some arguments in their favor). Supposition {S1) is a reasonable conjecture - it
is precisely stated and there are no known counterexamples. (52) is not a precise
conjecture and the essential missing ingredient which must be supplied before it

becomes one is the appropriate local analyticity criterion.

It is now a simple formal exercise to translate conditions (1)-(4) into a con-
struction of a commutative *-algebra A, whose spectrum is CFT,. Let (M, L:) be
the linear space of global analytic sections of L, — Af satisfying the as yet unspec-
ified local analyticity condition. Define A, to be the dual linear space I'(M, L.)*
so that I'(M, L.) = A3,

To see that A, is a commutative *-algebra with identity, first construct a dual
multiplication on T(M, Lc). For s € ['(M, L) define m*s € (M, Lo) ® (M, L)
by setting m*s(Z1, Z;) = 5(2;8;). This makes sense because (Le)s, ®(Le)s, =
(Le)gyz,- Now define the product of oy, ag € A, by (@102, 8) = (01 ® g, m*s) for
alls € T'(M, L¢). The identity 1 € A is given by (1,s) = s(P) for all s € T(M, L.).

The conjugation in A, is given by (a®,s) = (ev, 3™},
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Since ['(M, L) = A%, conditions {1}-(4) on the partition function are equiva-
lent to stating that the partition function of a conformal field theory is an element

Z € A satisfying

i zZ() =1,
(i)  Z(a") = Z(a)",

(iii) Z{oweg) = Z(a1)Z(e3) .

The elements of A satisfying (i)-(iii} are the characters of A, or, equivalently, the
irreducible representations or maximal ideals. The space of all irreducible repre-
sentations is the spectrum Spec(A.). Ac can be interpreted as the commutative

*-algebra of functions on its spectrum.

The suppositions (S1) and (S2) now amount to the suggestion that CFT, =
Spee(Ac). This characterization of CF T is extremely formal and ciepends on the
imprecise and unproved suppostitions (S1) and (S2). If I'(M, L.} can be defined
precisely, it should then be possible to put a norm or norms on it such that Spec(A.)
becomes a topological space or even a real analytic space. This would be a precise
expression of the idea that conformal field theories are close together in CFT, if

their partition functions are close on M.

From what is known of examples, it seems possible that CFT. is in fact an
algebraic variety, It might well be that the solvable conformal field theories are
too special. But, for example, the gaussian models, a subset of CFT, for ¢ = n an
integer, form the algebraic variety O(n,n, Z)\O(n, n,R)/O(n,R) x O(n,R). It is
difficult to see how the present approach would provide such an algebraic structure

for Spec(Ac)-

‘This formalism generalizes readily to give the space SCFT, of superconformal
field theories entirely in terms of intrinsic structure in a lime bundle over the uni-

versal moduli space of super Riemann surfaces?. A concrete result in this direction
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could be of some conventional mathematical interest, since the boundary of SCFT.
consists of the Calabi-Yau spaces of dimension ¢ in the limit of large volume. Re-
constructing the superconformal field theories would lead to a construction of the
Calabi-Yau metrics. This would be done by considering the conformal fields whose
weights approach zero as the field theory approaches the boundary of SCFT.. In
the limit, these fields form a commutative associative operator product algebra
whose spectrum is the Calabi-Yau space. The conformal weights of these fields
approach the eigenvalues of the laplacian on the Calabi-Yau space, from which the
metric could be reconstructed, in principle. Reference 6 provides the dictionary, in
- the large volume limit of a manifold, between the eigenfunctions of the laplacian
on the manifold and the fields whose dimensions are the eigenvalues of the lapla-
cian, and between the multiplication of functions on the manifold and the operator

products of the corresponding fields.

Comments on unitarity

It might seem surprising to suggest that no additional positivity conditions are
needed to ensure unitarity of the reconstructed conformal field theory. There are
some obvious positivity conditions which are consequences of unitarity. Suppose &
to be a doubled surface - a closed surface made by gluing a surface with boundary
to its complex conjugate surface. The partition function of a unitary conformal
field theory is positive at such a surface £. However, it seems impossible to describe
the space of doubled surfaces in terms intrinsic to M. Even if this were possible,
it is hard to see how such a positivity condition would imply unitarity, at least in
as straightforward a way as the reflection positivity condition implies unitarity in

euclidean quantum field theory.

Physical considerations suggest that no positivity conditions are needed to
ensure unitarity. The normalization condition Z(1) = 1 and the nonsingularity of
Z together imply that a Landau-Ginsburg model exists. That is, the logarithm of

the partition function is finite and thus can be expanded in derivatives of order pa-
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rameters. The reality condition Z(Z*) = Z(X)* implies that the Landau-Ginsburg
mode] will be CPT invariant. By power counting, any such Landau-Ginsburg ef-
fective action contains no more than two derivatives of the order parameters and

is manifestly unitary.

The available evidence supports this argument. The normalization condition
Z(1) = 1 and the nonsingularity of Z on M ensure that any reconstructed con-
formal field theory would have a unique ground state and nonnegative conformal
weights. Every known conformal field theory with these two properties is in fact

unitary.

Comments on the suppositions

A sketch of a method for substantiating (S1) was given in reference 1. The
partition function of a conformal field theory can be expanded in powers of the
coordinates ¢; and §; which parametrize the opening of nodes. The coefficients in
these g-expansions are sums of products of correlation functions of local fields. It

should be possible to reconstruct the correlation functions from these coefficients.

The situation is especially simple when the representations of the conformal
algebra occur with multiplicity at most 1. The partition function in genus 1 gives
the conformal weights. The partition function in genus 2 gives the squares of the
3-point correlation functions and thus determines the operator product coefficients
up to signs.. It seems plausible that enough information is available at higher genus
to fix the signs (up to Z, symmetries of the theory). This would determine the

theory completely.

A sketch of an argument in favor of supposition (S2) was also given in reference
1. Any section Z € I'(M, L.} satisfying conditions (2)-(4) will have ¢g-expansions
from whose coefficients correlation functions can be extracted. These will satisfy
— by virtue of (2)-(4) and analyticity — the axioms of conformal field theory. The

correlation functions of the analytic stress tensor will then be derived by taking
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derivatives on Af.

Comments on I'(M, [.)

If we admit as the sections of L. - M all the real analytic sections which
can be expressed locally as finite sums of analytic times analytic functions on
M, then Spec(A.) will be the space of so-called rational unitary conformal field
theories — modulo (S1) and (S2). In the example of the gaussian models, the
rational conformal field theories are the rational points in the space of conformal
field theories (this was one motivation for the nomenclature). In these special
theories it is possible to describe the partition function as a sesquilinear pairing of
holomorphic sections of finite rank projectively flat vector bundles over M , as in
reference 1. Reference 8 reviews the considerable progress which has been made

towards classifying the rational theories.

The rank ot.'.the projectively flat vector bundle jumps wildly even when the
conformal field theory - the partition function — changes very little. Since our
object is to characterize the whole space of conformal field theories, the vector
bundle language seems inappropriate. There might be, however, a way to specify
I'(M, L) based on some analytically precise notion of sesquilinear pairings of sec-
tions of infinite rank projectively flat vector bundles. The rational theories would
merely be special points at which the infinite rank bundle degenerates to finite

rank.

It might seem natural to take as (M, L) all nonsingular real analytic sections
of L which have expansions in powers of ¢ and §. There seems, however, to be
a difficulty here. Suppose that Z is the partition function of a conformal field
theory with central charge ¢, such that Z is nowhere zero on M - for example, a
partition function defined via a functional integral with positive measure. Any real
power Z7 would be nonsingular and real analytic, would have a g expansion and

would satisfy conditions (1)-(4) with central charge ve. But we know that unitarity
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permits only a discrete set of values of the central charge less than 1. Thus either
a simple real analyticity condition for T'(M, L.} is too weak, or unitarity requires

additional conditions beyond (1)-(4).

4. THE SPACE OF CLASSICAL STRING GROUND STATES

The classical ground states of string theory differ from conformal field theories

in a few respects.

First, the partition function of string theory cannot be normalized to 1 on the
2-sphere. Its value on the 2-sphere is Z(P) = A~2 where A is the string coupling
constant, which is a parameter of the classical ground state. To take the string
coupling constant into account it is necessary to define an augmented universal

moduli space M.

Let M, be the compact, not necessarily connected Riemann surfaces without
boundary which are smooth except for at most a finite number of nodes and which
have no components of genus 0 (no components which are 2-spheres). The empty

surface is included in M.

For £ € ﬂ+, let »43 be the smooth surface obtained by removing the nodes
in 3 and discarding all the resulting components of genus 0. Write x(X) for the
Euler number of E. The difference [x(v41Z) — x{2)]/2 is equal to the number of
nodes removed from ¥ minus the number of genus 0 components discarded. It is

always nonnegative.

Introduce a new, abstract element x = 2* with Euler number x(z) = —2.
This new element will play the formal role of P! in the semigroup. Let F(z) =

{1,z,2%,...} be the free commutative #-semigroup on z. Define an equivalence



relation on F(z) x M, by requiring that

2" 5 ~ P E)-x(2))/2 (v, I). (6)

The augmented universal moduli space M, is defined to be the quotient F(z) x
M,/~.

As before, M is a »-semigroup with identity. The product operation is again
the disjoint union of Riemann surfaces. But now the identity element is the empty
surface, which is equivalent to the singular torus, since removing the node from
the singular torus leaves P, which is discarded to give the empty surface. F(z) is
a sub-semigroup of M,. The previously defined universal moduli space M is the
quotient M, /F(z).

M, is analytic but it is not connected — in fact it is the infinite symmetric
product of the union of all the Satake compactifications ﬂfg"". The Euler num-
ber is a well-defined continuous morphism from M, to the additive semigroup of
nonpositive even numbers. The connected components of jl-'i_ are the sets of fixed

Euler number.

The partition function Z,, of a classical string ground state is a section of
the line bundle L, — M., where L, is the line bundle of densities or volume
elements on M,. In terms of holomorphic_ objects, L = Ky, I{EJ+, where Kps, is
the canonical line bundle of M, — the determinant of the holomorphic cotangent
bundle. Suppose (g, z1,22) parametrizes a node in a Riemann surface 5. A local

holomorphic section w of K, has a double pole at ¢ = 0 of the form
w(q, 1,22, 8) = ¢"dgdzydas (D) + O(¢7Y) | (7)

This is the only definition of the canonical bundle which respects the equivalence

relation used to define A,

The line bundle L, — M, is again a morphism of *-semigroups. The space
CGS of string classical ground states is — modulo the familiar suppositions — the

space of all sections Z,4 1 M, — L, which are *-semigroup morphisms.
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The coupling constant is given by Z,»(z) = A%, The coupling constant is a
free parameter of the classical ground state because the Euler number is continuous
on M. This allows the string partition function to be multiplied by (A'/A)¥®)

changing the coupling constant from A to X’.

Just as before, the linear space Ay = (M, L, )" is a *-algebra with identity
and (conjecturally) CGS = Spec{A,).

The algebra A, is related to the algebra A;q by the exact sequence

This foliows from the fact that the central charge of the conformal ghost system is

-26.

In order to obtain the analogous abstract characterization of the classical
ground states of fermionic string theory, the augmented universal moduli space of
ordinary Riemann surfaces should be replaced by the analogous construction for

super Riemann surfaces”.

The string construction is completely intrinsic to the space M.. Once M,
is obtained, the fact that the points of M, represent Riemann surfaces can be
forgotten. Abstracting the string ground state away from the notion of Riemann
surface might be desirable, since the interpretation as a theory of strings might

make sense only at weak coupling.

In reference 2 it was suggested that the quantum ground state of string might
be described in the same language as the classical ground states, after “completing”
the universal moduli space, now M., to include “infinite genus” surfaces. There is
still nothing particularly useful to say about this suggestion, except possibly that
the completion of M, ought to be connected. Then the Euler number would no

longer be continuous and the coupling constant no longer arbitrary.

A more accessible problem might be to construct the perturbative string S-

matrix in this abstract approach. There would have to be some way to understand

17



Wick rotation abstractly (perhaps as analytic continuation in CGS). Tt might
also be interesting to try to extend the abstract characterization of the classical
ground states described in this note to an analogous characterization of at least
the perturbative quantum ground states, to see if the formal simplicity can be

maintained.
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