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The Space of (Contact) Anosov Flows on 3-Manifolds

By Shigenori Matsumoto

Abstract. The first half of this paper concerns the topology of
the space A(M) of (not necessarily contact) Anosov vector fields on
the unit tangent bundle M of closed oriented hyperbolic surfaces Σ.
We show that there are countably infinite connected components of
A(M), each of which is not simply connected. In the second part,
we study contact Anosov flows. We show in particular that the time
changes of contact Anosov flows form a C1-open subset of the space of
the Anosov flows which leave a particular C∞ volume form invariant,
if the ambiant manifold is a rational homology sphere.

1. Introduction

The main purpose of this paper is to study the topology of the space of

contact Anosov vector fields on 3-manifolds. But before going to that sub-

ject, we first consider the space A(M) of (not necessarily contact) Anosov

vector fields on the unit tangent bundle M of a closed oriented hyperbolic

surface Σ.

The results we obtain concerningA(M) are elementary and easy to show.

However the author cannot find it in the literature, which makes him to

record these fundamental facts. Denote by L(M) the space of nonvanishing

C∞ vector fields on M . There is one distiguished connected component

L0(M) of L(M).

Theorem 1.1. The space A(M) is contained in L0(M).

Theorem 1.2. The space A(M) has countably infinite connected com-

ponents, each of which is not simply connected.

After we determine the mapping class group ofM in Section 2, we prove

these results in Section 3.
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Sections 4 and 5 are devoted to the study of contact Anosov flows. In

section 4, we determine which time change of a contact Anosov flow is again

contact Anosov. Especially we show that if the ambiant manifold N is a

rational homology sphere, such a time change is obtained by a conjugation

by an orbit preserving C∞ diffeomorphism.

In section 5, we study the space of contact Anosov flows. Let Ω be a C∞

volume form on a closed oriented manifold N . Denote by AΩ(N) the space

of the Ω-preserving Anosov vector fields. The main result is the following.

Theorem 1.3. If N is a rational homology sphere, the subset formed

by time changes of contact Anosov flows is C1-open in AΩ(N).

In [FH2], plenty of examples of contact Anosov flows are constructed on

various manifolds including hyperbolic 3-manifolds. Theorem 1.3 can also

serve as producing new examples which are C1-near to classical examples.

2. The Mapping Class Group of M

Let Σ be a closed oriented surface of genus ≥ 2. Fix a Riemannian

metric m0 of curvature −1. Let π : M = T 1Σ → Σ be the unit tangent

bundle with respect to m0. The purpose of this section is to determine the

mapping class group MCG(M) ofM , which is, by definition, the quotient of

the group of all the C∞ diffeomorphisms of M by the identity component.

Denote by H the plane field of M consisting of horizontal vectors with

respect to the Levi-Civita connection. The principal S1 action on M is

denoted by V t, 0 ≤ t ≤ 2π, whose infinitesimal generator is the vertical

vector field V . The map V t leaves H invarinat. The standard geodesic

vector field is a horizontal vector field X such that π∗X(x,v) = v, where

v ∈ T 1
x (Σ) and x ∈ Σ. It generates the standard geodesic flow {Xt}.

Notation 2.1. In this paper, the flow generated by a vector field A is

denoted by {At}.

The three vector fields V , X and Y = V
π/2
∗ X span a Lie subalgebra,

isomorphic to the Lie algebra of PSL(2,R). On the topological aspect,

the following fundamental fact is a consequence of the classification of S1

bundles over surfaces. See for example [O].
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Proposition 2.2. Any C∞ free S1 action on M is conjugate to {V t}

by a C∞ diffeomorphism isotopic to the identity.

Given [f ] ∈ MCG(M), there is a representative f which commutes with

the S1-action {V t}. Such f induces a diffeomorphism of Σ. Thus we get a

homomorphism

π∗ : MCG(M)→ MCG⋄(Σ),

where MCG⋄(Σ) is the generalized mapping class group of Σ consisting of

orientation preserving or reversing classes.

Conversely, given [g] ∈ MCG⋄(Σ), the derivative dg yields a class [g∗] ∈

MCG(M), where g∗ : M → M is defined from dg just by normalizing the

image vector. This yields a cross section

s : MCG⋄(Σ)→ MCG(M).

Notice that s([g]) = [g∗] is always orientation preserving regardless of the

orientation property of [g].

Now let K be the kernel of π∗. Any element of K can be represented

by a diffeomorphism f of M which preserves the fibers of the S1 action

{V t}, i. e. a diffeomorphism which covers the identity of Σ. Restricted to

each fiber, f must be orientation preserving. For, otherwise the fixed point

set of f (two points set for each fiber) would yield a multi cross section of

π : M → Σ, contradicting the fact that π is a nontrivial S1 bundle. Each

class ofK can be represented by a diffeomorphism f which is a rigid rotation

V ρ(x) on each fiber π−1(x), where ρ : Σ→ S1 is a C∞ function. This yields

an identification K ∼= [Σ, S1] ∼= H1(Σ,Z) and therefore we get:

Proposition 2.3. There is an isomorphism

MCG(M) ∼= H1(Σ;Z)×| MCG⋄(Σ).(2.1)

Remark 2.4. There is no orientation reversing homeomorphism ofM .

3. The Space A(M)

The vector fields V , X and Y , as well as −V , all belong to the same com-

ponent of the space L(M) of the nonvanishing vector fields of M . Denote it
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by L0(M) and call it the untwisted component. Notice that the components

of L(M) is in one to one correspondence with the set [M,S2].

The differential of a diffeomorphism f yields a homeomorphism df :

L(M)→ L(M).

Proposition 3.1. For any diffeomorphism f of M , we have df(L0) =

L0.

Proof. This follows from the fact that each class of MCG(M) has a

representative which maps V to a nonzero function multiple of V . �

Let us denote by A(M) the subset of L(M) consisting of Anosov vector

fields.

Theorem 3.2. The space A(M) of the Anosov vector fields is con-

tained in the untwisted component L0(M).

Proof. In way of showing the global structural stability theorem for

Anosov flows on the manifold M , E. Ghys [G] proved that for any Anosov

flow {At}, the weak stable foliation can be made transverse to the S1 fibers

after the conjugation by a diffeomorphism f . Each class of MCG(M) has

a representative which leaves the orbit foliation of the S1 action invari-

ant. This implies that the conjugacy f can be chosen to be isotopic to the

identity. That is, one may assume that the vector field A which generates

{At} is tangent to a foliation transverse to V . Then clearly the vector field

(1− s)A+ sV , 0 ≤ s ≤ 1 is nonvanishing, and A is homotopic to V . �

Now given any negatively curved Riemannian metric m of Σ, the unit

tangent bundle with respect to m can be identified withM just by changing

the length, and the geodesic flow {At} of m can be viewed as a flow on M

in the following way. Given p ∈M , a unit tangent vector of Σ with respect

to m0, change the length of p so that the modified vector p
′ is a unit vector

with respect to m. Consider a geodesic curve γ with respect to m whose

innitial velocity vector is p′. Consider the vector γ′(t) and change its length

to obtain q ∈M . Then At(p) = q.

Let us denote by A0(M) the connected component of A(M) which con-

tains the standard geodesic vector field X.
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Proposition 3.3. The geodesic vector field of any negatively curved

Riemannian metric on Σ belongs to A0(M).

Proof. This follows from the fact that the space of negatively curved

Riemannian metrics is connected. �

Now for any diffeomorphism f of M , we have df(A(M)) = A(M).

Proposition 3.4. For any element [f ] of MCG(M) which belongs to

MCG⋄(Σ) in the decomposition (2.1), we have df(A0(M)) = A0(M).

Proof. We only need to show that for any diffeomorphism g of Σ,

the induced diffeomorphism g∗ of M carries the standard geodesic vector

field X to an element of A0(M), i. e. d(g∗)X ∈ A0(M). But this follows

immediately from Proposition 3.3, since d(g∗)X is the geodesic vector field

of the Riemannian metric (g−1)∗m0. �

The action of H1(Σ,Z) in the decomposition (2.1) on A(M) is quite

different. To study this we need the following lemma.

Lemma 3.5. Let {At} be an arbitrary Anosov flow on M . For any

essential oriented closed curve c of Σ, there is a unique periodic orbit γ of

{At} such that π(γ) is homotopic to c.

Proof. This is true for the standard geodesic flow {Xt}. On the other

hand any Anosov flow {At} is flow equivalent1 to {Xt} by a homeomorphism

h [G]. Finally the homeomorphism h can be isotoped to a diffeomorphism

h′ which preserve the orbit foliation of the S1-action, by an isotopy ht,

0 ≤ t ≤ 1, where h0 = h′ and h1 = h. Clearly the lemma holds for

{h0X
th−1

0 }. Therefore by the continuity of the family of the topological

flows, it also holds for {h1X
th−1

1 }. Now the latter is flow equivalent to

{At}, completing the proof of the lemma. �

The next proposition shows the first half of Theorem 1.2.

1This means that h carries any orbit of {At} onto an orbit of {Xt} in a way to
preserve the time orientation of the flows.
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Proposition 3.6. For any nonzero element a ∈ H1(Σ,Z), the class

[f ] of MCG(M) which corresponds to a in (2.1) satisfies df(A0(M)) ∩

A0(M) = ∅.

Proof. We need only to show that the flow {fXtf−1} is not isotopic

to the flow {Xt}. Choose a simple closed curve c in Σ such that 〈a, c〉 �= 0.

The periodic orbit γ in Lemma 3.5 for the flow {Xt} is obtained as follows.

Homotope c to a simple closed geodesic l. Then γ is the horizontal lift of l.

Next consider the periodic orbit γ′ corresponding to c for the flow

{fXtf−1}. For a convenient choice of f from the class, γ′ is the image

of γ by a nontrivial Dehn twist on the torus π−1(l). Therefore γ′ is not

homotopic to γ. This shows that the flow {fXtf−1} is not isotopic to the

flow {Xt}. �

Let us show the last part of Theorem 1.2. Let A∗ be an arbitrary com-

ponent of A(M). Choose {At} from A∗ and consider the loop {V sAtV −s},

0 ≤ s ≤ 2π, in A∗. Assume for contradiction that this loop is contractible.

Choose a periodic orbit γ(t), 0 ≤ t ≤ T of {At} such that π(γ) is homo-

topic to a simple closed curve on Σ. Then the (possibly singular) torus

{V sγ(t)V −s | 0 ≤ t ≤ T, 0 ≤ s ≤ 2π} is homotopic to an essential torus.

Especially it is π1-injective. This contradicts that the above loop is con-

tractible.

Remark 3.7. We suspect that the union of df(A0(M)), [f ] from

H1(M,Z), is the whole of A(M), and that A0(M) is homotopy equiva-

lent to the circle. The analogous statement for the Anosov diffeomorphisms

on the two torus can be found in [FG]. Their method is an application

of the thermodynamical formalism. But for flows on 3-manifolds, it seems

quite difficult to deform the Lyapunov exponent although a potential tool

is available in [A].

4. Contact Anosov Flows and Their Time Changes

Let N be a closed oriented C∞ 3-manifold.

Definition 4.1. An Anosov flow {At} (resp. Anosov vector field A)

on N is said to be contact if it is the Reeb flow (resp. Reeb vector field) of

some contact form τ .
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If A is contact Anosov, then it leaves the volume form τ ∧ dτ invariant.

The C∞ plane field Ker(τ) is invariant by At. On the other hand the sum

Euu⊕Ess of the strong stable and unstable bundles is the only At-invariant

plane field transverse to A. Therefore we have

Ker(τ) = Euu ⊕ Ess,

and the contact form τ is uniquely determined by the Anosov vector field

A. It is known [FH1] that if A is a volume preserving Anosov flow and if

Euu ⊕ Ess is Lipschitz continuous, then Euu ⊕ Ess is in fact C∞, and the

flow A is contact Anosov. The contact structure Ker(τ) of a contact Anosov

flow is shown to be tight using a result of [H]. Contact Anosov flows exhibit

strong ergodicity properties [L1, T1, T2]. The geodesic flow of a negatively

curved surface is a typical example of contact Anosov flows. In fact it was

the only known example before [FH2].

Before going to the study of time changes of contact Anosov flows, let

us recall a well known fact about the invariant volume of an Anosov flow,

which follows from the ergodicity and the Livšic homological theorem [L2].

Theorem 4.2. If an Anosov flow on N is volume preserving, then the

invariant volume is C∞ and unique up to a positive constant multiple.

If A is an Anosov vector field and φ is a positive C∞ function, then φA

is called a time change of A. It is also an Anosov vector field. If A leaves the

volume form Ω invariant, then φA leaves the volume form φ−1Ω invariant.

The purpose of this section is to study what kind of time change of a

contact Anosov flow A is again contact, and the main result is Proposition

4.5 below. But before going there, we need some fundamental facts.

Proposition 4.3. If A is a suspension Anosov vector field, then any

time change of A cannot be contact Anosov.

Proof. Since A is a suspension, there is a closed 1-form α such that

α(A) = 1. If there is no A-invariant volume form, then any time change of

A does not admit an invariant volume, and it cannot be contact Anosov.

So assume A admits a C∞ volume form Ω. Suppose for contradiction that
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φA is contact for a contact form τ . Then by Theorem 4.2, τ ∧ dτ = cφ−1Ω

for some constant c �= 0. Therefore

dτ = ιφA(τ ∧ dτ) = ιφA(cφ
−1Ω) = c ιAΩ.(4.1)

On the other hand, since

LA(α ∧ (ιAΩ)) = dιA(α ∧ (ιAΩ)) = dιAΩ = 0,

and α ∧ (ιAΩ) is nonvanishing, Theorem 4.2 shows,

α ∧ (ιAΩ) = c
′Ω,(4.2)

for some c′ �= 0. But α and ιAΩ are both closed, which says that ιAΩ cannot

be null cohomologous, contradicting (4.1). �

Proposition 4.4. If A is contact Anosov with a positive contact form,

then any time change of A cannot be contact with a negative contact form.

Proof. Assume that A is contact Anosov with a contact form τ , i. e.

τ(A) = 1 and ιAdτ = 0. Also assume that there are a positive function φ and

a contact form τ ′ such that τ ′(φA) = 1, ιAdτ
′ = 0, and τ ′∧dτ ′ = −cφ−1τ∧dτ

for some constant c > 0. Then we have

dτ ′ = ιφA(τ
′ ∧ dτ ′) = −c ιφA(φ

−1τ ∧ dτ) = −c ιA(τ ∧ dτ) = −c dτ,

and hence

τ ′ = −cτ + ω,

for some closed 1-form ω.

Now for any asymptotic cycle Γ of A, we have

〈ω,Γ〉 ≥ min(τ ′(A) + cτ(A)) = min(φ−1) + c > 0.

This implies [S] that A has a global cross section, contradicting Proposition

4.3. �

The following is the main result of this section.

Proposition 4.5. A time change φA of a contact Anosov vector field

A is again contact Anosov if and only if φ−1 = ω(A)+ c for a closed 1-form

ω and a constant c > 0.
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Proof. Let A (resp. φA) be a contact Anosov vector field with the

contact form τ (resp. τ ′). Then by Proposition 4.4 and its proof, we have

τ ′ = cτ + ω for some closed 1-form ω and c > 0. Evaluating on φA, we get

φ−1 = c+ ω(A).

The converse can be shown just by reversing the argument. �

When the manifold N is a rational homology sphere, the above criterion

becomes more transparant. Notice that there are cocompact lattices Γ of

PSL(2,R) such that the quotient spaces Γ\PSL(2,R) are rational homology

spheres. They all admit contact Anosov flows. As before, let A be a contact

Anosov vector field on a closed oriented 3-manifold N .

Proposition 4.6. Assume N is a rational homology sphere. A time

change B = φA is contact Anosov if and only if for some c > 0, the flow

{Bct} is conjugate to {At} by an orbit preserving C∞ diffeomorphism.

Proof. For a time change B = φA of A, there is a C∞ map a :

R ×N → R such that

Ba(t,p)(p) = At(p), ∀t ∈ R, p ∈ N.(4.3)

The function a is a cocycle over {At}, that is,

a(t+ s, p) = a(s,At(p)) + a(t, p).(4.4)

Define a function α : N → R by α(p) =
∂

∂t
a(t, p)|t=0. By (4.4), we have

∂

∂t
a(t, p) = α(At(p)).

This implies

a(t, p) =

∫ t

0
α(As(p))ds.(4.5)

Now the if part of the theorem is obvious. So assume B is also contact.

Then by differentiating (4.3), we get α = φ−1. Thus Proposition 4.5 implies

that α = ω(A) + c. Since N is a rational homology sphere, there is a C∞

function ψ such that ω = dψ, and thus

α = A(ψ) + c.
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Then (4.5) implies

a(t, p) = ψ(At(p))− ψ(p) + ct.

Define a map f : N → N by f(p) = B−ψ(p)(p). Then

f(At(p)) = Ba(t,p)−ψ(At(p))(p) = Bct−ψ(p)(p) = Bct(f(p)).(4.6)

The equation (4.6) implies that the map f is a C∞ diffeomorphism,

showing that {Bct} is conjugate to {At} by f . �

5. Perturbations of a Contact Anosov Flow

Let A be a contact Anosov flow on a closed oriented 3-manifold N ,

with the contact form τ . Then Ω = τ ∧ dτ is an A-invariant volume form.

Let us denote by XΩ(N) (resp. AΩ(N)) the space of Ω-preserving vector

fields (resp. Ω-preserving Anosov vector fields) on N . Then AΩ(N) is a

C1-open subset of the linear space XΩ(N). For any B ∈ XΩ(N) small in

the C1 topology, the flow A+B is again an Ω preserving Anosov flow, i. e.

A+B ∈ AΩ(N). In this section we ask which A+B can be a time change

of a contact Anosov flow.

Assume φ(A+ B) is contact Anosov for some positive function φ, with

the contact form τ ′. Then by Theorem 4.2, we have τ ′ ∧ dτ ′ = cφ−1Ω for

some c > 0. Thus

ιA+BΩ = ιφ(A+B)φ
−1Ω = c−1ιφ(A+B)(τ

′ ∧ dτ ′) = c−1dτ ′, and

ιBΩ = ιA+BΩ− ιAΩ = c
−1dτ ′ − dτ,

showing that ιBΩ is an exact 2-form. On the other hand B belongs to

XΩ(N) if and only if ιBΩ is closed. Since the correspodence B ↔ ιBΩ is

bijective, this show the following.

Proposition 5.1. The subset consisting of time changes of contact

Anosov flows is contained in a subspace of codimension equal to

dimH2(N ;R) in a neighbourhood of A in AΩ(N).

From now on let us assume that N is a rational homology sphere and

show Theorem 1.3. Notice that the validity of Theorem 1.3 does not change
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if one changes Ω by a positive function multiple. Therefore it suffices to

assume that A ∈ AΩ(N) is a contact Anosov vector field with the contact

form τ such that Ω = τ ∧dτ and to show that for any C1-small B ∈ XΩ(N),

A+B is a time change of a contact Anosov vector field.

Now the 2-form ιBΩ is closed since B is Ω-preserving, and exact since

N is a rational homology sphere. Choose a 1-form β such that dβ = ιBΩ.

Then we have dτ + dβ = ιA′Ω, and hence

ιA′(dτ + dβ) = 0.(5.1)

Our goal is to show that for C1-small B, there is a 1-form τ ′ such that

dτ ′ = dτ + dβ and τ ′(A′) > 0.(5.2)

For, then the equation (5.1), together with the fact that ιA′Ω is nonvanish-

ing, shows that the form τ ′ is contact, and the time change τ ′(A′)−1A′ is

contact Anosov.

Since τ(A) = 1, we have

∫
γ
τ = per(γ) for any periodic orbit γ of A,(5.3)

where per(γ) denotes the period of γ.

Let us show that for any ǫ > 0, if B is sufficiently C1-small,
∫
γ′

(τ + β) > (1− 3ǫ)per(γ′) for any periodic orbit γ′ of A′.(5.4)

First of all if we choose B so that ‖B‖ ‖τ‖ < ǫ, then we have

τ(A′) = τ(A) + τ(B) > 1− ǫ,

and therefore∫
γ′

τ > (1− ǫ)per(γ′) for any periodic orbit γ′ of A′.

So what we need is to show that

|

∫
γ′

β| < 2ǫper(γ′) for any periodic orbit γ′ of A′.(5.5)
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Now the C1-norm of A′ is bounded, regardless of the choice of A′ from a

C1-neighbourhood U of A. Choose a triangulation T of N by small geodesic

simplices. If we choose T fine enough compared with the above C1-norm,

then the orbits of A′ look like straight lines in a close-up.

Then there is a constant C > 0 depending only on U and T with the

following property: for any periodic orbit γ′ of A′, there is a simplicial loop

γ′T and an annulus A such that

∂A = γ′ ∪ (−γ′T ) and Area(A) ≤ C per(γ′), and(5.6)

C−1‖γ′T ‖1 ≤ per(γ′) ≤ C ‖γ′T ‖1,(5.7)

where ‖ · ‖1 denotes the l
1 norm of the real coefficient chain group of the

triangulation T . To see this, first replace γ′ by another simple closed curve

γ′′ with C2 norm smaller than twice the C2 norm of γ′ such that

2mesh(T ) ≤ d(γ′(t), γ′′(t)) ≤ 3mesh(T ).

The curve γ′′ also looks like a straight line in the close-up. Define γ′T to

be a simplicial loop contained in mesh(T )-neighbourhood of γ′′ with the

minimum l1 norm. Then (5.6) and (5.7) are satisfied.

Now if B, and hence dβ = ιBΩ, is small enough, we have

|

∫
γ′

β −

∫
γ′

T

β| = |

∫
A

dβ| ≤ Area(A) ‖dβ‖ < ǫper(γ′).(5.8)

Now the boundary operator ∂2 : C2(T )→ B1(T ) admits a cross section

σ : B1(T ) → C2(T ). The mapping norm ‖σ‖1 of σ is finite since B1(T ) is

finite dimensional. Thus if B is small enough, then

|

∫
γ′

T

β| = |

∫
σ(γ′

T
)
dβ| ≤ ‖σ‖1 ‖γ′T ‖1 ‖dβ‖ < ǫper(γ′),(5.9)

where the last inequality follows from (5.7). Now (5.8) and (5.9) imply the

desired inequality (5.5). The proof of (5.4) is complete.

Finally let us show that (5.4) implies (5.2). For any periodic orbit γ′

of A′, there is associated an A′-invariant measure δγ′ supported on γ′. It

is well known, easy to show by the specification property of Anosov flows,
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that the set of measures δγ′ is dense in the set of the ergodic probability

measures. Thus (5.4) implies that

〈µ, (τ + β)(A′)〉 ≥ 1− 3ǫ(5.10)

for any A′-invariant probability measure µ.

Then we have

t−1

∫ t

0
(τ + β)(A′) ◦ (A′)tdt > 1− 4ǫ(5.11)

for any large t. For, otherwise one can construct an A′-invariant probability

measure violating (5.10).

If we put

τ ′ = t−1

∫ t

0
((A′)t)∗(τ + β)dt,

the left hand side of (5.11) coincides with τ ′(A′). On the other hand, we

have

dτ ′ = t−1

∫ t

0
((A′)t)∗(dτ + dβ)dt = dτ + dβ,

because

LA′(dτ + dβ) = d ιA′(dτ + dβ) = dιA′ιA′Ω = 0.

This shows (5.2), as is required.

Theorem 1.3 can be generalized as follows.

Corollary 5.2. For an arbitrary closed 3-manifold N and a C∞ vol-

ume form Ω, there is a C1-neighbourhood U of 0 in XΩ(N) such that if A

is a contact Anosov vector field, and B ∈ U satisfies that ιBΩ is exact, then

A+B is a time change of a contact Anosov vector field.

Let Σ be a closed oriented surface endowed with a Riemannian metric

m of varying negative curvature K, and let π :M → Σ be the unit tangent

bundle with respect tom. Denote the vertical vector field by V , the geodesic

vector field by X, and Y = V
π/2
∗ X. They satify:

[V,X] = Y, [V, Y ] = −X, [X,Y ] = K ◦ π V.(5.12)
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The 1-forms ξ, η and θ dual to X, Y and V satisfy:

dξ = θ ∧ η, dη = −θ ∧ ξ, dθ = −K ◦ π ξ ∧ η.(5.13)

The volume form Ω = ξ ∧ η ∧ θ is left invariant by the three vector fields V ,

X and Y .

G. P. Paternain [P] considers what is called the magnetic vector field

Aλ = X + λV

for a costant λ, and shows the following.

Theorem 5.3. (G. P. Paternain) For |λ| small and nonzero, the

vector field Aλ is not contact, unless K is constant.

Let us consider more generally the vector field

Aφ = X + φ ◦ π V

for a C∞ function φ : Σ→ R.

Now we have

LAφ
Ω = d ιAφ

Ω = d(φ ◦ π ξ ∧ η) = 0,(5.14)

where the last equality follows from V (φ ◦ π) = 0. Thus the vector field

Aφ leaves the volume form Ω invariant, and it is Anosov for C1-small φ.

Applying Corollary 5.2, we get:

Proposition 5.4. For any negatively curved metric m and a C1-small

function φ : Σ→ R, the vector field Aφ is a time change of a contact Anosov

vector field.

Proof. What we need to show is that the closed 2-form φ ◦ π ξ ∧ η is

exact, which is an easy consequence of the fact that H2(M,Z) is generated

by vertical tori and that

ιV (φ ◦ π ξ ∧ η) = 0. �
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The contact forms which appear in Proposition 5.4 are C1-perturbations

of the contact form ξ and is positive. On the other hand, the connection

form θ is negative and tight by a result of [H]. Compare Remark 2.4.

Question 5.5. Is there a contact Anosov flow on M whose contact

form is θ?
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