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Abstract

We construct a complete set of two consecutive obstructions against
homotopies of pointed Sn-families of adapted contact forms. Using
these obstructions, we show that there is a manifold with an open
book decomposition together with both infinitely many adapted contact
forms that all induce the same Liouville form on one page but such
that the underlying contact manifolds are not contactomorphic, and
infinitely many non-homotopic adapted contact forms that all induce the
same Liouville form on one page and such that the underlying contact
manifolds are contactomorphic.

Following this, we use the neighbourhood theorem for the binding of
an open book decomposition that we introduce in the construction of the
obstructions to construct special generalised caps of contact manifolds.
This leads us to a proof that, on closed manifold, the Reeb vector field of
every contact form defining a contact structure supported by a tower of
open book decompositions has a contractible orbit provided the binding
in the lowest level of this tower embeds into a subcritical Stein manifold
as a hypersurface of restricted contact type or is supported by an open
book decomposition with trivial monodromy. Moreover, we show that
the strong Weinstein conjecture holds for contact manifolds supported
by an open book whose binding is planar.



Zusammenfassung

Wir konstruieren zwei Obstruktionen gegen Homotopien von Sn-Fa-
milien angepasster Kontaktformen, deren Verschwinden die Existenz
einer solchen Homotopie garantiert. Mit ihrer Hilfe zeigen wir, dass
eine Zerlegung einer Mannigfaltigkeit als offenes Buch gibt, zu der so-
wohl unendlich viele Kontaktformen angepasst sind, deren zu Grunde
liegende Kontaktstrukturen nicht kontaktomorph sind, als auch unend-
lich viele Kontaktformen, deren zu Grunde liegende Kontaktstrukturen
zwar kontaktomorph sind, die aber nicht homotop sind als angepasste
Kontaktformen.

Danach benutzen wir den Umgebungssatz für die Bindung offener
Bücher, welchen wir in der Konstruktion der Obstruktionen beweisen,
um spezielle verallgemeinerte Kappen für Kontaktmannigfaltigkeiten
zu konstruieren. Dies führt uns schließlich zu einem Beweis, dass auf
geschlossenen Mannigfaltigkeiten das Reeb-Vektorfeld zu jeder Kontakt-
form, die eine Kontaktstruktur definiert, welche von einem Turm offener
Bücher getragen ist, eine kontrahierbare geschlossene Bahn besitzt, so-
fern die Bindung in der untersten Ebene des Turms als Hyperfläche vom
eingeschränkten Kontakttyp in eine subkritische Stein-Mannigfaltigkeit
einbettet oder von einem offenen Buch getragen wird, dessen Monodro-
mie trivial ist. Zudem zeigen wir, dass die starke Weinstein-Vermutung
erfüllt ist für jede Kontaktmannigfaltigkeit, die von einem offenen Buch
getragen wird dessen Bindung planar ist.
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Introduction

In contact geometry, one examines odd-dimensional manifolds endowed
with a maximally non-integrable hyperplane field, a contact structure.
Such contact manifolds naturally appear as so-called hypersurfaces and
boundaries of contact type of symplectic manifolds. These are hyper-
surfaces and boundaries which are transverse to a Liouville vector field.
From another direction, contact manifolds also arise from symplectic open
book decompositions of a manifold. The first result in this direction was
the construction of a contact form by Thurston and Winkelnkemper [38]
in dimension 3 based on an open book decomposition of the manifold.
This reproved the result of Martinet [29] that every closed orientable
3 dimensional manifold carries a contact structure. The contact forms
constructed by Thurston and Winkelnkemper had two special properties
in relation to the open book decomposition, which now are known as the
condition to be adapted to the open book decomposition.

In [22], Giroux presented a generalisation of the Thurston-Winkelnkem-
per construction to higher dimension. Now, the open book decompositions
were not arbitrary anymore but the pages had to be Liouville manifolds
and the monodromy had to be symplectic, conditions that are satisfied
automatically in dimension 3.

Giroux did not only present this construction in [22] but also two
correspondence results about the connection between contact structures
and open books, one very strong one in dimension 3 and a weaker one in
higher dimensions. Since then open books have become a major tool in
contact topology, especially in dimension 3.

In addition to the existence of an open book decomposition supporting
a given contact manifold, Giroux’s higher-dimensional correspondence
result provides a criterion under which two adapted contact forms are
isotopic. Unfortunately, this criterion is not very precise. In the first
part of this thesis, we take a closer look at the space of all contact forms
adapted to a given open book decomposition with the goal to obtain
a precise criterion that determines whether two adapted contact forms

vii



viii Introduction

are homotopic as such forms. We find such a criterion in the form of a
set of two consecutive obstruction with the property that two adapted
contact forms are homotopic if and only if these two obstructions vanish.
Then we use them to obtain two infinite families of examples of contact
forms adapted to the same open book decomposition which are all non-
homotopic but induce the same Liouville form on a fixed page of the
open book decomposition. In one of the families, all underlying contact
manifolds are contactomorphic, in the other family, they are pairwise non-
contactomorphic. The latter examples, in particular, show that Giroux’s
result has to be read in the strictest way possible.

In addition to the obstructions for single adapted contact forms, we
also construct obstructions against homotopies of pointed Sn-families of
adapted contact forms. This provides an extension of Giroux’s result to
higher homotopy groups.

Apart from the mostly 3-dimensional applications, open books have
an application to one of the most important open problems of contact
geometry, the Weinstein conjecture. This conjecture has its origins in the
theory of Hamiltonian dynamical systems. Because classical mechanics
can be described as a Hamiltonian system on a symplectic manifold, early
on the question arose whether closed orbits of the Hamilton vector field
exist on special hypersurfaces in symplectic manifolds. First answers were
given by Rabinowitz in [33] where he proved that such closed orbits exist
on every star-shaped hypersurface in R2n. Since these are hypersurfaces of
contact type, Weinstein [41] posed the question whether the statement is
true for all such hypersurfaces. This question translates into the intrinsic
question whether the Reeb vector field to every contact form has a closed
orbit. This question is now known as the Weinstein conjecture.

By now, this conjecture has been proved in dimension 3 by Taubes
[37]. Before this, the most important advance was the result of Abbas,
Cieliebak, and Hofer [1] that every contact manifold supported by an open
book decomposition with planar pages satisfies the Weinstein conjecture.
Based on their results, they also introduced a stronger version of the
conjecture: they conjectured the existence of a nullhomologous link of
orbits of the Reeb vector field. This is now known as the strong Weinstein
conjecture.

In the second part of this thesis, we follow Abbas et al. in spirit in
the sense that we establish the strong Weinstein conjecture for manifold
supported by suitable open books. We combine this approach with the



Introduction ix

method of Geiges and Zehmisch [19, 18] to obtain closed Reeb orbits
through a study of pseudoholomorphic curves based on the existence of
suitable caps.

In our approach, we do not use the topology of the pages of an open
book to obtain orbits closed Reeb orbits as done by Abbas et al., but
properties of the binding. We prove that every contact manifold supported
by an open book decomposition whose binding is planar satisfies the strong
Weinstein conjecture. For contact manifolds whose binding embeds into
a subcritical Stein manifold as a hypersurface of restricted contact type
or whose binding is itself supported by an open book decomposition with
trivial monodromy, we even show that there is a contractible orbit of the
Reeb vector field. Furthermore, we show that these contractible orbits
already exist if one of the two demands on the binding is satisfied for that
of the lowest level of a tower of open book decompositions supporting the
contact manifold.

This thesis is organised as follows. In the first chapter, we provide an
introduction into the basic concepts of contact and symplectic geometry
needed in the remainder of the thesis. Moreover, we present the basic
properties of open books.

In Chapter 2, we introduce the space of contact forms adapted to
an open book decomposition and present different ways to use abstract
symplectic open books to construct contact manifolds.

We start in Section 2.1 with the introduction of adapted forms, i.e.
forms satisfying the adaptedness condition but not necessarily the contact
condition. Based on these, we provide the definition of adapted contact
forms. Moreover, we extend an argument by Giroux [21] and prove that
the space of contact adapted forms is a weak deformation retract of the
space of adapted forms. Following this we examine the connection between
the space of adapted contact forms and supported contact structures and
prove that they are homotopy equivalent.

After this treatment of forms adapted to an open book decomposition,
we present in Section 2.2 three ways to construct contact manifolds
from symplectic open books. These include the generalised Thurston-
Winkelnkemper construction by Giroux [22] and another construction by
Giroux [30] using ideal Liouville domains. Following this, we show that
the different spaces of Liouville forms involved in the constructions are
all homotopy equivalent.
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The heart of this thesis is Chapter 3, where we provide several neigh-
bourhood theorems needed in the last two chapters. Most notably, we
prove in Section 3.1 a neighbourhood theorem for the binding of an
open book decomposition that improves upon our previous result [12,
Proposition 3.1] in several ways. It provides a deformation of the entire
space of contact forms adapted to an open book such that the time-1-map
of this deformation is a homotopy equivalence to the space of adapted
contact form with a special form in an adapted neighbourhood of the
binding of our choice. Moreover, the parameters of the standard form
can be chosen freely. As a first application, we use this neighbourhood
theorem to provide the proof of a small part of Giroux’s result in [22] that
every contact manifold can be constructed by the generalised Thurston-
Winkelnkemper construction applied to an abstract symplectic open book
whose pages are Weinstein manifolds. Namely, we show that every contact
manifold supported by an open book decomposition can be obtained via
the generalised Thurston-Winkelnkemper construction from an abstract
symplectic open book with the same pages.

Following this, we consider manifolds with boundary in Section 3.2.
We prove that the space of diffeomorphisms with compact support in the
interior is a weak deformation retract of the space of diffeomorphisms
that fix the boundary pointwise. Then we prove a similar result about
spaces of symplectic and Liouville forms. Namely, we show that there
is a weak deformation retraction from the space of symplectic forms
agreeing with the restriction of a fixed symplectic form on the tangent
bundle of the boundary and inducing the same orientation to the space
of symplectic forms that agree with the fixed form on a neighbourhood
of the boundary. An analogous result for Liouville forms is proved, as
well. Moreover, we prove that on symplectic manifolds with boundary
the spaces of exact symplectic forms and of Liouville forms with the
same boundary conditions are homotopy equivalent. Finally, we use these
results to prove the existence of a long exact homotopy ladder diagram
for the spaces of diffeomorphisms as above and their intersection with
the symplectomorphisms of a fixed exact symplectic form. This ladder
diagram, in particular, shows that the space of symplectomorphisms with
compact support in the interior is weakly homotopy equivalent to the
space of symplectomorphisms fixing the boundary pointwise.

Then, in Section 3.3, we present a slight generalisation of a well-
known neighbourhood theorem for symplectic fibrations over S1, which
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shows that symplectic manifolds can be glued along such a symplectic
fibration, provided the holonomies of the fibrations are isotopic through
symplectomorphisms.

Chapter 4 deals with our first main application of the neighbourhood
theorems from the previous chapter. We construct a set of two consecutive
obstructions against homotopies of pointed Sn-families of contact forms
adapted to a fixed open book decomposition with the property that a
homotopy exists if and only if these two obstructions vanish. We start with
their definition on the spaces of adapted contact forms whose restriction
to the binding is fixed. Applying the neighbourhood theorems from
Section 2.1 essentially reduces the problem to a problem on a symplectic
fibration. We use this to construct a long exact homotopy sequence,
which can be used to define the obstructions. Next, we examine the
connection to the contact forms induced on the binding. This leads to a
further long exact homotopy ladder diagram. In Section 4.3, we combine
this with the first long exact homotopy sequence to obtain a broken
exact braid diagram. Based on this, we can extend the definition of our
two obstructions to general adapted contact forms. This construction is
followed by a discussion of the case that the monodromy is isotopic to the
identity, which is the case in which our obstructions are most restrictive.

Following this, we connect our obstructions to the existence of certain
families of symplectomorphisms and diffeomorphisms of the pages of the
open book via the long exact sequence from Section 3.2. This allows
us to find two infinite families of examples of non-homotopic adapted
contact forms for the same open book that all induce the same Liouville
form on a given page. In one of the families, the underlying contact
manifolds are all contactomorphic, in the other one, they are pairwise
non-contactomorphic.

Our second main application is contained in Chapter 5. There, we
present a generalised version of our joint results with Geiges and Zehmisch
in [12]. We prove that the strong Weinstein conjecture holds for contact
manifolds supported by an open book decomposition whose binding is
planar. Furthermore, we prove that there even is a contractible orbit of the
Reeb vector field if the binding is at least 3-dimensional and embeds into
a subcritical Stein manifold as a hypersurface of restricted contact type
or is itself supported by an open book with trivial monodromy. We show
that this contractible orbit even exists whenever the contact manifold is
supported by something we call a tower of open book decompositions,
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provided that the binding in the lowest level of the tower has the properties
demanded of the binding above.

We start the chapter with a presentation of basic results about pseudo-
holomorphic curves we need in the remainder of the chapter. Then we
introduce the concept of a generalised cap and provide a special con-
struction that turns generalised caps of the binding of a supporting open
book decomposition into generalised caps of the contact manifold. The
major step of this construction is a generalisation to higher dimensions
of [15, Theorem 1.1], which was the crucial step in Eliashberg’s proof of
the existence of symplectic caps for weakly fillable contact manifolds in
dimension 3.

After this more general treatment, we construct special generalised
caps for the contact manifolds for which we want to prove the existence
of closed Reeb orbits. Finally, we use these caps in Section 5.4 to perform
an argument using holomorphic curves as Geiges and Zehmisch did in
[18] to obtain the desired Reeb orbits.



1. Preliminaries

The aim of this chapter is to provide the background in contact and sym-
plectic topology needed in the remainder of this thesis. Readers familiar
with theses topics may probably skip it, maybe except Theorem 1.1.8,
which is a version of the Gray stability theorem (Theorem 1.1.4) that
preserves contact submanifolds, or use it as a reference for notation.

1.1. Contact Forms and Contact Structures

The basic notion of contact topology is that of a contact structure, which is
a special kind of hyperplane distribution on an odd-dimensional manifold.
More precisely, it is defined as follows.

Definition 1.1.1. We say that a 1-form α on a (2n+ 1)-dimensional
manifold M is a contact form if α∧ (dα)

n
is a volume form. A contact

structure ξ on M is a hyperplane distribution that is locally the kernel
of a contact form. If ξ is the oriented kernel of a globally defined contact
form, we say that it is a cooriented contact structure.

We call the pair (M, ξ) a contact manifold and the pair (M,α) a
strict contact manifold. A diffeomorphism Ψ: M0 →M1 between two
contact manifolds (Mi, ξi), i = 0, 1, is called a contactomorphism if
Ψ∗ξ0 = ξ1. If moreover ξi = kerαi for contact forms αi and Ψ∗α1 = α0,
we say that Ψ is a strict contactomorphism between the strict contact
manifolds (M0, α0) and (M1, α1).

We denote the space of all contact structures on a manifold M by Ξ(M)
and the space of al contact forms on M by A(M).

In this thesis we will always assume that our contact structures are
cooriented without specifically stating it.

Example 1.1.2. The basic example of a contact structure is the standard
contact structure ξst = ker(αst) on R2n+1, where αst =

∑

xi dyi + dz.
Here, (x1, . . . , xn, y1, . . . , yn, z) are cartesian coordinates on R2n+1.

1



2 1. Preliminaries

This example is fundamental because every point in a contact manifold
has a neighbourhood that is contactomorphic to a neighbourhood of the
origin in

(

R2n+1, ξst
)

; see [17, Theorem 2.5.1].

Theorem 1.1.3 (Darboux’s theorem). Let α be a contact form on a
(2n+ 1)-dimensional manifold and p ∈M . Then there is a neighbourhood
U of p with coordinates (x1, . . . , xn, y1, . . . , yn, z) with origin p such that

α|U = dz +
n
∑

i=1

xi dyi.

This theorem shows that there can be no local invariants in contact
topology. On closed contact manifolds, the situation is even better. On
them, there is no difference between homotopy invariants and isotopy
invariants.1

Theorem 1.1.4 (Gray stability). Let ξt, t ∈ [0, 1], be a smooth family
of contact structures on a closed manifold M . Then there is an isotopy
Ψt of M such that

(Ψt)∗ ξ0 = ξt.

The modern proof of this theorem, which can be found for example in
[17, Theorem 2.2.2], uses the Moser trick. By a slightly more cautious use
of this trick we can achieve that the isotopy preserves common contact
submanifolds of the contact manifolds (M, ξt).

Definition 1.1.5. A submanifold N of a contact manifold (M, ξ) is called
a contact submanifold if TN ∩ ξ is a contact structure on N .

Before we prove our enhanced version of the Gray stability theorem,
let us give a word of caution about contact forms. For these a statement
analogous to that of the Gray stability theorem is false. This can be seen
using another concept that plays an important role in contact topology,
the Reeb vector field.

Definition 1.1.6. Let α be a contact form on a (2n+ 1)-dimensional
manifold. Then the Reeb vector field Rα to α is the unique vector

1To be precise, in addition to Theorem 1.1.4 below, we also need to smoothen
homotopies of contact structures. However, this is no problem as can be seen from
the arguments in Appendix B.
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field determined by the conditions

ιRαα ≡ 1,

ιRαdα ≡ 0.

Note that whenever a diffeomorphism Ψ satisfies Ψ∗α1 = α0 for two
contact forms α0 and α1, it also satisfies Ψ∗Rα0

= Rα1
; see [17, Lemma

2.2.4]. In particular, the topology of the flow lines of Rα0
and Rα1

has to
agree. However, in smooth families of contact forms the topology of these
flow lines can change drastically as the following example illustrates.

Example 1.1.7 (See [17, Example 2.2.5]). On S3 ⊂ R4 the family

αǫ = (x1 dy1 − y1 dx1) + ǫ (x2 dy2 − y2 dx2)

with ǫ > 0 is a family of contact forms with Reeb vector fields

Rǫ = (x1 ∂y1 − y1 ∂x1
) + 1

ǫ (x2 ∂y2 − y2 ∂x2
) .

For ǫ = 1, the flow of the Reeb vector field induces the Hopf fibration.
Accordingly, all flow lines are closed. For ǫ ∈ R+ \Q, however, there are
only two closed flow lines.

After this small detour let us come back to our enhanced version of the
Gray stability theorem.

Theorem 1.1.8. Let ξt, t ∈ [0, 1], be a smooth family of contact struc-
tures on a (2n + 1)-dimensional closed manifold M and B a closed
contact submanifold for all ξt. Then there is an isotopy Ψt of M satisfy-
ing (Ψt)∗ ξ0 = ξt that leaves B invariant. If moreover ξt ∩ TB = ξ0 ∩ TB
for all t ∈ [0, 1], then Ψt may be chosen to fix B pointwise.

Proof. As in the modern proof of the usual Gray stability theorem, we use
the Moser trick: we assume that our isotopy Ψt exists and is generated
by a time-dependent vector field Xt. Since M is closed, any such vector
field can be integrated, yielding an isotopy. So we have to derive sufficient
conditions for the existence of the vector field Xt.

Let αt be any smooth family of contact forms such that ξt = kerαt.
Then we decompose the vector field Xt as

Xt = HtRt + Yt
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where Rt is the Reeb vector field of αt, Ht a function and Yt a section of
ξt.

Now we use that the condition (Ψt)∗ ξ0 = ξt is equivalent to demanding
that there is a smooth family of positive functions λt such that Ψ∗

tαt =
λtα0. Differentiating this with respect to the parameter t yields the
following equation.

λ̇tα0 = d
dtΨ

∗
tαt

= Ψ∗
t (α̇t + LXt

αt)

= Ψ∗
t (α̇t + ιXt

dαt + d(ιXt
αt))

= Ψ∗
t (α̇t + ιYt

dαt + dHt)

Since every Ψt is a diffeomorphisms, this is equivalent to

µtαt = α̇t + dHt + ιYt
dαt (1.1)

for some smooth family of real-valued functions µt =
d
dt (lnλt) ◦Ψ

−1
t .

Equation 1.1 can be split into an equation concerning the direction of
the Reeb vector field, which only fixes the function µt, and one on the
contact structure, which can be solved for every choice of Ht thanks to
the non-degeneracy of dαt|ξt .

If we had chosen Ht to vanish, the arguments above would be exactly
the modern proof of the Gray stability theorem as found in [17, Theorem
2.2.2]. However, we want to achieve a stronger result. So we have to find
suitable functions Ht.

Since B is a contact submanifold of (M, ξt) for all t, the form dαt|TB
is non-degenerate on kerαt|TB = ξt ∩ TB. Hence, there is a section Ỹt of
ξt ∩ TB and a function νt on B such that the restriction of

α̇t + ιỸt
dαt − νtαt =: α̃t

to TB vanishes. Consequently, there is a choice of Ht with Ht|B ≡ 0 and
dHt|B = −α̃t such that Equation 1.1 can be solved with µt|B = νt and
Xt|B = Ỹt. Because Ỹt is a section of TB, the isotopy generated by Xt

leaves B invariant.
Now, assume that ξt ∩ TB = ξ0 ∩ TB for all t ∈ [0, 1]. Then αt|TB =

ηtα0|TB for some smooth family of positive functions ηt. This implies that,
in the setup above, we get νt =

d
dt ln ηt and Xt|B = Ỹt = 0. Accordingly,

the isotopy generated by Xt fixes B.
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1.2. Symplectic Forms and Almost Complex

Structures

Contact topology has several close connections to symplectic topology
of which we will use two in this thesis, namely the concept of symplectic
cobordisms and that of contact open books. In this section we present the
basics in symplectic topology needed in the remainder of this thesis. We
start with the most basic concept, the concept of a symplectic form.

Definition 1.2.1. We say that a 2-form ω on a 2n-dimensional manifold
W is a symplectic form if it is closed and non-degenerate, i.e. if dω = 0
and ωn is a volume form. If ω = dβ, we call β a Liouville form for ω.

We call the pair (W,ω) a symplectic manifold. A diffeomorphism
Ψ: W0 → W1 between two symplectic manifolds (Wi, ωi), i = 0, 1, is
called a symplectomorphism if Ψ∗ω1 = ω0. If ωi = dβi, we say that
Ψ is exact if moreover Ψ∗β1 = β0 + dh for some function h on W0.

Symplectic manifolds appear for example naturally in classical mech-
anics as phase spaces; see [17, Section 1.4] or [2] for a more extensive
presentation.

Example 1.2.2. Let B be a smooth n-dimensional manifold. Denote by π
the bundle projection of T ∗B. Then there is a unique 1-form λ on the
cotangent bundle T ∗B satisfying λu = u ◦ π∗ for all u ∈ T ∗B. It is called
the canonical Liouville form on T ∗B. In local coordinates (q1, . . . , qn)
on B and dual coordinates (p1, . . . , pn) in the fibres it can be written as

λ =

n
∑

i=1

pi dqi.

From this local representation it is easy to see that λ indeed is a Liouville
form.

The non-degeneracy of symplectic forms leads to the existence of two
special kinds of vector fields, namely Liouville vector fields and Hamilton
vector fields. Let us start with the first one.

Definition 1.2.3. Let (W,dβ) be a symplectic manifold. Then the
Liouville vector field Y to β is the unique vector field satisfying

ιY dβ = β.
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Remark 1.2.4. Often, Liouville vector fields Y are characterised by the
condition LY ω = ω. This is equivalent to saying that Y is a Liouville
vector field to some Liouville form for ω. To see this we apply the Cartan
formula and obtain

LY ω = ιY dω + d(ιY ω) = d(ιY ω) .

Accordingly, β = ιY ω is a Liouville form for ω.

Liouville vector fields are important in connection with contact topology
because of the following observation.

Proposition 1.2.5. Let (W,ω) be a symplectic manifold that contains
a hypersurface M transverse to a Liouville vector field Y defined in a
neighbourhood of M . Then (M, ker ιY ω|TM ) is a contact manifold.

Proof. Because ωn is a volume form on W and Y is transverse to M the
form

ιY ω
n = nιY ω ∧ ωn−1 = nιY ω ∧ (dιY ω)

n−1

must be a volume form on M .

Remark 1.2.6. Because of the proposition above, a hypersurface M trans-
verse to a Liouville vector field Y that is defined in a neighbourhood of M
is called a hypersurface of contact type. If the Liouville vector field
Y exists globally, then we say that M is of restricted contact type.

Indeed, every contact manifold without boundary can be realised as a
hypersurface of contact type.

Example 1.2.7. Let (M, kerα) be a contact manifold. Then the sym-
plectisation of M is the symplectic manifold (R×M,d(etα)). The
coordinate vector field ∂t is a Liouville vector field and the sections over
M transverse to ∂t are in one-to-one correspondence with the contact
forms defining kerα.

Now we turn to the second important kind of vector fields on symplectic
manifolds, the Hamilton vector fields.

Definition 1.2.8. Let (W,ω) be a symplectic manifold and H : W → R

a smooth function. Then the Hamilton vector field XH to H is the
unique vector field satisfying

ιXH
ω = −dH.
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Hamilton vector fields are widely studied in dynamics, e.g. on cotangent
bundles they describe the dynamics of particles in classical mechanics
corresponding to the energy function H; see again [17, Section 1.4] or [2].

One of the nice properties of these vector fields is that they preserve
level sets of the corresponding Hamilton function H.

Proposition 1.2.9. Let (W,ω) be a symplectic manifold and H : W → R

a smooth function. Then the local flow of the Hamilton vector field XH

preserves the level sets of H.

Proof. The statement above is equivalent to the condition that the Lie
derivative of H with respect to XH vanishes. We have

LXH
H = ιXH

dH = −ω(XH , XH) = 0.

If one of the regular level sets of such a Hamilton is a contact type
hypersurface, we have a direct connection to the Reeb vector field to the
induced contact form.

Proposition 1.2.10. Let (W,ω) be a symplectic manifold and H : W →
R a smooth function. Furthermore, let M be a regular level set of H that
is of contact type. Then the restriction of the Hamilton vector field XH

to M is a non-vanishing multiple of the Reeb vector field to the induced
contact form on M .

Proof. Let Y be a Liouville vector field transverse to M and write α for
the induced contact form ιY ω|TM . Then we have

ιXH
dα = ιXH

ω|TM = −ιXH
dH|TM = 0

and
ιXH

α = ω(Y,XH) = ιY dH.

The latter does not vanish since M is a regular level set of H and Y
transverse to M .

By this proposition the flows of the Hamilton vector field and the Reeb
vector field corresponding to the induced contact form only differ by a
reparametrisation. This in combination with Example 1.2.7 inspired the
formulation of the following conjecture by Weinstein [41].
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Conjecture 1.2.11 (Weinstein conjecture). On every closed contact
manifold, the Reeb vector field to every contact form has a closed orbit.

In dimension 3, this is by now a theorem due to Taubes [37]. In higher
dimensions, however, it is still open. There is also a stronger version of
this conjecture due to Abbas, Cieliebak, and Hofer [1].

Conjecture 1.2.12 (Strong Weinstein conjecture). On every closed
contact manifold, the orbits to the Reeb vector field to every contact form
contain a nullhomologous link.

Abbas et al. showed in [1] that that this conjecture holds for planar
contact manifolds. In Chapter 5, we will describe sufficient conditions
under which the conjecture holds. We will even show that, under some of
these conditions, there are contractible orbits.

For the proofs in Chapter 5 we will need a further concept with con-
nections to symplectic topology, that of almost complex structures.

Definition 1.2.13. An almost complex structure is a complex bundle
structure J on the tangent bundle of an even-dimensional manifold W , i.e.
a bundle endomorphism satisfying J2 = − idTW . If ω is a symplectic form
on W , we say that J is ω-compatible if ω(·, J ·) defines a Riemannian
metric.

Such an almost complex structure is a generalisation of a genuine
complex structures in that it need not be integrable, i.e. that there need
not be coordinates on W in which J is trivial. This weaker condition
leads to the existence of almost complex structures on a much wider class
of manifolds. In particular, for every symplectic form ω on a smooth
manifold there is an ω-compatible almost complex structure.

More generally, this is also true for symplectic bundles, which are
pairs (E,ω) of a smooth vector bundle E over a manifold B and a smooth
section of the bundle Λ2E that is symplectic in each fibre.

Theorem 1.2.14 (See [17, Proposition 2.4.5]). For every symplectic
bundle (E,ω), the space J (ω) of ω-compatible almost complex structures
on E is non-empty and contractible.

In addition to the existence of ω-compatible complex structures, the
theorem above shows that they are unique up to homotopy. Because of
this, we can use ω-compatible almost complex structures to define Chern
classes for symplectic vector bundles.
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1.3. Symplectic Cobordisms

In differential topology, it turns out to be a fruitful idea to consider
cobordisms between oriented manifolds. In contact topology, there is a
version of this concept more adapted to contact structures, the symplectic
cobordism. Before we explain this further, let us recall the definition of
an oriented cobordism.

Definition 1.3.1. An oriented cobordism from a closed oriented mani-
fold M− to a closed oriented manifold M+ is a compact oriented manifold
W with boundary ∂W ∼=M+ ⊔M− where M− denotes the manifold M−
with reversed orientation.

The condition on two manifolds to be cobordant, i.e. the existence of
a cobordism between these two manifolds, is an equivalence relation. This
is not true for the condition on two contact manifolds to be symplectically
cobordant. However, it does only lose the symmetry property. To ensure
transitivity, it is necessary to be able to glue symplectic cobordisms along
their boundary. Therefore, a suitable boundary condition for symplectic
cobordisms can be derived from the following neighbourhood theorem.

Lemma 1.3.2 (See [17, Lemma 5.2.4]). Let Mi, i = 0, 1, be compact
hypersurfaces of contact type in symplectic manifolds (Wi, ωi) with cor-
responding Liouville vector fields Yi. Furthermore, let there be a strict
contactomorphism φ : (M0, ιY0ω0) → (M1, ιY1ω1).

Then φ can be extended to a symplectomorphism of neighbourhoods of
M0 and M1 by sending the flow lines of Y0 to those of Y1.

In regard of the lemma above, one arrives at the following definition of
a symplectic cobordism.

Definition 1.3.3. A (strong) symplectic cobordism from a strict
contact manifold (M−, α−) to a strict contact manifold (M+, α+) is a
pair (W,ω) where W is an oriented cobordism from M− to M+, both
orientations induced by the contact forms, endowed with a symplectic form
ω inducing the orientation of W and such that there is a Liouville vector
field Y defined in a neighbourhood of ∂W satisfying ιY ω|TM±

= α±.
We say that (W,ω) is a (strong) symplectic cobordism from a

contact manifold (M−, ξ−) to a contact manifold (M+, ξ+) if there are
contact forms α± defining the contact structures ξ± such that (W,ω) is
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a symplectic cobordism from (M−, α−) to (M+, α+). In this case we say
that (M−, ξ−) and (M+, ξ+) are symplectically cobordant.
(M−, ξ−) is called the negative or concave boundary of (W,ω) and

(M+, ξ+) the positive or convex boundary.

Remark 1.3.4. By the orientation conditions, the Liouville vector field
points inwards along the negative boundary of a symplectic cobordism
and outwards along the positive boundary.

//
//
// //

//
//
//
//

////
//
//

//
//
// //

//
//
//
//

////
//
//

//
//
//
// //

//
//
//
//
//
//
////

//
//
// (M+, ξ+)

(M−, ξ−)

(W,ω)

Figure 1.1.: Strong symplectic cobordism between contact 1-manifolds

The basic example of a symplectic cobordism is the following.

Example 1.3.5. Let (M,α) be a closed strict contact manifold, λ a smooth
positive function on M , and C a constant such that Cλ > 1. Then
the subset W = {(t, x) ∈ R×M | 0 ≤ t ≤ ln(Cλ(x))} of the symplectisa-
tion (R×M,d(etα)) of (M,α) is a symplectic cobordism from (M,α) to
(M,Cλα).

This example does not only show that the relation to be symplectically
cobordant is reflexive but also provides the missing piece for the proof of
the transitivity of this relation.

There are several stronger versions of symplectic cobordisms we will use
in this thesis. We start with exact cobordisms and Liouville cobordisms.

Definition 1.3.6. A symplectic cobordism (W,ω) from a contact mani-
fold (M−, ξ−) to a contact manifold (M+, ξ+) is called an exact cobor-
dism if the symplectic form ω is exact. If, moreover, there is a primitive
β of ω such that β|TM±

is a contact form defining ξ±, we call (W,ω) a
Liouville cobordism.
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An even stronger form of symplectic cobordism derives from the concept
of a Weinstein manifold, namely the Weinstein cobordism.

Definition 1.3.7. We say that a smooth function f is exhausting if it
is proper and bounded from below. A vector field X is gradient-like for
f if LXf > 0 outside the critical points of f .

A Weinstein manifold is an exact symplectic manifold (W,dβ) with
an exhausting Morse-function f that admits a gradient-like complete
Liouville vector field Y .

A Weinstein cobordism is a Liouville cobordism (W,ω) such that
the corresponding Liouville vector field Y is gradient-like for a proper
Morse-function f on W for which the negative and the positive boundary
of W are regular level sets.

Another special kind of symplectic cobordisms are symplectic fillings.

Definition 1.3.8. A (strong) symplectic filling of a contact manifold
(M, ξ) is a symplectic cobordism from the empty set to (M, ξ). If a
symplectic filling is exact, Liouville, or Weinstein, we call it an exact,
Liouville, or Weinstein filling, respectively.

Sometimes we do not want to specify the contact manifold that is filled.
Then we call a Liouville filling of its boundary a Liouville domain and
a Weinstein filling of its boundary a Weinstein domain.

A somewhat different kind of filling is the Stein filling in the sense
that it is derived from a Stein manifold, which itself is, a priori, not a
symplectic manifold.

Definition 1.3.9. Let (W,J) be an almost complex manifold, i.e. J is
an almost complex structure on the manifold W . Then we say that a real-
valued function ρ on W is plurisubharmonic if gρ = −d(dρ ◦ J)(·, J ·)
is a positive semi-definite symmetric linear form on W and strictly
plurisubharmonic if it is a Riemannian metric on W .

We call the triple (W,J, ρ) a Stein manifold if (W,J) is a complex
manifold, i.e. J is integrable, and ρ an exhausting strictly plurisubhar-
monic function on W .

If c is a regular value of such a function ρ, then we say that the subset
ρ−1((−∞, c]) of (W,J, ρ) is a Stein filling of the the level set ρ−1(c) or,
without emphasis on the contact manifold that is filled, a Stein domain.
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A priori, it is not clear that the notion of a Stein filling is sensible,
since we do not know yet that there is a natural contact structure on
the regular level sets of a plurisubharmonic function. However, such a
natural contact structure exists. One way to see this is to realise that
Stein manifolds naturally carry the structure of Weinstein manifolds.

Proposition 1.3.10 (Cf. [39]). Let (W,J, ρ) be a Stein manifold. Then
(W,ωρ) with ωρ = −d(dρ ◦ J) is a Weinstein manifold and for every
regular value c of ρ the symplectic manifold

(

ρ−1((−∞, c]) , ωρ
)

is a
Weinstein filling of its boundary.

Proof. We know that gρ = ωρ(·, J ·) is a Riemannian metric. So ωρ is non-
degenerate. This has two consequences: first, ωρ is an exact symplectic
form and, second, ρ only has isolated critical points. Consequently, it is
a Morse function.

Now, let Y be the Liouville vector field to the primitive −dρ ◦ J of ωρ.
Then Y vanishes exactly in the critical points of ρ and we have

0 < gρ(Y, Y ) = ωρ(Y, JY ) = − (dρ ◦ J)(JY ) = ιY dρ = LY ρ.

So Y is gradient-like for ρ and, accordingly, (W,ωρ) a Weinstein manifold.
Moreover, if c is a regular value of ρ, then the level set ρ−1(c) must

constitute the entire boundary of ρ−1((−∞, c]) because ρ is exhausting.
Since the Liouville vector field Y is gradient-like for ρ and c is a regular
value of ρ the vector field Y must point outwards along the boundary. So
ρ−1((−∞, c]) is a Weinstein filling of its boundary.

Note that if (W,J, ρ) is a 2n-dimensional Stein manifold, then ρ can
only have critical points of index at most n, because gρ would fail to be
positive definite at critical points of higher index. This puts restrictions
on the topology of a Stein manifold and leads to the following distinction.

Definition 1.3.11. We say that a Stein manifold (W,J, ρ) of dimen-
sion 2n is subcritical if ρ has critical points of index at most (n− 1).
Otherwise we call it critical.

Remark 1.3.12. Often a complex manifold (W,J) is called a Stein manifold
if it admits an exhausting strictly plurisubharmonic function. However,
from a symplectic viewpoint it is more natural to include the exhausting
strictly plurisubharmonic function in the data.
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As Cieliebak showed in [7], subcritical Stein manifolds are actually of a
rather simple form.

Theorem 1.3.13 (Cf. [8, Theorem 14.16]). Every subcritical Stein mani-
fold is deformation equivalent to a split one.

We have to clarify the two new concepts in the theorem above. We
start with the second one.

Definition 1.3.14. A Stein manifold (W,J, ρ) is called split if (W,J) is

of the form (V × C, J ⊕ i) and ρ of the form ρ = ρV + |z|2 where (V, J)
is a Stein manifold with an exhausting strictly plurisubharmonic function
ρV .

This is a nice decomposition, which will play a role in Section 5.3.

Definition 1.3.15. We say that two Stein structures (Ji, ρi), i = 0, 1,
on a manifold W are Stein homotopic if there is a homotopy Jt of
complex structures on W from J0 to J1 together with a homotopy ρt of
exhausting strictly plurisubharmonic functions with respect to Jt from
ρ0 to ρ1 such that no critical points of ρt travel to infinity during the
homotopy.

We call two Stein manifolds (Wi, Ji, ρi), i = 0, 1, deformation equi-
valent if there is a diffeomorphism Ψ: W0 →W1 such that (J0, ρ0) and
(Ψ∗J1,Ψ∗ρ1) are Stein homotopic.

At first, this does not look too promising for our purposes; however,
deformation equivalence implies symplectomorphism [14, Corollary 3.9].

Theorem 1.3.16. If two Stein manifolds (W0, J0, ρ0) and (W1, J1, ρ1)
are deformation equivalent, then the corresponding Weinstein manifolds
(W0, ωρ0) and (W1, ωρ1) are symplectomorphic.

1.4. Open Books

Throughout this thesis the concept of a contact open book plays an
important role. In this section we recall some facts about the underlying
topological concept of an open book, roughly following [17, Section 4.4.2].
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Definition 1.4.1. An abstract open book is a pair (P,Ψ) where the
page P is a compact manifold with boundary without closed components
and the monodromy Ψ a diffeomorphism of P that agrees with the
identity in a neighbourhood of the boundary.

We say that two monodromies are isotopic if they are isotopic as
diffeomorphisms that agree with the identity on a neighbourhood of the
boundary of the page.

Given such an abstract open book (P,Ψ), we can build the mapping
torus P (Ψ), which is given by the quotient space

P (Ψ) = P × [0, 2π] /(x,2π)∼(Ψ(x),0).

Since Ψ is trivial in a neighbourhood of the boundary, P (Ψ) is a manifold
with boundary ∂P (Ψ) ∼= ∂P × S1. So we can glue P (Ψ) along the
boundary to ∂P × D2 in a natural way. We call the resulting closed
manifold M(P,Ψ).

Let us define B = ∂P × {0}. Then the complement of B in M(P,Ψ)
can be endowed with the structure of a fibre bundle

P ∪ (∂P × [0, 1)) →֒M(P,Ψ) \B π−→ S1

by defining π to be given by the projection to S1 on P (Ψ) and by the
angular coordinate on D2 \ {0} on

(

∂P ×D2
)

\B. This yields an open
book decomposition of M(P,Ψ).

Definition 1.4.2. An open book decomposition of a closed manifold
M is a pair (B, π) where the binding B is a submanifold of M of
codimension 2 and π : M \B → S1 a fibre bundle. Furthermore, there has
to be a tubular neighbourhood B×D2 of B with polar coordinates on D2

such that the angular coordinate agrees with π. The fibres Pϕ = π−1(ϕ)
of π are called the pages of the open book decomposition.

We will call a neighbourhood B ×D2 of the binding as above together
with the polar coordinates on D2 an adapted neighbourhood of the
binding.

In this thesis we will always assume that the pages of an open book
decomposition are connected if not stated otherwise. In particular, they
do not contain closed components.
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Notation 1.4.3. We will denote by dϕ both the differential of the angular
coordinate in an adapted neighbourhood of the binding and the form
π∗dθ where dθ is the standard coordinate differential on S1 = R/2πZ.

B

S1

Pϕ

Figure 1.2.: Neighbourhood of the binding of an open book

We have seen how to obtain a closed manifold together with an open
book decomposition of this manifold from an abstract open book. Now,
we explain how to obtain an abstract open book from an open book
decomposition (B, π) of a closed manifold M .

Take an adapted neighbourhood U ∼= B×D2 of the binding and extend
the coordinate vector field ∂ϕ over M using an auxiliary Riemannian
metric g. More precisely, choose g such that ∂ϕ is orthogonal to the
pages inside U and extend ∂ϕ to all of M as a non-vanishing vector field
orthogonal to the pages while holding it fixed on B × B̄2/3(0). Then the
time-2π-flow of ∂ϕ is a monodromy for an abstract open book for M with
pages P ∼= Pϕ \

(

B ×B1/2(0)
)

.
If we start with an abstract open book (P,Ψ), construct the manifold

M(P,Ψ) with the corresponding open book decomposition, and then
construct from this a new open book we do exactly obtain the old
abstract open book (P,Ψ): we get an abstract open book with pages
P ′ = P ∪ ∂P × [0, 1/2] and a monodromy Ψ′. It is easy to see that this
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monodromy is isotopic to the diffeomorphism of P ′ obtained from Ψ by
extending it over ∂P × [0, 1/2] as the identity.

On the other hand isotopic monodromies yield diffeomorphic manifolds.

Proposition 1.4.4 (See [17, Lemma 7.3.1]). Let (P,Ψ0) and (P,Ψ1)
be two abstract open books with isotopic monodromies. Then there is a
diffeomorphism Φ from M(P,Ψ0) to M(P,Ψ1) that sends pages of the
induced open book decomposition on M(P,Ψ0) to those on M(P,Ψ1).

Proof. Let ψt be an isotopy from the identity to Ψ−1
1 ◦Ψ0 and µ : [0, 2π] →

[0, 1] a smooth monotonously increasing function that evaluates vanishes
close to 0 and is constant of value 1 close to 2π. Then we define the map

Φ: P × [0, 2π] → P × [0, 2π]

(x, ϕ) 7→
(

ψµ(ϕ)(x) , ϕ
)

.

This diffeomorphism has the property that Φ(x, ϕ) = (x, ϕ) for small
ϕ and Φ

(

Ψ−1
0 (x) , ϕ

)

=
(

Ψ−1
1 (x) , ϕ

)

if ϕ is close to 2π. Consequently, it
descends to a diffeomorphism Φ: P (Ψ0) → P (Ψ1).

Since ψt agrees with the identity in a neighbourhood of the boundary of
P we can further extend Φ over ∂P ×D2 as the identity. This concludes
the proof.

1.5. Deformation Retractions

In this thesis, we construct many deformation retractions. Since the
naming convention for the various types of these differ from author to
author, we use this small section to clarify our own convention.

Definition 1.5.1. Let X be a topological space and A ⊂ X. We say
that Dt : X → X, t ∈ [0, 1], is a weak deformation retraction from
X into A if D0 = idX , D1(X) ⊂ A, and Dt(A) ⊂ A for all t ∈ [0, 1]. If,
moreover, Dt|A = idA for all t ∈ [0, 1], then we say that Dt is a strong
deformation retraction from X into A.

If there is a weak/strong deformation retraction from X into A, we call
A a weak/strong deformation retract of X.

The basic property of a weak deformation retraction we use in this
thesis is that the time-1-map is a homotopy equivalence between X and
A.
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Proposition 1.5.2. Let Dt be a weak deformation retraction from a
topological space X into a subspace A. Then the time-1-map D1 is
a homotopy equivalence between X and A with homotopy inverse the
inclusion iA of A into X.

Proof. The deformation Dt is a homotopy from the identity on X to the
map D1 = iA ◦D1. Since Dt(A) ⊂ A for all t ∈ [0, 1], the restriction of
Dt to A is a homotopy from the identity on A to the map D1|A = D1 ◦ iA.
This proves that iA is a homotopy inverse to D1.





2. Contact Open Books

Contact open books have come to major prominence in contact geometry
since Giroux’s result in [22]: every contact structure on a closed manifold
is supported by an open book. In this chapter we explain the concept of a
contact open book ; we define what it means that a contact form is adapted
to and a contact structure supported by an open book. Apart from this,
we also generalise the concept of adaptedness to general 1-forms and lay
the foundation for the chapters to come.

Following this we present three methods how to construct contact
manifolds using open books and then show that, in a certain sense, they
are equivalent.

2.1. Forms Adapted to an Open Book

2.1.1. Adapted Forms

Usually, in contact geometry the concept of adaptedness only exists for
contact forms. However, as we will see throughout this thesis, in the
study of adapted contact forms, it can be beneficial to drop the contact
condition. Consequently, we make the following definition for general
1-forms.

Definition 2.1.1. Let (B, π) be an open book decomposition of a closed
(2n+ 1)-dimensional manifold M . Then we say that a form α ∈ Ω1(M)
is adapted to (B, π) if the following three conditions are satisfied.

• The restrictions of dα to the tangent bundles of the pages Pϕ =
π−1(ϕ) are symplectic forms.

• The restriction of α to TB is a contact form.

• The orientation of B induced by α|TB agrees with the orientation as
the boundary of the pages with the orientation induced by dα|TPϕ .

19
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If there is a contact form α adapted to (B, π), we say that (B, π, α) is a
contact open book.

We denote by Ω1(π) the space of 1-forms adapted to (B, π) and by
A(π) its subspace consisting of the adapted contact forms. Moreover, we
denote by Ω1(π, αB) and Ω1(π, ξB) the subspaces of Ω1(π) consisting of
those forms whose restriction to TB agrees with the contact form αB and
those forms whose restriction to TB induces the contact structure ξB,
respectively, and define A(π, αB) and A(π, ξB) to be the intersection of
Ω1(π, αB) and Ω1(π, ξB) with A(π), respectively. As we will see in the
next subsection, each of the pairs of spaces above defined by the same
condition on the binding is homotopy equivalent.

Before we proceed to the next subsection and prove this, let us take a
closer look at the space of adapted forms Ω1(π). To do so, we first fix a
manifold M and an open book decomposition (B, π) for the remainder of
this subsection.

We know that for every α ∈ Ω1(π) the restriction of α to TPϕ is a
Liouville form on Pϕ for every ϕ ∈ S1 = R/2πZ. Moreover, we know that
the orientation induced by dα|TPϕ

induces the same orientation on the
binding B = ∂P̄ϕ. This is true, in particular, for the pairs of opposite
pages Pϕ and Pϕ+π. The union of the closures of these two pages forms a
single closed hypersurface of M . However, since the orientations induced
on the binding agree, the orientations of Pϕ and Pϕ+π do not match.
This implies that the restriction of (dα)

n |TP̄ϕ
to the binding vanishes

identically.

This fact motivates us to introduce the space B(π) of those 1-forms β
on the closure of the page P0 satisfying the following three conditions.
The restriction of β to P0 is a Liouville form, that to TB = T∂P0

a contact form, and the restriction of (dβ)
n

to B vanishes identically.
Furthermore, we introduce its subspace B(π, α) where we fix the contact
form α induced on ∂P0. We call the space B(π), somewhat imprecisely,
the space of induced Liouville forms on the page P0.

Indeed, we can identify the pages of the open book decomposition (B, π)
using the flow Ψt of some vector field X transverse to the pages, agreeing
with ∂ϕ on an adapted neighbourhood of the binding, and satisfying
dϕ(X) = 1. Then the restriction of an adapted form to the closure of any
page is an element on B(π). However, because of smoothness issues at
the binding, not every smooth path in B(π) from some β to Ψ∗

2πβ yields
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an adapted form, even if the contact forms induced on the binding agree.
Now, as a preparation for Section 3.1, we take a closer look at adapted

forms in an adapted neighbourhood U ∼= B×D2 of the binding B. Using
the cartesian coordinates (x, y) on D2 corresponding to the adapted polar
coordinates (r, ϕ), we can decompose α as

α = β + a dx+ b dy.

Here, we adopt the convention to treat forms in such a decomposition
on U as D2-families of forms on B, i.e. a and b are families of functions
on B, and β is a family of 1-forms on B, all parametrised over D2. In
particular, whenever we apply the exterior differential to one of the forms
in such a decomposition, this is the exterior differential on B and not on
B ×D2.

Unfortunately, the more convenient decomposition

α = β + u dr + v dϕ

with respect to the polar coordinates is not well defined at the binding,
unless the two functions u and v vanish there, i.e. unless we have α|B =
α|TB with respect to the splitting of T

(

B ×D2
)

induced by the product
structure. Fortunately, we can always arrange this.

Before we engage the proof of the last statement, we have to inspect
the condition a form α has to satisfy to make dα symplectic on the pages.
Since dα is exact and hence closed, we only have to worry about dα being
non-degenerate. In our coordinates the non-degeneracy of dα translates
to

0 < 1
n (dα)

n |TPϕ
= (du− βr) ∧ (dβ)

n−1 ∧ dr
= (cosϕ (da− βx) + sinϕ (db− βy)) ∧ (dβ)

n−1 ∧ dr
(2.1)

where subscripts denote the derivatives with respect to the corresponding
parameters.

Equipped with this knowledge we are able to turn our attention again
to arranging α|B = α|TB .

Proposition 2.1.2. There is a strong deformation retraction Dt from
Ω1(π) into its subspace Ω1

0(π) consisting of those forms additionally sat-
isfying α|B = α|TB. Moreover, we may assume that the deformation is
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smooth in the deformation parameter and constant outside the adapted
neighbourhood U of the binding.

Proof. If Ω1(π) is empty, so is its subspace Ω1
0(π). So, let us assume that

Ω1(π) is non-empty.
Let α be a form adapted to the open book decomposition (B, π). To

define the deformation retraction D we make the following ansatz.

Dt(α) = αt := at dx+ bt dy + βt

with

at = a− tg′(x)h(y) a|B ,
bt = b− tg′(y)h(x) b|B ,
βt = β − tg(x)h(y) da|TB − tg(y)h(x) db|TB ,

where g, h : R → R are smooth functions constructed as follows.
Choose a fixed cut-off function h0 : R → [0, 1] with h0|[−1/2,1/2] ≡ 1 and

h0|R\[−1,1] ≡ 0 as in Figure 2.1 below.

//
x

OO
h0

|
−1 − 1

2

|
11

2

1

//
x

OO
h′0

|

−1
|

− 1
2

|

1
|
1
2

Figure 2.1.: The cut-off function and its derivative

Then set h(x) := δh0(2x) and g(x) := sin(x/δ2)h(x) for some δ ∈ R+

that we still have to determine.
Note that by our choice of g and h we have g′(0)h(0) = 1 and

g(0)h(0) = 0. This implies that at|B = (1− t) a|B, bt|B = (1− t) b|B,
and βt|B ≡ α|TB .

Inserting this into our ansatz, we see that

(

dat − (βt)x
)

= (da− βx) + tg(y)h′(x) db|B ,
(

dbt − (βt)y
)

= (db− βy) + tg(x)h′(y) da|B , and

dβt = dβ .
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Accordingly, Inequality 2.1, which has to hold in order for dαt|TPϕ
to

be symplectic, reads

0 < (dαt)
n |TPϕ

= (dα)
n |TPϕ

+ nt
(

cosϕ g(y)h′(x) db|B
+ sinϕ g(x)h′(y) da|B

)

∧ (dβ)
n−1 ∧ dr.

We want to choose δ sufficiently small for this inequality to hold. To
see that this is possible note that the support of the functions given by
(x, y) 7→ g(y)h′(x) and (x, y) 7→ g(x)h′(y) is contained in the compact
set

S :=B ×
(

[−1/2, 1/2]
2 \ (−1/4, 1/4)

2
)

,

which is disjoint from B = B×{0}, and that both functions are bounded

from above by 2δ2 ‖h0‖2∞.

D2

S

x

y

Figure 2.2.: The support of g(x)h′(y) and g(y)h′(x)

Thus, the top-dimensional form (dαt)
n |TPϕ − (dα)

n |TPϕ vanishes in
the limit δ → 0 and its support is contained in S ∩ Pϕ, where (dα)

n
is

bounded from below. Consequently, for a sufficiently small choice of δ,
the restriction of dαt to the pages is symplectic. We may for example set

δ =

√

minS
∣

∣(dα)
n |TPϕ

∣

∣

2n ‖h0‖2∞

(

max
S

∣

∣

∣da|B ∧ (dβ)
n−1 ∧ dr

∣

∣

∣

+max
S

∣

∣

∣db|B ∧ (dβ)
n−1 ∧ dr

∣

∣

∣+ 1
)−1/2

,

where we identified top-dimensional forms with functions using a fixed
reference volume form. Here, minS is the minimum in S ∩ Pϕ.
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Since this choice of δ depends continuously on α, the map Dt is continu-
ous for all t ∈ [0, 1]. Furthermore, because the condition α|B = α|TB is
equivalent to a|B ≡ 0 ≡ b|B , the image of D1 is contained in Ω1

0(π), and
whenever α already satisfies α|B = α|TB, the family αt is constant. So
Dt is a strong deformation retraction. That the deformation is constant
outside U and the smoothness in the deformation parameter are clear
from the definition of αt.

By the proposition above we know that we can always deform adap-
ted forms α coherently such that α|B = α|TB. Then we can use the
decomposition

α = β + u dr + v dϕ

in any adapted neighbourhood of the binding. Moreover, we know that u
and v vanish identically on the binding. Together with our observation
that

1
n (dα)

n |TPϕ
= (du− βr) ∧ (dβ)

n−1 ∧ dr

vanishes on the binding, as well, we see that the family of top-dimensional
forms −βr ∧ (dβ)

n−1
on B does so, too. This will become important in

Section 3.1.

2.1.2. From Adapted Forms to Adapted Contact Forms

In the last section we introduced the space Ω1(π) of forms adapted to an
open book decomposition (B, π) of a closed manifold. Though this space
is more convenient than the corresponding space of contact forms A(π),
we are usually interested in results about the latter one. Consequently,
we have to find means to turn results about Ω1(π) into results about
A(π). These are provided by the following lemma, which is an easy
improvement on a result of Giroux [21, Slide 39] that can also be found
in [17, Proposition 4.4.9].

Theorem 2.1.3. Let (B, π) be an open book decomposition of a 2n-dimen-
sional closed manifold M . Then there is a weak deformation retraction
from Ω1(π) into its subspace A(π). This deformation can be chosen to be
smooth in the deformation parameter and to preserve the restriction of
the forms to the binding and to the pages of the open book decomposition.
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Proof. First of all, if Ω1(π) is empty, so is its subspace A(π). So let us
assume that Ω1(π) is non-empty.

The geometrical idea of the proof is to let the kernels of the adapted
1-forms approach the tangent spaces of the pages. Since the restriction
of the forms to the pages are Liouville and the condition to be Liouville
is open, the kernels become contact structures as soon as they are close
enough to the pages. The adjustment of the kernels can be achieved by
adding a further term to these forms; we describe it below.

Let α ∈ Ω1(π). For a number R and a function f : M → [0, 1], which
we construct later, we define

αR :=α+Rf dϕ.

For this adapted 1-form we have

αR ∧ (dαR)
n
= α ∧ (dα)

n
+ nRf dϕ ∧ (dα)

n
+Rf ′ dr ∧ dϕ ∧ α ∧ (dα)

n−1

=:Ω1 +RΩ2 +RΩ3

where ′ denotes the derivative with respect to the radial coordinate in an
adapted neighbourhood U ∼= B ×D2 of the binding B.

We want this top-dimensional form to be positive for sufficiently large
R. To achieve this, we have to find a choice of f such that αR is well
defined, and on all of M the sum of the two forms Ω2 and Ω3 is positive.

To construct a suitable function f , we start with a fixed smooth
monotonously increasing function f0 : R

+
0 → [0, 1] that is given by f0(r) =

r2 for r ∈ [0, 1/3] and is constant of value 1 on [2/3,∞).
Since every form adapted to (B, π) restricts to a contact form on the

binding B and the contact condition is an open condition on 1-forms on
B, Corollary A.2 tells us that there is a function ǫ : Ω1(π) → (0, 1) such
that for every α′ ∈ Ω1(π) and x ∈ Bǫ(α′)(0) ⊂ D2 the restriction of α′ to
T (B × {x}) is a contact form.

We use this function ǫ to define our function f by f((r, ϕ) , b) =
f0(r/ǫ(α)) for ((r, ϕ) , b) ∈ Bǫ(α)(0)×B and extend it to the rest of M by
1.

For this choice of f , the form αR is well defined for all R ∈ R. Moreover,
the form Ω2 is positive everywhere except on the binding, where it
vanishes, because α is adapted. Since the support of f ′ is contained inside
Bǫ(α)(0)×B, the form Ω3 is non-negative, too. Taking a closer look at
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this form for r ≤ ǫ(α)/3, we observe that it is given by

Ω3 = n
ǫ(α)2

r dr ∧ dϕ ∧ α ∧ (dα)
n−1

,

which is strictly positive.
Because M is compact, the observations of the last paragraph imply

that αR is contact for sufficiently large R ∈ R. More precisely, we may
set

R(α) := 1 +
maxM |Ω1|

min
{

minM\(Bǫ(α)/3(0)×B) |Ω2| , infBǫ(α)/3(0)×B |Ω3|
} ,

which continuously depends on the form α. Here, we identified top-di-
mensional forms with functions using some volume form as reference.

Now, notice that whenever αR ∧ (dαR)
n
> 0, this will also be true

for any larger choice of R. So setting Ds(α) :=αsR(α) yields a weak
deformation retraction with the desired properties.

Remark 2.1.4. The statement of the lemma above also holds for the
corresponding spaces of smooth paths αt, t ∈ [0, 1]: the sole thing that
has to be changed is that in the definition of R(αt), we also take the
maximum over t ∈ [0, 1].

In dimension 3, Theorem 2.1.3 is nearly all we need to get a homotopy
classification of the space of adapted contact forms. However, this relies
on the low dimension of the pages.

Corollary 2.1.5. If M is a 3-dimensional closed manifold with an open
book decomposition (B, π), then the space A(π) of contact forms adapted
to (B, π) is either empty or has 2m contractible components where m is
the number of components of the page P0.

Proof. Let us assume that A(π) and hence Ω1(π) is non-empty and let
α ∈ Ω1(π).

First of all, the number m of components of the pages Pϕ does not
vary with ϕ because they are all diffeomorphic via the flow of a vector
field X satisfying ιXdϕ ≡ 1.

In a 3-dimensional manifold, the binding B is 1-dimensional. As a result,
the condition on α to induce a contact form on the binding B is the same
as to induce a volume form on B. Analogously, the condition on dα to be
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symplectic on the pages is equivalent to inducing volume forms on them
because they are 2-dimensional. So the components of Ω1(π) are convex
and hence contractible. Moreover, there are 2m choices of the orientation
of the pages so that Ω1(π) has 2m components. By Theorem 2.1.3 this
implies that A(π) consists of 2m contractible components, as well.

As we will see in Section 2.2, the space of adapted contact forms is
never empty in dimension 3.

In higher dimensions the space A(π) is more complicated. Because of
this we turn our attention to the less restrictive space Ω1(π) and then
use Theorem 2.1.3 in the following form.

Corollary 2.1.6. Let (B, π) be an open book decomposition of a closed
manifold and Dt a deformation of Ω1(π) into a subspace V that is in-
variant under the deformation from Theorem 2.1.3. Then there is a
deformation of V into V ∩ A(π). Moreover, if the time-1-map of the
deformation on Ω1(π) is a homotopy equivalence, so is the time-1-map of
the deformation on A(π).

Proof. Denote by D̃s the weak deformation retraction from Theorem 2.1.3.
We construct the deformation of A(π) into V ∩ A(π) as follows.

For given α ∈ Ω1(π), we first apply the deformation D̃s and then
continue via the path

(

D̃1 ◦Dt

)

(α).
Because the inclusion of A(π) into Ω1(π) is a homotopy inverse of

D̃1 and the subspace V is invariant under D̃t, the time-1-map of the
deformation we have constructed is a homotopy equivalence if and only if
D1 is a homotopy equivalence.

Remark 2.1.7. If Dt is smooth in the deformation parameter, this property
can be preserved. To achieve this we have to replace D̃s by the weak
deformation retraction from Remark 2.1.4 and reparametrise the two
parts of the deformation such that they are constant in a neighbourhood
of the connecting ends.

Two prominent examples of invariant subspaces of Ω1(π) to which
we will apply Corollary 2.1.6 are the spaces Ω1(π, αB) and Ω1(π, ξB) of
those forms inducing the contact form αB and the contact form ξB on
B, respectively. Applying Corollary 2.1.6 to these spaces with the trivial
deformation we get the following first result.
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Corollary 2.1.8. Let (B, π) be an open book decomposition of a closed
manifold, αB a contact form on B, and ξB = kerαB. Then Ω1(π, αB) is
homotopy equivalent to A(π, αB), and Ω1(π, ξB) to A(π, ξB). �

2.1.3. Adapted Contact Forms and Supported Contact
Structures

So far, we have considered adapted forms. In contact topology there
is also the corresponding concept for contact structures, the supported
contact structures.

Definition 2.1.9. We say that a contact structure ξ on a closed manifold
M is supported by an open book decomposition (B, π) of M if it is the
kernel of a contact form adapted to (B, π).

We denote by Ξ(π) the space of all contact structures supported by
(B, π) and by Ξ(π, ξB) its subspace consisting of those contact structures
ξ such that ξ ∩ TB = ξB .

Often one is not really interested in the specific contact form but
only the contact structure. Moreover, there are fundamental theorems
that work for contact structures but fail for contact forms; a major
example is Gray stability, including our version adapted to open books
(Theorem 1.1.8). So it may be of interest to study supported contact
structures instead of adapted contact forms. However, because of the
very definition of a supported contact structure all our proofs work using
adapted contact forms. Consequently, we need means to obtain families
of adapted contact forms from families of supported contact structures.
Ideally, these means would induce a homotopy equivalence between Ξ(π)
and A(π), and between Ξ(π, ξB) and A(π, ξB). We show in this subsection
that these means exist and that they have the desired property.

The strategy is to construct them from the corresponding tools that exist
for ordinary contact structures and contact forms. The basic underlying
observation is the following.

Lemma 2.1.10 (Cf. [17, Lemma 1.1.1]). Let Ω1
∗(M) be the space of

nowhere vanishing 1-forms on an oriented n-dimensional manifold M
and D1(M) the space of smooth oriented hyperplane distributions on M .

Then the map ker : Ω1
∗(M) → D1(M) given by taking the kernel has

a section s. Moreover, given a fixed α0 ∈ Ω1
∗(M) we can arrange that

s(kerα0) = α0.
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Proof. If D1(M) is empty, so is its preimage Ω1
∗(M) under ker. So, let us

assume that D1(M) is non-empty.
Choose a Riemannian metric g on M . Then the map on D1(M) that

associates to a hyperplane distribution ξ the positive unit orthogonal
vector field ηξ to ξ is a homeomorphism between D1(M) and the space
of smooth sections of the unit tangent bundle STM of M .

The unit tangent bundle STM is canonically isomorphic to the unit
cotangent bundle ST ∗M by dualising via the Riemannian metric g. Du-
alising ηξ this way yields a smooth section of ST ∗M whose kernel is
precisely ξ. Since a section of ST ∗M is a nowhere vanishing 1-form, this
provides the desired section s0.

Given a fixed α0 ∈ Ω1
∗(M) we know that the kernels of α0 and s0(kerα0)

agree. So there is a positive function λ on M such that s0(kerα0) = λα0.
So our desired section is given by s = 1

λs0.

The existence of the section above immediately yields the following
result about the space Ξ(M) of contact structures on M and the space
A(M) of contact forms on M .

Theorem 2.1.11. There is a section s of the map ker : A(M) → Ξ(M)
that is a homotopy equivalence. Moreover, given a contact form α0 we
may choose the section s such that s(kerα0) = α0.

Proof. If Ξ(M) is empty, so is A(M). So, let us assume that Ξ(M) is
non-empty.

The section is simply the restriction of that from Lemma 2.1.10 to the
subspace Ξ(M) of the space of smooth oriented hyperplane distributions
D1(M). We only have to prove that it is a homotopy equivalence.

We already know that s is a section and hence ker ◦s = id. So it only
remains to show that the identity on A(M) is homotopic to the map
s ◦ ker.

Because two 1-forms with the same (oriented) kernel differ only by
multiplication with a positive function and the space of positive functions
is convex, the following map is a homotopy from the identity on A(M)
to the map s ◦ ker.

H : A(M)× [0, 1] → A(M)

(α, t) 7→ (1− t)α+ ts(kerα)
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The major problem in the adaptation of the corollary above to supported
contact structures and adapted contact forms is that not every contact
form defining a supported contact structure needs to adapted. Still we
have the following lemma.

Lemma 2.1.12. The fibres of the map ker : A(π) → Ξ(π) are convex.

Proof. If Ξ(π) is empty, the statement is void. So let us assume that it is
not and let ξ ∈ Ξ(π). Then, by definition, the fibre over ξ is non-empty,
too.

Let α ∈ ker−1(ξ). Then every element α′ ∈ ker−1(ξ) can be written
as λα for some positive function λ on M . The condition to restrict to a
symplectic form on a page Pϕ = π−1(ϕ) reads

0 < (λ dα+ dλ ∧ α)n |Pϕ
= λn−1 (λ dα+ ndλ ∧ α) ∧ (dα)

n−1 |Pϕ
.

Because λ is positive, this is equivalent to the condition

0 < (λ dα+ ndλ ∧ α) ∧ (dα)
n−1 |Pϕ

,

which is convex in λ and hence in α′. Since the condition that B be a
contact submanifold does only depend on the underlying contact structure
ξ, this implies that the fibres of ker are convex.

Thanks to the lemma above, we can adapt Theorem 2.1.11 to the space
of supported contact structures.

Theorem 2.1.13. There is a section s of the map ker : A(π) → Ξ(π)
that is a homotopy equivalence. Moreover, given an adapted contact form
α0 we may choose the section s such that s(kerα0) = α0.

Proof. If Ξ(π) is empty, so is A(π). So, let us assume that Ξ(π) is
non-empty.

Let α0 ∈ A(π) and s0 be the restriction of the corresponding section
from Theorem 2.1.11 to Ξ(π). By Lemma 2.1.12 it is sufficient to modify
s0 such that its image is contained in A(π). Then the modified section
is a homotopy equivalence by the same argument as in the proof of
Theorem 2.1.11.

Now let ξ ∈ Ξ(π). Then, by definition, there is a smooth positive
function λ on M such that λs0(ξ) is an adapted contact form. Moreover,
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we may choose λkerα0
to be the constant function of value 1 because α0

is adapted and s0(kerα0) = α0.

Both the conditions that the restriction to the binding B be contact
and that the restrictions to the pages Pϕ be Liouville forms are open.
This shows that there is a small neighbourhood Uξ of ξ in Ξ(π) such
that λξs0(ξ

′) is adapted for all ξ′ ∈ Uξ. Then the open sets Ukerα0
and

Uξ \ {kerα} for ξ ∈ Ξ(π) \ {kerα0} form an open cover U of Ξ(π).

By the identification of D1(M) with the smooth sections of STM
from the proof of Lemma 2.1.10, the space Ξ(π) is homeomorphic to
a subset of the smooth sections of TM . Thus, Ξ(π) is metrizable and,
hence, paracompact. Accordingly, there is a partition of unity {µξ}ξ∈Ξ(π)

subordinate to U . This allows us to define a map η from Ξ(π) to the
space of smooth positive functions on M by

η(ξ) =
∑

ξ′∈Ξ(π)

µξ′(ξ)λξ′ .

By construction, η(ξ) is a convex combination of finitely many smooth
positive functions λξi , i = 1, . . . ,m, such that λξis0(ξ) is adapted. So
Theorem 2.1.3 tells us that s(ξ) = η(ξ) s0(ξ) is adapted. Moreover, all
functions µξ but µkerα0

vanish at kerα0 so that η(kerα0) ≡ λkerα0
≡ 1.

Accordingly, s(ξ) = η(ξ) s0(ξ) defines a section with the desired prop-
erties.

By restricting to Ξ(π, ξB) we immediately get the following corollary.

Corollary 2.1.14. Let ξB be a contact structure on B. Then there is
a section s of the map ker : A(π, ξB) → Ξ(π, ξB) that is a homotopy
equivalence. Moreover, given an α0 ∈ A(π, ξB) we may choose the section
s such that s(kerα0) = α0.

2.2. Construction of Contact Open Books

In the preceding section we introduced the concept of a contact open
book. Here, we present several constructions that can be used to build
contact open books.
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2.2.1. Generalised Thurston-Winkelnkemper
Construction

In dimension 3, Thurston and Winkelnkemper described in [38] a method
to construct a contact form on the manifold M(P,Ψ) associated to an
abstract open book (P,Ψ) with orientable page P . In fact, this construc-
tion yields for every volume form on the page a contact form adapted
to the open book decomposition of M(P,Ψ) associated to (P,Ψ); cf. [17,
pages 151-154].

In higher dimensions this construction does not work anymore in its
full generality because not every volume form on the page has to be
induced by a symplectic form. However, Giroux showed in [22] and
[21] that a similar construction is possible under more restrictive condi-
tions. This construction is called the generalised Thurston-Winkelnkemper
construction.

Before we describe this construction we need to introduce three concepts
that appear in the construction. First, we need a symplectic version of
an abstract open book.

Definition 2.2.1. We say that (P,Ψ, β) is a symplectic open book
if P is an even-dimensional manifold with boundary, β a Liouville form
on P such that the Liouville vector field to β points outwards along ∂P ,
and Ψ a symplectomorphism of (P, dβ) that agrees with the identity in
a neighbourhood of ∂P . If moreover Ψ is an exact symplectomorphism,
then we say that (P,Ψ, β) is an exact symplectic open book.

This provides for the symplectic structure on the mapping torus. Never-
theless, in the construction the usual mapping torus will be too restrictive.
So, second, we introduce the generalised mapping torus.

Definition 2.2.2. Let P be a manifold with boundary, Ψ a diffeomor-
phism of P , and h a positive function on P that is constant in a neigh-
bourhood of ∂P . Then the generalised mapping torus Ph(Ψ) of Ψ
with respect to h is defined as the quotient

Ph(Ψ) = {(x, ϕ) ∈ P × R | 0 ≤ ϕ ≤ h(x)} /(x,h(x))∼(Ψ(x),0).

Remark 2.2.3. Let C be the value of h in a neighbourhood of ∂P . Then
the generalised mapping torus with respect to h is diffeomorphic to the
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ordinary one via the diffeomorphism

Φ: P (Ψ) → Ph(Ψ)

(x, ϕ) 7→ (x, µ(x, ϕ)) ,

where µ : P × [0, 2π] → R+
0 is a smooth strictly monotonously increasing

function such that µ(x, t) = Ct in a neighbourhood of P × {0} and
∂P × [0, 2π], and µ(x, t) = (h(x) + C (t− 2π)) in a neighbourhood of
P × {2π}.

It remains to provide a contact structure on B ×D2. This will essen-
tially be the same as in the Thurston-Winkelnkemper construction in
dimension 3. To be able to refer to such a contact structure easily we
make the following third definition.

Definition 2.2.4. We say that a pair h = (h1, h2) of smooth functions
h1 : [0, 1] → R+ and h2 : [0, 1] → R+

0 is a Lutz pair if these functions
satisfy the following conditions.

• h′1(r) < 0 and h′2(r) ≥ 0 for r > 0.

• h1(0) = 1 and h2 vanishes like r 7→ r2 at r = 0.

• h
(2n−1)
1 (0) = 0 for all n ∈ N.

Remark 2.2.5. The condition h1(0) = 1 only serves as a normalisation.

Remark 2.2.6. We chose the name “Lutz pair” because such pairs of
functions appear in the construction of the Lutz twist ; cf. [17, Section
4.3].

Given a Lutz pair and a contact form αB on B we can construct the
following contact form on B ×D2.

αh,αB
= h1(r)αB + h2(r) dϕ

Here, (r, ϕ) are polar coordinates on D2. This is well defined and smooth
because h2 vanishes like r 7→ r2 and all odd derivatives of h1 vanish at
r = 0.

The contact condition is given by

0 6= hn−1
1 (h1h

′
2 − h2h

′
1)αB ∧ (dαB)

n−1 ∧ dr ∧ dϕ,
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which holds thanks to the properties of a Lutz pair. Moreover, the
restriction of dαh,αB

to the sets {ϕ = const} is symplectic because the
corresponding condition (2.1) reads

0 < −h′1αB ∧ (h1 dαB)
n−1 ∧ dr = −h′1hn−1

1 αB ∧ (dαB)
n−1 ∧ dr.

Accordingly, the form αh,αB
has the features we need in the construction

of an adapted contact form on the manifold M(P,Ψ) associated to an
abstract open book (P,Ψ).

Equipped with the three concepts above we are ready to describe
the generalised Thurston-Winkelnkemper construction. We will
mostly follow [17, Section 7.3].

Theorem 2.2.7 (Generalised Thurston-Winkelnkemper construction).
Let (P,Ψ, β) be a symplectic open book. Then there is a contact form α
on M(P,Ψ) that is adapted to the open book decomposition associated
to (P,Ψ). Moreover, we may assume that the restriction of dα to the
tangent bundle of P ⊂ Pϕ is given by dβ with respect to the splitting of
T (M(P,Ψ))|P inherited from P (Ψ).

Proof. By [17, Lemma 7.3.4] the symplectomorphism Ψ is isotopic to an
exact symplectomorphism Ψ′ through symplectomorphisms that agree
with the identity in a neighbourhood of ∂P . Denote by Ψt the corres-
ponding isotopy from Ψ to Ψ′.

Then the diffeomorphism from M(P,Ψ) to M(P,Ψ′) we described in
Proposition 1.4.4 is induced by the map

Φ: P × [0, 2π] → P × [0, 2π]

(x, ϕ) 7→
(

ψµ(ϕ)(x) , ϕ
)

where µ : [0, 2π] → [0, 2π] is a smooth monotonously increasing function
that vanishes in a neighbourhood of 0 and is constant of value 2π in a
neighbourhood of 2π, and ψt = Ψ−1

t ◦Ψ.
Now, assume that we have a contact form α as in the assertion of

the theorem but for Ψ′ instead of Ψ. Then Φ∗α is adapted to the open
book decomposition of M(P,Ψ) associated to (P,Ψ) and, moreover, the
restriction of Φ∗dα to P ⊂ Pϕ is given by

ψ∗
µ(ϕ)dβ = dβ
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because all ψt are symplectomorphisms of (P, dβ).
This shows that, without loss of generality, we may assume that Ψ is

already an exact symplectomorphism.
Because Ψ is exact, we have

(

Ψ−1
)∗
β − β = dh

for some function h on P . Since P is compact, we may assume that h is
positive.

To make the construction independent of the choice of h, we impose the
condition that the minimum of h be 1, which fixes the function uniquely.

With this function h we can build the generalised mapping torus Ph(Ψ)
and on this the contact form α = β + dϕ. This is well defined since its
canonical extension to P × R is invariant under the pullback with the
map (x, ϕ) 7→

(

Ψ−1(x) , ϕ+ h(x)
)

.
Next, use the diffeomorphism Φ from Remark 2.2.3 to pull α back to

the ordinary mapping torus P (Ψ). Then Φ∗α = β + dµ for the function
µ from the construction of Φ. In particular, d(Φ∗α) = dβ.

Note that there is a neighbourhood U of ∂P on which the sym-
plectomorphism Ψ agrees with the identity and for which we have
Φ∗α = β +C dϕ on U × S1 where C = (2π)

−1
h|∂P . Accordingly, we can

glue (P (Ψ) ,Φ∗α) along ∂P × S1 to
(

∂P ×D2, α(h1,Ch2),αB

)

where h is
any Lutz pair such that h2 is constant close to r = 1 with value 1, and
αB = (h1(1))

−1
β|T∂P .

This yields the desired contact form on M(P,Ψ) = P (Ψ)∪∂P×S1

(

∂P ×
D2
)

.

Remark 2.2.8. Let us fix the Lutz pair h and assume that the sym-
plectomorphism Ψ is already exact. Then the contact manifold con-
structed above only depends on the choice of the diffeomorphism from
Remark 2.2.3.

In turn, this diffeomorphism solely depends on the function µ in its
construction. The space of admissible functions µ is convex and hence
contractible. Moreover, each pair of these functions agrees on a neigh-
bourhood of ∂P × [0, 2π], of P × {0}, and of P × {2π}. Accordingly, a
contact manifold resulting from the construction is determined up to an
isotopy relative to ∂P ×D2 and a neighbourhood of the page P × {0}.

We will denote by M(P,Ψ, β) any of these isotopic contact manifolds.
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Above, we have seen a way to construct contact manifolds in higher
dimensions. At first glance the contact manifolds we constructed look
rather special. Nevertheless, according to Giroux [21], every contact
manifold can be constructed this way.

Theorem 2.2.9 (See [21]). Every contact manifold is contactomorphic
to M(P,Ψ, β) for some exact symplectic open book (P,Ψ, β) where (P, dβ)
is a Weinstein domain.

Unfortunately, so far no detailed proof of this has been published. In
Subsection 3.1.4 we provide one small step of this theorem. Namely, we
show that for every contact open book (B, π, α) there is a symplectic open
book (P,Ψ, β) such that (B, π, α) and M(P,Ψ, β) are contactomorphic
via a contactomorphism preserving the binding.

2.2.2. Construction from Paths of Liouville Forms

There are three things about the generalised Thurston-Winkelnkemper
construction that are not very satisfying. First, the monodromy has to be
a symplectomorphism of the page (P, dβ), second, we have to modify the
monodromy during the construction if it is not already exact, and, third,
the construction performs a detour through the generalised mapping torus
instead of constructing a contact form immediately on the mapping torus.
In this subsection we present a simplified construction that addresses
these points.

We start our construction with a Liouville domain (P, β0). Given
a suitable diffeomorphism Ψ of P that agrees with the identity in a
neighbourhood of the binding we construct the contact form separately
on the mapping torus P (Ψ) and on ∂P ×D2.

On the part ∂P ×D2 we do not make any changes to the generalised
Thurston-Winkelnkemper construction, i.e. we still choose some Lutz
pair h such that h2 is constant close to r = 1 with value 1 and endow
∂P ×D2 with the contact form α(h1,Ch2),αB

with αB = (h1(1))
−1
β0|T∂P

and some positive constant C we still have to determine.
Let us now denote by B∞(P, β0) the space of all Liouville forms on P

that agree with β0 on ∂P including all derivatives. Suppose there is an
adapted contact form on P (Ψ) that restricts to β0 on P × {0} and can
be glued to the contact form on ∂P ×D2. Then, by the nature of contact
open books, there has to be a smooth path βt in B∞(P, β0) from β0 to
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Ψ∗β0. If such a path exists, there is also always a corresponding path
that, in addition, is technical, i.e. that is constant in a neighbourhood
of its ends: we obtain it by reparametrising the original path. This is
exactly the data we need for our construction.

Proposition 2.2.10. Let (P, β0) be a Liouville domain. Furthermore, let
Ψ be a diffeomorphism of P that agrees with the identity in a neighbourhood
of the boundary and βt, t ∈ [0, 2π], a technical smooth path in B∞(P, β0)
from β0 to Ψ∗β0.

Then there is a contact form α on M(P,Ψ) that is adapted to the open
book decomposition associated to (P,Ψ). Moreover, we may assume that
the restriction of α to the tangent bundle of P ⊂ Pϕ is given by βϕ with
respect to the splitting of T (M(P,Ψ))|P inherited from P (Ψ).

Proof. First, we endow the mapping torus P (Ψ) with the adapted form
αP defined by αP |P×{ϕ} = βϕ, which is smooth because the path βt is
constant near its ends. Then, after choosing a Lutz pair h such that
h2 is constant close to r = 1 with value 1, we define the adapted form

αU = h1(r)
h1(1)

(β|T∂P ) on U . The two forms αP and αU can be glued along

∂P × S1 using the Liouville vector fields on the pages. This yields an
adapted form α0 on M(P,Ψ).

Since h2 is constant close to r = 1 with value 1, we can extend it by 1
to a function on all of M(P,Ψ). This function satisfies the conditions on
the function f in the proof of Theorem 2.1.3. So this proof tells us that
there is a positive number R such that α = α0 + Rh2 dϕ is an adapted
contact form. This concludes the construction.

Remark 2.2.11. The number R in the proof of Theorem 2.1.3 is chosen
in continuous dependence on the adapted form α0. Accordingly, the
construction above defines a continuous map from the space of technical
paths from β0 to Ψ∗β0 in B∞(P, β0) into the space A(π) of contact forms
adapted to the open book decomposition associated to (P,Ψ).

In general, there is no path from β0 to Ψ∗β0 and, if there is one, there
is no canonical one. However, there is one notable exception: if Ψ is a
symplectomorphism of (P, dβ0), then

βt = (1− t)β0 + tΨ∗β0 = β0 + tδ,

t ∈ [0, 1], is always such a path. Here, δ = Ψ∗β0−β0 is a closed form that
vanishes in a neighbourhood of ∂P because Ψ agrees with the identity
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there. After a reparametrisation, this path satisfies the conditions in
Proposition 2.2.10 above. This shows that whenever the generalised
Thurston-Winkelnkemper construction can be applied, this alternative
construction can be applied, too.

Remark 2.2.12. In general, different paths βt from β0 to Ψ∗β0 yield non-
isotopic adapted contact forms on M(P,Ψ). We will prove in Chapter 4
that this really happens.

2.2.3. Giroux Domains

So far, we have seen two constructions of adapted contact forms on
M(P,Ψ) in which the form is defined separately on the mapping torus
P (Ψ) and ∂P ×D2. This separate construction is somewhat unsatisfying.

In this section we describe a further construction by Giroux, first
published in [30, Section 5], that constructs a supported contact structure
on M(P,Ψ) by a contact blow-down along the boundary of P (Ψ) instead
of gluing in ∂P ×D2. The major concept in this construction is that of
an ideal Liouville domain.

Definition 2.2.13. Let P be a manifold with boundary. Then we denote
by C∞

r (P ) the space of all smooth functions f : P → R+
0 with regular

level set f−1(0) = ∂P and by iB(P ) the space of all Liouville forms on
the interior of P such that, for every f ∈ C∞

r (P ), the form fβ extends
smoothly to ∂P and, there, induces a contact structure. Furthermore, we
denote by iB(P, ξ) the subspace of iB(P ) consisting of those β such that
ker fβ|T∂P = ξ for any f ∈ C∞

r (P ).
A triple (P, ω, ξ) is called an ideal Liouville domain if ω = dβ for

some β ∈ iB(P, ξ).

Remark 2.2.14.

1) The quotient of two functions f, g ∈ C∞
r (P ) is a positive smooth

function on the interior of P that can be extended smoothly to
∂P with value ∂tf/∂tg where t is a collar parameter of some collar
neighbourhood of ∂P .

2) Because of our first remark, a Liouville form β on the interior of P is
contained in iB(P ) if and only if there is some function f ∈ C∞

r (P )
such that fβ extends smoothly to ∂P and there induces a contact



2.2. Construction of Contact Open Books 39

structure. Moreover, the induced contact structure does not depend
on f .

3) In consideration of our previous remark, we can infer that the inter-
section of iB(P, ξ) with the space of primitives of a fixed symplectic
form ω is convex.

4) We can obtain any contact form for ξ by choosing an appropriate
function f ∈ C∞

r (P ).

Given an ideal Liouville domain, we can construct a contact structure
ξβ on P × S1 as the kernel of αf = fβ + fdϕ for f ∈ C∞

r (P ) and
β ∈ iB(P ). This does not depend on the specific function f ∈ C∞

r (P )
since any two of these functions do only differ by multiplication with
a positive function. Moreover, it satisfies the contact condition in the
interior because, there, f is positive and 1

f αf = β + dϕ a contact form.
On the boundary, we have f dϕ = 0. So on ∂P , seen as a subset of a
collar neighbourhood [−ǫ, 0]× ∂P with collar parameter t, we have

αf ∧ (dαf )
n
= (fβ) ∧ (d(fβ) + ∂tf dt ∧ dϕ)n

= n∂tf (fβ) ∧ (dfβ)
n−1 ∧ dt ∧ dϕ.

This is positive because of the conditions on f and β. Accordingly, ξβ is a
contact form on P ×S1. We say that P ×S1 with this contact structure is
the Giroux domain associated with the ideal Liouville domain (P, ω, ξ).

Remark 2.2.15. The ideal Liouville domain only determines the isotopy
class of the contact structure ξβ . To obtain a unique contact structure
we have to know the auxiliary Liouville form β ∈ iB(P ).

According to [30, Remark 5.6], a Giroux domain is a special case
of another construction by Giroux, namely the suspension of a sym-
plectomorphism of (P, ω) with compact support in the interior of P .
Unfortunately, no reference to the construction is given. So, in this thesis
we use our own definition, which reads as follows.

Definition 2.2.16. Let (P, ω, ξ) be an ideal Liouville domain, β ∈ iB(P )
a corresponding Liouville form, f ∈ C∞

r (P ), and Ψ a symplectomorphism
of (P, ω) with compact support in the interior of P . Furthermore, let
µ : [0, 2π] → [0, 1] be a smooth monotonously increasing function that
vanishes near 0 and is constant of value 1 near 2π with µ′ ≤ 1.
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Define δ =
(

Ψ−1
)∗
β − β and R = 1 − nmin{0,min δ ∧ β ∧ (dβ)

n−1}
with respect to the reference volume form (dβ)

n
= ωn on the interior of

P .
Then we say that the suspension of Ψ is the mapping torus P (Ψ)

endowed with the contact structure ξβ = kerαf where αf = fβ+fµ(ϕ) δ+
Rf dϕ.

Remark 2.2.17. The constant R exists since Ψ has compact support in
the interior of P and hence δ =

(

Ψ−1
)∗
β − β, as well.

To verify the contact condition for αf , first note that δ vanishes in the
neighbourhood of ∂P where Ψ agrees with the identity. Consequently,
there, αf agrees with the form on the corresponding Giroux domain and
hence is contact.

On the complement of this neighbourhood we verify the contact condi-
tion for α = 1

f αf = β + µ(ϕ) δ +Rdϕ. It reads

0 < α ∧ (dα)
n
= (β + µδ +Rdϕ) ∧ (dβ + µ′ dϕ ∧ δ)n

= Rdϕ ∧ (dβ)
n
+ nµ′ dϕ ∧ δ ∧ β ∧ (dβ)

n−1
.

This inequality holds because of the definition of the constant R. Thus,
we constructed a contact structure.

Moreover, if Ψ is the identity, then the result of our construction is the
Giroux domain associated to (P, ω, ξ).

Note that on ∂P × S1 the contact structure ξβ is given by ξ ⊕ TS1

since f vanishes there and hence αf = fβ + f dϕ = fβ. Thus, ∂P × S1

is a ξβ-round hypersurface modelled on (∂P, ξ).

Definition 2.2.18. An oriented hypersurface H of a contact manifold
(M, ξ) is called a ξ-round modelled on a closed contact manifold (B, ξB)
if ξ is transverse to H and there is an identification of H with S1 × B
such that ξ ∩ TH = TS1 ⊕ ξB. If H is contained in the boundary of
M , then the orientation is assumed to be the opposite of the boundary
orientation.

A contact manifold with a ξ-round component boundary can be blown
down along this boundary component. Before we can describe this
procedure we need the following lemma.
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Lemma 2.2.19 (See [30, Lemma 5.1]). Let H ∼= S1 × B be a ξ-round
hypersurface modelled on (B, ξB) in the interior (or boundary) of a contact
manifold (M, ξ). Then there is a neighbourhood (−ǫ, ǫ)×H (or [0, ǫ)×H
respectively) of H on which ξ = ker (αB + t dϕ) where αB is a contact
form for ξB, t the coordinate on the interval, and ϕ the coordinate on S1.

Proof. Let α be a contact form for ξ. Then the restriction of α to H ⊂M
is a positive multiple of the restriction of αB + t dϕ to H in (−1, 1)×H
([0, 1)×H). By a straightforward adaption of the relevant part of the proof
of [17, Theorem 2.5.23] there is a contactomorphism of a neighbourhood of
H in the two manifolds. Thus, there is a possibly smaller neighbourhood
of H in M that is contactomorphic to (−ǫ, ǫ)×H ([0, ǫ)×H) for some
0 < ǫ ≤ 1.

Given a ξ-round boundary component H modelled on (B, ξB) in a
contact manifold (M, ξ), we can perform the following construction.

Let [0, ǫ)×S1 ×M be the neighbourhood from Lemma 2.2.19 and D√
ǫ

the disc of radius
√
ǫ around 0 ∈ R2. Then the map

Ψ:
(

D√
ǫ \ {0}

)

×B → (0, ǫ)× S1 ×B
(

reiϕ, b
)

7→
(

r2, ϕ, b
)

is a diffeomorphism that pulls αB+t dϕ back to αB+r2 dϕ. Consequently,
we can glue

(

D√
ǫ ×B,αB + r2 dϕ

)

to M \H. This procedure is called
the blow-down of (M, ξ) along H. As mentioned in [30], it is equivalent
to performing a contact cut (see [28]) of M with respect to the (local)
S1-action.

We have already seen that the boundary of the suspension of a sym-
plectomorphism Ψ of an ideal Liouville domain (P, dβ, ξ) is a ξβ-round
hypersurface, after reversing the orientation. Thus, we can blow down the
boundary to obtain a closed contact manifold such that the underlying
manifold is diffeomorphic to M(P,Ψ) = P (Ψ) ∪

(

∂B ×D2
)

via a page
preserving diffeomorphism.

So far, we have seen how to construct a contact structure ξβ on M(P,Ψ)
given an ideal Liouville domain (P, dβ, ξ) and a symplectomorphism Ψ of
(P, dβ) with support in the interior of P . We did not see that this contact
structure is supported by the open book decomposition associated to the
abstract open book (P,Ψ). The problem is that in general for f ∈ C∞

r (P )
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and β ∈ iB(P ) the form fβ is not a Liouville form on the interior of P .
However, due to an argument by Giroux [30, Lemma 5.5] there always is
a special choice of f ∈ C∞

r (P ) such that fβ is a Liouville form on the
interior of P .

By a slight modification of the proof of [30, Lemma 5.5], we first show
the following.

Lemma 2.2.20. Let P be a manifold with boundary, β ∈ iB(P ), and
f ∈ C∞

r (P ). Denote by Y the Liouville vector field to β. Then there is a
smooth extension Yf to ∂P of the vector field 1

f Y .

Moreover, there is a continuous map (F, α) : iB(P ) → C∞
r (P )×A(∂P )

such that the negative flow of YF (β) induces a collar neighbourhood
(−1, 0]× ∂P with collar coordinate t such that −tβ = α.

Proof. Let us denote by γ the extension of the form fβ to all of P and
define the top-dimensional form

µ = fn+1 (dβ)
n
= f (dγ)

n − ndf ∧ γ ∧ (dγ)
n−1

.

Since f is positive on the interior of P and β a Liouville form, the form
µ is non-degenerate there. On the boundary it is non-degenerate, too,
because f (dγ)

n
vanishes there and the restriction of γ to ker df = T∂P

is a contact form on ∂P . This shows that there is a unique vector field
Yf on P such that

ιYf
µ = nγ ∧ (dγ)

n−1
.

On the interior of P we have

nγ ∧ (dγ)
n−1

= nf β ∧ (df ∧ β + f dβ)
n−1

= nfn β ∧ (dβ)
n−1

= fnιY (dβ)
n
= 1

f ιY µ.

So the vector field Yf is a smooth extension of 1
f Y to ∂P .

Note that on the boundary

ιYf
µ = −nιYf

df ∧ γ ∧ (dγ)
n−1

= −n
(

ιYf
df
)

∧ γ ∧ (dγ)
n−1

and hence ιYf
df = −1. This implies that Yf points outwards along the

boundary.
To construct the function F : iB(P ) → C∞

r (P )×A(∂P ) we first fix a
reference function f ∈ C∞

r (P ). Then every other function h ∈ C∞
r (P )
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can be written as h = gf with a positive function g on P . Moreover, we
can define α to be the restriction of fβ to the tangent bundle of ∂P .

Our goal is to find a function h ∈ C∞
r (P ) such that

LYh
(hβ) = ιYh

d(hβ) + d(hιYh
dβ) = ιYh

(dh ∧ β + h dβ) = (ιYh
dh− 1)β

vanishes identically. Moreover, we would like h to have a decomposition
as h = gf with a function g of constant value 1 on ∂P .

Given such a function h we use the negative-time-flow Ψt of Yh to
identify a collar neighbourhood of ∂P with (−1, 0] × ∂P . Because
LYh

(hβ) ≡ 0 we have

Ψ∗
t (hβ)− hβ =

∫ t

0

d
dsΨ

∗
s(hβ) ds =

∫ t

0

Ψ∗
sLYh

(hβ) ds = 0.

Consequently, the form hβ is pulled back to its restriction to ∂P . Since,
moreover, ιYh

hβ = 0, this restriction agrees with the restriction to T∂P .
Because of the decomposition h = gf for a function g of constant value 1
on ∂P this restriction agrees with that of fβ, i.e. it is given by α.

Next, we identify the function h in the collar neighbourhood. Since h
vanishes on ∂P and ιYh

dh = −1 we have

Ψ∗
th =

∫ t

0

(Ψ∗
sLYh

h) ds =

∫ t

0

(Ψ∗
sιYh

dh) ds = −t.

Accordingly,

α = Ψ∗
t (hβ) = −tΨ∗

tβ

as desired.
It remains to show that the function h exists and depends continuously

on β.
Let us decompose h as gf with a positive function g on P . Then we

can rewrite ιYh
dh as

ιYh
dh = 1

g

(

fιYf
dg + gιYf

df
)

.

Thus the condition that ιYh
dh = −1 is equivalent to

fιYf
dg = −

(

ιYf
df + 1

)

g.
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In the construction above we have seen that ιYf
df = −1 on ∂P . Hence,

the function 1
f

(

ιYf
df + 1

)

is smooth on all of P . Consequently, we can
divide by f on both sides to obtain the differential equation

ιYf
dg = −

(

ιYf
df + 1

)

f
g,

which is linear in g. So, there is a unique solution with initial values
g|∂P ≡ 1. Moreover, the solution depends continuously on Yf and hence
on β. Accordingly, we set F (β) = gf .

Given this lemma, we are able to construct a functions f ∈ C∞
r (P )

such that fβ is symplectic on the interior of P . However, we even have
somewhat more control.

To be able to state this more precisely, let us denote by Bf (P ) the
space of all Liouville forms on P that provide P with the structure of a
Liouville domain, i.e. that restrict to a contact form on ∂P . Furthermore,
denote by Bf (P, α) the subspace of Bf (P ) consisting of those Liouville
forms whose restriction to T∂P is given by the contact form α on ∂P .
Then we have the following.

Proposition 2.2.21. Let (B, π) be an open book decomposition of a closed
manifold and P the closure of the page P0. Then there are continuous
functions Fπ, Ff : iB(P ) → C∞

r (P ) such that for every β ∈ iB(P ) we have
Fπ(β)β ∈ B(π) and Ff (β)β ∈ Bf (P ).

Moreover, if α is a contact form on ∂P , then there are continuous
functions Fαπ , F

α
f : iB(P, kerα) → C∞

r (P ) such that Fαπ (β)β ∈ B(π, α)
and Fαf (β)β ∈ Bf (P, α) for every β ∈ iB(P ).

Proof. If iB(P ) is empty, the statement is trivially satisfied. So, let us
assume that iB(P ) is non-empty.

Let β ∈ iB(P ). By Lemma 2.2.20 there is a collar neighbourhood
(−1, 0]× ∂P of ∂P whose coordinates depend continuously on β and in
which we have

−tβ = α,

where t is the collar coordinate and α a contact form on ∂P continuously
depending on β.

We construct the functions Fπ(β) and Ff (β) as functions of the collar
coordinate and extend them to P by a constant. So let µ : (−1, 0] → [0, 1]
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be a smooth monotonously increasing cut-off function that vanishes on
(−1,−2/3] and is constant of value 1 on [−1/3, 1]. Next, we choose fixed
smooth functions hπ, hf : [−1, 0] → R+ such that hi(0) = 1 and h′i(t) > 0
for t < 0 and i = π, f . Moreover, we demand h′π(0) = 0 and h′f (0) > 0.
To be able to deal with the case with fixed induced contact form, we also
fix a positive function λ on ∂P .

Given the functions above, we define functions uπ and uf on the collar
neighbourhood by

ui(t, x) = (1− µ(t))Ci − tµ(t)hi(t)λ(x)

where Ci =
1
3 minhiminλ and i = π, f . Since these two functions are

constant for t < −1/3 with value Ci we can extend them with this value
to all of P .

The resulting functions, which we still denote by uf and uπ, are

contained in C∞
r (P ). Consequently, the forms β̂i = uiβ extend smoothly

to all of P . We claim that these two forms are Liouville forms on the
interior of P .

On the complement of the collar neighbourhood the forms β̂i are
constant positive multiples of β and hence Liouville forms. Inside the
collar neighbourhood they are given by

β̂i = uiβ = ui

−tα =
(

− 1−µ
t Ci + µhiλ

)

α=: ĥiα.

Because (1− µ) vanishes close to t = 0 this is well-defined and ĥi is

positive. Moreover, due to our choice of Ci, the derivative ∂tĥi is positive,
too:

∂tĥi = (1− µ)
Ci
t2

+ µh′iλ+ µ′
(

hiλ− Ci
−t

)

> 0.

Using the inequality above, we see that

(

dβ̂i
)n

= n
(

∂tĥi
)

dt ∧ α ∧
(

d
(

ĥiα
)

)n−1

> 0

on the interior.
Note that ∂tĥπ(0, x) = h′π(0)λ(x) = 0 and ∂tĥf (0, x) = h′f (0)λ(x) > 0.

Consequently, β̂π ∈ B(π) and β̂f ∈ Bf (P ) for every choice of λ. So we
may define Fπ(β) = uπ and Ff (β) = uf for the choice λ ≡ 1.
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Now, let α0 be a fixed contact form on ∂P . Again, if iB(P, kerα0) is
empty, the statement is trivially satisfied. So let us assume that the space
iB(P, kerα0) is non-empty and let β ∈ iB(P, kerα0).

Then the contact form α above can be written as 1
λ0
α0 for some positive

function λ0 on ∂P . Since this function depends continuously on β we
may choose λ in the construction above to agree with λ0. Then we have
β̂i|∂P = hi(0)λα = α0. Hence, we may set Fα0

i (β) = ui.

Remark 2.2.22. Formally, the space B(π) is only defined for manifolds
P with boundary that appear as the closure of a page of an open book
decomposition. However, this is no restriction because every compact
manifold with boundary can be realised this way. In particular, the
closure of the pages of the open book decomposition on the manifold
M(P, id) associated to the abstract open book (P, id) are diffeomorphic
to P ; cf. Section 1.4.

2.2.4. Homotopy Equivalence of the Spaces of Liouville
Forms on the Pages

In Subsection 2.1.1 we have seen that, for a given open book decomposition
(B, π) of a closed manifold M , the restriction of an adapted form to the
tangent bundle of the closure P of the page P0 is always contained in the
space B(π). On the other hand we have used forms in Bf (P ) and iB(P )
to construct manifolds together with an open book decomposition and
an adapted contact form in Subsection 2.2.1 and Subsection 2.2.2, and
Subsection 2.2.3, respectively. Here, we show that these three spaces are
homotopy equivalent.

In Proposition 2.2.21 we already constructed continuous maps Fπ and
Ff from iB(P ) to C∞

r (P ) such that for every β ∈ iB(P ) we have Fπ(β)β ∈
B(π) and Ff (β)β ∈ Bf (P ). Consequently, we can define continuous maps
Φπ : iB(P ) → B(π) and Φf : iB(P ) → Bf (P ) by Φi(β) = Fi(β)β for
i = π, f . Moreover, we have the corresponding maps Φαπ : iB(P, kerα) →
B(π, α) and Φαf : iB(P, kerα) → Bf (P, α) between the spaces with pre-
scribed contact structure kerα and contact form α on the boundary. We
aim to show that all these maps are homotopy equivalences.

Theorem 2.2.23. Let (B, π) be an open book decomposition of a closed
manifold M and P the closure of the page P0. Then the maps Φπ and
Φf are homotopy equivalences.
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Moreover, if α is a contact form on ∂P , then the maps Φαπ and Φαf are
homotopy equivalences.

We need to construct homotopy inverses to the maps above. More
precisely, we require functions g ∈ C∞

r (P ) continuously depending on β
such that 1

gβ ∈ iB(P ). These are provided by the following lemma.

Lemma 2.2.24. There are continuous maps Gπ : B(π) → C∞
r (P ) and

Gf : Bf (P ) → C∞
r (P ) such that Gπ(β)

−1
β ∈ iB(P ) for every β ∈ B(π)

and Gf (β)
−1
β ∈ iB(P ) for every β ∈ Bf (P ). Moreover, if α is a contact

form on ∂P and β an element of B(π, α) or Bf (P, α), then Gπ(β)
−1
β

or Gf (β)
−1
β is contained in iB(P, kerα), respectively.

Proof. If B(π) or Bf (P ) is empty, the corresponding statement is trivially
satisfied. So, let us assume that both B(π) and Bf (P ) are non-empty.

Let (−1, 0]× ∂P be a fixed collar neighbourhood of ∂P .

Both B(π) and Bf (P ) are subspaces of the space of smooth sections of a
vector bundle over a compact manifold. Accordingly, they are metrizable
and hence paracompact. Moreover, the restriction of every β in B(π)
or Bf (P ) to the tangent bundle of ∂P is a contact form. So, since the
contact condition is open, Corollary A.2 shows that there is a continuous
function ǫ : B(π) ⊔ Bf (P ) → (−1, 0) on the disjoint union of B(π) and
Bf (P ) such that β|T ({t}×∂P ) is a contact form for every β ∈ B(π)⊔Bf (P )
and t ≥ ǫ(β). We use this function to construct the desired functions on
the collar neighbourhood.

Fix a smooth function h : [−1, 0] → R+
0 such that h ≡ 1 on [−1,−1/2],

h(0) = 0, and h′ (t) < 0 for t ∈ (−1/2, 0]. Then we define the function uβ
on [−ǫ(β) , 0] as

uβ(t, x) = h
(

t
ǫ(β)

)

.

Because this function is constant with value 1 in a neighbourhood of
t = ǫ(β) we can extend it to all of P with this value.

By construction, the function uβ is an element of C∞
r (P ). We claim

that on the interior of P the form β̂ = 1/uββ is a Liouville form. To

see this we have to check whether β̂ is non-degenerate. Inside the collar



48 2. Contact Open Books

neighbourhood we compute

(

dβ̂
)n

= u
−(n−1)
β

(

1
uβ
dβ − n

u2
β
duβ ∧ β

)

∧ (dβ)
n−1

= u−nβ

(

dβn − nh′

ǫ(β)uβ
dt ∧ β ∧ (dβ)

n−1
)

.

The first term is positive because β is a Liouville form on the interior
of P , and the second one is non-negative since β|T ({t}×B) is a contact

form and h′(t) < 0 whenever h′(t) 6= 0. Accordingly, β̂ is non-degenerate
on the intersection of the collar with the interior of P .

On the complement of the collar neighbourhood, the function uβ has

the constant value 1, i.e. the forms β̂ and β agree. Accordingly, β̂ is
non-degenerate on the complement of the collar, as well. This shows that
it is a Liouville form on the interior of P .

Since uβ ∈ C∞
r (P ) and uβ β̂ = β, we also know that β̂ ∈ iB(P ). More

precisely, we have β̂ ∈ iB(P, kerβ|T∂P ). Thus, we may set Gπ(β) = uβ
for β ∈ B(π) and Gf (β) = uβ for β ∈ Bf (P ).

With this lemma at hand, we are ready to prove Theorem 2.2.23.

Proof of Theorem 2.2.23. We know that any of the spaces iB(P ), B(π),
and Bf (P ) is empty if and only if the other two are empty, too, by
Proposition 2.2.21 and Lemma 2.2.24. This proves the theorem for the
case that any of them is empty. So, let us assume that none of them is.
Then we may choose a contact form α on ∂P . Again, by Proposition 2.2.21
and Lemma 2.2.24 we know that any of the spaces iB(P, kerα), B(π, α),
and Bf (P, α) is empty if and only if the other two are so, as well. So, we
may assume that these spaces are non-empty as well.

We claim that the maps Ψπ : B(π) → iB(P ) and Ψf : Bf (P ) → iB(P )
defined by Ψi(β) =

1
Gi(β)

β are homotopy inverses of Φπ and Φf , respect-

ively, and that their restrictions Ψαπ and Ψαf to B(π, α) and Bf (P, α) are
homotopy inverses of Φαπ and Φαf , respectively.

The quotient of two functions in C∞
r (P ) always extends to a unique

smooth positive function on all of P . Thus, applying a composition of two
of the maps above with the same indices to a form β only results in the
multiplication of β with a positive function g on P . Moreover, we know
that gβ still is a Liouville form on the interior of P . This is equivalent to

0 < (d (gβ))
n
= gn−1 (dg ∧ β − gdβ) ∧ (dβ)

n−1
(2.2)



2.2. Construction of Contact Open Books 49

or
0 < (dg ∧ β − gdβ) ∧ (dβ)

n−1
(2.3)

because g is a positive function.
Note that this condition is convex in g. Hence, it is also satisfied for

gt = (1− t) + tg, because β is a Liouville form on the interior, as well.
We claim that H(β, t) = gtβ defines a homotopy from the identity to our
composition of choice. To see that this is true, we have to look separately
at every choice of the concatenation.

We begin with β ∈ Bf (P ). Here, we know that gβ and β are Liouville
forms on all of P . Accordingly, the inequalities (2.2) and (2.3) show that
this is also true for gtβ. Moreover, gtβ|T∂P is a contact form for all
t ∈ [0, 1] since gt is positive. This shows that H defines a homotopy from
the identity on Bf (P ) to Φf ◦Ψf . If moreover β ∈ Bf (P, α), then we have
Φαf ◦ Ψα

f (β) = gβ with a positive function g whose restriction to ∂P is
constant of value 1. Thus, this is also true for gt and hence gtβ|T∂P = α
for all t ∈ [0, 1]. Consequently, H defines a homotopy from the identity
on Bf (P, α) to Φαf ◦Ψαf .

Next, let β ∈ B(π). Then (2.2) and (2.3) with the inequality replaced
by an equality show that d (gtβ)

n
vanishes on ∂P for all t ∈ [0, 1]. Thus,

H defines a homotopy from the identity on B(π) to Φπ ◦Ψπ. By the same
argument as in the last paragraph, H restricts to a homotopy from the
identity on B(π, α) to Φαπ ◦Ψαπ .

Finally, let β ∈ iB(P ). Because gt is a positive function on all of P the
form fgtβ with f ∈ C∞

r (P ) extends to a smooth function on all of P if
and only if fβ does so. Moreover, the restriction of the corresponding
extensions to the tangent bundle of ∂P only differ by a multiplication
with the restriction of gt. In particular fβ and fgtβ induce the same
contact structure on ∂P . This shows that H defines homotopies from
the identity on iB(P ) to Ψπ ◦ Φπ and Ψf ◦ Φf , and from the identity on
iB(P, kerα) to Ψαπ ◦ Φαπ and Ψαf ◦ Φαf .





3. Neighbourhood Theorems

This chapter is the heart of this thesis, in which we provide several
neighbourhood theorems. In Section 3.1 we derive a neighbourhood
theorem for the binding of a contact open book that has several advantages
over the one we proved in [12]: first, we may choose the neighbourhood and,
second, the standardised appearance in the neighbourhood is provided
uniformly by a deformation of the entire space of adapted contact forms.
This is the corner stone for the further study of this space in Chapter 4. In
addition, we use the neighbourhood to construct symplectic open books
corresponding to given contact open books.

In Section 3.2 we provide neighbourhood theorems for diffeomorphisms
and Liouville forms around the boundary of a manifold in the form of
weak deformation retractions of the respective spaces. This is followed by
a proof that there is a long exact homotopy sequence for exact symplectic
forms and symplectomorphisms for manifolds with boundary, provided
we impose suitable boundary conditions.

Finally, in Section 3.3 we provide a proof of a well-known neighbourhood
theorem for symplectic fibrations over the circle contained in a symplectic
manifold.

3.1. Open Books

Suppose a contact form is adapted to an open book decomposition of a
closed manifold. Then, away from the binding, essentially all information
about the contact form can be recovered from the Liouville forms on
the pages. However, the knowledge that the form is adapted does not
yield a lot of information in a neighbourhood of the binding. Since this
is inconvenient in constructions involving open books, it is desirable to
be able to bring adapted contact forms into a standardised form in a
neighbourhood of the binding.

One such standardised form can be extracted from the generalised
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Thurston-Winkelnkemper construction in Subsection 2.2.1. There, the
neighbourhood B ×D2 of the binding B, which is glued in, is endowed
with the contact form

αh,αB
= h1(r)αB + h2(r) dϕ

where (r, ϕ) are polar coordinates on D2, αB is a contact form on B, and
h a Lutz pair.

On this special form we base our definition of what it means that an
adapted contact form is standard.

Definition 3.1.1. Let (B, π) be an open book decomposition of a closed
manifold M and U ∼= B ×D2 an adapted neighbourhood of the binding.
Furthermore, let h be a Lutz pair.

Then we say that a contact form α adapted to (B, π) is standard with
respect to h for radius r0 > 0 if

α|B×B̄r0
(0) = h1(r/r0)α|TB + h2(r/r0) dϕ.

If a form is said to be standard not stating h1, h2, or r0, then the
corresponding data is assumed to be arbitrary.

The space of all contact forms adapted to (B, π) that are standard
with respect to a fixed Lutz pair h for radius 1/2 we denote by Ah(π).
We denote by Ah(π, ξB) and Ah(π, αB) its subspaces where we fix the
contact structure ξB or the contact form αB induced on the binding,
respectively.

Remark 3.1.2. Whether a contact form is standard depends on the choice
of the adapted neighbourhood U .

In [12] we have proved the folklore theorem that every adapted contact
form is isotopic through adapted contact forms to some contact form
that is standard for some Lutz pair for some radius in some adapted
neighbourhood of the binding. Though this is sufficient for the applications
in [12], it is unsatisfying in several regards: there is no control over the
adapted neighbourhood or the Lutz pair and, moreover, the construction
is not continuous in the adapted contact form. Consequently, this theorem
is not suitable for a homotopy classification of the space of adapted contact
forms.
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The major goal of this section is to tackle these shortcomings of this
neighbourhood theorem. Namely, we prove the following new neighbour-
hood theorem.

Theorem 3.1.3. Let (B, π) be an open book decomposition of a closed
manifold M and U an adapted neighbourhood of the binding. Furthermore,
let h be a Lutz pair. Then there is a deformation Dt, t ∈ [0, 1], of the
space A(π) of contact forms adapted to (B, π) into its subspace Ah(π)
such that D1 is a homotopy equivalence. Moreover, we may assume that
the deformation is smooth in the deformation parameter t and that outside
U the restrictions of Dt(α) and α to the tangent bundles of the pages
agree for all t ∈ [0, 1].

Remark 3.1.4. Because of the smoothness in the deformation parameter,
we obtain isotopies of the underlying supported contact structures by
Gray stability.

The proof of Theorem 3.1.3 spans over the remainder of this section.
In Subsection 3.1.1, we prove an analogous result for adapted contact
forms. Then, in Subsection 3.1.3, we use Corollary 2.1.6 to turn this into
a version of Theorem 3.1.3 in which the function h2 is allowed to vary.
Finally, in Lemma 3.1.20, we fix the function h2.

3.1.1. Adapted Forms

In regard of Theorem 2.1.3 it is sensible to first prove a version of The-
orem 3.1.3 for the larger space Ω1(π) and then transform the corresponding
deformation into the first part of that in Theorem 3.1.3.

Before we state the version of Theorem 3.1.3 for Ω1(π) we have to define
for general adapted forms what it means to be standard. In principle,
we could copy the definition for contact forms. However, for notational
reasons it is more convenient to define it as follows.

Definition 3.1.5. Let (B, π) be an open book decomposition of a closed
manifold M and U ∼= B ×D2 an adapted neighbourhood of the binding.
Furthermore, let h be a Lutz pair.

Then we say that a general 1-form α adapted to (B, π) is standard
with respect to h1 for radius r0 > 0 if

α|B×B̄r0
(0) = h1(r/r0)α|TB .
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If a form is said to be standard not stating h1 or r0, then the corres-
ponding data is assumed to be arbitrary.

The space of all general 1-forms adapted to (B, π) that are standard
with respect to a fixed h1 for radius 1/2 we denote by Ω1

h1
(π). We denote

by Ω1
h1
(π, ξB) and Ω1

h1
(π, αB) its subspaces where we fix the contact

structure ξB or the contact form αB induced on the binding, respectively.

Remark 3.1.6. A general adapted 1-form that is standard does not satisfy
the contact condition. Consequently, a contact form cannot be standard
as a general adapted 1-form. So, no confusion should arise.

Given this new definition, we can state the version of Theorem 3.1.3
for Ω1(π).

Theorem 3.1.7. Let (B, π) be an open book decomposition of a closed
manifold M and U an adapted neighbourhood of the binding. Furthermore,
let h be a Lutz pair. Then there is a deformation Dt, t ∈ [0, 1], of
the space Ω1(π) into its subspace Ω1

h1
(π) such that D1 is a homotopy

equivalence. Moreover, we may assume that the deformation is smooth in
the deformation parameter t and that the deformation is constant outside
U .

For the remainder of this subsection, let us fix an open book decom-
position (B, π) of a closed manifold M and an adapted neighbourhood
U ∼= B ×D2 of the binding.

The proof of Theorem 3.1.7 will take several steps. In each of these
steps we construct a weak deformation retraction from a subspace of Ω1(π)
into a smaller subspace, starting with the entire space Ω1(π) and finishing
in Ω1

h1
(π). Finally, we piece these together to obtain the deformation Dt.

In Proposition 2.1.2 we have already seen that the space Ω1
0(π) of those

adapted forms α satisfying α|B = α|TB with respect to the splitting of
TU induced by the product structure is a strong deformation retract of
Ω1(π). So, we may start in this space instead of Ω1(π).

Our first and hardest step is to construct a weak deformation retraction
leading into the space Ω1

L(π) of those adapted forms that are standard
with respect to some h1 for some radius r0 > 0.

Proposition 3.1.8. There is a weak deformation retraction Dt, t ∈ [0, 1],
from Ω1

0(π) into its subspace Ω1
L(π) that is smooth in the deformation

parameter and constant outside U . Moreover, there is a continuous
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function ρ : Ω1
0(π) → (0, 1/2] such that D1(α) is standard for radius ρ(α)

for all α ∈ Ω1
0(π).

Proof. If Ω1
0(π) is empty, so is its subspace Ω1

L(π). So, we may assume
that Ω1

0(π) is non-empty.
Let α ∈ Ω1

0(π). As we have seen in Subsection 2.1.1, inside the adapted
neighbourhood U ∼= B ×D2 of the binding we can write α as

α = u dr + v dϕ+ β

where u and v are D2-families of functions on B that vanish identically on
B×{0}, and β a D2-family of 1-forms on B whose restriction to B×{0}
is given by αB = α|TB .

In this notation the condition on α to be adapted translates to

0 < (du− βr) ∧ (dβ)
n−1

(3.1)

as a top-dimensional form on B × {x} for every x ∈ D2. Here, βr is the
derivative of β with respect to the radial coordinate and the inequality
is meant with respect to the reference volume form αB ∧ (dαB)

n−1
.

Throughout this proof we will use this reference volume form to identify
top-dimensional forms on B with functions on B.

We construct the deformation in three steps. In the first step we
arrange the correct function v in the decomposition, in the second step
we add the form h1(r)αB on a small neighbourhood of the binding where
h1(r) =

(

1−Kr2
)

for some (possibly very large) constantK that depends
continuously on α, and in the third and final step we subtract all terms
but h1(r)αB on an even smaller neighbourhood.

For the first step let us fix a smooth monotonously increasing cut-off
function λ : R+

0 → [0, 1] that is constant of value 1 on [0, 1/2] and vanishes
on [3/4,∞). Then we define

α1
t = α− tλ(r) v dϕ = u dr + (1− tλ) v dϕ+ β

inside U and extend this by α outside U . Then we have

α1
1 = u dr + β

in the smaller closed neighbourhood U1 = B × B̄1/2(0).
The remaining steps require a much more technical argument.
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Before we are able to start with these steps, we have to take a closer
look at the family of forms β. In order to do so, we decompose it as

β = h0 αB + β∆

where h0 is a family of functions on B and β∆ a family of 1-forms on B
satisfying β ∧ (dαB)

n−1 ≡ 0. Immediately from the definition we see that

h0|B ≡ 1, β∆|B ≡ 0, and (β∆)r ∧ (dαB)
n−1

=
(

β∆ ∧ (dβB)
n−1)

r
≡ 0.

As we have seen at the end of Subsection 2.1.1 the form βr ∧ (dβ)
n

vanishes on the binding. Writing this form in our decomposition we get

βr ∧ (dβ)
n
= ((h0)r αB + (β∆)r) ∧ (h0 dαB + dh0 ∧ αB + dβ∆)

n−1
.

By our observations above this implies that both the function (h0)r and

the form βr ∧ (dαB)
n−1

vanish on the binding as well. This will be
important in the two steps to come.

As already mentioned, in the following steps we restrict the changes
to α1

1 to a small neighbourhood. To this end we introduce two further
cut-off functions λ2 and λ3 defined by λ2(r) = λ(r/ǫ) and λ2(r) = λ(2r/ǫ).
Here, 1/2 ≥ ǫ > 0 is a small constant continuously depending on α that
we still have to determine. Note that λ2 evaluates to 1 wherever λ3 is
non-zero.

Now we are ready to engage the second step of our construction. We
define the second deformation by

α2
t = α1

1 + tλ2(r)h1(r)αB = α1
1 + tλ2(r)

(

1−Kr2
)

αB .

Outside U2 = B ×Bǫ(0) this family is constant. So, we may restrict our
attention to U2.

Our aim is to determine the constants ǫ andK such that the family stays
in Ω1

0(π) under the additional condition that they depend continuously
on α.

A first observation is that h1 can only be the first function in a Lutz
pair if h1 > 0, and hence that K (3ǫ/4)

2
should be smaller than 1. In

regard of this we define

K = K(ǫ) = 1
2ǫ2 .

Doing so, we can simultaneously arrange large K and small ǫ while keeping
h1 positive.
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Let us now take a closer look at the forms α2
t inside U2. There they

are given by

α2
t = (h0 + tλ2h1)αB + β∆ + u dr.

Inserting this into the condition (3.1) that α2
t be adapted, we obtain the

inequality

0 <
(

((du− βr)− tλ2h
′
1 αB)− tλ′2h1αB

)

∧
(

h̃tλ2 dαB + (dh0 ∧ αB + dβ∆)
)n−1

.
(3.2)

Here, we used the abbreviation h̃tλ2
= h0 + tλ2h1.

We show that this inequality holds for a sufficiently small choice of ǫ.
First, we only consider the terms containing the derivative of λ2. Since
tλ′2h1 is a non-positive function, we have to show that the rest of these
terms is a family of positive volume forms on B.

To see this, consider the points on which |h0 − 1| < 1/2. There, the
function h̃tλ2 only takes values in [1/2, 5/2]. So, if we have

0 < αB ∧ (s dαB + (dh0 ∧ αB + dβ∆))
n−1

for all s ∈ [1/2, 5/2], then the terms we consider define a positive volume
form whenever |h0 − 1| < 1/2.

The two conditions above are open conditions on the restrictions of
h0 and σs = αB ∧ (s dαB + (dh0 ∧ αB + dβ∆))

n−1
to the sets B × {x}

with x ∈ D2 which are satisfied for x = 0. Consequently, Corollary A.2
provides a continuous function ǫ1 : Ω

1
0(π)× [1/2, 5/2] → (0, 1/2) such that

the two conditions are satisfied for h0 and σs inside the set B×Bδ(α,s)(0).
Because [1/2, 5/2] is compact, for fixed α, this function has a minimum ǫ(α).
Consequently, choosing ǫ ≤ ǫ1(α) guarantees that the terms involving the
derivative of λ2 are non-negative.

Next, let us take a closer look at the remaining terms, i.e. those
not containing λ′2. To understand them better, we expand them as a
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polynomial in tλ2. This expansion reads as follows.

(du− βr) ∧ (dβ)
n−1

+

n−1
∑

k=1

(

tλ2
)k
((

n− 1

k

)

(du− βr) ∧ (dβ)
n−k−1 ∧ (h1 dαB)

k

+

(

n− 1

k − 1

)

Kr αB ∧ (dβ)
n−k ∧ (h1 dαB)

k−1

)

+
(

tλ2
)n
Kr αB ∧ (h1 dαB)

n−1

(3.3)

The zeroth order coefficient is positive because this is the condition dα
has to satisfy to be symplectic on the pages. Since furthermore tλ2 ≥ 0,
it suffices to show that there is a sufficiently small choice of ǫ such that
all coefficients are non-negative.

For the highest order coefficient this is evident, since h1 is positive. For
the remaining coefficients, the situation is more complicated. Each of
these coefficients consists of two terms; about the first term we do not
know a lot and the second term is the product of the coordinate function
r with a form that is positive on a neighbourhood of the binding. The key
observation is that the second term contains a factor of K and the first
one does not. Consequently, we show that the coefficients are positive for
a sufficiently large choice of K, which is equivalent to a sufficiently small
choice of ǫ.

There is one problem with our observation about the occurrence of
K in the two terms of the coefficients: the function h1 does depend on
K. However, this problem is not severe: by our definition of K as a
function of ǫ we know that h1(r) =

(

1−Kr2
)

∈ [1/2, 1] for r ≤ ǫ because
K = 1/2ǫ2. So, since only powers of h1 occur in the two terms of the
coefficients, both times as a factor, and the power in the first term is
larger, we can replace h1 by its largest value 1.

Now, let us choose a positive continuous function δ on Ω1
0(π) such that

the second term in each of the coefficients is the product of r with a
volume form on Bδ(0) × B, which exists by Corollary A.2. With this
function at hand, we would like to set

K2(α) = 2 + max
k∈{1,...,n−1}

sup
Bδ(0)\{0}

∣

∣

∣

1
r

(

n−1
k

)

(du− βr) ∧ (dβ)
n−k−1 ∧ (dαB)

k
∣

∣

∣

∣

∣

∣

(

n−1
k−1

)

αB ∧ (dβ)
n−k ∧ (dαB)

k−1
∣

∣

∣
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and define ǫ2(α) :=min {1/√2K2, δ, ǫ1}. Then, for every choice of ǫ smaller
than or equal to ǫ2, the family α2

t will remain in Ω1
0(π).

However, a priori, the supremum of the numerator does not have to
be finite. To see that it is, first notice that, up to the factor of 1/r, the
numerator is well defined on the binding and vanishes there because both
du and βr ∧ (dαB)

n−1
vanish on the binding and dβ|B = dαB. Now,

remember that the function u and the families of forms β and αB are
smooth on D2. So they are still smooth when restricted to rays from 0
and the restriction and its derivatives continuously depend on the ray, i.e.
the corresponding angle ϕ ∈ S1. As a result, on each ray, the numerator
has a smooth continuation to the origin that continuously depends on
the ray. Thus, the supremum above is finite and our choices of K2 and ǫ2
are valid.

The third step is similar to the second one. We perform a further
deformation of α via the family α3

t , t ∈ [0, 1], given by

α3
t = (1 + tλ3(r))

8 (
α2
t − tλ3(r) (β + u dr)

)

.

This family is constant outside U3 = B×Bǫ/2(0) and inside this set given
by

α3
t = (1 + tλ3(r))

8 (
(h1(r) + (1− tλ3(r))h0)αB

+ (1− tλ3(r)) (u dr − β∆)
)

.

This time the condition (3.1) that α3
t be adapted reads

0 < (1 + tλ3)
7
(

(1 + tλ3) (−h′1αB + (1− tλ3) (du− βr))

− tλ′3
(

− (1 + tλ3) (h0 αB + β∆) + 8ĥtλ3
αB + 8(1− tλ3)β∆

)

)

∧
(

ĥtλ3
dαB + (1− tλ3) (dh0 ∧ αB + dβ∆)

)n−1

(3.4)

where we have used the abbreviation ĥtλ3 = h1 +
(

1− tλ3
)

h0. Because
(

1 + tλ3
)7

is positive we may drop this factor.
As in the second step, we first consider the terms containing a factor

of λ′3. Since tλ′3 ≤ 0, we have to show that the rest of these terms is
non-negative. Remember that for our previous choice of ǫ we already
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know that |h0 − 1| < 1/2 and h1 (r) ∈ [1/2, 1]. Accordingly, the function

ĥtλ3
only takes values in [1/2, 5/2]. In particular, 8ĥtλ3

− (1 + tλ3)h0 is
bounded from below by 1.

To ensure that inequality (3.4) is satisfied for the terms containing a

factor of λ′3, we proceed by replacing ĥtλ3
and (1− tλ3) by parameters

s ∈ [1/2, 5/2] and s̃ ∈ [0, 1]. Then the inequality reads

0 < ((8s− (2− s̃)h0)αB + (9s̃− 2)β∆)

∧ (s dαB + s̃ (dh0 ∧ αB + dβ∆))
n−1

,
(3.5)

which is independent of t and λ3. Moreover, the inequality is satisfied
on the binding for all parameters because the forms dh0 and β∆ vanish
there. Thus, Corollary A.2 tells us that there is a continuous map
ǫ3 : Ω

1
0(π) × [1/2, 5/2] × [0, 1] → (0, ǫ2) such that the inequality holds on

B×Bǫ3(α,s,s̃)(0) for fixed s and s̃. Taking the minimum over the compact
parameter space yields a function ǫ3 on Ω1

0(π) such that the inequality
holds on B×Bǫ3(α)(0) for all values of s and s̃. In particular, the inequality

holds for s = ĥtλ3
(r) and s̃ = (1− tλ3(r)).

Let us now turn our attention to the remaining terms. After divid-
ing them by the common positive factor

(

1 + tλ3
)

, an expansion as a

polynomial in
(

1− tλ3
)

reads as follows.

Kr αB ∧ (h1 dαB)
n−1

+
n−1
∑

k=1

(

1− tλ3
)k
((

n− 1

k

)

Kr αB ∧ (dβ)
k ∧ (h1 dαB)

n−k−1

+

(

n− 1

k − 1

)

(du− βr) ∧ (dβ)
k−1 ∧ (h1 dαB)

n−k
)

+
(

1− tλ3
)n

(du− βr) ∧ (dβ)
n−1

Here, the same arguments as in the second step apply. The zeroth order
term is positive because αB is a contact form on B, and the highest order
term because this is the condition dα has to satisfy to be symplectic on
the pages. By the same arguments as in the second step we may define

K3(α) = 2 + max
k∈{1,...,n−1}

sup
Bδ(0)\{0}

∣

∣

∣

2
r

(

n−1
k−1

)

(du− βr) ∧ (dβ)
k−1 ∧ (dαB)

k−1
∣

∣

∣

∣

∣

∣

(

n−1
k

)

αB ∧ (dβ)
k ∧ (dαB)

n−k−1
∣

∣

∣



3.1. Open Books 61

where δ = δ(α) is the same function as in the second step, which guaran-
tees that the denominator is positive. Here, we have approximated h1 by
1/2 because, this time, the term containing the higher power of h1 is the
one containing K. Defining ǫ = min {1/√2K3, ǫ3} then ensures that both
families α2

t and α3
t stay inside Ω1

0(π) for all t ∈ [0, 1].
For r ≤ ǫ/4 the function λ3 is constant of value 1. As a result, for these

radii the form α3
1 is given by

α3
1 = 28

(

1−Kr2
)

αB =

(

1− 1

32

(

r
ǫ/4

)2
)

(

28αB
)

.

Hence, it is standard for radius ǫ/4 with respect to the function h̄1 : [0, 1] →
R+

0 given by h̄1(r) =
(

1− 1
32r

2
)

.
We define the deformation Dt(α) by piecing together the three de-

formations above and set ρ(α) = ǫ(α)/4. More precisely, to guarantee the
smoothness in t, we choose some smooth monotonously increasing cut-off
function µ : [0, 1/3] → [0, 1] that vanishes in a neighbourhood of 0 and is
constant of value 1 in a neighbourhood of 1/3. Then we define

Dt(α) =











α1
µ(t) , for t ∈ [0, 1/3]

α2
µ(t−1/3) , for t ∈ [1/3, 2/3]

α3
µ(t−2/3) , for t ∈ [2/3, 1] .

It remains to show that the deformation Dt leaves the space Ω1
L(π)

invariant. So, let α ∈ Ω1
(B,π),L(M) and r0 ∈ (0, 1/2] be some radius for

which α is standard for some function h1 as in the definition of a Lutz
pair. Then α is also standard for every radius 0 < r1 ≤ r0, albeit with
respect to another function ȟ1. More precisely, this function is given by
ȟ1(r) = h

(

(r0/r1) r
)

. In particular, it is standard for r̃ = min {ρ(α) , r0}.
Because α is standard for radius r̃, we know that for all r ≤ r̃ the

function v from the decomposition vanishes. Consequently, the first
deformation does not change α at all inside B ×Br̃(0). Changes inside
this set only occur in the two remaining deformations.

As both λ2 and λ3 are constant for r ≤ r̃ ≤ ǫ/4, for these radii the
families are given by

α2
t =

(

ȟ1 (r/r̃) + t h1(r)
)

αB

=
(

1
1+t ȟ1 (

r/r̃) + t
1+t h1(r)

)

((1 + t)αB)
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and

α3
t = (1 + t)

8 (
h1(r) + (1− t) ȟ1 (r/r̃)

)

αB

=
(

1
2−t h1(r) +

1−t
2−t ȟ1 (

r/r̃)
)(

(1 + t)
8
(2− t)αB

)

.

Because the conditions on the functions in a Lutz pair are convex, these
two families stay standard for radius r̃ for all times t ∈ [0, 1]. This shows
that Dt is a weak deformation retraction from Ω1

0(π) into Ω1
L(π).

In the remainder of the proof, we will need to know for which radius a
form is standard. Unfortunately, this radius is not unique for forms in
Ω1(π). There is not even a way to determine one such radius in continuous
dependence on the form itself. So, we will have to keep track of such a
radius separately.

Here, it pays off that we constructed a function ρ on Ω1
0(π) such that

the forms D1(α) are standard for radius ρ(α) ≤ 1/2. This enables us to
define the continuous function (D1, ρ) from Ω1

0(π) into the subset Ω̃1
L(π)

of Ω1
L(π)× (0, 1/2] consisting of those pairs (α, r0) such that α is standard

for radius r0.
Taking a closer look at the proof of Proposition 3.1.8, we see that this

map is a homotopy equivalence.

Corollary 3.1.9. There is a weak deformation retraction D′
t from the

space Ω1
0(π) × (0, 1/2] into its subspace Ω̃1

L(π) such that D′
1(α, r0) =

(D1(α) , ρ(α)). Moreover, we may assume that the deformation is smooth
in the deformation parameter and constant outside U .

Proof. If Ω1
0(π) × (0, 1/2] is empty, so is its subspace Ω̃1

L(π). So, let us
assume that Ω1

0(π)× (0, 1/2] is non-empty.
Let (α, r0) ∈ Ω1

0(π)× (0, 1/2] and r̃0 = min {r0, ρ(α)}.
As we have seen already in the proof of Proposition 3.1.8, whenever α

is standard for r0, this is also true for all r ≤ r0. Moreover, in this case
we also know that Dt(α) is standard for r̃0 for all t ∈ [0, 1]. Consequently,
we can define the deformation retraction in the following three parts,
which we patch together as in the proof of Proposition 3.1.8.

First, change r0 through the family r1t = (1− t) r0+tr̃0, holding α fixed.
Second, change α through the family Dt(α), holding r0 fixed. Finally,
change r0 through the family r2t = (1− t) r̃0 + tρ(α), holding α fixed.
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After the second step we are already in Ω̃1
L(π) and we know that D1(α)

is standard for ρ(α). This enables us to raise r0 again from r̃0 to ρ(α)
without leaving Ω̃1

L(π).

Because the inclusion of Ω1
0(π) into Ω1

0(π)×(0, 1/2] given by α 7→ (α, 1/2)
is a homotopy equivalence, the corollary above proves that the map (D1, ρ)
is one, as well.

Now that we can keep track of the radii for which our forms are standard,
we can fix the function h1 with respect to which the forms are standard.

Lemma 3.1.10. Let h be a Lutz pair. Then there is a weak deformation
retraction from Ω̃1

L(π) into its subspace Ω̃1
h1
(π) consisting of those pairs

(α, r0) such that α is standard with respect to h1 for radius r0. More-
over, we may assume that the deformation is smooth in the deformation
parameter and constant outside U .

Proof. If Ω̃1
L(π) is empty, so is its subspace Ω̃1

h1
(π). So, let us assume

that Ω̃1
L(π) is non-empty.

Let (α, r0) ∈ Ω̃1
L(π). Our goal is to construct a deformation of α that

depends continuously on the pair (α, r0) while holding r0 fixed.

We already know that inside B × B̄r0(0) ⊂ U the form α is given by

α = h̃1(r/r0)αB

for some function h̃1 such that (h̃1, h2) is a Lutz pair and αB = α|TB.
Because the space of Lutz pairs is convex, this leads us to the idea to use
a convex interpolation between h̃1 and h1 to arrange that α be standard
with respect to h1 for radius r0.

The problem is that we have to cut off this convex interpolation outside
of B × B̄r0(0). Consequently, we need suitable extensions of h1 and h̃1.
We start with h1.

Let h1,∞ : R+
0 → R+ be a smooth extension of h1 such that h′1,∞(r) < 0

for r > 0. Then we define h1,r0 by h1,r0(r) = h1,∞(r/r0). By construction,
an adapted form α̃ is standard with respect to h1 for radius r0 if and
only if it is given by

α̃ = h1,r0(r) α̃|TB
for r ≤ r0.
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As an extension for h̃1 we define the function h̄1 := ιRαB
α, which is

defined on U . Inside B × B̄r0(0) it depends only on r and is given by

h̄1(r) = h̃1(r/r0) .

Next, we need a cut-off function. We want to cut off the interpolation
for radii slightly larger than r0; the exact amount of how much larger they
might be should depend continuously on the form α. So, we first define a
smooth reference function λ0 : R → [0, 1] that is monotonously decreasing,
is constant of value 1 on (−∞, 0], and vanishes on [1,∞). Then we define
the actual cut-off function by λ(r) = λ0

(

1
δ (r − r0)

)

where δ is a constant
that we still have to determine.

Given the preparations above, we set

αt = α− h̄1 αB + (1 + tλ(r))
m (

(1− tλ(r)) h̄1 + tλ(r)h1,r0(r)
)

αB

for some constant m we still have to determine.
For r ≤ r0 the function λ is constant of value 1. Thus, we have

αt = (1 + t)
m (

(1− t) h̄1 + th1,r0(r)
)

αB

=
(

(1− t) h̃1(r/r0) + th1(r/r0)
)

(1 + t)
m
αB

inside B × B̄r0(0). This shows that αt is standard for radius r0 for all
t ∈ [0, 1]. Moreover, if α is standard with respect to h1 for radius r0, i.e.
h̃1 = h1, then the interpolation is constant for r ≤ r0.

By the observation above we know that αt defines a weak deformation
retraction, provided we can find suitable constants δ and m such that
dαt is non-degenerate on the pages.

To find such constants, we proceed in analogy with the proof of Pro-
position 3.1.8 and define a parametric version of αt where we replace tλ
by a constant s ∈ [0, 1], i.e. we set

α̃s = α− h̄1 αB + (1 + s)
m (

(1− s) h̄1 + sh1,r0(r)
)

αB .

Then we can write the differential of αt as

dαt = dα̃tλ + tλ′ (1 + tλ)
m−1

(

(1 + tλ)
(

h1,r0 − h̄1
)

+m
(

(1− tλ) h̄1 + tλh1,r0
)

)

dr ∧ αB .
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Accordingly, the condition on dαt to be non-degenerate on the pages
reads

0 < (dαt)
n
= (dα̃tλ)

n − ntλ′ (1 + tλ)
m−1

(

(1 + tλ)
(

h1,r0 − h̄1
)

+m
(

(1− tλ) h̄1 + tλh1,r0
)

)

αB ∧ (dα̃tλ)
n−1 ∧ dr

(3.6)

with respect to the reference volume form αB ∧ (dαB)
n−1 ∧ dr.

Because, for all s ∈ [0, 1], the forms α̃s and αs agree for r ≤ r0
and the forms αs are standard for radius r0, we know that (dα̃s)

n
and

αB ∧ (dα̃s)
n−1 ∧ dr are volume forms for 0 < r ≤ r0. Thus, the proof of

Corollary A.2 tells us that there is a continuous function δ1 : Ω̃
1
L(π) ×

[0, s] → (r0, 1) such that this is also true for all radii 0 < r ≤ δ1(α, r0, s).
Taking the minimum over s we obtain a function δ1 : Ω̃

1
L(π) → (r0, 1)

with the same property.
The discussion above provides a suitable choice of δ such that (dα̃tλ)

n

is positive. It remains to show that we can also arrange that the second
term in (3.6) is non-negative. By construction λ′ is non-positive and by

our previous choice of δ we know that αB ∧ (dα̃tλ)
n−1 ∧ dr is a volume

form on the support of λ′. So, it remains to show that

(1 + tλ)
(

h1,r0 − h̄1
)

+m
(

(1− tλ) h̄1 + tλh1,r0
)

(3.7)

is non-negative on said support.
To see this, we have to take a closer look at the functions h1,r0 and

h̄1. Inside B × B̄r0(0) both only depend on the radial coordinate, with
respect to which they have a non-positive derivative. Furthermore, the
values of the restrictions to this set of both functions are contained
in (0, 1]. Consequently, we know for r ≤ r0 that h̄1(r) > 1

2 h̄1(r0),
h1,r0(r) >

1
2h1,r0(r0) =

1
2h1(1), and

∣

∣h̄1(r)− h1,r0(r)
∣

∣ < 1. These condi-
tions are open. So, again by the proof of Corollary A.2, we get a function
δ : Ω̃1

L(π) → (r0, δ1) such that these three inequalities also hold for all
r ≤ r0 + δ.

With this choice of δ, the first term in (3.7) is bounded from below by
−2. Moreover, we can approximate the second term by

m
(

(1− tλ) h̄1 + tλh1,r0
)

≥ mmin
{

h̄1, h1,r0
}

≥ m
2 min

{

h̄1(r0) , h1(1)
}

.

Thus, setting m = 6/min{h̃1(r0),h1(1)} ensures that (3.7) is positive on the
support of λ, i.e. for r ≤ r0 + δ, and hence that αt is adapted for all
t ∈ [0, 1].
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Since all choices in the construction depend continuously on the pair
(α, r0) the path (αt, r0) defines the desired weak deformation retraction.

So far, we had to separately keep track of the radius for which a form is
standard, because there was no continuous way to obtain this information
from the form. Now that we have entered the space Ω̂1

h1
(π) of those

adapted 1-forms that are standard with respect to a fixed h1 for some
radius smaller or equal to 1/2, the radius for which the forms are standard
with respect to h1 is unique and depends continuously on the forms.

Lemma 3.1.11. Let h be a Lutz pair. Then the function r0 : Ω̂
1
h1
(π) →

(0, 1/2] assigning to a form the radius for which it is standard with respect
to h1 is well-defined and continuous.

Proof. If Ω̂1
h1
(π) is empty, the assertion holds. So, let us assume that

Ω̂1
h1
(π) is non-empty.

Let α0 ∈ Ω̂1
h1
(π) and 0 < r0 ≤ 1/2 be a radius for which α0 is standard

with respect to h1. Furthermore, fix a bundle metric on Ω1 (M) respecting
the product structure on U ∼= D2 ×B.

Seeking a contradiction, assume there was an r1 6= r0 ∈ (0, 1/2] such
that for every δ > 0 there is an α1 ∈ Ω̂1

h1
(π) such that α1 is standard with

respect to h1 for radius r1 and ‖α1 − α0‖C0(Ω1(M)) < δ ‖α0|TB‖C0(Ω1(B)).
Using that h1 ≤ 1, we have

δ ‖α0|TB‖C0(Ω1(B)) > ‖α1 − α0‖C0(Ω1(M))

≥ ‖h1(r/r1)α1|TB − h1(r/r0)α0|TB‖C0(Ω1(Br̄(0)×B))

≥ 1
2 ‖(h1(r/r1)− h1(r/r0)) (α1|TB + α0|TB)‖

− 1
2 ‖(h1(r/r1) + h1(r/r0)) (α1|TB − α0|TB)‖

≥
(

2−δ
2 ‖h1(r/r1)− h1(r/r0)‖C0([0,r̄]) − δ

)

· ‖α0|TB‖C0(Ω1(B))

where r̄ = min {r0, r1}.
Because we assumed that this is true for all δ > 0, we see that h1(r/r0) =

h1(r/r1) for all r ∈ (0, r̄]. However, this is impossible since h′1 < 0 on
(0, 1).
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This shows two things: the radius for which a form is standard with
respect to h1 is unique, and the function assigning this radius to the form
is continuous on Ω̂1

h1
(π).

Immediately, we get the following consequence.

Lemma 3.1.12. The projection from Ω̃1
h1
(π) to Ω̂1

h1
(π) is a homeomorph-

ism.

Now that we know that our forms are standard with respect to a fixed
function h1 and we are able to continuously assign to it the radius for
which it is standard with respect to h1, we would like to change this
radius to a fixed value.

Lemma 3.1.13. Let h be a Lutz pair. Then there is a strong deform-
ation retraction from Ω̂1

h1
(π) to the space Ω1

h1
(π) of adapted 1-forms

standard with respect to h1 for radius 1/2. Moreover, we may assume that
the deformation is smooth in the deformation parameter and constant
outside U .

Proof. If Ω̂1
h1
(π) is empty, so is its subspace Ω1

h1
(π). So, let us assume

that Ω̂1
h1
(π) is non-empty.

We know by Lemma 3.1.11 that the radius r0 for which a 1-form
α ∈ Ω̂1

h1
(π) is standard with respect to h1 depends continuously on α.

So, for a continuous family of isotopies Ψr0,t of M , a deformation of the
form

Dt(α) =
(

Ψ−1
r0(α),t

)∗
α

is continuous.
For our purposes, we choose Ψr0,t to be constant outside the adapted

neighbourhood U ∼= D2 × B of the binding and inside this set to be
defined by

Ψr0,t(((r, ϕ) , b)) = (((1− t) r + tfr0(r) , ϕ) , b)

where fr0 : [0, 1] → [0, 1], r0 ∈ (0, 1/2], is a continuous family of smooth
functions with the following properties.

1) f1/2(r) = r.

2) fr0 |[0,r0](r) = r
2r0

and fr0 |[3/4,1](r) = r.
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3) f ′r0 > 0.

Such a family of functions can be defined by patching together three
affine linear functions. An explicit example is given by

fr0(r) = λ1(r)
r

2r0
+ (1− λ1(r)) (1− λ2(r))

(

1
3
1+4r0
3−4r0

r + 1
12

21−38r0−8r20
3−4r0

)

+ λ2(r) r

where λ1(r) = λ0(20/r0 (r − r0)) and λ2(r) = λ0(96 (3/4 − r)) for a fixed
smooth monotonously decreasing cut-off function λ0 : R → [0, 1] that is
constant of value 1 on R− and vanishes on [1,∞).

For fixed r0 ∈ (0, 1/2], the function fr0 essentially looks like the one in
Figure 3.1 below.

0
0

1

1

1
2

r0

3
4

3/4

f

r

1
12 (1− 2r0)

1
12 (1− 2r0)

Figure 3.1.: The function fr0

Since the isotopies Ψr0,t are constant at the binding and restrict to
isotopies of the pages, pulling back an adapted 1-form yields an adapted
1-form. So, all we have to verify is that Dt(α) is standard for some radius
r1(t) with respect to h1 and that r1(1) = 1/2.
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Because the functions fr0 are linear on [0, r0], we see that for r ≤
1/2 ((1− t) 2r0 + t) =: r1(t) we have

Ψ−1
r0,t(((r, ϕ) , b)) =

((

2r0
(1−t)2r0+tr, ϕ

)

, b
)

.

Using that α ∈ Ω̂1
h1
(π), we deduce that for r ≤ r1(t) we have

Dt(α) = h1

(

2r
(1−t)2r0+t

)

α|B = h1

(

r
r1(t)

)

α|B .

This is exactly what we wanted to prove.

Connecting the deformations from Proposition 2.1.2 and the three
lemmata Proposition 3.1.8, Lemma 3.1.10, and Lemma 3.1.13 the same
way we connected the steps in the proof of Proposition 3.1.8 yields a
deformation with the properties asserted in Theorem 3.1.7.

Remark 3.1.14. In the construction above, the restriction to TB of the
adapted forms only changes by multiplication with a positive constant.
This has two consequences: first, all the deformations above restrict to
the corresponding subspaces in which the induced contact structure on
the binding is fixed. Second, if we modify the deformations by multiplying
the forms with the inverse of this constant at each time of the deforma-
tions, we get corresponding deformations of the subspaces in which the
induced contact form on the binding is fixed. However, in this case the
deformations are not constant outside U anymore.

3.1.2. Induced Liouville Forms

In the preceding subsection, we constructed several weak deformation
retractions of spaces of adapted 1-forms. Taking a closer look at the con-
struction of these deformation retractions we see that we never explicitly
use that we are working with adapted forms rather than with families of
induced forms, i.e. rather than with families in B(π). Consequently, the
weak deformation retractions of the corresponding subspaces of B(π) exist,
as well. Therefore, we would like to infer that a version of Theorem 3.1.7
is true for the space B(π).

To be able to formulate a suitable version of Theorem 3.1.7, we first
have to define what being standard means for an induced Liouville form.
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Definition 3.1.15. Let (B, π) be an open book decomposition of a closed
manifold and C ∼= B × [0, 1) a collar neighbourhood of the binding B in
the closure of the page P0. Furthermore, let h be a Lutz pair. Then we
say that an induced Liouville form β ∈ B(π) is standard with respect to
h1 for distance s0 if

β = h1(s)β|TB
on B × [0, s0) ⊂ C.

If a form is said to be standard not stating h1 or s0, then the corres-
ponding data is assumed to be arbitrary.

The space of all induced Liouville forms on P̄0 that are standard with
respect to a fixed h1 for distance 1/2 we denote by Bh1(π). We denote
by Bh1

(π, ξB) and Bh1
(π, αB) its subspaces where we fix the contact

structure ξB or the contact form αB induced on the binding, respectively.
Given the notation above, a version of Theorem 3.1.7 for induced

Liouville forms can be formulated as follows.

Theorem 3.1.16. Let (B, π) be an open book decomposition of a closed
manifold M and C a collar of the boundary of the closure of the page
P0. Furthermore, let h be a Lutz pair. Then there is a deformation Dt,
t ∈ [0, 1], of the space B(π) into its subspace Bh1(π) such that D1 is a
homotopy equivalence. Moreover, we may assume that the deformation
is smooth in the deformation parameter t and that the deformation is
constant outside C.

By the discussion at the beginning of this subsection, we know that the
proof of Theorem 3.1.7 carries over to that of the theorem above nearly
verbatim. It only remains to prove an analogue of Proposition 2.1.2, since
the proof of this proposition uses a construction adapted to cartesian
coordinates, rather than polar coordinates, on an adapted neighbourhood
B ×D2 of the binding. Furthermore, not every induced Liouville forms
can appear as the restriction of an adapted form to the pages because of
smoothness issues. Fortunately, we are still able to adapt the proof to
the situation in B(π); this even simplifies the proof.

Lemma 3.1.17. Let (B, π) be an open book decomposition of a closed
manifold M and C ∼= B × [0, 1) a collar of the boundary of the closure
of the page P0. Then there is a strong deformation retraction from B(π)
into its subspace B0(π) consisting of those induced Liouville forms β that
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satisfy β|B = β|TB with respect to the splitting of TC induced by the
product structure. Moreover, we may assume that the deformation is
smooth in the deformation parameter and constant outside C.

Proof. If B(π) is empty, so is its subspace B0(π). So, let us assume that
B(π) is non-empty.

Let β ∈ B(π). Then we can write β inside C as

β = α+ f ds

where α is a [0, 1)-family of 1-forms on B and f a [0, 1)-family of functions
on B.

In analogy with the proof of Proposition 2.1.2, we make the ansatz

βt = αt + ft ds

with ft = f − tλ′(s) f |B and αt = α− tλ(s) |TB . Here, λ(s) = sin(s)λ0(s)
where λ0 : [0, 1] → [0, 1] is a smooth function that vanishes for s ≥ 1/2
and takes the value 1 in a neighbourhood of s = 0.

By construction, we have λ′(0) = 1 and λ(0) = 0. This implies that
βt|B = β|TB + (1− t) f |B ds. Consequently, it remains only to show that
βt is a Liouville form on P0 for all t ∈ [0, 1].

To see this, note that the exterior differential dαt an B agrees with dα
for all t and that

dft − ∂s(αt) = (df − tλ′ df |TB)− ∂s(α− tλ df |TB) = df − ∂sα.

This shows that

(dβt)
n
= n (dft − ∂s(αt)) ∧ (dαt)

n−1 ∧ ds
= n (df − ∂sα) ∧ (dα)

n−1 ∧ ds
= (dβ)

n
.

Accordingly, βt is a Liouville form because β is a Liouville form.

Since βt is constant whenever f |B ≡ 0, i.e. whenever β|B = β|TB , and
the construction above is continuous in the form β, it defines a strong
deformation retraction from B(π) into B0(π). That it is smooth and
constant outside C is immediate from the construction.
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Because the deformation retractions from Subsection 3.1.1 still work
after we replace the adapted forms by families in B0(π), the lemma above
completes the proof of Theorem 3.1.16.

Remark 3.1.18. Analogous to Remark 3.1.14, all the deformations in the
proof of Theorem 3.1.16 change the contact form induced on the binding
only by multiplication with a positive constant. Thus, the deformations
restrict to the corresponding subspaces in which the induced contact
structure on the binding is fixed. Moreover, if we modify the deformations
by multiplying the forms with the inverse of this constant at each time of
the deformations, then we get corresponding deformations of the subspaces
in which the induced contact form on the binding is fixed. However, in
this case the deformations are not constant outside C anymore.

3.1.3. Adapted Contact Forms

In Subsection 3.1.1, for a given open book decomposition (B, π) of a closed
manifold M , adapted neighbourhood U ∼= B ×D2 of the binding, and
Lutz pair h, we constructed a deformation Dt of Ω1(π) into its subspace
Ω1
h1
(π) such that D1 is a homotopy equivalence. We would like to use

Corollary 2.1.6 to turn this into a deformation of the space of adapted
contact forms A(π). Unfortunately, this is not possible immediately
because Ω1

h1
(π) is not invariant under the deformation from Theorem 2.1.3.

Consequently, we have to find a suitable invariant subspace of Ω1(π)
homotopy equivalent to Ω1

h1
(π).

Such a subspace is given by the space Ω̄1
h1
(π) consisting of those adapted

forms α that have a decomposition

α = α0 + f dϕ

with the following properties:

1) α0 ∈ Ω1
h1
(π)

2) f ∈ C∞(M)

3) Either there is a Lutz pair
(

h̄1, h̄2
)

such that f is an extension of the
function h̄2(2r) on B ×B1/2(0) ⊂ U , or f vanishes identically.

Now, we prove that this subspace of Ω1(π), indeed, is homotopy equi-
valent to the space Ω1

h1
(π).
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Lemma 3.1.19. Ω1
h1
(π) is a strong deformation retract of Ω̄1

h1
(π).

Proof. By definition, if Ω1
h1
(π) is empty, so is Ω̄1

h1
(π), and vice versa. So,

let us assume that Ω̄1
h1
(π) is non-empty.

Let µ : [0, 1] → [0, 1] be a smooth function that is constant of value 1
on [0, 1/2] and vanishes on [3/4, 1].

Using this function, for α ∈ Ω̄1
h1
(π) we set

αt = α− tλ(r) ι∂ϕαdϕ

inside U and extend this by α on the complement of U .

Since α = α0 + f dϕ for some α0 ∈ Ω1
h1
(π) and some smooth function

f , for r ≤ 1/2 we have

αt = α0 + (1− t) f dϕ.

Hence, α1 is contained in Ω1
h1
(π). Moreover, if f ≡ 0, then the family αt

is constant.

This shows that αt defines a strong deformation retraction of Ω̄1
h1
(π)

into Ω1
h1
(π).

The lemma above, in particular, implies that the inclusion of Ω1
h1
(π)

into Ω̄1
h1
(π) is a homotopy equivalence. Thus, Corollary 2.1.6 shows that

the deformation from Theorem 3.1.7 can be turned into a deformation
Dt of A(π) into its subspace Ah1

(π) = Ω̄1
h1
(π) ∩A(π) consisting of those

adapted contact forms that are standard with respect to h1 for radius 1/2
such that D1 is a homotopy equivalence. Moreover, this deformation is
smooth in the deformation parameter and the restrictions of Dt(α) and
α to the tangent bundle of the pages agree outside U for all t ∈ [0, 1] and
α ∈ A(π).

To prove Theorem 3.1.3, it remains to show that we can arrange the
correct function h2.

Lemma 3.1.20. Let h be a Lutz pair. Then there is a weak deformation
retraction Dt of Ah1

(π) into Ah(π). Moreover, we may assume that
the deformation is smooth in the deformation parameter t and that the
restrictions of Dt(α) and α to the tangent bundles of the pages agree for
all t ∈ [0, 1].
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Proof. The proof of this lemma is similar to that of Lemma 3.1.10. How-
ever, the difficulties arise at different points.

First of all, if Ah1
(π) is empty, so is its subspace Ah(π). So, let us

assume that Ah1(π) is non-empty.

Now, choose a fixed function h̄2 : [0, 1] → R+
0 such that h̄2(r) = h2(2r)

for r ≤ 1/2. Given an α ∈ Ah1(π), we also define a function h̃2 on
U ∼= B ×D2 by h̃2 = ι∂ϕα.

We would like to deform α into Ah(π) via a family

αt = α+ tλ(r)
(

h̄2(r)− h̃2
)

dϕ

where λ is a cut-off function.

Unfortunately, unlike in the proof of Lemma 3.1.10, we need to modify
h̃2 first before this ansatz works. Let us defer this preparation to the end
of the proof where we see which modification is needed.

We start with the construction of the cut-off function λ. First, choose
a smooth monotonously decreasing reference function λ0 : R → [0, 1]
that is constant of value 1 on (−∞, 0] and vanishes on [1,∞). Given
this function we set λ(r) = λ0

(

2
δ

(

r − 1+δ
2

))

where δ > 0 is a constant
depending continuously on α that we still have to determine.

Inside the set B × B̄1/2(0), the function λ is constant of value 1; as a
result, there, the family αt is given by

αt = h1(r/2)αB +
(

(1− t) h̃2 + th̄2
)

dϕ

where αB = α|TB . Since the properties of the functions in a Lutz pair are
convex, the forms αt are still standard with respect to h1 for radius 1/2.
Moreover, α0 = α and α1 is standard with respect to the Lutz pair h for
radius 1/2 and αt is constant for r ≤ 1/2 whenever α is already standard
with respect to h. Thus, it remains only to ensure that the forms αt are
contact forms.

To find a suitable constant δ, we proceed as in the proof of Lemma 3.1.10
and define a parametric version of αt inside U that does not depend on t
and λ. Namely, we set

α̃s = α+ s
(

h̄2(r)− h̃2
)

dϕ

for s ∈ [0, 1].
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With this notation at hand, we can write dαt as

dαt = dα̃tλ + tλ′
(

h̄2 − h̃2
)

dr ∧ dϕ.

Consequently, the contact condition reads

0 < αt∧(dαt)n = α̃tλ∧(dα̃tλ)n+ntλ′
(

h̄2−h̃2
)

dr∧dϕ∧α∧(dα)n−1
, (3.8)

where we used that the projection of αt to the pages is independent of t.
Since the forms α̃s have the standard form in B × B̄1/2(0), they are

contact forms on this set, i.e. α̃s ∧ (dα̃s)
n
> 0. Moreover, the form

dr∧dϕ∧α∧ (dα)
n−1

is a positive volume form on this set, too, because α
is standard for radius 1/2. These two properties are open. So, the proof of
Corollary A.2 shows that there is a function δ : Ah1(π)× [0, 1] → (0, 1/2)
such that the two properties above hold for α̃s and α, respectively, for
r ≤ 1/2 + δ(α, s). Taking the minimum over s ∈ [0, 1] yields our choice of
δ.

With this choice the first term in (3.8) is positive and the second one
has the same sign as the function

tλ′
(

h̄2 − h̃2
)

.

Since λ′ is non-positive we would be done if h̄2 ≤ h̃2 on the support of λ′.
So, we precede the deformation above by another deformation

α1
t = α+ tµ(r)

∥

∥h̃2 − h̄2
∥

∥

C0(U)
dϕ

where µ is a cut-off function defined by µ(r) = λ0
(

2
δ

(

1+δ
2 − r

))

inside U .
We extend µ to all of M as the constant function with value 1.

Because µ′ is non-negative and on its support the form dr ∧ dϕ ∧ α ∧
(dα)

n−1
is a positive volume form, the proof of Theorem 2.1.3 shows that

α ∧ (dα)
n

can only increase if we add tµ
∥

∥h̃2 − h̄2
∥

∥

C0(U)
dϕ to α. Thus,

the forms α1
t are contact forms.

By the same argument, the forms in the parametric version ᾱs of the
subsequent deformation

α2
t = α1

1 + tλ
(

h̄2(r)−
(

h̃2 + µ
∥

∥h̃2 − h̄2
∥

∥

C0(U)

))

dϕ

= αt + (1− tλ)µ
∥

∥h̃2 − h̄2
∥

∥

C0(U)
dϕ



76 3. Neighbourhood Theorems

given by
ᾱs = α̃s + (1− s)µ

∥

∥h̃2 − h̄2
∥

∥

C0(U)
dϕ

satisfy ᾱs ∧ (dᾱs)
n ≥ α̃s ∧ (dα̃s)

n
. Consequently, our previous choice of

δ is still suitable.
Finally, let us take a look at the support of λ′. There, the function µ is

constant of value 1. Accordingly, the second term of the right-hand side
of (3.8) is non-negative for αt replaced by α2

t because

tλ′
(

h̄2 −
(

h̃2 +
∥

∥h̃2 − h̄2
∥

∥

C0(U)

))

≥ 0.

This shows that first applying the deformation α1
t and then α2

t yields a
deformation into Ah(π). This is a weak deformation retraction since µ
vanishes for r ≤ 1/2 and hence the forms α1

t are standard for radius 1/2
for the same Lutz pair as α.

To achieve smoothness in the parameter we have to concatenate the two
deformations as in the proof of Proposition 3.1.8. That the restrictions
to the tangent bundles of the pages remain unchanged follows from the
fact that we changed α only by adding a multiple of dϕ.

The lemma above finally concludes the proof of Theorem 3.1.3.

Remark 3.1.21. Since we do not change the restriction to the boundary
in Corollary 2.1.6 and Lemma 3.1.20, Remark 3.1.14 about the restricted
subspaces also applies in the contact setting. More precisely, all the
deformations in the proof of Theorem 3.1.3 change the contact form
induced on the binding only by multiplication with a positive constant.
Thus, the deformations restrict to the corresponding subspaces in which
the induced contact structure on the binding is fixed. Moreover, if we
modify the deformations by multiplying the forms with the inverse of
this constant at each time of the deformations, we get corresponding
deformations of the subspaces in which the induced contact form on the
binding is fixed. However, in this case, restrictions to the tangent bundle
of the pages do change outside U .

3.1.4. Symplectic Open Books from Contact Open
Books

In Section 2.2 we have seen two ways to construct an adapted contact form
on M(P,Ψ), given a symplectic open book (P,Ψ, β0). In this subsection
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we use Theorem 3.1.3 to show that, up to contactomorphism, every contact
manifold (M, ξ) such that ξ is supported by an open book decomposition
(B, π) of M can be constructed this way. The corresponding symplectic
open book is of the form (P,Ψ, β) where P is diffeomorphic to the closure
of the page P0 of (B, π). More precisely, we prove the following theorem.

Theorem 3.1.22. Let (B, π) be an open book decomposition of a closed
manifold M , h a Lutz pair such that h2 is constant in a neighbourhood
of 1, and U ∼= D2 × B an adapted neighbourhood of the binding B.
Furthermore, let α be a contact form adapted to (B, π) and P the subset
P0 \

(

B ×B1/4(0)
)

of the page P0.

Then (M, kerα) is contactomorphic to the result of applying the gen-
eralised Thurston-Winkelnkemper construction with the Lutz pair h to a
symplectic open book (P,Ψ, β) where β coincides with the restriction of α
to TP0 on P \ U .

Proof. We want to apply Theorem 3.1.3 to obtain a path αt of adapted
contact forms from α to some adapted contact form α1 that is standard
with respect to h for radius 1/4. So we first choose a suitable Lutz pair
(

h̄1, h̄2
)

extending h, i.e. a Lutz pair such that h̄i(r) = hi(2r), i = 1, 2, for
all r ≤ 1/2. Furthermore, given a constant ǫ > 0 such that h2 is constant
on [1− 4ǫ, 1], we also demand that h̄2 is constant on [1/2 − 2ǫ, 1/2 + 2ǫ].

Now, we apply Theorem 3.1.3 with the Lutz pair
(

h̄1, h̄2
)

. This yields
a path αt of adapted contact forms from α to some adapted contact
form α1 that is standard with respect to

(

h̄1, h̄2
)

for radius 1/2. Because
h̄i(r) = hi(2r), i = 1, 2, for all r ≤ 1/2, this implies that α1 is standard
with respect to h for radius 1/4.

By Theorem 1.1.8, the family ξt = kerαt is covered by an isotopy Φt of
M that fixes B pointwise. In particular, (M, kerα) and (M, kerα1) are
contactomorphic.

Next, we show that M(B, π, α1) is strictly contactomorphic to the
result of the generalised Thurston-Winkelnkemper construction applied
to the symplectic open book (P,Ψ, j∗α1) where Ψ is a diffeomorphism of
P and j a fixed inclusion of P into M .

To this end, we have to find a suitable vector field transverse to the pages
that agrees with the coordinate vector field ∂ϕ inside a neighbourhood of
B× B̄1/4(0). Outside this neighbourhood, our candidate for such a vector
field is the scaled Reeb vector field X = fRα1 with f = 1/(ιRα1

dϕ). This
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is well defined because dα1 is positively non-degenerate on the tangent
bundles of the pages and hence Rα1 positively transverse to them.

Thanks to α1 being standard with respect to
(

h̄1, h̄2
)

for radius 1/2 we
are able to compute Rα1

explicitly inside B × B̄1/2(0). It is given by

Rα1
=

h̃′2
h̃1h̄′2 − h̃2h̃′1

RαB
− h̃′1
h̃1h̃′2 − h̃2h̃′1

∂ϕ

where RαB
is the Reeb vector field to the contact form αB = α1|TB on

B and h̃i(r) = h̄2r, i = 1, 2. In particular, wherever h̃2 is constant, we
have Rα1

= h̄−1
2 ∂ϕ. This shows that we can glue the vector field X and

∂ϕ along the set {r ∈ (1/4 − ǫ, 1/4 + ǫ)}. By a slight abuse of notation, we
again denote by X the result of gluing these two vector fields.

The vector field X allows us to identify N =M \
(

B ×B1/4(0)
)

with
the mapping torus P (Ψ2π) where Ψt is the time-t-flow of X, which exists
for all t ∈ R because X is parallel to the boundary of N . More precisely,
this identification is induced by the map

Φ: P × R → N

(x, ϑ) 7→ Ψϑ(j(x)) ,

which descends to a diffeomorphism P (Ψ2π) → N since Ψ2π ◦Ψt = Ψt+2π

for all t ∈ R.

Pulling back α1 with Φ yields

Φ∗α1 = (Ψϑ ◦ j)∗ α1 + ((ιXα1) ◦ Φ) dϑ = j∗Ψ∗
ϑα1 + (f ◦ Φ) dϑ.

We would like to see that this is of the form j∗α1+dh for some function
h. So, let us examine the dependence of Ψ∗

tα1 on the flow parameter. We
have

LXα1 = d(ιXα1) + ιXdα1 = d
(

fιRα1
α1

)

+ fιRα1
dα1 = df .

With this in mind, we define a function h : P × R → R by h(x, ϑ) =
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∫ ϑ

0
f(Φ(x, t)) dt. Its differential is given by

dh = d

(

∫ ϑ

0

f(Φ(x, t)) dt

)

=

∫ ϑ

0

d(j∗Ψ∗
t f) dt+ (f ◦ Φ) dϑ

= j∗
(

∫ ϑ

0

(Ψ∗
t df) dt

)

+ (f ◦ Φ) dϑ

= j∗
(

∫ ϑ

0

(Ψ∗
tLXα1) dt

)

+ (f ◦ Φ) dϑ

= j∗ (Ψ∗
ϑα1 − α1) + (f ◦ Φ) dϑ .

Therefore, we have

Φ∗α1 = j∗Ψ∗
ϑα1 + (f ◦ Φ) dϑ = j∗α1 + dh.

To see that this form arises from the generalised Thurston-Winkeln-
kemper construction, we construct a strict contactomorphism between
the ordinary mapping torus (P (Ψ2π) ,Φ

∗α1) and the generalised mapping

torus
(

Pĥ(Ψ2π) , β + dϑ
)

for some function ĥ and Liouville form β on P .
In this construction, it comes to our help that ∂ϑh = ι∂ϑdh = f ◦Φ > 0.

Accordingly, the map

Φ̂ : P × R → P × R

(x, ϑ) 7→ (x, h(x, ϑ))

is a diffeomorphism. Furthermore, a closer inspection of h shows that

h
(

Ψ−1
2π (x) , ϑ+ 2π

)

=

∫ ϑ+2π

0

(f ◦Ψt)
((

j ◦Ψ−1
2π

)

(x)
)

dt

=

∫ ϑ+2π

0

(f ◦Ψt−2π)(j(x)) dt

=

∫ ϑ

0

(f ◦Ψt)(j(x)) dt+
∫ 2π

0

(f ◦Ψt)
((

j ◦Ψ−1
2π

)

(x)
)

dt

= h(x, ϑ) + h
(

Ψ−1
2π (x) , 2π

)

.
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Thus, the map Φ̂ descends to a diffeomorphism from P (Ψ2π) to Pĥ(Ψ2π)

for the function ĥ defined by ĥ(x) = h
(

Ψ−1
2π (x) , 2π

)

.

Pulling back j∗α1 + dϑ with Φ̂ yields

Φ̂∗(j∗α1 + dϑ) = j∗α1 + dh = Φ∗α1.

Hence, (N,α1) is strictly contactomorphic to
(

Pĥ(Ψ2π) , j
∗α1 + dϑ

)

.
Since X coincides with ∂ϕ in neighbourhood of ∂N , the monodromy

Ψ2π agrees with the identity on a neighbourhood of ∂P . Consequently,
(P,Ψ2π) is an abstract open book. Furthermore, following the flow of

2 (j∗)
−1
∂r, we can define a collar neighbourhood C ∼= B× [1/8, 1/4) of ∂P

such that j(x, s) = (x, 2s, 0) ∈ B ×B1/2(0). In these coordinates, j∗α1 is
given by

j∗α1 = h̄1(s)αB ,

which implies that, inside C, a Liouville vector field to j∗α1 is given by
Y = h̄1/h̄′

1∂s. Because h̄1 is positive and h̄′1 negative, Y points outwards
along ∂P . Consequently, (P,Ψ2π, j

∗α1) is a symplectic open book.
Denote by α̂ the contact form on M(P,Ψ2π) from the generalised

Thurston-Winkelnkemper construction for (P,Ψ2π, j
∗α1). Then, by the

discussion above, we already know that (N,α1) is strictly contactomorphic
to (P (Ψ2π) , α̂).

The other part of M , i.e. B × B̄1/4(0), is diffeomorphic to B ×D2 via
the map ψ given by ψ(x, (r, ϕ)) = (x, (4r, ϕ)). Pulling back α1 yields

ψ∗α1 = ψ∗(h1(4r)αB + h2(4r) dϕ) = h1(r)αB + h2(r) dϕ.

Thus,
(

B × B̄1/4(0) , α1

)

and
(

B ×D2, α̂
)

are strictly contactomorphic.
This concludes the proof of the theorem.

Combining this with the following result by Giroux and Mohsen [22], we
can infer that up to contactomorphism every contact manifold arises from
the generalised Thurston-Winkelnkemper construction. More precisely,
we can infer that Theorem 2.2.9 holds.

Theorem 3.1.23 (Cf. [22, Théorème 10]). Every contact structure is
supported by an open book decomposition whose pages are Weinstein
manifolds.

Unfortunately, like for the stronger result Theorem 2.2.9, so far no
detailed proof of this result has been published.
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3.2. Manifolds with Boundary

On manifolds with non-empty boundary, many constructions known for
closed manifolds fail. This is often connected to the problem that flows of
a vector fields do not have to exist globally. Consequently, it is necessary
to introduce suitable boundary conditions. In this section, we construct
several weak deformation retractions that allow us to strengthen boundary
conditions on diffeomorphisms and symplectic forms on a manifold with
boundary.

3.2.1. Diffeomorphisms Fixing the Boundary

The most basic boundary condition one can impose on a diffeomorphism
Ψ of a manifold W with boundary is that the restriction of Ψ to the
boundary ∂W agree with the identity. A stronger, and often more useful,
boundary condition is to demand that Ψ have compact support in the
interior of P . Given a collar neighbourhood C ∼= (−2, 1] × ∂W of the
boundary, we can also define the even stronger boundary condition that
Ψ coincide with the identity on the fixed collar C ′ = (−1, 0]× ∂W .

Let us denote by D∂ , D, and DC the spaces of those diffeomorphisms of
W satisfying these boundary conditions, respectively, in the same order
as above.

The aim of this subsection is to show that we can always arrange the
stronger boundary conditions using a deformation, provided one of the
weaker ones is satisfied. More precisely, we prove the following theorem.

Theorem 3.2.1. Let P be a manifold with non-empty boundary and
C ∼= (−2, 1]× ∂W a collar neighbourhood of the boundary. Then there is
a weak deformation retraction of D∂ into its subspace D that restricts to
a weak deformation retraction of DC into D.

Proof. All three spaces contain the identity map and, hence, are non-
empty. So, let Ψ ∈ D∂ .

We construct the deformation in two steps. First, we arrange that Ψ
coincides with the identity on a small neighbourhood of the boundary
and then we extend this neighbourhood to C ′ = (−1, 0]× ∂W .

Because Ψ is a diffeomorphism and its restriction to ∂W agrees with
the identity, we know that there is an open neighbourhood U ⊂ Ψ−1(C ′)
of ∂W in which ιΨ∗∂sds > 0, where s is the collar coordinate.
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The condition that ιΨ∗∂sds|{s}×∂W > 0 is an open condition on Ψ,
as well as the condition that Ψ({s} × ∂W ) ⊂ C ′. Thus, the function
E : D∂ → (0, 1] mapping Ψ to the supremum of all r ∈ [0, 1) such that
[−2r, 0]× ∂W is contained in Ψ−1(C ′) and ιΨ∗∂sds positive on [−2r, 0]×
∂W is lower semi-continuous. We would like to apply Theorem A.1
to obtain a continuous function s0 : D∂ → (0, 1) satisfying 0 < s0 <
E. Then the properties in the definition of E would be satisfied on
[−2s0(Ψ) , 0]× ∂W .

The only assumption from Theorem A.1 that remains to be verified is
the paracompactness of the space D∂ . That D∂ is paracompact follows
from the fact that it is metrizable by [27, Proposition 42.3] or rather an
adapted version. Strictly speaking, the methods in [27, Section 42] do
not apply if the range is a manifold with boundary. Nevertheless, with
minor changes the treatment applies if the maps are prescribed at every
point where the maps are allowed to touch the boundary. Since this is
the case for D∂ , we can obtain the function s0 via Theorem A.1.

Now we are ready to start with the first step of the construction, which
we again divide into two steps. In the first step we arrange that Ψ
preserves the level sets of the collar coordinate s inside [−s0(Ψ) , 0]× ∂W .
Then we use this property to shift the level sets in order to arrange that
Ψ agrees with the identity on [−s0(Ψ)/2, 0]× ∂W .

The idea of the first step is to construct a suitable isotopy Φt from
the identity to a diffeomorphism that sends Cs0 = [−s0(Ψ) , 0]× ∂M to
Ψ(Cs0) and then deform Ψ through the family Ψ1

t = Φ−1
t ◦Ψ.

To construct the isotopy Φt, we have to take a closer look at the map
Ψ inside Cs0 . Because ιΨ∗∂sds > 0, the set Ψ({s} × ∂W ) is a graph over
∂W for all s ∈ [0, s0(Ψ)]. This implies that pr∂W ◦Ψs is a diffeomorphism
of ∂W for the same s, where pr∂W is the projection to ∂W in the collar
C ∼= (−2, 0]×∂W , and Ψs : ∂W → C is the map given by Ψt(p) = Ψ(s, p).
This diffeomorphism has the property that

pr∂W ◦
(

Ψs ◦ (pr∂W ◦Ψs)−1
)

= id∂W .

Thus, the smooth strictly monotonously decreasing family of functions

ρs = pr(−2,0] ◦
(

Ψs ◦ (pr∂W ◦Ψs)−1
)

,

where pr(−2,0] is the projection to (−2, 0] in C, measures the height of
the graph Ψ({s} × ∂W ) over, or rather under, ∂W .
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∂W

Ψs(∂W )

p

ρs(p)

Figure 3.2.: The collar neighbourhood C′

We use the family ρs to construct a continuous family νΨ : (−2, 0] ×
∂M → (−2, 0] of smooth strictly monotonously increasing functions with
νΨ(s, p) = ρs(p) for s ∈ [−s0(Ψ) , 0] whose restriction to (−2,−3/2] ×
∂M agrees with pr(−2,0]. Moreover, we demand that νΨ be given by
pr(−2,0] whenever ρs ≡ s for all s ∈ [−s0(Ψ) , 0]. Such a family can be
constructed by interpolating a suitable affine linear function depending
continuously on m := min ρs0(Ψ) and m′ := maxs∈[−s0(Ψ),0] max ∂sρs on
one side with pr(−2,0] and on the other side with (p, s) 7→ ρs(p), as
indicated in Figure 3.3.

Now we are in the position to introduce the isotopy Φ1
t : W → W

advertised earlier. On the complement of the collar C, we define Φs to
agree with the identity and, inside C, we set

Φt(s, p) = (tνΨ(s, p) + (1− t) s, p) .

This depends continuously on Ψ and, since ∂sνΨ > 0, it is a family of
diffeomorphisms.

Moreover, if there is an s̄ ∈ [0, 2) such that Ψ agrees with the identity
on (−s̄, 0]× ∂W , then we know that

Φt(s, p) = (tνΨ(s, p) + (1− t) s, p) = (tρs(p) + (1− t) s, p)

= (ts+ (1− t) s, p) = (s, p)

for s ≤ min {s0(Ψ) , s̄}. Hence, the isotopy Φt has compact support in
the interior of W whenever this is true for Ψ.
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Figure 3.3.: The function νΨ

If moreover Ψ agrees with the identity on C ′ = (−1, 0]× ∂M , we have
ρs(p) = s for all s ≤ s0(Ψ) < 1. This implies that, in this case, the
isotopy Φt is constant.

As indicated before, we define the first deformation of Ψ by

Ψ1
t = Φ−1

t ◦Ψ.

Since Φ1 sends the sets {s} ×M to Ψ({s} ×M) for all s ≥ −s0(Ψ),
the map Ψ1

1 preserves the level sets of the collar coordinate s inside
Cs0 = [−s0(Ψ) , 0]× ∂W . Moreover, by the discussion above, the isotopy
Ψ1
t preserves the spaces D and DC .
Equipped with the knowledge that Ψ1

1 preserves the level sets of the
collar coordinate, we are able to push the restriction of Ψ1

1 to the bound-
ary, which is the identity, onto a small neighbourhood of the boundary
by displacing the level sets. More precisely, we perform the following
construction.

Let λs,r : [−2, 0] → [−2, 0], (s, r) ∈ [0, 1] × (0, 1], be a continuous
family of smooth monotonously increasing functions that coincide with
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the identity on [−2,−r] and vanish on [−sr/2, 0]. Furthermore, we demand
that λ0,r be the identity for all r ∈ (0, 1]. Then the family Ψ2

t with
Ψ2
t |W\C = Ψ1

1 and

Ψ2
t (s, p) =

(

s, pr∂W
(

Ψ1
1

(

λt,s0(Ψ)(s) , p
)))

for (s, p) ∈ C defines a deformation such that Ψ1
1|[−s0(Ψ)/2,0]×∂W is the

identity and Ψ2
0 = Ψ1

1.
Note that, whenever Ψ1

1 agrees with the identity on [s̄, 0] × ∂W for
some s̄ < 0, this is also true for Ψ2

t on λ−1
t,s0(Ψ)([s̄, 0])× ∂W . In particular,

if Ψ1
1 agrees with the identity on all of C ′ = (−1, 0]× ∂W , then this is

also true for Ψ2
t because s0(Ψ) < 1. This shows that this deformation

preserves D∂ and DC .
For our final deformation, we construct a family Φrt of isotopies of W

such that Φr1 maps [−r/2, 0] × ∂W to [−1, 0] × ∂W . Then, conjugating

Ψ2
1 with Φ

s0(Ψ)
t yields the final deformation Ψ3

t into DC .
To construct the family Φrt , we first choose a continuous family of

smooth strictly monotonously increasing functions µt,r : [−2, 0] → [−2, 0],
(t, r) ∈ [0, 1]× (0, 1], that agree with the identity on [−2,−3/2] and satisfy
µt,r(s) = s ((1− t) + 2t/r) for all t ∈ [−r/2, 0]. Moreover, we demand that
µ0,r agree with the identity and that µt,r(−1) decrease monotonously
with respect to t for all r ∈ (0, 1].

With this family at hand, we define Φrt : W → W to agree with the
identity on W \ C and on C to be given by Φrt (s, p) = (µt,r(s) , p). Then,
for fixed r ∈ (0, 1], the maps Φrt form an isotopy satisfying

Φrt ([−r/2, 0]) = [− (1− t) r/2 − t, 0]× ∂W.

Accordingly, for Ψ ∈ D∂ , we know that the map

Ψ3
t = Φ

s0(Ψ)
t ◦Ψ2

1 ◦
(

Φs0(Ψ)
s

)−1

agrees with the identity on [− (1− t) s0(Ψ)/2 − t, 0] × ∂W , because Ψ2
1

agrees with the identity on [−s0(Ψ)/2, 0]× ∂W .
It remains to show that this deformation leaves the space DC invariant.

For every Ψ ∈ DC we know that Ψ2
1 = Ψ and that this map agrees with

the identity on [−1, 0]×∂W . This implies that Ψ3
t agrees with the identity

on

Φ
s0(Ψ)
t ([−1, 0]× ∂W ) =

[

µt,s0(Ψ)(−1) , 0
]

× ∂W ⊃ [−1, 0]× ∂W.
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Hence, Ψ3
t is an element of DC for all t ∈ [0, 1].

Concatenating the three deformations we constructed yields a weak
deformation retraction of D∂ into DC that preserves D.

3.2.2. Symplectic Forms Prescribed on the Boundary

In contact topology we often encounter symplectic manifolds with bound-
ary, sometimes as symplectic cobordisms and sometimes as pages of open
books. In both cases certain boundary conditions apply.

Let ΩSC
0 (W,α−, α+) be the space of symplectic forms that endow a mani-

foldW with the structure of a symplectic cobordism from the strict contact
manifold (∂−W,α−) to (∂+W,α+). Then every ω ∈ ΩSC

0 (W,α−, α+) has
a primitive β in a neighbourhood of ∂W that agrees on T∂W± with α±.
Furthermore, all ω ∈ ΩSC

0 (W,α−, α+) induce the same orientation on W .
In the construction of contact open books in Subsection 2.2.2 we

encountered another kind of boundary conditions. Namely, we demanded
that the elements of B∞(P, β0) agree with a given Liouville form β0 on
the boundary including all derivatives. Again, in principle, the Liouville
form β0 need only be defined in a neighbourhood of the boundary ∂P .

Though the boundary condition above is stronger than the first one,
in practice one often needs an even stronger condition, namely that the
symplectic forms under consideration agree with a given symplectic form
on a neighbourhood of the boundary. A notable example is the Moser
trick: we need the constructed vector field to vanish in a neighbourhood
of the boundary in order to guarantee the global existence of the flow.
This can be achieved by restriction to symplectic forms agreeing outside
a compact set in the interior.

Motivated by the examples above we introduce the following spaces. Let
W be a compact manifold with non-empty boundary and ω0 a symplectic
form defined on a neighbourhood of ∂W . Then we define the spaces
ΩS

0(W ) of symplectic forms that induce the same orientation as ω0 and
whose restriction to T∂W agrees with that of ω0, its subspace ΩS

∞(W )
consisting of those symplectic forms that agree with ω0 on ∂W including
all derivatives, and the subspace ΩS

c (W ) of those symplectic forms that
agree with ω0 on a neighbourhood of ∂W .

Furthermore, we introduce the corresponding subspaces ΩES
i (W ) and

ΩSC
i (W,α−, α+) of the space ΩES(W ) of exact symplectic forms on W

and of ΩSC
0 (W,α−, α+), respectively, and the spaces Bi(W ) of Liouville
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forms satisfying the boundary conditions with ω0 replaced by a Liouville
form β0 defined on a neighbourhood of ∂W where i = 0,∞, c.

The goal of this subsection is to show that for each of the triples of
spaces given by the different values of i, the spaces given by i = 0,∞ can
be deformed into the space given by i = c. In particular, the spaces in
each triple are homotopy equivalent.

The following theorem provides the first of these deformations; the
existence of the remaining ones will follow from a closer examination of
the construction of this one.

Theorem 3.2.2. Let W be a compact manifold with boundary and ω0

a symplectic form defined in a neighbourhood of the boundary of W .
Then there is a weak deformation retraction of ΩS

0(W ) into ΩS
c (W ) that

preserves ΩS
∞(W ).

Proof. If ΩS
0(W ) is empty, so are its subspaces ΩS

∞(W ) and ΩS
c (W ). So,

let us assume that ΩS
0(W ) is non-empty.

Fix a collar neighbourhood C ∼= (−2, 0]× ∂W of the boundary of W
such that ω0 is defined on all of C. Now, let ω ∈ ΩS

0(W ).
The idea of the proof is to define the deformation by

ω̃t = ω0 + (1− t) (ω − ω0) + tΦ∗(ω − ω0)

with t ∈ [0, 1]. Here, Φ: W →W is a map given by the identity outside
of C and by (s, p) 7→ (λ(s) , p) inside C, where s is the collar parameter
and λ : (−2, 0] → (−2, 0] a smooth monotonously increasing function that
agrees with the identity on (−2,−1] and vanishes on some neighbourhood
of 0.

Since the restrictions of ω and ω0 to T∂W agree, ω̃1 agrees with ω0 on
the neighbourhood on which λ vanishes. Moreover, whenever ω already
coincides with ω0 on the boundary including all derivatives, or even on a
neighbourhood of the boundary, this is also true for the family ω̃t.

The difficulty of the proof is to find functions λ continuously depending
on ω for which ω̃t stays non-degenerate, and hence symplectic, for all
t ∈ [0, 1].

The non-degeneracy of ω̃t is a problem on C only because outside of C
the forms ω̃t and ω agree. So we may restrict our attention to C. There,
we can decompose ω − ω0 as

ω∆ = ω − ω0 = ω∆
∂ + ω∆

s ,
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where ω∆
s = ds ∧ (ι∂sω∆). Then ω∆

∂ is a (−2, 0]-family of forms on ∂W
that vanishes for s = 0.

In this decomposition, ω̃t can be written as

(ω̃t)(s,p) = (ω0 + (1− t)ω∆ + tΦ∗ω∆)(s,p)

= ω(s,p) + t (Φ∗ω∆ − ω∆)(s,p)

= ω(s,p) + t
(

(ω∆)(λ(s),p) − (ω∆)(s,p) + (λ′(s)− 1)
(

ω∆
s

)

(λ(s),p)

)

= ω(s,p) + t

(

(

ω
λ(s)
∆

)

(s,p)
+ (λ′(s)− 1)

(

ω∆
s

)

(λ(s),p)

)

where we introduced the abbreviation (ωr∆)(s,p) = (ω∆)(r,p) − (ω∆)(s,p).
After identifying top-dimensional forms on C with functions via the

volume form ωn0 , this allows us to write the condition that ω̃nt be non-
degenerate as

0 < (ω̃nt )(s,p) = tn (λ′(s)− 1)
(

ω∆
s

)

(λ(s),p)
∧
(

ω + tω
λ(s)
∆

)n−1

(s,p)

+
(

ω + tω
λ(s)
∆

)n

(s,p)
.

(3.9)

In order to obtain conditions useful in the construction of λ we replace
ω̃nt by a parametric version Ωrt,q not depending on λ. It is given by

(

Ωrt,q
)

(s,p)
= (ω + tωr∆)

n
(s,p) + tqn

(

ω∆
s

)

(r,p)
∧ (ω + tωr∆)

n−1
(s,p)

where r ∈ [0, 1] represents the possible values of λ and q ∈ [−1,∞) the
possible values of (λ′ − 1).

For r = 0 = s we have
(

Ω0
t,q

)

(0,p)
= ωn(0,p) + tqn

(

ω∆
s

)

(0,p)
∧ ωn−1

(0,p)

= (1 + tq)ωn(0,p) + tq
(

n
(

ω∆
s

)

(0,p)
∧ ωn−1

(0,p) −
(

ω0 + ω∆
s

)n

(0,p)

)

= (1 + tq)ωn(0,p) − tq (ω0)
n
(0,p)

= (1 + tq)ωn(0,p) + (1− (1 + tq)) (ω0)
n
(0,p) .

Note that by our restrictions on t and q we know that (1 + tq) ≥ 0.
Thus,

(

Ω0
t,q

)

(0,p)
> 0 if one of the following conditions holds.
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• ωn(0,p) ≥ (ωn0 )(0,p)

• (1 + tq) <
(ωn

0 )
(0,p)

(ωn
0 )(0,p)−(ωn)(0,p)

Now, let µ : R+ → (1, 2] be a smooth function that is constant of value
2 on [1,∞) and satisfies µ(ϑ) ≤ 1/(1−ϑ) for ϑ ∈ (0, 1). This function
can be turned into a continuous function on ΩS

0(W ) by defining its
value at ω ∈ ΩS

0(W ) as µ(ω) = µ(min (ω
n
/ωn

0 )|∂W ). Then, we know that
(

Ω0
s,q

)

(0,p)
> 0 for all p ∈ ∂W , t ∈ [0, 1], and −1 ≤ q ≤ µ(ω)− 1.

The condition that
(

Ωrt,q
)

> 0 on {s} × ∂W is open with respect to ω.
Moreover, it is satisfied on ∂W = {0} × ∂W for r = 0 for all t ∈ [0, 1]
and q ∈ [−1, µ(ω)− 1], as we have just seen. Consequently, Corollary A.2
provides a function S0 : Ω

S
0(W ) × [−1,∞) × [0, 1] → (0, 1) such that

(

Ωrt,q
)

> 0 on [−S0(ω, q, t) , 0] × ∂W for all r ∈ [0, S0(ω, q, t)], provided
q ≤ µ(ω) − 1. Taking the minimum of S0 over q ∈ [−1, µ(ω)− 1] and
t ∈ [0, 1] for fixed ω yields a function s0 : Ω

S
0(W ) → (0, 1) independent of

q and t with the same properties as S0. Next, we use this function to
construct a suitable function λ.

Let λρ,σ : (−2, 0] → (−2, 0], ρ ∈ [0, 1], σ ∈ (0, 1/2), be a continuous
family of monotonously increasing smooth functions that agree with the
identity on (−2,−ρ], vanish on [−σρ, 0] and satisfy λ′r,σ ≤ (1+σ)/(1−σ).
Such functions exist because (1+σ)/(1−σ) > 1/σ.

Given this family, a suitable function λ can be defined by

λ = λ(ω) = λ
s0(ω),

µ(ω)−1
2(1+µ(ω))

.

Here, we have

0 < σ =
1

2

µ(ω)− 1

(1 + µ(ω))
<

1

2
.

Because (1+σ)/(1−σ) is strictly monotonously increasing for σ > 0, we
know that

λ′ ≤ 1 + σ

1− σ
<

(µ(ω) + 1) + (µ(ω)− 1)

(µ(ω) + 1)− (µ(ω)− 1)
= µ(ω) .

Let us now return to the non-degeneracy of ω̃t. Outside the collar C and
for s ≤ −s0(ω) the map Φ agrees with the identity and, hence, ω̃s with
ω. Furthermore, we know that λ(−s0(ω)) = −s0(ω) and λ′ ∈ [0, µ(ω)).



90 3. Neighbourhood Theorems

This implies that λ(s) ∈ [−s0(ω) , 0] for all s ∈ [−s0(ω) , 0]. Thus, by
the construction of s0 and µ, we know that ω̃t is non-degenerate on
[−s0(ω) , 0]× ∂W . This concludes the proof.

Remark 3.2.3. The deformation constructed above is constant on the
space of those symplectic forms that agree with ω0 on the entire collar C.

Suppose that ω0 = dβ0 on the collar neighbourhood C ∼= (−2, 0]× ∂W
from the proof above, and ω = dβ in a neighbourhood of ∂W . Then there
is a probably smaller collar neighbourhood C ′ = (−ǫ, 0]× ∂P ⊂ C such
that ω = dβ on C ′. Consequently, on C ′, the family ω̃t from the proof of
Theorem 3.2.2 is given by

ω̃t = ω0 + (1− t) (ω − ω0) + tΦ∗(ω − ω0)

= dβ0 + (1− t) (dβ − dβ0) + tΦ∗(dβ − dβ0)

= d(β0 + (1− t) (β − β0) + tΦ∗(β − β0)) .

This shows that ω̃t is exact on C ′ with a primitive β̃t that agrees with
β on T∂W . Whenever β agrees with β0 on T∂W , on ∂W including
all derivatives, or even on a neighbourhood of ∂W , this is also true for
β̃t. Moreover, under any of these circumstances, β̃1 agrees with β0 on a
neighbourhood of ∂W .

The observation above implies the following four corollaries to The-
orem 3.2.2.

Corollary 3.2.4. If ω0 ∈ ΩSC
0 (W,α−, α+) and β0 is a corresponding

primitive on a neighbourhood of ∂W , then the deformation from The-
orem 3.2.2 preserves the spaces ΩSC

0 (W,α−, α+), Ω
SC
∞ (W,α−, α+), and

ΩSC
c (W,α−, α+).

Corollary 3.2.5. If ω0 = dβ0, then the deformation from Theorem 3.2.2
preserves the spaces ΩES

0 (W ), d(B0(W )), ΩES
∞ (W ), d(B∞(W )), ΩES

c (W ),
and d(Bc(W )).

We would like to obtain a corresponding result for the underlying spaces
of Liouville forms. For this we have to put in some additional work.

Corollary 3.2.6. There is a weak deformation retraction of the space
d−1

(

ΩES
0 (W )

)

into d−1
(

ΩES
c (W )

)

that preserves d−1
(

ΩES
∞ (W )

)

.



3.2. Manifolds with Boundary 91

Corollary 3.2.7. The deformation from Corollary 3.2.6 restricts to a
weak deformation retraction of B0(W ) into Bc(W ) that preserves B∞(W ).

Combining Corollary 3.2.4 and Corollary 3.2.5 yields the following
result about exact symplectic cobordisms.

Corollary 3.2.8. If ω0 ∈ ΩSC
0 (W,α−, α+) and β0 is a corresponding

primitive on a neighbourhood of ∂W , then the deformation from The-
orem 3.2.2 preserves the intersection of ΩES

0 (W ), d(B0(W )), ΩES
∞ (W ),

d(B∞(W )), ΩES
c (W ), and d(Bc(W )) with ΩSC

0 (W,α−, α+).

Proof. We choose the collar neighbourhood C inside the neighbourhood
of ∂W in which the primitive β0 is defined. Then it follows from the
discussion after the proof of Theorem 3.2.2 that the deformation from
Theorem 3.2.2 preserves the spaces in the assumption of this corollary.

The results we obtained in this subsection concern symplectic forms
that are prescribed at the boundary of a symplectic manifold W . The
methods used to prove them also apply to a different setup.

Remark 3.2.9. Results corresponding to those in this section also hold
for spaces of symplectic forms prescribed on a closed hypersurface in the
interior of W : to prove this we only have to mirror at the boundary the
constructions in the proofs of Theorem 3.2.2 and the discussion following
it.

3.2.3. Symplectic Forms and Liouville Forms

The aim of this short subsection is to show that the spaces of exact
symplectic forms and the spaces of Liouville forms with the boundary
conditions we considered in the last subsection are all homotopy equival-
ent.

This result follows from the observation that we can use Hodge theory
to construct a right-inverse of the exterior differential on ΩS

∞(W ). Here,
and throughout this subsection, W is a compact manifold with non-empty
boundary. Moreover, we fix a Liouville form β0 on W .

Lemma 3.2.10. The restriction of the exterior differential d to the
space d−1

(

ΩES
∞ (W )

)

has a continuous affine linear right-inverse d̃ that

satisfies d̃ (dβ0) = β0. Furthermore, we may assume that the image of d̃
is contained in B0(W ).
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Proof. If any of the two spaces (d−1
(

ΩES
∞ (W )

)

and ΩES
∞ (W ) is empty, so

is the other one. So, let us assume that neither of the two spaces is empty.
First, let us subtract dβ0 from the forms in ΩES

∞ (W ). This sends this
space to the space of deviations from dβ0.

In this space, all elements vanish at the boundary of W including all
derivatives. Accordingly, we can identify it with the subspace VW of the
space d

(

Ω1
(

W ∪W
))

of exact 2-forms on the double W ∪id∂W
W of W

given by those forms that vanish identically on W . Here, W is a copy of
W with reversed orientation.

Now, we endow W ∪W with a Riemannian metric. Then Hodge theory
tells us that there is a linear right-inverse d̄ of d on d

(

Ω1
(

W ∪W
))

. More
precisely, by [3, Theorem 4.16] in combination with [3, Remark 4.12] we
have the orthogonal splitting

Ωk
(

W ∪W
)

= ker∆k ⊕ im(dk−1)⊕ im
(

d∗k+1

)

where the map dk−1 : Ω
k−1
(

W ∪W
)

→ Ωk
(

W ∪W
)

is the exterior de-

rivative, the map d∗k+1 : Ω
k+1
(

W ∪W
)

→ Ωk
(

W ∪W
)

the formal L2-
adjoint to dk, which is given by d∗ = ∗d∗ where ∗ is the Hodge star
operator, and ∆k = d∗k+1dk + dk−1d

∗
k the Laplace-Beltrami operator.

Since d1 vanishes both on ker∆1 and im(d0), the space d
(

Ω1
(

W ∪W
))

is the image of the restriction of d1 to im(d∗2). Moreover, d1 is one-to-one
on im(d∗2), because d∗ is the formal L2-adjoint to d.

The two spaces im(d∗2) = im(∆1)∩ker d1 and im(d1) = im(∆2)∩ker d∗2
are closed subspaces of Ω1

(

W ∪W
)

and Ω2
(

W ∪W
)

, respectively, as the
intersection of closed subspaces: ker d1 and ker d∗2 are closed because d1
and d∗2 are continuous and im(∆1) and im(∆2) are closed by [3, Theorem
3.10]. This implies that im(d∗2) and im(d1) are Fréchet spaces. Thus, the
open mapping theorem (see [42, Section II.5]) applies to the restriction of
d1 to im(d∗2). Consequently, the inverse of this map is continuous. This
is the desired right-inverse d̄ of d1.

After restricting d̄ to the closed subspace VW , it is still linear and
continuous. This allows us to define a linear right-inverse d̂ of d on
ΩES

∞ (W )∆ by first applying d̄ and then pulling back with the inclusion of
W into W ∪W .

Since d̂ is linear, d̂(0) = 0. So, we can define the desired affine-linear

right-inverse ď on ΩES∞ (W ) by first subtracting dβ0, then applying d̂, and
finally adding β0.
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The image of this right-inverse may not be contained in B0(W ) because
we did not control the restriction to T∂W . Fortunately, for every ω ∈
ΩES

∞ (W ) there is a closed form on W whose restriction to T∂W agrees
with that of ďω − β0, namely the pullback of d̄(ω − dβ0) to W .

Subtracting this closed form from the image of ď yields the desired
affine linear right-inverse d̃.

As an immediate consequence, we get the following corollary.

Corollary 3.2.11. The two restrictions d : d−1
(

ΩES
∞ (W )

)

→ ΩES
∞ (W )

and d̄ : B∞(W ) → ΩES
∞ (W ) of the exterior differential are homotopy

equivalences.

Proof. We first show that the right-inverse d̃ from Lemma 3.2.10 is a
homotopy inverse of d.

If any of the two spaces is empty, so is the other one. So, let us assume
that neither of the two spaces is empty.

Since d̃ is a right-inverse we already know that d ◦ d̃ = id.
Now, let β ∈ d−1

(

ΩES
∞ (W )

)

. Then d
((

d̃ ◦ d
)

(β)
)

= dβ and, hence,

also d
(

(1− t)
(

d̃ ◦ d
)

(β) + tβ
)

= dβ for all t ∈ [0, 1]. This shows that

(t, β) 7→ (1− t)
(

d̃ ◦ d
)

(β) + tβ is a homotopy from d̃ ◦ d to the identity.

Next, we show that D1 ◦ d̃ is a homotopy inverse of d̄ where Dt is the
weak deformation retraction from Corollary 3.2.7.

The weak deformation retraction from Corollary 3.2.5 can be obtained
by applying the exterior derivative to Dt, which preserves ΩES

∞ (W ). Con-
sequently, d ◦ Dt ◦ d̃ is a homotopy from the identity on ΩES

∞ (W ) to
d ◦D1 ◦ d̃.

Because the image of d̃ is contained in B0(W ), the homotopy from the
identity on d−1

(

ΩES
∞ (W )

)

to d̃ ◦ d preserves B0(W ). Accordingly, D1 and

d1 ◦ d̃ ◦ d̄ are homotopic.
Since Dt is a weak deformation retraction that preserves B∞(W ), its

restriction to this space is homotopic to the identity. This shows that
D1 ◦ d̃ is a homotopy inverse of d̄.

Combining this corollary with the results of the last subsection, we
obtain the following theorem.

Theorem 3.2.12. All the spaces ΩES
0 (W ), ΩES

∞ (W ), ΩES
c (W ), B0(W ),

B∞(W ), and Bc(W ) are homotopy equivalent, where the homotopy equi-
valences are given by inclusions and the exterior differential.
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Proof. The homotopy equivalences follow from the fact that the weak
deformation retraction from Corollary 3.2.5 can be obtained by apply-
ing the exterior derivative to the weak deformation retraction in Corol-
lary 3.2.6.

3.2.4. Homotopy Sequence for the Space of
Symplectomorphisms

It is a well-known fact that, on a closed symplectic manifold (W,ω0), we
can construct isotopies covering cohomologous families ωt of symplectic
forms; see [31, Theorem 3.17]. So it is reasonable to think that, in the
case that W is a compact manifold with boundary and ω0 exact, the map
π : Diff(W ) → ΩES(W ) given by π(Ψ) = Ψ∗ω0 is a quasifibration.1

Unfortunately, for manifolds with boundary, the techniques used to
prove [31, Theorem 3.17] do not work without restrictions. One problem
is that the Moser trick requires the global integrability of certain vector
fields, and another one that Hodge theory does not work properly without
boundary conditions. Accordingly, we cannot expect the map π above
to be a quasifibration, i.e. we cannot expect the existence of long exact
homotopy sequences

· · · // πk(Symp(W )) // πk(Diff(W )) // πk
(

ΩES(W )
)

// · · · .

The aim of this subsection is to show that such a long exact homotopy
sequence exists under the mildest boundary condition possible, namely
that the diffeomorphisms agree with the identity on the boundary. In
this case, we replace π by the corresponding map π∂ : D∂ → ΩES

0 (W ).
Moreover, we introduce the map πc : D → ΩES

c (W ) corresponding to
the stronger boundary condition that the diffeomorphisms have compact
support in the interior of W . The fibre of π∂ over ω0 is the space S∂ of
symplectomorphisms of (W,ω0) that agree with the the identity on the
boundary and the fibre of πc over ω0 is the space S of symplectomorphisms
with compact support in the interior of W .

Using the results of the previous two subsections we can prove the
following theorem.

1For the definition of the term quasifibration, see Definition B.4.
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Theorem 3.2.13. Let (W,dβ0) be a symplectic manifold with boundary.
Then there is a long exact homotopy ladder diagram

· · · // πk(S∂) // πk(D∂) // πk
(

ΩES
0 (W )

)

// · · ·

· · · // πk(S) //

OO

πk(D) //

OO

πk
(

ΩES
c (W )

)

//

OO

· · ·

where the base point of ΩES
c (W ) is dβ0.

Proof. To prove the existence of the ladder diagram we have to verify
the two assumptions of Lemma B.8 for the maps π∂ and πc for all n ∈ N.
We do this for π∂ only: from the construction it will follow that the same
arguments work for πc, as well.

Let n ∈ N0. Then the first of the two assumptions of Lemma B.8 is
that the diagram

Dn × {0} Ψ //
� _

��

D∂
π∂

��
(Dn × I, ∂(Dn × I))

ω //

55

//
(

ΩES
0 (W ) , {dβ0}

)

can always be completed as indicated up to a homotopy of ω relative
∂ (Dn × I).

The construction we use to prove this carries over to the proof that the
second assumption from Lemma B.8 is satisfied. So, in preparation, we
relax the condition on ω|Dn×{0} and only assume that ω|∂(Dn×I) = dβ
for a map β : ∂ (Dn × I) → Bc(W ) such that β(x, t) = β0, whenever
x ∈ ∂Dn or t = 1. Accordingly, we also replace the Dn-family of
symplectomorphisms Ψx by a Dn-family of diffeomorphisms such that
ω(x, 0) = Ψ∗

xdβ0.
We want to apply the Moser trick. However, to be able to apply it,

we first need to guarantee that for fixed x ∈ Dn the paths ω(x, t) are
induced by smooth paths of Liouville forms constant on a neighbourhood
of the boundary.

The first step in arranging this is to deform ω via the weak deformation
retraction φs from Corollary 3.2.5 into a map whose image is contained
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in ΩES
∞ (W ). More precisely, we first choose a collar neighbourhood C of

∂P on which the Liouville forms β(x, t) agree with β0; this is possible
because β is a map into Bc(W ) and ∂ (Dn × I) compact. Then we set
ωs = φs ◦ ω where φs is constructed using the collar neighbourhood C.
By Remark 3.2.3 this special choice guarantees that ωs is a deformation
relative ∂ (Dn × I).

That the image of ω1 is contained in ΩES
∞ (W ) enables us to use the

right-inverse d̃ of the exterior differential d from Lemma 3.2.10 to obtain
a map β1 : D

n × I → d−1
(

ΩES
∞ (W )

)

such that ω1(x, t) = dβ1(x, t).

Since d̃ is a right-inverse of d, we know that the restriction of β1 to
∂ (Dn × I) differs from β only by addition of a map β∆ : ∂ (Dn × I) →
Ω1(W ) such that dβ∆ vanishes.

We deform β1 into a map that agrees with β on ∂ (Dn × I). For
convenience of notation, let us identify Dn × [0, 1] and Dn+1 via the
homeomorphism obtained by following rays originating in (0, 1/2). Then
such a deformation is given by

β̄s(x, t) = β1(x, t)− sλ(‖(x, t)‖)β∆
(

(x, t)

‖x, t‖

)

where λ [0, 1] → [0, 1] is a smooth monotonously increasing function
that vanishes on a neighbourhood of 0 and is constant of value 1 on a
neighbourhood of 1.

The corresponding deformation of ω1, given by dβ̄s, is constant because
we only add closed forms to β1(x, t).

Note that we now know that for every (x, t) ∈ ∂ (Dn × I) the Liouville
form β̄1(x, t) agrees with β0 on the collar neighbourhood C. Thus, the

homotopy β̂s = ψs ◦ β̄1, where ψs is the weak deformation retraction from
Corollary 3.2.7 constructed using C, is a homotopy relative ∂ (Dn × I).
Accordingly, this is also true for the corresponding deformation of ω1

given by dβ̂s.

Since the image of β̂1 is contained in Bc(W ), we are nearly in the
position to apply the Moser trick. We need only find a homotopy relative
∂ (Dn × I) from β̂1 to a map that is smooth in the coordinate t on I.
Such a homotopy β̃s exists by the proof of Theorem B.10.

Now we apply the Moser trick to the paths βx,t = β̃1(x, t) for fixed
x ∈ Dn.
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Let Xx,t be the Dn-family of time-dependent vector fields defined by
the condition

ιXx,t
dβx,t = − d

dt
βx,t=: − β̇x,t

and denote by Φx,t the corresponding flows, which exist since β̇x,t vanishes
in a neighbourhood of the boundary and accordingly Xx,t, as well. Then
we have

Φ∗
x,tdβx,t − dβx,0 =

∫ t

0

d

dt

(

Φ∗
x,rdβx,r

)

dr

=

∫ t

0

Φ∗
x,r

(

dβ̇x,r + LXx,rdβx,r

)

dr

=

∫ t

0

Φ∗
x,r

(

dβ̇x,r + d
(

ιXx,r
dβx,r

)

)

dr

= 0.

This implies that

dβx,t =
(

Φ−1
x,t

)∗
dβs,0 =

(

Φ−1
x,t

)∗
d(Ψ∗

xβ0) =
(

Ψx ◦ Φ−1
x,t

)∗
dβ0.

So,
(

Ψx ◦ Φ−1
x,t

)

is a lift with the correct initial values.
It remains to consider the second assumption of Lemma B.8. This

assumption says that, for every diagram

(Dn × {0} , ∂Dn × {0}) Ψ //
� _

��

(D∂ ,S∂)
π∂

��
(Dn × I, (∂Dn × I) ∪Dn × {1}) ω //

44

//
(

ΩES
0 (W ) , {dβ0}

)

,

we can find a map Ψ′ homotopic to Ψ and a map ω′ such that the diagram
can be completed as indicated after replacing Ψ by Ψ′ and ω by ω′.

The map Ψ′ can be obtained from the map Ψ via the weak deformation
retraction Ds from Theorem 3.2.1, i.e. via the homotopy Ψs = Ds ◦Ψ.
The corresponding map ω′ is obtained by concatenating the maps (x, t) 7→
Ψ∗

1−tdβ0 and ω.
Since the image of Ψ1 is contained in D, that of Ψ∗

1β0 is contained
in Bc(W ). Thus, our discussion above shows that ω′ can be lifted with
initial values Ψ1. This concludes the proof.
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Remark 3.2.14. We can obtain the corresponding diagram for any base
point in D, not necessarily contained in S, by first pulling back with this
map. However, this changes the base point in ΩES

c (W ).

As an immediate consequence of the theorem above, we obtain the
following weak homotopy equivalence.

Corollary 3.2.15. The inclusion of S into S∂ is a weak homotopy
equivalence.

Proof. By Theorem 3.2.1 the inclusion of D into D∂ is a homotopy equival-
ence, and the inclusion of ΩES

c (W ) into ΩES
0 (W ) is one by Corollary 3.2.5.

Consequently, the Five lemma can be applied to the homotopy ladder
diagram from Theorem 3.2.13. This proves that the inclusion of S into
S∂ is a weak homotopy equivalence.

For a discussion why the Five lemma applies at the level of π0, see
Appendix C.

3.3. Symplectic Fibrations over S
1

In preparation for Chapter 5, we use this section to present a moderate
generalisation of a well-known neighbourhood theorem for symplectic
fibrations over S1.

Definition 3.3.1. Let π : M → S1 be a smooth fibre bundle whose total
space M is a (2n+ 1)-dimensional manifold. Then we say that (M,π, ω)
is a symplectic fibration over S1 if ω is a symplectic form on the
hyperplane bundle ker dϕ with dϕ = π∗dθ.

By construction, the forms ω and dϕ from the definition of a symplectic
fibration satisfy dϕ ∧ ωn 6= 0 and kerω ⊂ TM = ker d(dϕ). This shows
that a symplectic fibration is a special case of a stable Hamiltonian
structure.

Definition 3.3.2. Let M be a (2n+ 1)-dimensional manifold. A pair
(λ, ω) consisting of a 1-form and a 2-form on M is called a Hamiltonian
structure if λ∧ωn is a volume form on M . If, moreover, kerω ⊂ ker dλ,
then we say that (λ, ω) is stable.
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In the special case of hypersurfaces symplectically fibred over S1, we can
extend the neighbourhood theorem [9, Lemma 2.3] for stable Hamiltonian
structures to not necessarily compact hypersurfaces as follows.

Proposition 3.3.3. Let M be a hypersurface in the interior of a (2n+ 2)-
dimensional symplectic manifold (W,ω) such that M is closed in W
together with a map π : M → S1 such that (M,π, ω|TM ) is a symplectic
fibration over S1.

Then there is a neighbourhood of M in W that is symplectomorphic to
(

(−ǫ, ǫ)×M,ω|TM + dt ∧ dϕ
)

, where t is the coordinate on the interval,
dϕ = π∗dθ, and ǫ a smooth positive function on M .

Proof. Let U = (−δ, δ)×M be a tubular neighbourhood of M in W ; here,
δ is a smooth positive function on M . Endow each level set {t}×M with
the form dϕ. Then there is a (possibly smaller) tubular neighbourhood
such that dϕ∧ωn|T ({t}×M) is a volume form on {t}×M for all t. Without
loss of generality, we may assume that this is already the case on U .

Now, let Y be the unique vector field such that ιY ω = dϕ. Then we
have

ιY ω
n+1|TM = (n+ 1) (ιY ω) ∧ ωn|TM = (n+ 1) dϕ ∧ ωn|TM 6= 0.

Thus, the vector field Y is transverse to M .
Use the flow Ψt of this vector field to identify a small neighbourhood

of M in U with (−ǫ, ǫ)×M . We have

Ψ∗
tω − ω =

∫ t

0

Ψ∗
s(LY ω) ds =

∫ t

0

Ψ∗
sd(ιY ω) ds =

∫ t

0

Ψ∗
sd(dϕ) ds = 0.

Consequently, the pullback of ω to (−ǫ, ǫ)×M is constant in the coordinate
t on (−ǫ, ǫ).

It remains to show that ω|M = ω|TM + dt ∧ dϕ.
Let X be the unique vector field in kerω|TM that satisfies ιXdϕ ≡ 1 and

denote by prTM the projection from T ((−ǫ, ǫ)×M) |M to TM . Then,
both X and ∂t are contained in ker(ω ◦ prTM ) and ω(∂t, X) = dϕ(X) ≡ 1.
This implies that ω = ω|TM + dt ∧ dϕ.

By the special nature of symplectic fibrations, this neighbourhood
theorem can be strengthened further. In order to do so, we need the
concept of the holonomy of a symplectic fibration.
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Definition 3.3.4. Let (M,π, ω) be a symplectic fibration over S1 =
R/2πZ and X the unique vector field in kerω satisfying ιXdϕ ≡ 1. Then
we say that the time-2π-flow Ψ2π ofX starting in π−1(0) is the holonomy
of (M,π, ω), provided it exists.

Remark 3.3.5. If the holonomy exists, it is a symplectomorphism of the
fibre F = π−1(0) endowed with the symplectic form ω|TF .

With this definition at hand, we get the following stronger version of
Proposition 3.3.3.

Proposition 3.3.6 (Cf. [16, Lemma 2.3] for the 4-dimensional case).
Let Mi, i = 0, 1, be hypersurfaces in the interior of symplectic manifolds
(Wi, ωi) such that Mi is closed in Wi. Furthermore, let there be maps
πi : Mi → S1 = R/2πZ such that (Mi, πi, ωi|TMi) are symplectic fibra-
tions over S1. In addition, assume that the two symplectic manifolds
(Fi, ω̄i) =

(

π−1
i (0) , ω|TFi

)

are symplectomorphic via a symplectomorph-
ism Ψ: F0 → F1, that the holonomies Ψ0 and Ψ1 of (M0, π0, ω0|TM0

)
and (M1, π1, ω1|TM1) exist, and that Ψ0 and Ψ−1 ◦Ψ1 ◦Ψ are isotopic as
symplectomorphisms of (F0, ω̄0).

Then M0 and M1 have symplectomorphic neighbourhoods in W0 and
W1.

Proof. Let X be the unique vector field in kerω0|TM0 satisfying ιXdϕ ≡ 1,
and ((−ǫ, ǫ)×M0, ω0|TM0

+ dt ∧ dϕ) the neighbourhood from Proposi-
tion 3.3.3. By assumption, we know that the time-s-flow Ψ0

s of X exists
for all s ∈ [0, 2π]. Thus, we can define the map

Φ0 : [0, 2π]× F0 →M0

(s, x) 7→ Ψ0
s(x) .

This map descends to a diffeomorphism from the mapping torus F0

(

Ψ0
)

to M0, which we keep calling Φ0.
Since X ∈ kerω0|TM0

and ιXdϕ ≡ 1, we know that

LXω0 = ιXdω0 + d(ιXω0) = d(dϕ) = 0.

Hence, a symplectomorphism of
(

(−ǫ0, ǫ1)× F0(Ψ2π) , dt ∧ ds⊕ ω̄0

)

with
a tubular neighbourhood of M0 in (−ǫ, ǫ) × M0 is given by the map
id⊕Φ0.
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Completely analogous, the hypersurface M1 has a tubular neighbour-
hood in W1 symplectomorphic to

(

(−ǫ1, ǫ1)× F1

(

Ψ1
)

, dt ∧ ds⊕ ω̄1

)

.
Using the symplectomorphism Ψ between (F0, ω̄0) and (F1, ω̄1) on each

level, a (possibly smaller) tubular neighbourhood of M1 is symplecto-
morphic to

(

(−ǫ̃1, ǫ̃1)× F0

(

Ψ−1 ◦Ψ1 ◦Ψ
)

, dt ∧ ds⊕ ω̄0

)

.
By assumption, we know that there is an isotopy Ψt from the identity

to Ψ−1 ◦
(

Ψ1
)−1 ◦ Ψ ◦ Ψ0. As in the proof of Proposition 1.4.4, this

induces a diffeomorphism Φ from F
(

Ψ0
)

to F
(

Ψ−1 ◦Ψ1 ◦Ψ
)

given by

Φ(x, s) =
(

Ψµ(s)(x) , s
)

where µ : [0, 2π] → [0, 1] is a smooth monoton-
ously increasing function that vanishes close to 0 and is constant of value
1 close to 2π.

This diffeomorphism pulls back ω̄0 to Ψ∗
µ(s)ω̄0 = ω̄0 and ds to ds.

Consequently, the map id⊕Φ is a symplectomorphism from (−ǫ, ǫ)×F (Ψ0)
to (−ǫ, ǫ)×F

(

Ψ−1 ◦Ψ1 ◦Ψ
)

, where ǫ is a smooth positive function smaller
than both ǫ0 and ǫ̃1. This concludes the proof.

Using that the direction of the vector field Y in the proof of Proposi-
tion 3.3.3 is determined by the sign of the volume form on M induced by
the symplectic fibration, we obtain the following corollary.

Corollary 3.3.7. Let Mi, i = 0, 1, be boundary components of sym-
plectic manifolds (Wi, ωi). Furthermore, let there be maps πi : Mi →
S1 = R/2πZ such that (Mi, πi, ωi|TMi) are symplectic fibrations over
S1 that induce the boundary orientation on M0 and the opposite ori-
entation on M1. In addition, assume that the two symplectic manifolds
(Fi, ω̄i) =

(

π−1
i (0) , ω|TFi

)

are symplectomorphic via a symplectomorph-
ism Ψ: F0 → F1, that the holonomies Ψ0 and Ψ1 of (M0, π0, ω0|TM0

)
and (M1, π1, ω1|TM1

) exist, and that Ψ0 and Ψ−1 ◦Ψ1 ◦Ψ are isotopic as
symplectomorphisms of (F0, ω̄0).

Then W0 and W1 can be glued along M0 and M1.





4. Obstructions for Adapted

Contact Forms

In the preceding chapter, we introduced several neighbourhood theorems.
In this chapter, we employ these to define two obstructions to homotopies
of (pointed) Sn-families of contact forms adapted to the same open book
decomposition. The vanishing of both obstructions will be sufficient for
the existence of a homotopy.

The first of these two obstructions is the difference of homotopy class
of the projections of the two Sn-families to the tangent bundle of the
page P0. If this first obstruction vanishes, we define a second obstruction
in a quotient of πn+1 of the space B(π, αB) of induced Liouville forms on
the page P0 inducing the contact form αB on the binding.

For technical reasons, the second obstruction cannot be written down
easily if the induced Liouville forms on the page P0 do not agree with the
base point β0 of B(π, αB). However, if they do, then it can be obtained
as follows.

Choose a vector field X satisfying ιXdϕ ≡ 1 and use its flow Ψt to
identify the pages of the open book decomposition with the page P0.
Via this flow, the restrictions of an adapted contact form to the tangent
bundles of the pages pull back to a path from the Liouville form β induced
on P0 to Ψ∗

2πβ. Thus, the Sn-families of adapted contact forms define Sn-
families βϕ of paths in B(π, αB) from β0 to Ψ∗

2πβ0 whenever the induced
Liouville forms on P0 agree with β0. This is true, in particular, for the
trivial family, i.e. the constant family given by the base point. So, we
can define an Sn-family of loops at β0 in B(π, αB) by concatenating the
paths βϕ with the inverse path of that corresponding to the trivial family.
As we will see, this defines an element in πn+1(B(π, αB)) independent of
the choice of the vector field X.

To construct the second obstruction in a general setting, we prove the
existence of several long exact homotopy sequences in Section 4.1 and
Section 4.2. Then we combine these in Section 4.3 in order to define
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the second obstruction. In this section, we also provide conditions under
which the second obstruction can be defined in a more satisfying way.

Finally, in Section 4.4 we draw a connection between the second ob-
struction and the space of diffeomorphisms and symplectomorphisms with
compact support in the interior of the page P0 and use it to provide two
examples of adapted contact forms for which the first obstruction vanishes,
but not the second. One of these contact forms will be contactomorphic
to the base point in the space of adapted contact forms and the other one
will not, by reasons presented in [6].

4.1. Induced Form on a Page

By Theorem 3.1.3 and Theorem 3.1.16 we know that the space A(π) of
contact forms adapted to an open book decomposition (B, π) of a closed
manifold M is homotopy equivalent to its subspace Ah(π) of those contact
forms that are standard for radius 1/2 for a given Lutz pair h = (h1, h2),
and that the space B(π) of induced Liouville forms on the page P0 is
homotopy equivalent to its subspace Bh1(π) consisting of those induced
Liouville forms on P0 that are standard for distance 1/2 with respect to
h1.

In this section, we only consider adapted contact forms and induced
Liouville forms that induce a fixed contact form αB on the binding. Using
this property, we construct the second obstruction for such special families
of adapted contact forms. Then, in the next section, we provide the means
to extend the construction to general families of adapted contact forms.

By Remark 3.1.21 and Remark 3.1.18 the homotopy equivalences above
also exist for the restricted spaces. More precisely, A(π, αB) is homotopy
equivalent to Ah(π, αB), and B(π, αB) to Bh1(π, αB).

Note that the property to be standard for radius or distance 1/2 in
combination with that to induce αB on the binding completely fixes the
adapted contact forms and adapted Liouville forms on B1/2(0)×B ⊂ U
where U is the adapted neighbourhood with respect to which the forms
are standard. This completely removes all difficulties close to the binding
and, thus, allows us to view an adapted contact form with the properties
above as a section of a bundle over S1 with fibres given by Bh1

(π, αB).
This is the picture that will lead us in the more precise construction
below.
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The main result of this section is the following theorem.

Theorem 4.1.1. Let α ∈ Ah(π, αB) and denote its restriction to the
tangent bundle of P0 by β0. Then there is a long exact homotopy sequence

· · · → πk+1(Bh1(π, αB) , β0)
ik∗−→ πk

(

Ah(π, αB)
) prk∗−−→

prk∗−−→ πk(Bh1(π, αB) , β0)
∂k
∗−→ π(k−1)+1(Bh1(π, αB) , β0) → · · ·

where (Bh1(π, αB) , β0) denotes the space Bh1(π, αB) with base point β0
and pr the projection to TP0. Both the inclusions ik∗ and the connection
maps ∂k∗ are determined by the choice of base point in Ah(π, αB) and the
isotopy class of the monodromy of the open book decomposition.

Given this sequence, the second obstruction to homotopies of Sn-
families is the difference in the projections of their preimages under in

projected to πn+1(Bh1
(π, αB)) /im ∂n+1

∗ .
The proof of the theorem above takes up the remainder of this section.
The first step in the proof is to replace the space Ah(π, αB) by the

space Ω1
h1
(π, αB) of adapted forms standard for radius 1/2 with respect

to h1. This allows us to neglect the contact condition and is justified by
the weak deformation retraction from Theorem 2.1.3 in combination with
Corollary 2.1.6.

Now, choose an auxiliary vector field X that agrees with ∂ϕ on
B1/2(0)×B and satisfies ιXdϕ ≡ 1. Then we denote by Ω1

h1,X
(π, αB) the

subspace of Ω1
h1
(π, αB) consisting of those forms α satisfying ιXα ≡ 0.

The following lemma shows that this space is homotopy equivalent to
Ω1
h1
(π, αB).

Lemma 4.1.2. There is a strong deformation retraction from Ω1
h1
(π, αB)

to its subspace Ω1
h1,X

(π, αB).

Proof. If Ω1
h1
(π, αB) is empty, so is Ω1

h1,X
(π, αB). So, let us assume that

Ω1
h1,X

(π, αB) is non-empty.

Let α ∈ Ω1
h1
(π, αB). We already know that ιXα ≡ 0 on B1/2(0) × B,

because α is standard for radius 1/2. Since, moreover, only the restriction
of α to the tangent bundle of the pages is relevant for the question whether
α is adapted to the open book decomposition, the path

αt = α− t (ιXα) dϕ
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stays inside Ω1
h1
(π, αB). As a result, this construction defines a strong

deformation retraction from Ω1
h1
(π, αB) to Ω1

h1,X
(π, αB).

We can use the flow Ψt of X to pull back the forms α ∈ Ω1
h1,X

(π, αB).

This yields an identification of Ω1
h1,X

(π, αB) with the space C∞
R
(Ψ2π) of

smooth paths γ : R → Bh1(π, αB) satisfying Ψ∗
2πγ(t− 2π) = γ(t) where

the projection to the tangent bundle of P0 corresponds to the evaluation
map at t = 0.

We would like to identify this space of paths on R with a space of
paths on [0, 2π]. Because of smoothness issues, we have to perform a
deformation before this is possible; it is constructed as follows.

Choose a smooth monotonously increasing function µ : [0, 2π] → [0, 2π]
that vanishes near 0 and is constant of value 2π close to 2π. Then we
define a function µ̄ : R → R by µ̄(2πk + t) = 2πk + µ(t) for t ∈ [0, 2π]
and k ∈ Z.

Using this function, we can define a weak deformation retraction of
the space C∞

R
(Ψ2π) into its subspace C∞

R,t(Ψ2π) consisting of those paths
that are constant in a neighbourhood of 2πZ. It is given by

γs(t) = γ((1− s) t+ sµ̄(t)) .

The restriction map to [0, 2π] is a homeomorphism between C∞
R,t(Ψ2π)

and the space C∞
t (Ψ2π) of technical smooth paths γ : [0, 2π] → Bh1

(π, αB)
satisfying γ(2π) = Ψ∗

2πγ(0). Its inverse is given by sending γ to the path
γ̄ defined by γ̄(2πk + t) =

(

Ψk2π
)∗
γ(t) for k ∈ Z and t ∈ [0, 2π].

Summed up, the discussion above shows the following.

Lemma 4.1.3. The space Ah(π, αB) is homotopy equivalent to C∞
t (Ψ2π),

where the projection to the tangent bundle of the page P0 corresponds to
the evaluation map at 0.

By the proof of Theorem B.10, every path in Bh1
(π, α) can be approx-

imated by a technical smooth path that is homotopic to the original
path. Combining this with the lemma above, Proposition 2.2.10, and
Lemma 3.1.20 yields the following corollary.

Corollary 4.1.4. A form β ∈ Bh1
(π, αB) is induced by an adapted

contact form α ∈ Ah(π, αB) if and only if the pullback with the monodromy
Ψ leaves the path component of β invariant.
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The major advantage of C∞
t (Ψ2π) over Ah(π, αB) is that we can prove

the following lemma.

Lemma 4.1.5. The evaluation map ev0 : C
∞
t (Ψ2π) → Bh1

(π, αB) at 0
is a quasifibration.

Proof. By Theorem B.10, it is sufficient to show that every Dn-family of
smooth paths γx : [0, 1] → Bh1

(π, αB) constant on [0, 1/4] ∪ [3/4, 1] can be
lifted with given initial values gx ∈ C∞

t (Ψ2π) satisfying ev0(gx) = γx(0).
So, let γx, gx be families as described above. Since the construction

will be continuous both in the paths γx and the initial values gx the
dependence on x ∈ Dn is inessential. Thus, we suppress the index in the
remainder of the construction.

The idea is to construct the lift as a concatenation of a path from γ(s)
to γ(0), the path g, and a path back form Ψ∗

2πγ(0) to Ψ∗
2πγ(s). There

are two difficulties in realising this idea: we have to construct a suitable
technical path from γ(s) to γ(0) and we have to arrange that we use the
path g only on a smaller interval in the interior of [0, 2π], even at the
start of the lift.

We first deal with the second problem. This is where we use that the
path γ is constant on [0, 1/4]; this property allows us to define a lift over
said interval by

Gs(t) =















γ(0) , t ∈
[

0, 8sπ3
]

g
(

3
3−8s

(

t− 8sπ
3

)

)

, t ∈
[

8sπ
3 , 2π − 8sπ

3

]

Ψ∗
2πγ(0) , t ∈

[

2π − 8sπ
3 , 2π

]

.

At s = 1/4 the path above is the concatenation of a constant path, the
path g, and another constant path. This is smooth because g is technical.
For s > 1/4 we replace the two constant paths by suitable technical paths
we construct below.

The natural choice of a path from γ(s) to γ(0) is the inverse of the
restriction of γ to [0, s]. However, in general this path is not technical.
We repair this by a reparametrisation.

Let µ : [0, 2π] → [0, 1] be a technical monotonously increasing smooth
function. Then we define a path γ̃s : [0, 2π] → Bh1

(π, αB) from γ(s) to
γ(0) by

γ̃s(t) = γ(s (1− µ(t))) .



108 4. Obstructions for Adapted Contact Forms

With the help of this path we can define a lift of γ over the interval
[1/4, 1] as follows.

Gs(t) =











γ̃s(3t) , t ∈
[

0, 2π3
]

g
(

3
(

t− 2π
3

))

, t ∈
[

2π
3 ,

4π
3

]

Ψ∗
2πγ̃s(6π − 3t) , t ∈

[

4π
3 , 2π

]

.

Note that for s ∈ [0, 1/4] the path γ̃st is constant and of value γ(0). As
a result, the parts of our lift match to a lift Gs over the entire interval
[0, 1].

Let us denote by F the fibre of the evaluation map ev0 over a form
β0 ∈ Bh1

(π, αB), i.e. the space of smooth technical paths from β0 to
Ψ∗

2πβ0. Then the lemma above shows in combination with Lemma 4.1.3
that there is the following long exact homotopy sequence.

Corollary 4.1.6. Let α ∈ Ah(π, αB) and denote its restriction to the
tangent bundle of P0 by β0. Then there is a long exact homotopy sequence

// πk(F )
ik∗ // πk

(

Ah(π, αB)
) prk∗ // πk(Bh1

(π, αB) , β0)
∂k
∗ // πk−1(F ) //

where (Bh1(π, αB) , β0) denotes the space Bh1(π, αB) with base point β0
and pr the projection to TP0.

We deduce Theorem 4.1.1 from the preceding corollary. To do so, we
identify the fibre F with the space Ω∞

t Bh1
(π, αB) of smooth technical

loops at the base point β0 of Bh1
(π, αB). The inclusion of this space

into the loop space ΩBh1(π, αB) is a weak homotopy equivalence by
Corollary B.16. Moreover, the latter space is well known to have the
same homotopy groups as the base space Bh1

(π, αB) but shifted by +1;
see [5, Corollary VII.6.19].

Lemma 4.1.7. The fibre F of the evaluation map ev0 over the base point
β0 of Bh1

(π, αB) is homotopy equivalent to the space Ω∞
t Bh1

(π, αB) of
smooth technical loops at β0.

Proof. Let γ0 be the base point in F , i.e. the path corresponding to the
base point of Ah(π, αB). Denote by γ−1

0 the inverse path to γ0. Then
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the concatenation of elements γ ∈ F with γ−1
0 defines an inclusion j of F

into Ω∞
t Bh1(π, αB).

We construct a homotopy inverse of j as follows. Given a technical loop,
we first concatenate it with γ0 and then with γ−1

0 . The result is contained
in the image of j. Moreover, the map g defined by this construction is
homotopic to the identity because the path obtained by concatenating γ0
and γ−1

0 is homotopic to the constant path.
Now that we mapped Ω∞

t Bh1
(π, αB) into the image of j, we can project

to F by removing the second half of the path. Let us denote this projection
by p.

Because the map j is the inverse of the projection p, we see that
j ◦ (p ◦ g) = g, which is homotopic to the identity on Ω∞

t Bh1(π, αB), as
we have already seen.

It remains to show that the map (p ◦ g) ◦ j is homotopic to the identity
on F . For a given path γ ∈ F , the image of this map is obtained
by concatenation first with γ−1

0 and then with γ0. So, because the
concatenation of γ−1

0 and γ0 is homotopic to the constant map, the map
(p ◦ g) ◦ j is homotopic to the identity on F .

This proves that (p ◦ g) is a homotopy inverse of j.

In combination with Corollary 4.1.6, the lemma above proves the
existence part of Theorem 4.1.1. It remains to show that, after the
identification of the fibres F with Ω∞

t Bh1
(π, αB), the inclusion maps ik∗

and the connection maps ∂k∗ do not depend on the auxiliary vector field
X.

The independence of these maps from X is a consequence of the fact
that both conditions on X, i.e. agreeing with ∂ϕ on B1/2(0) × B and
satisfying ιXdϕ ≡ 1, are convex. Accordingly, the space of these vector
fields is contractible and, hence, so is the space of monodromies they
induce.

In the fibres F , however, we cannot say that this induces a homotopy
of the paths corresponding to the different vector fields X, because F
explicitly depends on the monodromy induced by X. Nevertheless, after
our identification of F with Ω∞

t Bh1(π, αB) we can prove the following
lemma.

Lemma 4.1.8. Let αx ∈ Ah(π, αB) be any continuous family of adapted
contact forms restricting to the base point β0 ∈ Bh1(π, αB) on TP0.
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Furthermore, let X0, X1 be two vector fields agreeing with ∂ϕ on B1/2(0)×
B and satisfying ιXidϕ ≡ 1.

Then the two families of loops lX0
x , lX1

x ∈ Ω∞
t Bh1(π, αB) correspond-

ing to αx under the identification using X0 and X1, respectively, are
homotopic.

Proof. To prove the lemma, it is sufficient to construct a homotopy
for a single contact form α that depends continuously on α. So, let
α ∈ Ah(π, αB) be an adapted contact form restricting to β0 on the
binding and denote by lX0

and lX1
the loops corresponding to α under

the identification using X0 and X1, respectively.
Up to an inessential reparametrisation, these two loops are given by

lXi
(t) =

{(

Ψi4πt
)∗
(α− (ιXi

α) dϕ) , for t ∈ [0, 1/2]
(

Ψi4π(1−t)

)∗
(α0 − (ιXi

α0) dϕ) , for t ∈ [1/2, 1]

where Ψit is the flow of Xi and α0 the base point of Ah(π, αB).
Denote by Xs the convex interpolation Xs = (1− s)X0 + sX1 from

X0 to X1 and by Ψst its time-t-flow. Then the path

lXs
(t) =

{

(Ψs4πt)
∗
(α− (ιXs

α) dϕ) , for t ∈ [0, 1/2]
(

Ψs4π(1−t)

)∗
(α0 − (ιXs

α0) dϕ) , for t ∈ [1/2, 1]

is a homotopy from lX0
to lX1

.

We immediately get the following corollary.

Corollary 4.1.9. The inclusion maps ik∗ in Theorem 4.1.1 are independ-
ent of the choice of the vector field X inducing the monodromy of the
open book decomposition (B, π).

Now it remains only to show that the connection maps are independent
of the vector field X, as well. To do so, we take a closer look at these
maps and write them down explicitly, just as we did for the induced loops
above. From this explicit formula the independence from the vector field
X will be apparent.

To be able to express the connection maps ∂k+1
∗ in a concise fash-

ion we use the connection map of the path-loop fibration to write
them as maps πk(ΩBh1(π, αB)) → πk(ΩBh1(π, αB)) instead of maps
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πk+1(Bh1
(π, αB)) → πk+1(Bh1

(π, αB)). This is more natural in view of
our construction and has the further advantage that loop spaces are
H-spaces with respect to concatenation of paths; cf. [5, Page 441]. Ac-
cordingly, the multiplication in the homotopy groups coincides with
concatenation of paths.

Remember that we denote the base point of the fibre F by γ0. Accord-
ingly, the base point of ΩBh1

(π, αB) is given by the homotopically trivial
path γ0 ∗ γ−1

0 . With this base point, the lift of a Dn-family of paths γx
in Bh1(π, αB) to the path space PBh1(π, αB) is given by

(

γ0 ∗ γ−1
0

)

∗ γx.
To describe the image of the connection map of the path-loop fibra-

tion with this base point we interpret representatives γ of elements of
πk+1 (Bh1

(π, αB)) as maps Dk×I → Bh1
(π, αB) that evaluate to γ0(0) on

∂
(

Dk × I
)

. Such a map γ can be lifted to a map Dk × I → PBh1
(π, αB)

sending (x, t) to the concatenation of γ0∗γ−1
0 with the restriction of γ(x, ·)

to [0, t]. The restriction of this map to ∂
(

Dk × I
)

represents the image
of the connection map of the path-loop fibration. Everywhere except
on Dk × {1} this representative evaluates to a possibly reparametrised
version of the base point

(

γ0 ∗ γ−1
0

)

and for x ∈ Dk the path at (x, 1) is

given by
(

γ0 ∗ γ−1
0

)

∗ γ (x, ·). For briefness sake, we identify such a map
with the Dk-family of paths given by its restriction to Dk × {1}.

Now, after clarifying the identification via the path-loop fibration, we
come back to the connection maps ∂k+1

∗ . The image of each of these
maps can be computed analogously to the computation for the path-loop
fibration. We see that each representative γ : Dk × I → Bh1(π, αB) is
mapped to the Dk-family γ̃x of loops in Bh1(π, αB) given by

γ̃x = γ(x, ·)−1 ∗ γ0 ∗ (Ψ∗γ)(x, ·) ∗ γ−1
0

≃
(

(

γ0 ∗ γ−1
0

)

∗ γ(x, ·)−1
)

∗
((

γ0 ∗ γ−1
0

)

∗
(

γ0 ∗ (Ψ∗γ)(x, ·) ∗ γ−1
0

))

where Ψ = Ψ2π is the monodromy of the open book decomposition.
Let us denote by Ψ# the map ΩBh1

(π, αB) → ΩBh1
(π, αB) given by

sending a loop γ to γ0 ∗ (Ψ∗γ)(x, ·) ∗γ−1
0 and by Ψk# the maps induced on

πk(ΩBh1
(π, αB)) for k ∈ N. Then we have proved the following lemma.

Lemma 4.1.10. For k ∈ N, the connection map ∂k∗ : πk(Bh1(π, αB)) →
πk(Bh1(π, αB)) from Theorem 4.1.1 is given by

∂k+1
∗ ([γx]) =

[

γ−1
x

]

·Ψk#([γx]) .
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Note that the image γ̃x of each representative γx depends continuously
on the base point γ0 ∗ γ−1

0 and the monodromy Ψ, which, in turn, depend
continuously on the vector field X and the base point α0 of Ah(π, αB).
As a result we get the following lemma.

Lemma 4.1.11. The connection maps ∂k∗ in Theorem 4.1.1 are inde-
pendent of the choice of the vector field X inducing the monodromy of
the open book decomposition (B, π).

This lemma finishes our proof of Theorem 4.1.1.

4.2. Induced Form on the Binding

In the last section, we constructed our second obstruction for adapted
contact forms that restrict to a given contact form on the binding. If
we vary the induced contact form, the construction cannot be performed
the same way. This is caused by the fact that though every adapted
contact form α ∈ Ah(π) induces a path in Bh1(π) not every path in
Bh1

(π) induces a contact form in Ah(π): every point in a path in Bh1
(π)

induced by an α ∈ Ah(π) restricts to the same contact from on the
binding, because of continuity.

In order to circumvent this problem, we construct homotopy sequences
that encapsulate the dependence of the adapted contact forms and induced
Liouville forms on the contact form on the binding. Then we use these
in Section 4.3 to construct the general second obstruction via a diagram
chase.

The main result of this section is the following theorem.

Theorem 4.2.1. Let α be an adapted contact form, β its restriction to
TP0, and αB its restriction to TB. Furthermore, let h = (h1, h2) be a
Lutz pair. Then there are long exact homotopy sequences

· · · −→ πk
(

Ah(π, αB)
)

−→ πk(A(π)) −→ πk(A(B) , αB) −→ · · ·

and

· · · −→ πk(Bh1
(π, αB)) −→ πk(B(π)) −→ πk(A(B) , αB) −→ · · ·

where (A(B) , αB) denotes the space of contact forms on B with base
point αB.
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Since the proofs of the existence of these two sequences are essentially
identical, we present only that of the existence of the first one.

As in the proof of Theorem 4.1.1, it turns out that it is convenient first
to substitute the spaces involved in the sequences by more suitable spaces
homotopy equivalent to them. For technical reasons, we have to do this
for all three spaces: we replace the space A(B) of contact forms on the
binding by the space Ã(B) of equivalence classes of contact forms on B
with respect to multiplication with positive constants, the space A(π) by
the space Ω̃1

L(π) of pairs (α, r0) of adapted forms α standard for radius
r0, and Ah(π, αB) by the subspace Ω̃1

L(π, [αB ]) of Ω̃1
L(π) consisting of

those forms inducing the element [αB ] ∈ Ã(B) on the binding.
Our claim that the corresponding spaces are homotopy equivalent

follows from the results of Section 3.1 and the following two lemmata.

Lemma 4.2.2. Let αB be a contact form on B. Then there is a strong
deformation retraction from Ω̃1

L(π, [αB ]) to Ω̃1
L(π, αB).

Proof. If Ω̃1
L(π, [αB ]) is empty, so is Ω̃1

L(π, αB). So, let us assume that
Ω̃1
L(π, [αB ]) is non-empty.
Let (α, r0) ∈ Ω̃1

L(π, [αB ]). Then the restriction of α to TB is given by
CαB for some positive number C. Define the deformation retraction by

Dt(α, r0) =

(

1

(1− t) + t C(α)
α, r0

)

.

Lemma 4.2.3. There is a section of the projection pr: A(B) → Ã(B)
that is a homotopy equivalence.

Proof. If Ã(B) is empty, so is A(B). Therefore, let us assume that Ã(B)
is non-empty.

Choose a Riemannian metric g on TB. This induces a norm on Ω1(B)
and hence also on its subset A(B).

We can define a section s of the projection pr by sending [α0] to the
unique α ∈ [α0] ⊂ A(B) satisfying ‖α‖ = 1.

It remains to show that the identity on A(B) is homotopic to s ◦ pr. A
corresponding homotopy is given by

αt = (1− t)α+ t s(pr(α)) .
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Owing to the two lemmata above, we need only show that the long
exact homotopy sequence exists for our replacements. For these we can
prove the following lemma.

Lemma 4.2.4. The map on Ω̃1
L(π) assigning to a pair (α, r0) the equi-

valence class [α|TB ] ∈ Ã(B) is a quasifibration.

Proof. By Corollary B.13 it is sufficient to show that every Dn-family of
smooth paths γ : [0, 1] → Ã(B) constant on [0, 1/4] ∪ [3/4, 1] can be lifted
with given initial values (αx, (r0)x) ∈ Ω̃1

L(π) satisfying [αx|TB ] = γx(0).
Since our construction will be continuous in the paths γx and the

initial values (αx, (r0)x) ∈ Ω̃1
L(π) the dependence on x ∈ Dn is inessential.

Consequently, we suppress the index throughout the remainder of the
proof.

We first define the deformation of r0. Let λ : [0, 1] → [0, 1] be a
monotonously decreasing smooth function that is constant of value 1 on
[0, 1/8] and vanishes on [1/6, 1]. Then we set

rt =
1
2 (1 + λ(t)) r0

for t ∈ [0, 1].
This definition allows us to destroy the standard form of α for radii

r0/2 < r ≤ r0 for t ∈ [1/6, 1] without leaving the space Ω̃1
L(π).

Next, we require a suitable family αBt in A(B) representing the path
γ, i.e. a suitable family satisfying

[

αBt
]

= γ(t). A first candidate is given
by αBt = ‖α|TB‖ s(γ(t)) where s is the section from Lemma 4.2.3 and ‖·‖
the norm on A(B) used in this lemma. It has the correct initial value
and is smooth.

To be able to lift the family αBt , we have to modify it a little bit.
Nevertheless, let us defer this modification to the end of the proof where
its necessity will become apparent.

Inside the set Br0(0)×B we know that α is given by

α = h1(r/r0)α|TB

for some Lutz pair h = (h1, h2). This allows us to define a potential lift
αt by the constant path with value α outside Br0(0)×B and inside this
set by

αt = h1(r/r0)α
B
tν(r)
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where ν(r) = λ(r/4r0).
Because λ is constant of value 1 on [0, 1/8], the forms αt are standard for

radius r0/2 and since λ(r) vanishes for r ≥ 1/6 < 1/4 they agree with α on
a neighbourhood of {r = r0}. Moreover, the family is constant for t ≤ 1/4
since γ and, hence, also αBt is constant for these values of t. Consequently,
the forms αt are well defined and standard for radius rt.

It remains to check whether the forms αt are adapted, i.e. whether the
restrictions of dαt to the tangent bundles of the pages are non-degenerate.
Outside Br0(0) × B, this is evident because, there, αt agrees with α,
which is adapted. Inside Br0(0)×B, we have

1
n (dαt)

n |TPϕ = − 1
r0
h′1(r/r0)α

B
tν(r) ∧

(

dαBtν(r)
)n−1 ∧ dr

− t
r0
h1(r/r0) ν

′(r) α̇Btν(r) ∧
(

dαBtν(r)
)n−1 ∧ dr.

The first term is positive since αtν(r) is a positive contact form on
the binding and h′1 < 0. Unfortunately, we do not know whether the

top-dimensional form α̇Btν(r) ∧
(

dαBtν(r)
)n−1

on the binding is a volume

form. So, we have no control over the second term.

Now, we modify the family αBt such that α̇Btν(r) ∧
(

dαBtν(r)
)n−1

becomes

a volume form. A first step towards this goal is to replace this family by
the family

α̃Bt = eCtαBt

for a constant C given by

C = C(γ) = 1 + max
t∈[0,1]

max
B

∣

∣

∣α̇Bt ∧
(

dαBt
)n−1

∣

∣

∣

∣

∣

∣αBt ∧
(

dαBt
)n−1

∣

∣

∣

where we identified top-dimensional forms on B with functions via some
volume form.

With this choice we have

˙̃αBt ∧
(

dα̃Bt
)n−1

= enCt
(

CαBt ∧
(

dαBt
)n−1

+ α̇Bt ∧
(

dαBt
)n−1

)

> 0.

Unfortunately, this new family is not constant anymore for t ≤ 1/6.
However, this is necessary to guarantee that αt is standard for radius rt.
So, we replace this family by a reparametrised version

ᾱBt = α̃Bµ(t)
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where µ : [0, 1] → [0, 1] is a monotonously increasing smooth function
that vanishes on [0, 1/6] and satisfies µ(t) = t for t ∈ [1/4, 1].

Then we have
˙̄αBt = µ′(t) α̃Bµ(t) + ˙̃αBµ(t).

Because µ′ is non-negative this implies that ˙̄αBt ∧
(

dᾱBt
)n−1

is positive.
Moreover, the definition of µ ensures that ᾱBt is constant for t ∈ [0, 1/6].

Now, replacing αBt in the definition of αt by ᾱBt yields the desired
lift.

The preceding lemma concludes the proof of Theorem 4.2.1, because
quasifibrations induce long exact homotopy sequences.

Apart from this result, the construction in the proof above also provides
means to connect the different types of subspaces of Ah(π) given by
restricting the admissible contact forms induced on the binding. As a
first application we can show that it does not matter whether we fix the
contact form induced on the binding or the equivalence class with respect
to multiplication with a positive constant of a contact form defining it.

Corollary 4.2.5. Let αB be a contact form on B. Then there is a weak
deformation retraction from Ω̃1

L(π, kerαB) to Ω̃1
L(π, [αB ]).

Proof. If Ω̃1
L(π, kerαB) is empty, so is Ω̃1

L(π, [αB ]). So, assume that the
space Ω̃1

L(π, kerαB) is non-empty.
Define a contraction of the space of contact forms defining kerαB by

(α, t) 7→ (1− µ(t))α+ µ(t)αB ,

where µ : [0, 1] → [0, 1] is a smooth function that vanishes on [0, 1/4], is
constant of value 1 on [3/4, 1] and is monotonously increasing otherwise.
Lift the homotopy given by the projection from Ω̃1

L(π, kerαB) to the
space of contact forms defining kerαB followed by this contraction. This
defines the desired weak deformation retraction.

A second application shows that the fibres Ω̃1
L(π, [αB ]) over the same

component of Ã(B) are not just weakly homotopy equivalent but homo-
topy equivalent.

Corollary 4.2.6. Let αBt , t ∈ [0, 1], be a path of contact forms on the
binding B. Then the spaces Ω̃1

L

(

π,
[

αB0
])

and Ω̃1
L

(

π,
[

αB1
])

are homotopy
equivalent.
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Proof. Let us first assume that Ω̃1
L

(

π,
[

αB0
])

is non-empty.
By the proof of Theorem B.10 the path αBt is homotopic to a path

from αB0 to αB1 that is smooth and constant on [0, 1/4] ∪ [3/4, 1]. So, we
may assume without loss of generality that αBt has these properties, as
well.

By the proof of Lemma 4.2.4, we can lift the constant Ω̃1
L

(

π,
[

αB0
])

-

family of paths
[

αBt
]

in Ã(B) with initial values given by the identity on

Ω̃1
L

(

π,
[

αB0
])

. This yields a map Φ into Ω̃1
L

(

π,
[

αB1
])

. Consequently, this
space is non-empty, too.

A map Ψ back from Ω̃1
L

(

π,
[

αB1
])

to Ω̃1
L

(

π,
[

αB0
])

can be defined by
replacing the path αBt by the inverse path αB1−t. We claim that Φ and Ψ
are homotopy inverses of each other.

Because of the symmetry of the situation we only prove that Ψ ◦ Φ is
homotopic to the identity. Let (α, r0) ∈ Ω̃1

L

(

π, [αB0 ]
)

. Then the contact
form induced on the binding B is given by EαB0 for some positive number
E. This implies that the pair (Ψ ◦ Φ)(α, r0) is given by (α̃, r0/4) where α̃
has the following form.

Outside Br0(0)×B it coincides with α, for r ≤ r0/4 it is given by

α̃ = Ee2Ch1(r/r0)α
B
0 ,

for r ∈ [r0/4, r0/2] by

α̃ = EeCeµ(ν(2r))Ch1(r/r0)α
B
µ(1−ν(2r)),

and for r ∈ [r0/2, r0] by

α̃ = Eeµ(ν(r))Ch1(r/r0)α
B
µ(ν(r)).

The original form α is homotopic to α̃ via the family αt, t ∈ [0, 1],
defined as follows.

Outside Br0(0) × B, the family is constant and agrees with α, for
r ≤ r0/4 it is given by

αt = Ee2tCh1(r/r0)α
B
0 ,

for r ∈ [r0/4, r0/2] by

αt = EetCetµ(ν(2r))Ch1(r/r0)α
B
tµ(1−ν(2r)),
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and for r ∈ [r0/2, r0] by

αt = Eetµ(ν(r))Ch1(r/r0)α
B
tµ(ν(r)).

Since αt stays standard for radius r0/4 for all t ∈ [0, 1], this shows that
Ψ ◦ Φ is homotopic to the map (α, r0) 7→ (α, r0/4). This, in turn, is ho-
motopic to the identity via the homotopy ((α, r0) , t) 7→ (α, (1 + 3t) r0/4).
This concludes the proof in the case that Ω̃1

L

(

π,
[

αB0
])

is non-empty.

Now, suppose Ω̃1
L

(

π,
[

αB0
])

is empty. Then, by the symmetry of the

situation, Ω̃1
L

(

π,
[

αB1
])

is empty, as well. Hence, the two spaces are
homotopy equivalent.

Combining the two results with Lemma 4.2.2 and the results from
Section 3.1 yields the following theorem.

Theorem 4.2.7. Let α0, α1 ∈ A(B) be homotopic. Then the three spaces
Ah(π, kerα0), Ah(π, α0), and Ah(π, α1) are homotopy equivalent.

Remark 4.2.8. The results of this section also apply to the corresponding
spaces of induced Liouville forms, by essentially the same proofs.

4.3. Combined Diagram and Consequences

In Section 4.1, we constructed the second obstruction for homotopies of
(pointed) Sn- families of adapted contact forms under the assumption that
they induce a prescribed contact form on the binding. Here, we combine
the long exact sequences of the preceding two sections to define the second
obstruction for general (pointed) Sn-families of adapted contact forms.

Our first aim is to combine the two sequences from Theorem 4.2.1 in a
long exact homotopy ladder diagram

· · · // πk
(

Ah(π, αB)
) iC //

pB

��

πk(A(π))
pC //

p

��

πk(A(B) , αB)
∂C //

id

��

· · ·

· · · // πk(Bh1
(π, αB))

iL // πk(B(π))
pL // πk(A(B) , αB)

∂L // · · ·
(4.1)

where the vertical maps are induced by the restriction to the tangent
bundle of the page P0.



4.3. Combined Diagram and Consequences 119

The only problem is that the restriction map to TP0 does not commute
with the deformations used in the proof of Theorem 4.2.1 to translate the
homotopy sequences obtained into those of the right spaces. Nevertheless,
they do commute up to homotopy by the following lemma.

Lemma 4.3.1. Let A′ ⊂ A and B′ ⊂ B be topological spaces and π : A→
B a map such that π(A′) ⊂ B′. Moreover, let DA

t and DB
t , t ∈ [0, 1], be

deformations of A and B into A′ and B′, respectively, such that DB
1 is a

homotopy equivalence.
Then the diagram

A
DA

1 //

π

��

A′

π

��
B

DB
1 // B′

commutes up to homotopy.

Proof. We show that the maps (π ◦DA
1 ) and (DB

1 ◦π) are both homotopic
to the map (DB

1 ◦ π ◦DA
1 ).

For the map (DB
1 ◦ π) such a homotopy is given by (DB

1 ◦ π ◦DA
t ). For

the map (π ◦DA
1 ) the situation is slightly more complicated.

Let g : B′ → B be a homotopy inverse of DB
1 . Then the map (π ◦DA

1 )
is homotopic to the map (DB

1 ◦ g ◦ π ◦DA
1 ). This, in turn, is homotopic

to (DB
1 ◦ DB

1 ◦ g ◦ π ◦ DA
1 ) via the homotopy (DB

1 ◦ DB
t ◦ g ◦ π ◦ DA

1 ).
Finally, using that g is a homotopy inverse of DB

1 , this is homotopic to
(DB

1 ◦ id ◦ π ◦DA
1 ) = (DB

1 ◦ π ◦DA
1 ).

The diagram (4.1) can be combined with the long exact sequence from
Theorem 4.1.1 to obtain the braid diagram

· · ·

pC

''

p

""

πk+1(A(B))

∂L

''

∂C

""

πk(Bh1
(π, αB))

∂B

''

iL

""

πk(Bh1
(π, αB))

i

%%

iB

""

· · ·

πk+1(B(π))
pL

<<

πk
(

Ah(π, αB)
)

pB

<<

iC

""

πk(B(π))
pL

""

πk−1

(

Ah(π, αB)
)

iC

<<

pB

""· · ·

∂P

77

iL

<<

πk+1(Bh1(π, αB))

i

77

iB

<<

πk(A(π))

pC

77

p

<<

πk(A(B))

∂L

88

∂C

<<

· · ·

(4.2)
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where the three unbroken strands are exact.

The next step is to prove that the broken braid is exact, as well.

Proposition 4.3.2. Let α ∈ Ah(π) and αB be the contact form on the
binding induced by α. Then the broken strand in the broken braid diagram
(4.2) is exact.

Proof. We prove the assertion by a diagram chase.

Let a ∈ ker pk. Then pC(a) = (pL ◦ p)(a) = 0. So, there is a b ∈
πk
(

Ah(π, αB)
)

such that a = iC(b). Consequently, we have (iL ◦ pL)(b) =
(p ◦ iC)(b) = 0. This implies that there is a c ∈ πk+1(A(B)) such that
∂L(c) = pL(b). Thus, pl(b− ∂C(c)) = 0. This also makes sense for
k = 0, because the map ∂1C is induced by an action of π1(A(B)) on
π0
(

Ah(π, αB)
)

; cf. the proof of Proposition C.6.

Because pL(b− ∂C(c)) = 0 there is a d ∈ πk+1(Bh1
(π, αB)) such that

iB(d) = b− ∂C(c). Accordingly, we have

i(d) = (iC ◦ iB)(d) = iC(b− ∂C(c)) = a.

The proposition above allows us to define the second obstruction against
homotopies of (pointed) Sn- families of adapted contact forms as the dif-
ference of their preimages under ik projected to πk+1(Bh1(π, αB)) / ker i

k.
By construction, the vanishing of this obstruction guarantees the existence
of a homotopy.

The definition of the second obstruction above is somewhat unsatisfying
because we do not have a useful description of the kernel of ik as an
image of a map, in contrast to the case of the adapted contact forms
with prescribed contact form induced on the binding. However, there are
several special situation in which we can obtain such a description by
completing the broken braid diagram (4.2).

Lemma 4.3.3. Let k ∈ N, α ∈ Ah(π), and αB be the contact form on
B induced by α.

If the map
(

∂kC ◦ pkL
)

or the map ∂kB is trivial, then there is a map
∂k from πk(B(π)) to πk(Bh1(π, αB)) such that (4.2) still commutes and
remains exact after inserting ∂k.
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Proof. We start with the case that
(

∂kC ◦ pkL
)

is trivial.
Let a ∈ πk(B(π)). Then ∂C(pL(a)) = 0. Thus, there is a b ∈ πk(A(π))

such that pC(b) = pL(a). Consequently, we have pL(a− p(b)) = 0. This
implies that there is a c ∈ πk(Bh1

(π, αB)) such that iL(c) = a− p(b). We
define ∂k(a) = ∂B(c).

We have to show that this is well defined. So, let cδ ∈ ker ikL. Then
there is a dδ ∈ πk+1(A(B)) such that ∂L(dδ) = cδ. This implies that

∂B(c+ cδ) = ∂B(c+ pB(∂C(dδ))) = ∂B(c) .

Now, let b∆ ∈ ker pkC . Then there is a c∆ ∈ πk
(

Ah(π, αB)
)

such that
iC(c∆) = b∆. Consequently, we have iL(c− pB(c∆)) = a− p(b+ b∆) and
∂B(c− pB(c∆)) = ∂B(c).

This shows that ∂k is well defined. Next, we show that (4.2) still
commutes after inserting ∂k.

Let a ∈ πk(Bh1
(π, αB)). Then, pL(iL(a)) = 0. Hence, we may set b = 0

in the construction of ∂(iL(a)). This implies that ∂(iL(a)) = ∂B(a).
Now, let a ∈ πk(B(π)). Then ∂(a) = ∂B(c) for some c ∈ πk(Bh1(π, αB)).

Accordingly, iB(∂(a)) = 0 = (∂C ◦ pL)(a).
It remains to show that the diagram stays exact. To prove this we

use a lemma by Wall [5, Lemma IV.6.16]. It states that an (unbroken)
braid diagram in which three strands are exact and the fourth one is of
order 2 is exact. Here, the condition that the fourth strand is of order 2
means that the composition of each two consecutive maps in this strand
is trivial. From its proof, it is clear that it still works for our broken braid
diagram, because we already know that the broken strand is exact away
from the new map ∂k we inserted.

Let a ∈ πk(A(π)). Then we may choose b = a in the construction of
∂(p(a)) and, hence, also c = 0. This shows that ∂k ◦ pk is trivial. In
addition, we have i ◦ ∂ = iC ◦ ∂C ◦ pL = 0. Thus, the broken strands is of
order 2 and, hence, exact by [5, Lemma IV.6.16].

This concludes the proof for the case that
(

∂kC ◦ pkL
)

is trivial.
Next, we consider the case that ∂kB is trivial.
Let a ∈ πk(B(π)). Then we have

pB((∂C ◦ pL)(a)) = ∂L(pL(a)) = 0.

Consequently, there is a unique b ∈ πk(Bh1
(π, αB)) such that iB(b) =

(∂C ◦ pL)(a).
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We set ∂k(a) = b. This is well defined because the only choice made
was unique.

By construction, we know that
(

iB ◦ ∂k
)

=
(

∂C ◦ pkL
)

. Moreover, for
a ∈ πk(Bh1

(π, αB)) we have (∂C ◦ pL)(iL(a)) = 0 and, hence, ∂(iL(a)) =
0 = ∂B(a).

This shows that (4.2) still commutes after inserting ∂k. It remains to
show that the broken strand stays of order 2 and, hence, exact.

Let a ∈ πk(A(π)). Then

(∂C ◦ pL ◦ p)(a) = (∂C ◦ pC)(a) = 0.

Consequently, ∂(p(a)) = 0.
As in the proof of the first case, we have i ◦ ∂ = iC ◦ ∂C ◦ pL = 0.
This concludes the proof.

Piecing together the two parts of the proof above, we obtain the
following corollary.

Corollary 4.3.4. Let k ∈ N≥2, α ∈ Ah(π), and αB be the contact form
on B induced by α.

If the two exact sequences

πk(Bh1
(π, αB))

iL // πk(B(π))
pL // πk(A(B) , αB)

and

πk(Bh1
(π, αB))

∂B // πk(Bh1
(π, αB))

iB // πk−1

(

Ah(π, αB)
)

are split, then there is a map ∂k from πk(B(π)) to πk(Bh1
(π, αB)) such

that (4.2) still commutes and remains exact after inserting ∂k.

Proof. Because the two sequences are split we have decompositions

πk(B(π)) = ker pkL ⊕ ker ∂kL

and
πk(Bh1(π, αB)) = ker ikB ⊕ ker pB .

On ker pkL the map ∂C ◦ pL is trivial and the corresponding map ∂k

maps ker pkL into ker ik−1
B .
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On ker ∂kL a map ∂k into ker pB is given by ∂kC . This corresponds to
the map ∂k constructed in the proof of Lemma 4.3.3 in the case that ∂kB
is trivial.

The arguments that (4.2) still commutes and remains exact after in-
serting ∂k goes through as in the proof of Lemma 4.3.3, separately for
both parts of the map.

As another corollary to Lemma 4.3.3 we obtain a condition under which
our second obstruction takes its strongest form, i.e. under which we do
not have to project to a quotient.

Corollary 4.3.5. Let k ∈ N0. If the map pk+1 is onto, then ik is
one-to-one.

Proof. Since pk+1 is onto we can apply the Five Lemma to see that pk+1
B

is onto, as well. So ∂k+1
B is trivial.

This allows us to apply Lemma 4.3.3 in order to insert the map ∂k+1

into the diagram. Then ik is one-to-one by exactness.

A prominent example of a situation in which the assertion above is
satisfied is that the monodromy is isotopic to the identity.

Proposition 4.3.6. If the monodromy is isotopic to the identity with
support outside a neighbourhood of the binding, then the maps pk are onto
for all k ∈ N0.

Proof. By choosing our neighbourhood U ∼= D2 × B of the binding
appropriately we may assume that there is an isotopy Φt of the identity
to the monodromy with support outside B1/2(0)×B.

Because the weak deformation retraction from Theorem 2.1.3 preserves
the restrictions to the tangent bundles of pages, it is sufficient to show
that the map induced by the restriction map from Ω1(π) to B(π) is onto.
By Theorem 3.1.7, Theorem 3.1.16, and Lemma 4.3.1 we can further
substitute this map with the map induced by the restriction map from
Ω̂1
h1
(π) to Bh1

(π) for any Lutz pair (h1, h2).
Let us choose a technical smooth monotonously increasing surjection

µ : [0, 2π] → [0, 1]. Then we can lift any family βx ∈ Bh1
(π) as the family

αx =
(

Φ−1
µ(ϕ)

)∗
βx.

Accordingly, the maps pk are onto for all k ∈ N0.
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Actually, we proved something more: we constructed a splitting.

Corollary 4.3.7. If the monodromy is isotopic to the identity with sup-
port outside a neighbourhood of the binding, then the exact sequence

πk+1(Bh1
(π, αB))

i // πk(A(π))
p // πk(B(π)) // 0

splits for every k ∈ N0, where the splitting is only natural if the monodromy
is the identity.

Proof. We obtain the splitting from the map πk(B(π)) → πk(A(π)) from
the proof of Proposition 4.3.6. This is only natural in the case that the
monodromy Ψ is the identity since only then there is a canonical choice
for the isotopy from the identity to Ψ employed in the construction.

Finally, we can obtain a corollary about the situation that the second
obstruction vanishes identically, i.e. that the map pk is one-to-one.

Corollary 4.3.8. Let (P, β) be a Liouville domain with boundary (B,αB)
and k ∈ N0. Then the following statements are equivalent.

1) The map pk is one-to-one for the open book with pages P and the
trivial monodromy.

2) πk+1(Bh1
(π, αB)) is trivial.

3) The map pk is one-to-one and the map pk+1 is onto for all open
books with pages P .

Proof. If the monodromy is trivial, then we know by Proposition 4.3.6
that pk+1 is onto. By Corollary 4.3.5, this implies that ik is one-to-one.
Because pk is one-to-one, we also know that ik is trivial. This implies
that πk+1(Bh1

(π, αB)) is trivial.

If πk+1(Bh1
(π, αB)) is trivial, then ik and ∂k+1

B are trivial. This implies
that pk is one-to-one and, by Lemma 4.3.3, that the diagram can be
completed with a map ∂k+1. This map is trivial since πk+1(Bh1(π, αB))
is trivial. Consequently, pk+1 is onto, by exactness.
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4.4. Connection to Symplectomorphisms of

the Pages

In the preceding section, we constructed our second obstruction against
homotopies of Sn-families of adapted contact forms. In this section,
we connect this obstruction to the spaces of diffeomorphisms and sym-
plectomorphisms of the page P0 of the open book decomposition (B, π).
More precisely, we connect the preimages of the obstruction under the
projection πn+1(Bh1

(π, αB)) → πn+1(Bh1
(π, αB)) / ker i

n, where αB is
the contact form induced on the binding B by the base point of A(π),
and the map in is defined as in (4.2). This connection yields two distinct
examples of non-homotopic adapted contact forms on the open book with
trivial monodromy and pages symplectomorphic to the unit cotangent
bundle

(

D∗S2, λcan
)

of S2 endowed with the canonical Liouville form
λcan.

Following the general treatment, we specialise to the case k = 0 and
discuss under which condition we can guarantee that the non-homotopic
adapted contact forms are still contactomorphic and under which we
cannot. Our two examples each fall into one of these two categories.

To be able to state the connection, we first have to exchange Bh1
(π, αB)

with a more suitable space. Denote by P the complement B1/2(0)×B ⊂
U in the page P0, where U is the adapted neighbourhood from the
definition of Bh1(π, αB). Moreover, let β0 ∈ Bh1(π, αB). Because forms
in Bh1(π, αB) are completely determined inside B̄1/2(0)×B, we have the
following lemma.

Lemma 4.4.1. The restriction map resP from Bh1
(π, αB) to the space

B∞(P ) of Liouville forms on P that agree with the restriction of β0 on
∂P including all derivatives is a homeomorphism.

For the space B∞(P ) we have the following long exact sequence by
Theorem 3.2.13 and Theorem 3.2.12.

· · · // πk+1(B∞(P ))
∂S // πk(S)

iS // πk(D)
pS // πk(B∞(P )) // · · ·

This sequence shows that there are exactly two sources for non-trivial
elements in πk(B∞(P )), namely Sk-families of symplectomorphisms that
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are isotopic to the identity as families of diffeomorphisms but not as
families of symplectomorphisms, and Sk+1-families of diffeomorphisms
that are not homotopic to a family of symplectomorphisms.

At least at the level of π1, this should not come as a surprise; by the
proof of Theorem 3.1.22 we already know that every adapted contact
form α ∈ Ah(π, αB) is strictly contactomorphic via a page-preserving
diffeomorphism to the result of the generalised Thurston-Winkelnkemper
construction applied to a symplectic open book of the form (P,Ψ, α|TP ).

Our second obstruction now tells us under which conditions families
of paths of diffeomorphisms from the identity to a symplectomorphism
indeed define homotopically distinct adapted contact forms. In particular,
every homotopy class of such families of paths yields a distinct adapted
contact form if the monodromy is isotopic to the identity because of
Proposition 4.3.6 and Corollary 4.3.5. We use this to obtain our examples.

Our first example is associated to the Dehn-Seidel twist τ : D∗S2 →
D∗S2 introduced by Seidel in his thesis [35]. The square of the Dehn-
Seidel twist is homotopic to the identity as a diffeomorphism, but not as
a symplectomorphism; cf. [34].

This allows us to construct non-trivial elements of π1
(

B∞
(

D∗S2
))

as
the classes of the loops given by the concatenation of the paths Ψ∗

tλcan
and (1− t)Ψ∗

1λcan + tλcan where Ψt is an isotopy from the identity to
τ2k for some k ∈ Z \ {0}.

The results of Seidel in [34] are even stronger. They can be summarised
as follows.

Theorem 4.4.2 (Seidel). The space S
(

D∗S2
)

is weakly homotopy equi-
valent to Z, generated by the Dehn-Seidel twist. Moreover, the image of
the inclusion π0

(

S
(

D∗S2
))

→ π0
(

D
(

D∗S2
))

is isomorphic to Z2.

This shows that every homotopically non-trivial loop in D generates
a non-trivial element in π1

(

B∞
(

D∗S2
))

. Such a non-trivial loop can be
obtained as follows.

We follow parts of the argument by Seidel in [34].
First, we embed the interior of D∗S2 symplectically into S2 × S2,

endowed with the standard symplectic form, as the complement of the
diagonal ∆.1 This embedding provides a weak homotopy equivalence of D
1An explicit embedding can be found for example in the proof of [13, Corollary

3.2.10].
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and the space D2 of diffeomorphisms of S2 ×S2 that fix the diagonal and
its normal bundle. Let us denote by D1 the larger space of diffeomorphisms
only fixing the diagonal.

Then there is the long exact homotopy sequence

· · · // π2(G) // π1(D2) // π1(D1) // π1(G) // · · ·

where G is the space of sections of the automorphism bundle of the normal
bundle ν∆ of the diagonal.

The space of sections of the bundle of symplectic automorphisms of
ν∆ is a deformation retract of G (cf. the proof of [34, Corollary 2]) and
weakly homotopy equivalent to SL2(R) ≃ S1, by [34, Lemma 3]. This
shows that the non-trivial elements of π1(D2) are exactly those generated
by homotopically non-trivial loops in D1 that induce homotopically trivial
loops in G.

Explicit examples of such loops are given by the path

ψyt : S
2 × S2 → S2 × S2

(x, y) 7→
{

(

R4πt
y (x) , y

)

, for t ∈ [0, 1/2]
(

x,R−4πt
x (y)

)

, for t ∈ [1/2, 1]

and its k-fold concatenation ψkt with itself, for k ∈ Z \ {0}. Here, Rθy is
the rotation in R3 by the angle θ around the oriented axis determined by
y. Furthermore, by concatenating a path with itself a negative number of
times we mean the concatenation of the inverse path the corresponding
number of times.

On the diagonal, the maps ψkt are trivial, because the points that are
rotated agree with the axis. Moreover, the loop induced in G is trivial:
the first half of the path induces the positive generator of π1(G) and the
second half the negative one. This can be verified by a straightforward
calculation.

Unfortunately, it turns out to be rather tedious to show that the loops
ψkt are homotopically distinct for all k ∈ Z. Therefore, we defer the proof
of this fact to the end of this section.

Now, let us come back to a more general setting to discuss the con-
nection of our second obstruction to contactomorphisms. Let Ψ be the
monodromy of the open book generated by the rescaled Reeb vector field
(

ιRα0
dϕ
)−1

Rα0 of the base point α0 of Ah(π, αB) outside B1/2(0)×B ⊂ U
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and by ∂ϕ inside this set, as in the proof of Theorem 3.1.22. Then the
identification of Ah(π, αB) with the space C∞

t (Ψ) of pathes in Bh1(π, αB)
from some β to Ψ∗β, which we obtained in Section 4.1, identifies the base
point α0 of Ah(π, αB) with the path γ0 given by

γ0(t) = β0 + dht,

where β0 is the base point of Bh1(π, αB) and ht a strictly monotonously
increasing family of positive functions on P0 constant in a neighbourhood
of B̄1/2(0)×B.

Let Ψt, t ∈ [0, 2π], be a technical smooth path of diffeomorphisms
of P with compact support in the interior of P starting at the identity.
By Proposition 1.4.4, this isotopy determines a diffeomorphism Φ from
M(P,Ψ) =M to M

(

P,Ψ ◦Ψ−1
2π

)

. Inside B1/2(0)×B ⊂ U , it agrees with
the identity and, on the mapping tori, it is induced by the map

Φ: P × [0, 2π] → P × [0, 2π]

(x, ϕ) 7→ (Ψϕ(x) , ϕ) .

The adapted contact form on M
(

P,Ψ ◦Ψ−1
2π

)

obtained from the sym-

plectic open book
(

P,Ψ ◦Ψ−1
2π , β0

)

, either via the generalised Thurston-
Winkelnkemper construction or the construction in Subsection 2.2.2, is
given by

α1 = β0 + δϕ + f dϕ

where δϕ is a [0, 2π]-family of closed forms on P such that δ0 = 0 and

δ2π =
(

Ψ ◦Ψ−1
2π

)∗
β0 − β0, and f a function on M

(

P,Ψ ◦Ψ−1
2π

)

. Hence,
the path of Liouville forms in B∞(P ) from β0 to Ψ∗β0 associated to the
pullback of this form α1 is given by

βϕ = Ψ∗
ϕβ0 +Ψ∗

ϕδϕ.

This implies that the corresponding loop βϕ∗γ−1
0 is homotopic to the path

obtained from the concatenation of the paths Ψ∗
2πtβ0 and (1− t)Ψ∗

2πβ0 +
tβ0.

Since this is exactly the loop in B∞(P ) induced by the isotopy Ψt, we
proved the following theorem.

Theorem 4.4.3. Let (P,Ψ, β0) be a symplectic open book and α a contact
form adapted to the natural open book decomposition of M(P,Ψ) that
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induces β0 on the page P0. Furthermore, let Ψϕ be an isotopy with
compact support inside the interior of P ⊂ P0, starting at the identity,
that induces the second obstruction against a homotopy from α to the
natural base point of A(π).

Then the contact manifold (M(P,Ψ) , kerα) is contactomorphic to the
manifold M

(

P,Ψ ◦Ψ−1
2π , β0

)

obtained via the generalised Thurston-Win-

kelnkemper construction from the symplectic open book
(

P,Ψ ◦Ψ−1
2π , β0

)

.

Remark 4.4.4. The natural base point of A(π) on M(P,Ψ) is the adap-
ted contact form obtained via the generalised Thurston-Winkelnkemper
construction from the symplectic open book (P,Ψ, β0).

For the special case that Ψϕ is a loop of diffeomorphisms we obtain the
following corollary.

Corollary 4.4.5. Whenever the second obstruction against a homotopy
of two contact forms α0 and α1 adapted to an open book decomposition of
a manifold M is defined and induced by a loop of diffeomorphisms of the
pages, the contact manifolds (M,α0) and (M,α1) are contactomorphic.

Applied to our second example, i.e. to the loops ψkt , this yields the
following result.

Corollary 4.4.6. On M
(

D∗S2, id
)

there are infinitely many non-homo-
topic adapted contact forms αk, k ∈ N, all adapted to the same open book
and all inducing the canonical Liouville form λcan on a fixed page such
that the contact manifolds

(

M
(

D∗S2, id
)

, kerαk
)

are contactomorphic.

On the other hand, applying Theorem 4.4.3 to our first example, i.e. to
the adapted contact forms associated to isotopies from the identity to the
even powers τ2k of the Dehn-Seidel twist, shows that the corresponding
contact manifolds are contactomorphic to M

(

D∗S2, τ−2k, λcan
)

.
As reasoned in [6], the results form [40] and [20] show that the contact

manifolds M
(

D∗S2, τ−2k, λcan
)

are not contactomorphic for k ≤ 0. This
proves the following corollary to Theorem 4.4.3.

Corollary 4.4.7. On M
(

D∗S2, id
)

there are infinitely many adapted
contact forms αk, k ∈ N, all adapted to the same open book and all indu-
cing the canonical Liouville form λcan on a fixed page such that the contact
manifolds

(

M
(

D∗S2, id
)

, kerαk
)

are pairwise not contactomorphic.
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The two corollaries above show that in higher dimension the space of
adapted contact forms is much more complicated than in dimension 3
and that there is no such close connection to general contact forms as in
said dimension.

However, our treatment only concerned the question whether contacto-
morphic adapted contact forms on the same manifold are homotopic as
adapted forms. It still remains the harder question whether contact forms
adapted to the same open book decomposition that are homotopic as
general contact forms are automatically homotopic as adapted contact
forms. More generally, we can ask the following.

Question 4.4.8. Given k ∈ N0, is the map i : πk(A(π)) → πk(A(M))
induced by the inclusion one-to-one?

Since this question involves paths of contact forms that leave the space
A(π) of adapted contact forms, the methods of this thesis cannot be used
to answer this question in the affirmative.

Now, it remains to show that the loops ψkt are indeed homotopically
distinct.

Lemma 4.4.9. The loop ψt generates a free subgroup of π1(D1).

To prove this lemma, we need a well-known fact from topology. Denote
by Map∗(X,Y ) the space of pointed maps from a pointed topological space
X to a pointed topological space Y , and write ΣX for the reduced suspen-
sion of X, i.e. for the quotient space ΣX = (X × I) / (X × ∂I ∪ {∗} × I),
where ∗ is the base point of X. Then the following holds.

Lemma 4.4.10 (Cf. [23, Page 395]). Let X and Y be pointed Hausdorff
spaces, and let X be compact. Then the space Map∗(ΣX,Y ) is homeo-
morphic to Map∗(X,ΩY ), where the base point of ΩY is the constant
path at the base point.

In particular, Map∗
(

Sn+k, Y
)

is homeomorphic to Map∗
(

Sn,ΩkY
)

for
all k, n ∈ N0 where ΩkY is the k-fold loop space of Y .

Proof. By the exponential law [5, Theorem VII.2.5], we know that the
space Y X×I of maps from X × I to Y is homeomorphic to the space
(

Y I
)X

of maps from X into the space Y I of paths in Y via the map Ψ
that send f : X × T → Y to x 7→ f(x, ·).
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The space Map∗(ΣX,Y ) is in one-to-one correspondence to the subspace
A of Y X×I consisting of the maps that send X × ∂I ∪ {∗X} × I to the
base point ∗Y of Y , where ∗X is the base point of X. Because the set
X × ∂I ∪ {∗X} × I is compact, this correspondence is a homeomorphism
with respect to the compact-open topology.

The homeomorphism Ψ maps A exactly to the subspace of
(

Y I
)X

consisting of those maps that send the base point ∗X to the constant
path at ∗Y and for which the image of every x ∈ X is a path from ∗Y to
∗Y . In other words, the image is the space Map∗(X,ΩY ).

It remains to prove the addendum. This is an immediate consequence
of the fact that ΣSn = Sn+1.

Apart from this lemma, we also need Thom-Pontryagin theory.

Theorem 4.4.11 (See [5, Theorem II.16.1]). Let k, n ∈ N0, and de-
note by ∗n and ∗n+k the base point of Sn and Sn+k, respectively. Then
the following map from πn+k(S

n) into the cobordism classes of framed
k-dimensional closed submanifolds of Rn+k = Sn+k \ {∗n+k} is an iso-
morphism.

Given a class a ∈ πn+k(S
n), choose a representative f that is smooth

everywhere save maybe at f−1(∗n). Then the map sends the class a to
the cobordism class of the preimage of any regular value p of f except
∗n+k, where the framing is determined by the preimage of a small disk
around p.

This theorem will help us to show that a certain homotopy invariant of
ψkt takes pairwise different values for k ∈ Z.

Proof of Lemma 4.4.9. On the space D1 of diffeomorphisms of S2 × S2

that fix the diagonal ∆ we can define a map into the space Map∗
(

S2, S2
)

as follows. Denote by ∗ the base point of S2 and by i2 the inclusion of
{∗}×S2 into S2×S2. Then we send diffeomorphisms Ψ ∈ D1 to the map
pr2 ◦Ψ ◦ i2, where pr2 is the projection to the second factor of S2 × S2.

We claim that the image of ψt under this map is a free generator of
π1
(

Map∗
(

S2, S2
)

, id
)

.

By Lemma 4.1.7, the space Map∗
(

S2, S2
)

is homeomorphic to the
double loop space Ω2S2. Let us denote the image of the identity of S2

under the corresponding homeomorphism by fx : I
2 → S2. This is our

base point for Ω2S2. It is given by the composition of the identity on
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I2 and the projection to S2, which we interpret as I2 with collapsed
boundary. The image gt of the projection of ψt under the homeomorph-
ism can be described as follows. Let us again interpret S2 as I2 with
collapsed boundary. Then gt can be lifted to a map g̃t : I

2 → I2. After
further identifying I2 with the unit disc D2 ⊂ C via the homeomorphism
obtained by following rays from the centre of I2, the map g̃t is given by
multiplication with e−2πit, up to an inessential reparametrisation with
respect to t.

Let us deform Ω2S2 into the space of technical loops in the space of
technical loops in S2 via a path of reparametrisations

(x, y) 7→ ((1− t)x+ tµ(x) , (1− t) y + tµ(y))

where µ : I → I is a smooth monotonously increasing function that
vanishes close to 0, is constant of value 1 close to 1, and agrees with
the identity on [1/4, 3/4]. This path of reparametrisations induces a weak
deformation retraction, whose time-1-map D1 is a homotopy equivalence.
Let us denote by fµ+ the image of the base point f+ under D1.

Now denote by fµ− the inverse loop of fµ+, i.e. the map given by
fµ−(x, y) = fµ+(1− x, y). Then concatenation (in the first component)
with fµ− send fµ+ to the component of the constant path: a homotopy
from the identity to fµ+ ∗ fµ− is given by

Ht : I
2 → I2

(x, y) 7→
{

f+(µ(2µ(t)x) , y) , for x ∈ [0, 1/2]

f+(µ(2µ(t)(1− x)) , y) , for x ∈ [1/2, 1] .

Since concatenation with a loop is a homotopy equivalence in Ω2S2, this
shows that π1

(

Ω2S2, f+
)

and π1
(

Ω2S2, c
)

are isomorphic via the map Φ
that sends loops gt : I

2 → S2 to the loop

Φ(g)t(x, y) =



















H4t(x, y) , for t ∈ [0, 1/4]

gµ(2t−1/2)(2µ(x) , µ(y)) , for t ∈ [1/4, 3/4] and x ∈ [0, 1/2]

fµ+(2 (1− x) , y) , for t ∈ [1/4, 3/4] and x ∈ [1/2, 1]

H4(1−t)(x, y) , for t ∈ [3/4, 1] ,

where c is the constant loop at the base point ∗.



4.4. Connection to Symplectomorphisms of the Pages 133

By the long exact sequence of the path loop fibration, the fundamental
group of Ω2S2 with the base point c is isomorphic to π3

(

S2
) ∼= Z, which

is generated by the Hopf fibration h : S3 → S2. The identification is
given by interpreting S3 as I3 with collapsed boundary and loops in Ω2S2

as paths I → Ω2S2 that start and end in the base point, i.e. as maps
I3 → S2 that map the boundary to ∗.

Our goal is to show that the loop ψt is mapped to a map S3 → S2

homotopic to the Hopf fibration.
By construction, the map g : I3 → S2 corresponding to ψt is smooth

save maybe at g−1(∗). Moreover, the point −∗ is a regular value of
this map. Its preimage is a single unknot of Seifert framing 1: the
preimage consists of the two arcs γi : [1/4, 3/4] → I3, i = 1, 2, given by
γ1(t) = (1/4, 1/2, t) and γ2(t) = (3/4, 1/2, 3/4 − t) connected by one arc each
in the sets {t ∈ [0, 1/4]} and {t ∈ [3/4, 1]}. The framings of γ2 and of the
connecting arcs are trivial; the framing of γ1 is given by the path γ̃1
defined by

γ̃1 = γ1(t) + (ǫe2πiµ(t−
1/4), 0),

where we identified I2 with the unit disc D2 ⊂ C, and ǫ > 0 is a small
constant. This shows that the Seifert framing is 1.

By Theorem 4.4.11, it remains only to show that the Hopf fibration
corresponds to the same cobordism class of framed links in R3. To show
this, let us choose the base point ∗ of S2 to be the point (0, 0, 1) ∈ R3.

Interpreting S3 as the unit-sphere in C2, the Hopf fibration h is the
smooth map given by

h
(

√

1− r2eiϕ1 , reiϕ2

)

=
(

r
√

1− r2ei(ϕ1−ϕ2), 2r2 − 1
)

.

The preimage of the regular value (0, 0,−1) is the knot γ(ϕ) =
(

eiϕ, 0
)

.
A Seifert surface of this knot is given by

Σ =
{(

√

1− r2eiϕ,−r
)

| r ∈ [0, 1] , ϕ ∈ R

}

,

and a knot γ̃ determining the framing by γ̃(ϕ) =
(√

1− ǫ2eiϕ, ǫeiϕ
)

for a
small ǫ > 0.

This shows that γ has Seifert framing 1. Thus, Theorem 4.4.11 tells us
that the Hopf fibration and the map g corresponding to ψt are homotopic.
This proves that the image gt of ψt in Map∗

(

S2, S2
)

is a free generator of
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π1
(

Map∗
(

S2, S2
)

, id
)

. Consequently, the loop ψt in D1 generates a free
subgroup of π1(D1).



5. Closed Reeb Orbits

The aim of this chapter is to present a generalised version of our joint
results with Geiges and Zehmisch in [12]. In particular, we present the
proof that every contact manifold supported by an open book decomposi-
tion whose binding can be embedded into a subcritical Stein manifold
as a hypersurface of restricted contact type contains a contractible Reeb
orbit. In addition, we prove that the same conclusion can be made if the
binding is supported by an open book decomposition whose monodromy
is trivial. Moreover, we show that it is sufficient for these properties to
hold for the lowest level of a tower of open book decompositions supporting
the contact manifold. Finally, we also show that the strong Weinstein
conjecture holds on every contact manifold supported by an open book
decomposition whose binding is planar, i.e. whose binding is supported
by an open book decomposition whose pages are diffeomorphic to S2 with
a finite number of discs removed.

Our proof relies on the study of (pseudo)holomorphic curves on special
symplectic manifolds. Accordingly, in Section 5.1, we provide a brief
overview of the properties of (pseudo)holomorphic curves we need in the
remainder of the chapter. Then, in Section 5.2, we define a generalised
version of a cap, i.e. of a symplectic cobordism of a contact manifold to the
empty set. Moreover, we start the construction of our special symplectic
manifolds by presenting a construction by which we obtain generalised
caps for a contact manifold from generalised caps of the binding of an open
book decomposition supporting the contact structure. Following this,
we construct in Section 5.3 generalised caps for contact manifolds with
the properties mentioned above that contain ‘nice’ symplectic spheres;
these generalised caps are the main building blocks of the symplectic
manifolds on which we study holomorphic curves. Finally, in Section 5.4,
we use the existence of the ‘nice’ spheres to prove that a certain space of
holomorphic spheres is non-empty. This then leads to the existence of
nullhomologous Reeb links and contractible Reeb orbits on the contact
manifold we started with.

135
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5.1. Holomorphic Curves

In this section, we present the basic properties of holomorphic curves we
need in Section 5.3 and Section 5.4.

Definition 5.1.1. Let (W0, J0) and (W1, J1) be two almost complex
manifolds. We say that a smooth map u : W0 →W1 is holomorphic if
it satisfies

u∗ ◦ J0 = J1 ◦ u∗. (5.1)

If W0 is a Riemann surface, then we call u a holomorphic curve.
One can also define holomorphic curves of class Cl or W k,p with

l, k ∈ N and p > 2 by replacing the demand on u to be smooth by the
corresponding condition. In the second case this means that we demand
that all coordinate representations be in W k,p

loc .

Remark 5.1.2. Condition (5.1) is equivalent to ∂̄J0,J1(u) = 0. Here, the
1-form

∂̄J0,J1(u) :=
1

2
( du+ J ◦ du ◦ j) ∈ Ω0,1(W0, u

∗TW1)

with values in the vector bundle u∗TW1 is the complex antilinear part of
the differential du with respect to the almost complex structure J1.

Remark 5.1.3. If W0 is a Riemann surface, then J0 is automatically
integrable; cf. [31, Theorem 4.16]. In this case, we denote J0 by j and
∂̄j,J1 by ∂̄J .

Closed holomorphic curves, i.e. holomorphic curve u : Σ →W where Σ
is a closed Riemann surface, have a number of nice properties. One of
these is the fact that they are at least as regular as the almost complex
structure J on W .

Theorem 5.1.4 (Cf. [32, Theorem B.4.1, Remark B.4.3]). Let W be
a smooth (2n)-dimensional manifold endowed with an almost complex
structure J of class Cl, l ≥ 1, and Σ a closed Riemann surface. Then
every J-holomorphic curve u : Σ →W of class W 1,p with p > 2 is of class
W l+1,p. If l = ∞, then u is smooth.

In our setup in Section 5.4, the theorem above will ensure that all
holomorphic curves are smooth. Lower regularities will only appear
implicitly in a technical argument regarding transversality.
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Let the almost complex structure J be ω-compatible for some symplectic
form ω on W . Then closed holomorphic curves have the second useful
property that it is a topological property of the class they represent in
H2(W ) whether they are constant. To see this, we have to introduce the
energy of a holomorphic curve.

Definition 5.1.5. Let J be an ω-compatible almost complex structure
on a symplectic manifold (W,ω) and (Σ, j) a Riemann surface endowed
with a volume form dvol. Then the energy of a smooth map u : Σ →W
is defined as

E(u) = 1
2 ‖du‖

2
J,L2 = 1

2

∫

Σ

|du|2J dvol

where |du|J is the norm of the linear map du(z) : TzΣ → Tu(z)W defined
by

|du|J = sup
TzΣ\{0}

|ζ|−1
√

|du(ζ)|2 + |du(j(ζ))|2.

Here, the norms are induced by the Riemannian metric dvol(·, j·) on Σ
and the Riemannian metric ω(·, J ·) on W .

For holomorphic curves, we can compute this energy as follows.

Lemma 5.1.6. Let u : Σ →W be a holomorphic curve. Then

E(u) =

∫

Σ

u∗ω.

In particular, if Σ is closed, we have

E(u) = ω([u])

where [u] is the class in H2(W ) represented by u.

We immediately get our advertised property.

Corollary 5.1.7. Let Σ be a closed Riemann surface and J an ω-
compatible almost complex structure on (W,ω). Then a holomorphic
curve u : Σ →W is constant if and only if ω([u]) = 0.

A special situation in which we will use this is that the holomorphic
curve is contained in an exact subset of W .
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Corollary 5.1.8. If Σ is closed and there is a neighbourhood of the image
of u on which the symplectic form ω is exact, then u is constant.

Proof. By Stokes’s theorem we have

ω([u]) =

∫

Σ

u∗ω =

∫

Σ

u∗dβ =

∫

Σ

d(u∗β) =

∫

∂Σ

u∗β = 0.

The corollary above is especially interesting in conjunction with the
existence of a plurisubharmonic function, because closed holomorphic
curves are forced to be contained in a level set of such a function; this is
a consequence of the following lemma.

Lemma 5.1.9 (See [32, Lemma 9.2.9]). Let Σ be an open subset of
C, (W,ω) a symplectic manifold endowed with an ω-compatible almost
complex structure J and u : Σ → W a holomorphic curve of class C2.
Furthermore, let ψ : W → R be a smooth function whose restriction to a
neighbourhood of the image of u is plurisubharmonic.

Then ψ ◦ u is subharmonic.

The property advertised above is obtained as a corollary.

Corollary 5.1.10. Let Σ be a closed connected Riemann surface, (W,ω)
a symplectic manifold endowed with an ω-compatible almost complex
structure J and u : Σ →W a holomorphic curve of class C2. Furthermore,
let ψ : W → R be a plurisubharmonic function.

Then the image of u is contained in a level set of ψ.

Proof. By Lemma 5.1.9, the function ψ ◦ u is subharmonic. Because Σ is
compact, this function attains its maximum. Since Σ has no boundary,
this maximum must be attained in the interior. Thus, the maximum
principle for subharmonic functions (see [24, Lemma 2.1.1]) asserts that
ψ ◦ u is constant. Consequently, the image of u is contained in a level set
of ψ.

The last property of general holomorphic curves we will need is positivity
of intersection, i.e. the property that every intersection with a complex
hypersurface is positive, provided the holomorphic curve is not contained
in the hypersurface.
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Proposition 5.1.11 (Positivity of intersection; see [10, Proposition 7.1]).
Let u : (Σ, j) → (W,J) be a compact holomorphic curve and H ⊂ W a
compact complex hypersurface such that u−1(H)∩∂Σ = ∅ = u−1(∂H)∩Σ
and u(Σ) 6⊂ H. Then the subset u−1(H) is finite and the intersection
number δ(u,H) of u and H is given by

δ(u,H) =
∑

z∈u−1(H)

δ(u,H; z) .

At every intersection point z, u is tangent to H of order l ≥ 0 and the
local intersection number δ(u,H; z) satisfies

δ(u,H; z) = l + 1.

In particular, each local intersection number is positive.

For holomorphic analysis, the most interesting holomorphic curves are
the simple ones.

Definition 5.1.12. We say that a holomorphic curve u : Σ → W is
multiply-covered if there is a compact Riemann surface Σ′, a holo-
morphic curve u′ : Σ′ → W , and a holomorphic branched covering
φ : Σ → Σ′ with deg(φ) > 1 such that

u = u′ ◦ φ.
If u is not multiply-covered, we say that u is simple..

Simple holomorphic curves have the following useful property.

Proposition 5.1.13 (Cf. [32, Corollary 2.5.3]). Let Σi, i = 0, 1, be closed
Riemann surfaces and ui : Σ1 → (W,J) holomorphic curves where J is
at least of class C2 and u0 is simple. Then u0(Σ0) = u1(Σ1) if and only
if there is a holomorphic branched covering φ : Σ1 → Σ0 such that

u1 = u0 ◦ φ.

5.2. Generalised Caps

In this section, we introduce a generalised notion of a cap of a contact
manifold (M, ξ). Following this, we provide a construction by which we
obtain new generalised caps from generalised caps of the binding of an
open book decomposition supporting ξ.
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Definition 5.2.1. A generalised cap of a contact manifold (M, ξ) is
a symplectic manifold (C, ωC) whose boundary is concave and given
by (M, ξ) together with an ωC-compatible almost complex structure JC
and an exhausting plurisubharmonic function ψC that is constant in a
neighbourhood of the boundary and everywhere where the choice of JC
is generic.

Remark 5.2.2. By Corollary 5.1.10, the exhausting plurisubharmonic
function ψ ensures that closed holomorphic curves with respect to J can
only escape to infinity in whole.

Remark 5.2.3. Every cap is a generalised cap: since a cap is compact, we
may use any constant function as the plurisubharmonic function ψ.

Our main tool in the construction of new generalised caps is the
following theorem. It is a higher dimensional analogue of [15, Theorem
1.1], which was the crucial part of Eliashberg’s construction of symplectic
caps for weak symplectic fillings of 3-dimensional contact manifolds. Our
proof is close in spirit to that of Eliashberg.

In this theorem and the remainder of this section, (M, ξ = kerα) will
be a closed contact manifold and (B, π) an open book decomposition
of M to which α is adapted. We denote the page of the open book
decomposition by P and the restriction of α to TB by αB .

Theorem 5.2.4 (See [12, Theorem 4.1]). Let (C, ωC) be a symplectic
manifold whose boundary is concave and agrees with (B,αB).

Then there is a symplectic manifold (W,ω) with boundary M̄⊔N , where
(M,α) is a concave boundary component, and N a fibre bundle over S1

with fibre F = P ∪ C such that ω restricts to symplectic form on each
fibre. Moreover, the holonomy of the symplectic fibration N → S1 is the
identity on the subset C ⊂ F of the fibre.

In the theorem above, neither C nor W is assumed to be compact, and
in our applications in the following two sections they will not be.

Proof. Topologically, the definition of W is very simple. Let U0
∼= B ×

B̄1(0) be an adapted neighbourhood of the binding B and denote by
B ×D2 its subset B × B̄1/2(0). Then define W as

W = ([−2, 0]×M) ∪B×D2

(

C ×D2
)
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with smooth corners. Here, we think of B × D2 both as a subset of
M × {0} and as ∂C ×D2.

Symplectically, we want to think of [−2, 0]×M as a part of the sym-
plectisation of M . Accordingly, we equip it with the symplectic form
d(etα), where t is the coordinate on the interval. On C ×D2, we use the
symplectic form ω̃C = ωC + f ′(r) dr ∧ dϕ where (ρ, ϕ) are polar coordin-
ates on D2 and f : R+

0 → R+
0 is a smooth function with the following

properties:

(f-i) f(ρ) = ρ2 near ρ = 0,

(f-ii) f ′ > 0 for ρ > 0,

(f-iii) f(ρ) = ρ near ρ = 1.

The first property guarantees the smoothness of ω̃C at ρ = 0, the second
property ensures that ω̃C is symplectic, and the third property will be con-
venient in the construction of almost complex structures in Corollary 5.2.8
and Section 5.3.

For the gluing, we work in the neighbourhood

U = [−1, 0]×B ×D2 ⊂ [−2, 0]×M

with polar coordinates (r, ϕ) on D2 obtained by rescaling the radial
coordinate on the adapted neighbourhood U0. By Theorem 3.1.3 in
combination with Theorem 1.1.8 and Example 1.3.5, we may assume that
on B×D2 the form α is given by α = h1(r)αB +h2(r) dϕ for a Lutz pair
(h1, h2) of our choice, up to multiplication of αB with a positive constant.
For notational convenience, we choose a Lutz pair satisfying

(h-i) h1(r) = e−r
2

and h2(r) = r2 near r = 0,

(h-ii) h1(r) = e−r and h2(r) ≡ 1 near r = 1.

Because gluing along parts of the boundary and smoothing of corners
are not well defined in the presence of a symplectic form, we construct
a model that contains a symplectic copy of C ×D2 and of U , and such
that the identification of [−2, 0]×M and this model along U realises the
topological construction.
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By the assumption of the theorem, we may glue (−∞, 0]× B and C
along B = B × {0} to obtain a symplectic manifold. Our model is the
product of this manifold with D2:

(W0, ω0) =
((

(−∞, 0]×B, d
(

etαB
))

∪B (C, ωC)
)

×
(

D2, f ′(ρ) dρ ∧ dϕ
)

.

A schematic picture of this model is given in Figure 5.1. There, the left
part of the horizontal axis represents (−∞, 0]×B, the right part C. The
vertical axis represents the radial coordinate on D2, so that a ‘realistic’
picture is given by rotating the figure around the horizontal axis.

t = −1 t = 0

Γ

Φ(U)

B ×D2

C ×D2

ρ

Figure 5.1.: The model (W0, ω0) for the symplectic gluing.

We claim that we can find a symplectomorphic copy Φ(U) of U inside
this model as indicated in Figure 5.1. The dotted lines represent flow
lines of the Liouville vector field Φ∗∂s, and the hypersurface Γ in the
model is a strictly contactomorphic copy of

(

B ×D2, α
)

.

The trick is to think of a neighbourhood of B ×D2 in [−2, 0]×M not
as a neighbourhood to the left of the horizontal axis in the model, which
would cause the gluing to produce a corner, but as a neighbourhood under
the hypersurface Γ, which connects smoothly with the curve {ρ = 1} at
t = −1. We can then glue the part to the right of Γ in a smooth and
symplectic fashion to [−2, 0]×M .

Define a primitive β of ω0 on (−∞, 0]×B ×D2 by

β = etαB + f(ρ) dϕ.
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The corresponding Liouville vector field Y is given by

Y = ∂t +
f(ρ)

f ′(ρ)
∂ρ.

Now define

Φ: U = [−1, 0]×B ×D2 → (−∞, 0]×B ×D2 ⊂W0

by
Φ(s, b, r, ϕ) =

(

s+ ln(h1(r)) , b, f
−1(esh2(r)) , ϕ

)

.

Lemma 5.2.5. The map Φ is a symplectic embedding with Φ∗β = esα.

Proof. Near r = 0, we have f−1(esh1(r)) = es/2r by (f-i) and (h-i), which
shows that Φ is smooth.

In order to see that Φ is injective, assume that we have

Φ (s1, b, r1, ϕ) = Φ (s2, b, r2, ϕ) .

By looking at the first and third component of the image, we see that

es1h1(r1) = es2h1(r2) and es1h2(r1) = es2h2(r2) ,

which implies that
h2
h1

(r1) =
h2
h1

(r2) .

By the contact condition we know that (h1/h2)
′
= (h′

2h1−h′
1h2)/h2

1 < 0.
Consequently, we have r1 = r2 and, hence, also s1 = s2.

To see that Φ is symplectic, we compute

Φ∗β = es+ln(h1(r))αB + f
(

f−1(esh2(r))
)

dϕ

= es(h1(r)αB + h2(r) dϕ)

= esα.

Accordingly, Φ is symplectic and, thus, an immersion.

Because Φ∗β = esα, we know that the hypersurface Γ in the model,
which is given by

Γ = Φ
(

{0} ×B ×D2
)

,

is transverse to the Liouville vector field Φ∗∂s = Y , and that ιY ω0 = β|TΓ

pulls back to α under the embedding Φ.
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Lemma 5.2.6. The hypersurface Γ ⊂ (−∞, 0]×B×D2 can be described
as a graph

Γ =
(

(t, b, ρ, ϕ) ∈ (−∞, 0]×B ×D2 | t ∈ [−1, 0] , ρ = g(t)
)

with
g(t) = f−1

(

h2
(

h−1
1

(

et
)))

.

Proof. The hypersurface Γ is given by the points (t, b, ρ, ϕ) with

t = ln(h1(r)) and ρ = f−1(h2(r)) .

This clearly translates into the form in the lemma.

Note that g′ ≤ 0. Close to t = 0, we have g(t) =
√
t by (f-i) and (h-i).

This shows that Γ looks like a ‘paraboloid’ near t = 0. In particular, this
verifies again that Γ is smooth.

Near t = −1, we have g ≡ 1 by (f-iii) and (h-ii). This means that Γ
coincides with (−∞, 0]×B × ∂D close to t = −1. Therefore, the part of
W0 to the right of Γ can be glued to [−2, 0] ×M along {0} × B × D2,
resulting in a symplectic manifold (W,ω). Its boundary is the disjoint
union of {−2} ×M and

N =
(

M \
(

B × Int
(

D2
)))

∪B×S1

(

(([−1, 0]×B) ∪ C)× S1
)

.

The manifold N fibres over S1 in an obvious way, with fibres given by

F =
(

P \
(

B × Int
(

D2
)))

∪ ([−1, 0]×B) ∪ C,

which topologically is just P ∪ C. The restriction of ω to F is given by
dα on the first part, by d(etαB) on the second, and by ωC on the third.
So the fibre is indeed symplectic. Finally, the holonomy of the symplectic
fibration

(

C × S1, ωC
)

→ S1

is obviously the identity. This completed the proof of Theorem 5.2.4.

Remark 5.2.7. After I presented this result in our Arbeitsgemeinschaft,
an alternative proof was found by Klukas [26].

If the symplectic manifold C in the theorem above is a generalised
cap of the binding, then we can complete the manifold W to obtain a
generalised cap of M .
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Corollary 5.2.8. Let (CB , ωB) be a generalised cap of (B,αB). Then
there is a generalised cap (C, ωC) of (M,α) into which (CB ,K ωB) embeds
symplectically for some positive constant K.

Proof. We start with the symplectic manifold (W,ω) from Theorem 5.2.4
constructed using (CB , ωB). To this, we attach the half-symplectisation
of the boundary component N given by

(endN , ωN ) =
(

R+
0 ×N,ω|N + ds ∧ dϕ

)

.

Here, s is the coordinate on R+
0 and dϕ the angular differential associated

to the symplectic fibration onN . By construction, the symplectic fibration
onN induces the boundary orientation with respect toW and the opposite
one with respect to endN . Thus, Corollary 3.3.7 tells us that we can
indeed glue endN to W along N . The result is our new generalised cap
(C, ωC).

It remains to find an almost complex structure JC and an exhausting
plurisubharmonic function ψC on C. Let (JB , ψB) be the corresponding
data for CB, and write CB∞ for the part of CB where JB is not generic.
Then we define JC as follows:

(JC-1) On CB∞×D2, we choose JC to be a split almost complex structure
JB ⊕ j where j(∂ρ) = ∂ϕ for ρ close to 1. (This is justified by
(f-iii) in the proof of Theorem 5.2.4.)

(JC-2) On each fibre F of the symplectic fibration on N , we choose JC
to restrict to an ωC |TF -compatible almost complex structure JF
that agrees with JB on CB∞ ⊂ F and is generic otherwise. (Here,
we use that the holonomy is trivial on CB .)

(JC-3) On endN , we demand that JC(∂s) = X, where X is the unique
vector field in kerω|TN satisfying ιXdϕ ≡ 1.

(JC-4) On the remainder of C, we choose JC to be generic.

For later reference, let us denote by C∞ the set endN ∪
(

CB ×D2
)

,
where we made a non-generic choice of JC . Moreover, let us write CB∞×C

for the set
(

CB∞ ×D2
)

∪
(

R+
0 × CB∞ × S1

)

.
Now, we define a function ψ̄B on CB ×D2 by ψ̄B(x, ρ, ϕ) = ψB(x) and

extend it to all of C by the constant value of ψB close to the boundary
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of CB . This function is plurisubharmonic, and ∂s and X are contained in
the kernel of the corresponding symmetric bilinear form gψ̄B

.

Now define a function ψ : endN → R+
0 by

ψ(s, x) = s3e−
1/s2 .

Its exterior derivative is given by

dψ =
(

3s2e−
1/s2 + 2e−

1/s2
)

ds

and its second derivative with respect to s by

∂2sψ =
(

6s+ 6
s +

4
s3

)

e−
1/s2 .

We can smoothly extended ψ to all of C as the constant function with
value 0. Moreover, we have

−d(dψ ◦ JC) = −d((∂sψ) ds ◦ JC)
= d((∂sψ) dϕ)

=
(

∂2sψ
)

ds ∧ dϕ.

Thus, ψ is plurisubharmonic.
We define ψC as the sum of ψ and ψ̄B. Because ψ and ψ̄B grow

in complementary directions, ψC is plurisubharmonic. Moreover, it is
exhausting since its sublevel sets are bounded in the direction of s because
of ψ and in the fibres because of ψ̄B . Finally, at the boundary of C, both
ψ and ψ̄B are constant and, thus, ψC , as well. Since ωC = d(etα) close to
{−2}×M , this shows that

(

C, e2ωC
)

is a generalised cap for (M,α).

The construction above has the following useful property, which will
become important in the next two sections.

Corollary 5.2.9. Let (CB , ωB) be a generalised cap of (B,αB) and HB a
complex symplectic hypersurface in CB disjoint from the boundary. Then
the generalised cap (C, ωC) of (M,α) from Corollary 5.2.8 contains a
complex symplectic hypersurface H disjoint from the boundary.

Moreover, if ωB |CB\HB
has a primitive that agrees with αB on B, then

there is a primitive of ωC on C \H that agrees with α on M .
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Proof. Because HB is a symplectic hypersurface of CB , the set

H = HB × C = HB ×D2 ∪ R+
0 ×HB × S1

is a symplectic hypersurface of C. Moreover, by the construction of the
almost complex structure JC , the hypersurface H is complex because HB

is complex. Furthermore, H is obviously disjoint from the boundary of
C.

Now, let ωB |CB\HB
have a primitive that agrees with αB on B. On

the complement of H in C, we construct a Liouville vector field of ωC as
follows.

Inside the model (W0, ω0) from Theorem 5.2.4, we extend the Liouville
vector field Y = ∂t+f(ρ)/f ′(ρ)∂ρ on (−∞, 0]×B×D2 over (CB \HB)×D2

by the Liouville vector field YB + f(ρ)/f ′(ρ)∂ρ, where YB is the Liouville
vector field to the primitive of ωCB

on CB \ HB. Since the primitive
agrees with αB on the boundary, the two Liouville vector fields connect
smoothly. Let us denote the projection of the extended Liouville vector
field Y to the fibres by YF .

By the arguments in the proof of Theorem 5.2.4, Y agrees with the
Liouville vector field ∂t̃ on [−2, 0]×M under the identification via the
symplectic embedding Φ. Consequently, we can extend Y over [−2, 0]×M
by ∂t̃. Note that this guarantees the correct primitive on {−2} ×M .

It remains to show that the Liouville vector Y can be extended to
endN \H.

In order to do this, let us take a look at the coordinate s used in the
gluing of the two parts W and endN of C. It is an extension of the
coordinate s on endN to a neighbourhood of the positive boundary of W
defined using the flow of the vector field ∂s with ι∂sω = dϕ. This shows
that, on a neighbourhood of ((−∞, 0]×B ∪ (CB \HB))× S1 in W0, the
coordinate s is given by s = ρ − 1. Accordingly, we can extend Y by
YW = YF + (s+ 1) ∂s to the subset

(

R+
0 × (N \M)

)

\H of endN .
To further extend Y over the remaining part of endN \H, we extend

the symplectic embedding Φ from the proof of Theorem 5.2.4 to a sym-
plectomorphism of [−ǫ, 0] × M with a one-sided neighbourhood V of
M =

(

M \
(

B ×D2
))

∪ Γ in

W1 =
((

M \
(

B × Int
(

D2
)))

×D2
)

∪
(

W0 \
(

(−∞,−1)×B ×D2
))

for some ǫ > 0.
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As a first step, we identify M \
(

B × Int
(

D2
))

with the mapping torus

P̃ (Ψ) using the flow of a scaled version of the Reeb vector field to α, as
we have done in the proof of Theorem 3.1.22; here, Ψ is the time-2π-flow
of the scaled Reeb vector field, and P̃ = P \

(

B × Int
(

D2
))

. Then the
contact form α decomposes as

α = β + dh = β + σh + hϕ dϕ,

where β is a Liouville form on P̃ and h a function on [0, 2π] × P such
that hϕ = ι∂ϕdh > 0. Furthermore, the function hϕ agrees with h2 inside
B × D2, and σh = dh − hϕ dϕ is a form on [0, 2π] × P with the three
properties that it vanishes in a neighbourhood of [0, 2π]× (P ∩ (B ×D2)),
that its restrictions to the pages P̃ϕ = {ϕ} × P̃ are exact forms, and that

β + σh descends to a smooth form on the mapping torus P̃ (Ψ).
Now denote by Yϕ the Liouville vector field on P̃ϕ to the primitive

β + σh|P̃ϕ
of dβ, and define a vector field Ỹ on M \ (B × Int(D2)) by

Ỹ |P̃ϕ
= Yϕ. This vector field is smooth, because β + σh is a smooth form

on the mapping torus P̃ (Ψ). Extend it to P̃ (Ψ) ∪ ([−1, 0]×B) by the
Liouville vector field ∂t to etαB, and denote the flow of the resulting
vector field by Ψ̃t.

Using this flow, we define the map

Φ̃ : [−ǫ, 0]× P̃ (Ψ) → [−ǭ, 0]×
(

P̃ (Ψ) ∪
(

[−1, 0]×B × S1
)

)

(

t̃, p, ϕ
)

7→
(

(

et̃ − 1
)

hϕ
(

Ψ̃t̃(p)
)

, Ψ̃t̃(p) , ϕ
)

,

where ǫ and ǭ are small positive numbers.
Note that we can use Φ̃ to extend Φ over [−ǫ, 0]× P̃ (Ψ): by (h-ii) in

the proof of Theorem 5.2.4, close to the boundary of B ×D2, the map Φ
is given by Φ

(

t̃, b, r, ϕ
)

=
(

t̃− r, b, et̃, ϕ
)

for sufficiently large t̃ ≤ 0. This

agrees with Φ̃ because, near the boundary of B ×D2, the coordinate s is
given by s = ρ− 1, we have hϕ = h2 ≡ 1, and the Liouville vector fields
on the pages to the Liouville form β + σh = h1(r)αB = e−rαB are given
by −∂r, which leads to the identification of t with −r in the gluing of P̃
with [−1, 0]×B.

Now, let Φ̃
(

t̃, p, ϕ
)

= Φ̃
(

t̃′, p′, ϕ′). Then we know that Ψ̃t̃(p) = Ψ̃t̃′(p
′)

and that ϕ′ = ϕ. Looking at the first component of the image, this implies
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that t̃ = t̃′. Consequently, we also have p = p′, because the flow of a
vector field for a fixed time is injective. This proves that Φ̃ is one-to-one.

Next, we show that Φ̃ pulls back the primitive β + dh + s dϕ of the
symplectic form dβ + ds∧ dϕ on the neighbourhood used in the gluing of
W and endN to the Liouville form et̃α on [−ǫ, 0]×M . Indeed, since Ỹ is
a Liouville vector field on the fibres to the Liouville form β + σh, we have

Φ̃∗(β + dh+ s dϕ) = Φ̃∗(β + σh + (s+ hϕ) dϕ)

= Ψ̃∗
t̃ (β + σh) +

(

hϕ +
(

et̃ − 1
)

hϕ

)

dϕ

= et̃(β + σh + hϕ dϕ)

= et̃α.

This shows that Φ̃ is symplectic and, hence, an embedding. Moreover,
we see that the differential of Φ̃ sends ∂t̃ to the Liouville vector field
YP = Ỹ + (s+ hϕ) ∂s to the Liouville form β + dh+ s dϕ.

Since hϕ = h2 ≡ 1 close to the boundary of B ×D2 by (h-ii) in the
proof of Theorem 5.2.4, this shows that we can extend Y over endN \H by
the vector field we obtain by gluing YP and YW along R+

0 ×{−1}×B×S1.
Accordingly, there is a global primitive of e2ωC on C \H that restricts
to α on the boundary {−2} ×M .

A second useful property of the construction above, which will also
play a role in Section 5.4, is the following.

Lemma 5.2.10. Every closed holomorphic curve in the generalised cap
(C, ωC) from Corollary 5.2.8 is either disjoint from endN or contained in
one of the fibres F .

Proof. Let Σ be a closed Riemann surface, u : Σ → C a holomorphic
curve, and F one of the fibres in endN . We claim that the intersection
number of u and F is 0.

Let us first explain why this intersection number is well defined although
F and C might not be compact. Since Σ is compact, both the function
ψ ◦ u and the function ψ̄B ◦ u are bounded from above, where ψ and ψ̄B
are the plurisubharmonic functions from the proof of Corollary 5.2.8; ψ
increases in the direction of the coordinate s in the half-symplectisation
endN and is constant on the fibres; ψ̄B increases inside the fibres and is
constant in the direction of the coordinate s.
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Let cψ > ψ(F ) and cψ̄ be regular values of ψ and ψ̄B, respectively,
such that the image of u is contained in the interior of the intersection
Ĉ of the sublevel sets ψ−1((−∞, cψ]) and ψ̄−1

B

(

(−∞, cψ̄]
)

; the regular
values exist by Sard’s theorem, see [5, Theorem 6.2]. After smoothing
corners, Ĉ is a smooth compact manifold with boundary. Moreover, the
intersection F̂ of F with Ĉ is a smooth compact submanifold of Ĉ whose
boundary is contained in ∂Ĉ. This implies that F̂ and u have a well-
defined intersection number in Ĉ. Since this intersection number does not
depend on the choice of the regular values cψ and cψ̄ or the precise way
how we smoothen corners, we obtain a well-defined intersection number
of F and u.

Now, we show that this intersection number is 0. If F does not intersect
the image of u, then this is also true for F̂ . Consequently, the intersection
number is 0. If F does intersect the image of u, we can make it disjoint
from this image by pushing it sufficiently far along the s-direction. This
translates into the same procedure for F̂ , proving our claim that F and
u always have intersection number 0.

Suppose that u intersects endN . Then it also intersects one of the fibres.
These are complex hypersurfaces by the construction of the almost com-
plex structure JC on C. So, positivity of intersection (Proposition 5.1.11)
tells us that the image of u is contained in a fibre since the intersection
number is 0.

To distinguish generalised caps constructed via Corollary 5.2.8 from
general generalised caps, we introduce the following notion.

Definition 5.2.11. We say that a generalised cap if of order k ∈ N0

if it is constructed by k times first applying Corollary 5.2.8 and then
attaching a Liouville cobordism. We call the embedded generalised caps
obtained by applying the construction above l ∈ {1, . . . , k} times the
levels of the generalised cap.

Remark 5.2.12. A generalised cap of order k > 0 is also of order k − 1.

We introduce the following corresponding concept for open book de-
compositions.

Definition 5.2.13. We say that (Bi, πi), i = 1, . . . , k, is a tower of
open book decompositions of height k of a closed manifold M if
(Bk, πk) is an open book decomposition of M and for each i > 1 there is
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a cobordism Wi from Bi to a manifold with the open book decomposition
(Bi−1, πi−1). The lowest level of the tower is B1, if k > 0, and M if
k = 0.

A contact structure ξ on M is said to be supported by a tower of open
book decompositions of height k if (Bk, πk) supports ξ and the cobordisms
Wi are Liouville cobordisms whose convex boundary is supported by
(Bi−1, πi−1).

Remark 5.2.14. In principle, we could allow the cobordisms Wi to be gen-
eral symplectic cobordisms. However, for our applications in Section 5.4,
the definition above is more convenient.

Using the new language above, we can combine Corollary 5.2.8 and
Corollary 5.2.9 as follows.

Corollary 5.2.15. Let (M, ξ) be supported by a tower of open book
decompositions of height k ∈ N0 such that the lowest level has a generalised
cap (C0, ω0). Then (M, ξ) has a generalised cap (C, ωC) of order k into
which (C0,K ω0) embeds symplectically for some positive constant K.

Moreover, if the generalised cap of the lowest level contains a complex
symplectic hypersurface H0 disjoint from the boundary, then there is a
corresponding complex symplectic hypersurface H in C. Furthermore, if
there is a primitive of ω0 on C0 \H0 that agrees on the boundary with the
contact form on the lowest level, then ωC |C\H has a primitive that agrees
with a contact form defining ξ on the boundary, which can be chosen
freely.

5.3. Symplectic Spheres in Generalised Caps

In this section, we construct generalised caps for contact manifolds with
one of three special properties. These generalised caps contain both a
complex hypersurface H, whose complement is exact in two of the cases,
and a region U∞ fibred by holomorphic spheres. This is the cornerstone
of our proofs in the next section.

Our main result reads as follows.

Theorem 5.3.1. Let (M, ξ = kerα) be a closed contact manifold that
is supported by a tower of open book decompositions of height k ∈ N0

such that there is a Liouville cobordism from the lowest level to a contact
manifold (L, αL) with one of the following three properties:
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(L-h) L is at least 3-dimensional and embeds into a subcritical Stein
manifold as a hypersurface of restricted contact type.

(L-m) L is supported by an open book decomposition whose monodromy
is trivial.

(L-p) L is planar.

Then M has a generalised cap (C, ωC) of order k that contains a subset
U∞ fibred by holomorphic symplectic spheres. Moreover, this generalised
cap contains a complex hypersurface H, and in the cases (L-h) and (L-m),
there is a primitive βC of ωC that agrees with α on TM on the complement
of H.

Remark 5.3.2. In the case (L-m), we refer to the monodromy induced
by a vector field X obtained from a scaled Reeb vector field as in the
proof of Theorem 3.1.22. This is equivalent to saying that (L, αB) is the
contact open bookM(P, id, α|TP ) obtained from the symplectic open book
(P, id, α|TP ) via the generalised Thurston-Winkelnkemper construction.

In regard of Corollary 5.2.15, it is sufficient to prove Theorem 5.3.1 for
the case k = 0. We start with the case (L-h); the construction we use is
basically taken from [18].

Lemma 5.3.3. Let (M,α) be an at least 3-dimensional closed contact
manifold that embeds into a subcritical Stein manifold (W,JW ) as a
hypersurface of restricted contact type. Then M has a generalised cap
(Ch, ωh) containing a subset Uh∞ fibred by holomorphic symplectic spheres.
Moreover, this generalised cap contains a complex hypersurface Hh on
whose complement there is a primitive βh of ωh agreeing with α on TM .

Proof. We construct the generalised cap separately for each component
of M . Hence, we may as well assume that M is connected.

Since (W,JW ) is subcritical, Theorem 1.3.13 tells us, in combination
with Theorem 1.3.16, that (W,JW ) is symplectomorphic to a split Stein
manifold. Consequently, we may assume that M embeds into a complex
manifold (V × C, JV ⊕ i) where (V, JV ) is Stein. On this manifold, we
have the strictly plurisubharmonic function ψ = ψV + |z|2/4 where ψV is
the strictly plurisubharmonic function on V .

Let us take a closer look at our hypersurface M . Following the proof
of [18, Corollary 4.2], we see that M separates V × C into a bounded
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and an unbounded component because V × C has trivial homology in
codimension 1. Moreover, since M is a hypersurface of restricted contact
type, there is a global Liouville vector field Y on V × C transverse to M .
We claim that it points into the closure C0 of the unbounded component
of (V × C) \M .

Take a regular value c of ψ such that M is contained in the interior
of the sublevel set ψ−1((−∞, c]), and denote by Ah the intersection of
C0 with ψ−1((−∞, c]). Now, assume that Y pointed outwards along the
boundary of C0. Then Ah would be an exact filling of the disjoint union
of the level set Sh = ψ−1(c) of the plurisubharmonic function ψ on V ×C

and the non-empty contact manifold M . However, this is impossible by
[18, Theorem 3.4]. Consequently, Y points into C0 and Ah is an exact
symplectic cobordism from M to Sh.

Now choose a constant R > 0 such that Sh is contained in V ×BR(0)
and, hence, also Ah. Consequently, Ah is contained in the compactified
manifold V × CP 1, where CP 1 is endowed with the Fubini-Study form
of total volume πR2. We choose our generalised cap Ch to be given by
the closure of the component of

(

V × CP 1
)

\M containing {∞}. This
manifold can be decomposed into Ah and the closure of the component
of
(

V × CP 1
)

\ Sh containing {∞}, which we call Ch∞.
Note that, after removing the complex hypersurface Hh = V × {∞}

from Ch, the Liouville vector field Y is globally defined. Thus, there is a
primitive of the symplectic form on the complement of Hh that agrees
with α on TM .

On Ch∞, we choose the almost complex structure Jh on Ch to agree
with the product structure JV ⊕ i and, on the complement, we choose it
generically. With this choice, Hh is a complex hypersurface. Moreover,
the set Uh∞ = ψ−1

V ([c,∞)), is fibred by the holomorphic symplectic spheres
{p} × CP 1.

It remains to show that there is an exhausting plurisubharmonic func-
tion ψh on Ch that is constant in a neighbourhood of M . The function ψV
is exhausting and plurisubharmonic, but not constant in a neighbourhood
of M . So, our goal is to cut off ψV in a suitable way.

By possible adding a constant to ψV , we may assume that c = 0. Let
f : R → R+

0 be defined by

f(t) = t3e−
1/t2

on R+ and by 0, otherwise.
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We define ψh to be given by f ◦ψV . On the complement of ψ−1
V ([c,∞)),

this function vanishes identically. Consequently, we only have to show that
it is plurisubharmonic on ψ−1

V ([c,∞)). From the proof of Corollary 5.2.8,
we already know that the first two derivatives of f are non-negative.
(There, f was denoted by ψ.) This implies that

−d(dψh ◦ Jh)(v, Jhv) = −d((f ′ ◦ ψV ) dψV ◦ Jh)(v, Jhv)
= − (f ′ ◦ ψV ) d(dψV ◦ Jh)(v, Jhv)

− (f ′′ ◦ ψV ) (dψV ∧ (dψV ◦ Jh))(v, Jhv)
= − (f ′ ◦ ψV ) d(dψV ◦ Jh)(v, Jhv)

+ (f ′′ ◦ ψV )
(

dψV (v)
2
+ dψV (Jhv)

2
)

≥ 0.

Thus, ψh is plurisubharmonic. Accordingly, Ch is a generalised cap with
the desired properties.

Next, we deal with the case (L-m).

Lemma 5.3.4. Let (M,α) be a contact manifold supported by an open
book decomposition (B, π) with trivial monodromy. Then M has a gen-
eralised cap (Cm, ωm) that contains a subset Um∞ fibred by holomorphic
symplectic spheres. Moreover, this generalised cap contains a complex
hypersurface Hm on whose complement there is a primitive βm of ωm
that agrees with α on TM .

Proof. A generalised cap (CB , ωB) of the binding B is given by the half
symplectisation

(

R+
0 ×B, d(etαB)

)

where αB = α|TB . The almost com-
plex structure JB on CB is given by any almost complex structure that
sends ∂t to the Reeb vector field RαB

to αB , leaves ξB = kerαB invariant,
and whose restriction to ξB is dαB-compatible; the corresponding pluri-
subharmonic function ψB is given by f(et − 1 + ǫ) where f is the function
from the end of the proof of Lemma 5.3.3 and ǫ a positive constant. This
function is plurisubharmonic because et is strictly plurisubharmonic:

−d
(

d
(

et
)

◦ JB
)

= −d
(

et dt ◦ JB
)

= d
(

etαB
)

= ωB .

Now, we use Theorem 5.2.4 with this generalised cap to obtain a
symplectic manifold (W,ω) whose boundary is the disjoint union of M and
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the trivial symplectic fibration (N,ω|TN ) =
(

P × S1, dα|TP
)

, where P is
the page of the open book decomposition (B, π). Instead of proceeding as
in Corollary 5.2.8 and gluing in the half-symplectisation endN , we use the
triviality of the symplectic fibration and glue in

(

CP 1 \D2
)

×N . Here,
we interpret CP 1 as the compactification of BR(0) ⊂ C for some R > 1
with the standard volume form; it is endowed with the Fubini-Study form
of total volume πR2. A schematic picture of the resulting symplectic
manifold (Cm, ωm) is provided in Figure 5.2 below.

CB ×D2

P ×
(

CP 1 \D2
)

CP 1

Hm

Figure 5.2.: The generalised cap (Cm, ωm).

We choose the almost complex structure Jm on Cm as follows:

(Jm-1) On CB×D2, we choose Jm to be a split almost complex structure
JB ⊕ j where j(∂ρ) = ∂ϕ for ρ close to 1. (This is justified by
(f-iii) in the proof of Theorem 5.2.4.)

(Jm-2) On P ×
(

CP 1 \D2
)

, we choose Jm to be a split almost complex
structure JP ⊕ i where i is the standard complex structure on
CP 1 and JP an almost complex structure that agrees with JB
on CB ⊂ F and is generic otherwise.
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(Jm-3) On the remainder of Cm, we choose Jm to be generic.

With this choice, the set

Um∞ = CB × CP 1 =
(

CB ×D2
)

∪
(

CB ×
(

CP 1 \D2
))

is fibred by the holomorphic symplectic spheres {p} × CP 1 with p ∈ CB .
Moreover, the hypersurface Hm = P ×{∞} is a complex hypersurface on
whose complement there is a primitive of ωm that agrees with e−2α on
T ({−2} ×M) by the same arguments as in the proof of Corollary 5.2.9.
In addition, the function ψm given by f(et − 1) is an exhausting pluri-
subharmonic function after extending it to C \ Um∞ by 0. Consequently,
(

Cm, e
2ωm

)

is a generalised cap with the desired properties.

For later reference, let us denote by Cm∞ the set Um∞∪
(

P ×
(

CP 1 \D2
))

,
where we made a non-generic choice of the almost complex structure
Jm.

It remains to cover the case (L-p). In principle, we could try to use the
cap for planar contact manifolds constructed by Etnyre [16]. However, it
turns out to be more convenient to alter his construction.

Lemma 5.3.5. Let (M,α) be a contact manifold supported by an open
book decomposition (B, π) with planar pages P = S2 \

(
⋃n
l=1D

2
l

)

. Then
M has a generalised cap (Cp, ωp) that contains a subset Up∞ fibred by
holomorphic symplectic spheres. Moreover, this cap contains a complex
hypersurface Hp.

Proof. Since S2 and CP 1 are diffeomorphic via an orientation preserving
diffeomorphism, we can identify the pages with CP 1 \

(
⋃n
l=1D

2
l

)

, where
∞ ∈ D2

1.
Because the restriction of dα to the pages is a volume form, it differs

only by multiplication with a positive function from the restriction of
the Fubini-Study form ωFS on CP 1. Consequently, there is a positive
function λ on CP 1 such that λωFS extends dα. This implies that a cap
(CB , ωB) of the binding B is given by

(
⋃n
l=1D

2
l , λωFS

)

.
To this cap, we apply Corollary 5.2.8. A schematic picture of the

resulting generalised cap (Cp, ωp) is given in Figure 5.3.
We claim that there is a symplectomorphism Φ from the half-symplecti-

sation endN of the symplectic fibration N with fibres CP 1 to the product
symplectic manifold

(

R+
0 × CP 1 × S1, λ ωFS ⊕ ds ∧ dϕ

)

that leaves R+
0 ×
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endN ∼=
R+

0 × CP 1 × S1

D2
1 ×D2 D2

n ×D2

CP 1Hp

Figure 5.3.: The generalised cap (Cp, ωp).

D2
1 × S1 pointwise fixed. By the proof of Proposition 3.3.6, it is sufficient

to show that the holonomy of the symplectic fibration on N is isotopic to
the identity through symplectomorphisms that fix D2

1 pointwise.
We know, by construction, that the holonomy Ψ fixes a neighbourhood

of D2
1. Accordingly, it is contained in the space S of symplectomorphisms

of
(

D = CP 1 \D2
1, λωFS

)

which agree with the identity a neighbourhood
of the boundary. By Theorem 3.2.13, there is a long exact homotopy
sequence

· · · // πk(S) i // πk(D) // πk
(

ΩES
c (D)

)

// · · ·.

Here, D is the space of diffeomorphisms of D that agree with the iden-
tity in a neighbourhood of the boundary, and ΩES

c (D) is the space of
exact symplectic forms that agree with λωFS on a neighbourhood of the
boundary.

Since D is contractible, all symplectic forms on D are exact. Con-
sequently, the space ΩES

c (D) consists of the products of λωFS with pos-
itive functions with compact support in the interior of D. This shows
that ΩES

c (D) is contractible and, hence, the inclusion i a weak homotopy
equivalence.

By [36, Theorem B], the space D is contractible. Thus, S is weakly
contractible; in particular, it is connected. This proves the existence of
our desired symplectomorphism Φ.
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That endN is symplectomorphic to R+
0 ×CP 1×S1 via a diffeomorphism

that fixes R+
0 ×D2

1 × S1 allows us to define the almost complex structure
Jp on Cp as follows:

(Jp-1) On endN , we choose Jp to be given by the split complex structure
i ⊕ j where i is the standard complex structure on CP 1 and j
the complex structure on R0 × S1 satisfying j(∂s) = ∂ϕ.

(Jp-2) On D2
1 × Int

(

D2
)

, we choose Jm to be a split almost complex
structure JD ⊕ j where j in a complex structure on D2 that
satisfies j(∂ρ) = ∂ϕ for ρ near 1. (This is justified by (f-iii) in the
proof of Theorem 5.2.4 and the fact that the symplectomorphism
Φ fixes R+

0 ×D2
1 × S1 pointwise.)

(Jp-3) On the remainder of Cp, we choose Jp to be generic.

With this choice, the set Up∞ = endN is fibred by the holomorphic sym-
plectic spheres {s} × CP 1 × {ϕ}. Moreover, the symplectic hypersurface

Hp = {∞} × C =
(

{∞} ×D2
)

∪
(

R+
0 × {∞} × S1

)

,

is complex. Unfortunately, the complement of H is only exact if n = 1,
i.e. if we only glued in one disc.

Finally, the function ψp on endN ∼= R+
0 × CP 1 × S1 given by f(s),

with the function f from the end of the proof of Lemma 5.3.3, is an
exhausting plurisubharmonic function that extends to the rest of Cp by 0.
Consequently, (Cp, ωp) is a generalised cap with the desired properties.

For later reference, let us denote by Cp∞ the set Up∞∪
(

D2
1 ×D2

)

, where
we made a non-generic choice of the almost complex structure Jp.

The three preceding lemmata, together with Corollary 5.2.15, prove
Theorem 5.3.1.

In the remainder of this section, we examine the holomorphic spheres
in the generalised caps we have constructed. The lemma below is an
extension of parts of [18, Lemma 5.2] to our additional two setups.

Lemma 5.3.6. Let u : CP 1 → Ci∞, with i = h,m, p, be a non-constant
holomorphic sphere. Then the image of u is contained in U i∞ and u is
a holomorphic branched covering of one of the spheres by which U i∞ is
fibred.
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Proof. We claim that in all three cases the set Ci∞ \ U i∞ is exact.

In the case that i = h, we know that Ch∞ \ Uh∞ is a subset of V × CP 1

endowed with the product symplectic structure and the product complex
structure; the symplectic structure on V is the exact symplectic form
ωψV

induced by the strictly plurisubharmonic function ψV and that on
CP 1 is given by a scaled Fubini-Study form.

On Ch∞ \ Uh∞, we have ψV < c, where c is the regular value of the
plurisubharmonic function ψ = ψV + |z|2/4 on V ×C such that the level set
ψ−1(c) is the boundary of Ch∞. Thus, the set V × {0} does not intersect
Ch∞ \ Uh∞ ⊂ V × CP 1. Since CP 1 \ {0} is contractible, this shows that
Ch∞ \ Uh∞ ⊂ V × CP 1 is exact.

In the case that i = m, the set Cm∞ \ Um∞ is given by (P \ CB) ×
(

CP 1 \D2
)

and, hence, exact.

In the case that i = p, the set Cp∞ \ Up∞ is given by D2
1 × Int

(

D2
)

,
which is exact, as well.

By Corollary 5.1.8, this implies that the image of u has to intersect U i∞.
Next, we show that this already implies that the image is contained in
U i∞ and that it is a holomorphic branched covering of one of the spheres
by which U i∞ is fibred.

We start again with the case that i = h. The product complex structure
ensures that the curve u splits as (u1, u2), where u1 is a holomorphic
curve on V and u2 a holomorphic map CP 1 → CP 1. Since V is exact,
Corollary 5.1.8 asserts that u1 is constant. Thus, the image of u must be
contained in or disjoint from Uh∞ = ψ−1

V ([c,∞))× CP 1. Since the latter
is impossible, as we have already seen, the image of u is contained in one
of the spheres {p} × CP 1 inside Uh∞.

Because u is not constant its image must agree with the holomorphic
sphere {p}×CP 1. Thus, Proposition 5.1.13 shows that u is a holomorphic
branched covering of this sphere.

The case in which i = m is very similar. This time, the product
complex structure ensures that the curve u splits as (u1, u2), where u1 is
a holomorphic curve on P and u2 a holomorphic map CP 1 → CP 1. Since
the pages P are exact, Corollary 5.1.8 asserts that u1 is constant. Thus,
the image of u must be contained in or disjoint from Um∞ = CB × CP 1.
Since the latter is impossible, the image of u is contained in one of the
spheres {p} × CP 1 inside Um∞.

Because of the same reason as in the preceding case, u is a holomorphic



160 5. Closed Reeb Orbits

branched covering of {p} × CP 1.
The case in which i = p is somewhat different. Here, we use that

we chose the complex structure on Up∞ = endN essentially as in Corol-
lary 5.2.8. Thus, we can apply Lemma 5.2.10 to see that the image of u
must be contained in endN because it cannot be disjoint from it. This
lemma even shows that the image of u must be contained in one of the
fibres, which are the copies of CP 1 by which Up∞ is fibred. Since u is not
constant, it follows, as in the preceding cases, that u is a holomorphic
branched covering of this copy of CP 1.

5.4. From Symplectic Spheres to Closed

Reeb Orbits

The aim of this section is to prove the existence of nullhomologous Reeb
links and contractible Reeb orbits on contact manifolds supported by a
tower of open book decompositions with one of three special properties.
The first of our two main results is the following theorem.

Theorem 5.4.1. Let (M, ξ = kerα) be a closed (2n− 1)-dimensional
contact manifold that is Liouville cobordant to a contact manifold (M ′, ξ′)
supported by a tower of open book decompositions of height k ∈ N0 with
the property that there is a Liouville cobordism from the lowest level to a
contact manifold (L, αL) with one of the following two properties:

(L-h) L is at least 3-dimensional and embeds into a subcritical Stein
manifold as a hypersurface of restricted contact type.

(L-m) L is supported by an open book decomposition whose monodromy
is trivial.

Then the Reeb vector field Rα to α has a contractible orbit.

Our second main result is the following theorem about contact manifolds
supported by an open book decomposition whose binding is planar.

Theorem 5.4.2. Let (M, ξ = kerα) be a closed contact manifold that is
symplectically cobordant to a contact manifold (M ′, ξ′) supported by an
open book decomposition (B, π) with the property that there is a symplectic
cobordism from B to a contact manifold (L, αL) that is planar.
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Then the strong Weinstein conjecture holds for (M, ξ), i.e. the or-
bits to the Reeb vector field to every contact form defining ξ contain a
nullhomologous link.

For reference in the proof let us call this theorem case (L-p).
Before we start a joint proof of the two theorems above in the next

subsection, let us see which known results we recover or strengthen in
the special case that M itself is Liouville cobordant to L, i.e. in the case
k = 0.

In case (L-h), we recover the result from [18] that every at least 3-
dimensional contact manifold that is Liouville cobordant to a contact
manifold embedding into a subcritical Stein manifold as a hypersurface of
restricted contact type contains a contractible Reeb orbit, with essentially
the same proof.

Note that case (L-m) reduces to case (L-h) whenever the pages are
Stein. So, this case, in a sense, provides an extension of case (L-h) and,
hence, of the corresponding result from [18].

In case (L-p), we recover the result of Abbas, Cieliebak, and Hofer
[1] that every planar contact manifold satisfies the strong Weinstein
conjecture.

Finally, we have the following corollary, based on a construction by
Klukas [26].

Corollary 5.4.3. Let (P,Ψ, β) be a symplectic open book. Then the Reeb
vector field of every contact form defining the contact structure of the
contact open book M(P,Ψ, β) or the contact open book M

(

P,Ψ−1, β
)

has
a contractible orbit.

Proof. In [26], Klukas constructed a Liouville cobordism from the disjoint
union M(P,Ψ, β) ⊔M

(

P,Ψ−1, β
)

to the contact open book M(P, id, β).
Thus, we may apply Theorem 5.4.1 (L-m) to obtain contractible orbits
for all contact forms defining the contact structure on the disjoint union
M(P,Ψ, β) ⊔M

(

P,Ψ−1, β
)

. If there is a contact form on one of the two
contact manifolds whose Reeb vector field does not have a contractible
orbit, then the Reeb vector fields of the contact forms defining the
contact structure on the other contact manifold must all have contractible
orbits.

Together with Giroux’s result that every contact manifold arises from
the generalised Thurston-Winkelnkemper construction (Theorem 2.2.9),
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this corollary shows that at least half of all contact manifolds have
contractible Reeb orbits.

5.4.1. Setup

In this subsection, we construct the special symplectic manifold
(

W̃ , ω̃
)

on which we study holomorphic curves.
Let (W,ω) be the Liouville cobordism from (M, ξ) to (M ′, ξ′). By

Example 1.3.5, we may assume, without loss of generality, that the
concave boundary of W is given by the strict contact manifold (M,α).

At this part of the boundary, we attach a negative half-symplectisation
of (M,α), i.e. we attach the manifold

(end−, ω−) =
(

R−
0 ×M,d

(

etα
))

.

At the convex boundary, we attach the generalised cap (C, ωC) of M ′

from Theorem 5.3.1, which is of order k. The result is the symplectic
manifold

(

W̃ , ω̃
)

.

Now, we choose an ω̃-compatible almost complex structure J on W̃ as
follows:

(J-1) On the generalised cap C, we choose J to agree with the almost
complex structure JC on C.

(J-2) On end−, we choose J to be an R−
0 -invariant almost complex

structure that sends ∂t to the Reeb vector field Rα to α, preserves
ξ = kerα, and restricts to a dα|ξ-compatible complex structure
on ξ.

(J-3) On the remainder of W̃ , we choose J to be generic.

By this choice, the symplectic spheres in U i∞ × Ck ⊂ C are holo-
morphic, where i = h,m, p, depending on the case in Theorem 5.4.1 or
Theorem 5.4.2 we are dealing with. Each of these spheres intersects
the symplectic hypersurface H in C in exactly one point and positively
transversely. Consequently, every holomorphic sphere representing the
same homology class A ∈ H2

(

W̃ ;Z
)

as these spheres has intersection
number 1 with H. (The intersection number is well defined by the same
arguments as for the intersection numbers in the proof of Lemma 5.2.10.)
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By positivity of intersection (Proposition 5.1.11), this implies that all
such holomorphic spheres are simple, because H is complex.

General holomorphic spheres in W̃ have the following properties, ana-
logous to those in [18, Lemma 5.2].

Lemma 5.4.4. Let u : CP 1 → W̃ be a non-constant holomorphic sphere.

(i) If u
(

CP 1
)

∩endl 6= ∅, then u
(

CP 1
)

⊂ endl, where endl = endNl
×

Ck−l with the symplectic fibration Nl in the lth level of C.

(ii) If u
(

CP 1
)

⊂ Ci∞ × Ck, then u
(

CP 1
)

⊂ U i∞ × Ck and u is of the
form z 7→ (v(z) , p1, . . . , pk) where p1, . . . , pk ∈ C are points and v
is a holomorphic branched covering of one of the spheres by which
U i∞ is fibred.

(iii) If u
(

CP 1
)

∩
(

Up∞ × Ck
)

6= ∅, then u
(

CP 1
)

⊂ Up∞ × Ck.

(iv) If u
(

CP 1
)

∩
(

Int
(

U i∞
)

× Ck
)

6= ∅, then u
(

CP 1
)

⊂ U i∞ × Ck and
u is one of the spheres in (ii).

(v) If i = h,m, then u
(

CP 1
)

∩H 6= ∅.
Proof. (i) Since the almost complex structure on endl = endNl

× Ck−l

is split, the symplectic hypersurfaces F̃l = Fl × Ck−l are complex; here,
Fl is the fibre in the lth level of C. Now we can reason as in the proof
of Lemma 5.2.10 to show that u is either disjoint from every complex
hypersurface F̃l or contained in one. Because endl is fibred by these
hypersurfaces, the image of u must be contained in endl whenever it
intersects this set.

(ii) On Ci∞ ×Ck, the almost complex structure is split. Accordingly, u
decomposes into holomorphic spheres u0, . . . , uk on the factors. Because
C is contractible and, hence, exact, Corollary 5.1.8 tells us that the
spheres u1, . . . , uk are constant. The sphere u0 is of the desired form by
Lemma 5.3.6.

(iii) This case is completely analogous to (i). We only have to exchange
the fibres Fl by the complex hypersurfaces in the cap C0 of the lowest
level given by the holomorphic spheres by which Up∞ = endN is fibred.

(iv) We already know from (iii) that the the first part of the assertion
is true whenever i = p.

Now, let i = h. Then the image of u is contained in a level set of the
plurisubharmonic function ψh from the proof of Lemma 5.3.3. Since the
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interior of Uh∞×Ck is exactly the preimage of (0,∞) under ψh, the image
of u must be contained in this set.

Next, we consider the case that i = m. The treatment is analogous
to that for i = h. We only have to replace the function ψh by the
plurisubharmonic function ψm from the proof of Lemma 5.3.4.

Finally, whenever the image of u is contained in U i∞ × Ck, then it is
contained in Ci∞ × Ck. So, (ii) tells us that u is of the desired form.

(v) If i = h,m, the complement of the symplectic hypersurface H is
exact, because the primitive on C \ H can be glued with that on the
Liouville cobordism W and the half-symplectisation end−. Consequently,
Corollary 5.1.8 shows that no non-constant holomorphic sphere can be
contained in W̃ \H.

The lemma above has an immediate consequence on the intersection
number of holomorphic spheres with the symplectic hypersurface H in
the cases (L-h) and (L-m).

Corollary 5.4.5. If i = h,m, then the intersection number of H and
every non-constant holomorphic sphere in W̃ is at least 1.

Proof. By Lemma 5.4.4 (v), every non-constant holomorphic sphere in
W̃ has to intersect H. Moreover, non of these spheres can be contained
in H because it is an exact symplectic hypersurface of W̃ .

Now the statement immediately follows from positivity of intersection
(Proposition 5.1.11), because H is complex.

5.4.2. Moduli Space of Holomorphic Spheres

Choose one of the spheres in the interior of U i∞ ×
(

D2
)k

and call it S.

Write M̃ for the moduli space of all holomorphic spheres u : CP 1 → W̃
that represent the homology class A = [S] and whose image is not
contained in the union of the sets endl. We exclude these spheres to avoid
problems with transversality. By Lemma 5.4.4 (i), the exclusion of such
spheres even implies that the image of every u ∈ M̃ is contained in the
complement of the sets endl.

We claim that M̃ is a smooth manifold.

Proposition 5.4.6. The moduli space M̃ is a smooth manifold of di-
mension (2n+ 4).
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Before we prove this, we would like to present the basic idea used in
[32] to prove this for generic almost complex structures.

Let B ⊂ C∞(CP 1, W̃
)

be the space of all smooth maps that repres-
ent the homology class A. Furthermore, write E → B be the infinite
dimensional vector bundle over B with fibres

Eu = Ω0,1
(

CP 1, u∗TW̃
)

.

Then the map S : B → E defined by

S(u) =
(

u, ∂̄Ju
)

is a section of E whose intersection with the zero section is precisely the
space of holomorphic curves representing the class A.

Now, the idea is to use the implicit function theorem to prove that the
zero section is a smooth manifold. In order to do so, one has to show that
the vertical differential Du, given by the projection of the differential

S∗(u) : TuB → T(u,0)E ∼= TuB ⊕ Eu

of S to Eu, is onto.

Definition 5.4.7. An almost complex structure J is called regular for
spheres with respect to a homology class A ∈ H2

(

W̃ ;Z
)

if the vertical
different Du is onto at every holomorphic sphere representing A.

In truth, the implicit function theorem does not work here because
C∞(CP 1, W̃

)

is no tamed Fréchet manifold. So, one has to substitute
this space by more suitable ones and then find a procedure to regain
the desired result. In [32], the path is taken through the Banach spaces
W k,p

(

CP 1, W̃
)

, p > 2, of maps of lower regularity. Consequently, the
definition of regularity of J is altered accordingly.

Proof of Proposition 5.4.6. If we can show that J is regular, then [32,
Theorem 3.1.5 (i)] asserts that W̃ is a smooth manifold of dimension
(2n+ 2c1(S)) because we know that all holomorphic spheres representing

A = [S] are simple. Since a neighbourhood of S splits as S × (Bǫ(0))
k+1

with a split almost complex structure i⊕ J ′, the Chern number c1(S) is
given by the Euler characteristic of S, i.e. by 2. This proves our claim,
provided we can show that J is regular.
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By [32, Theorem 3.1.5 (ii)], a generic almost complex structure is
regular. Because of [32, Remark 3.2.3], the vertical differential Du can
still be assumed to be onto at a holomorphic sphere u if its image intersects
an open subset on which J is chosen generically. So, it remains to show
that Du is onto for spheres contained in the sets where we prescribed J .

Since end− is exact, the image of no non-constant curve can be contained
therein. Because we excluded all holomorphic spheres contained in the sets
endl, it remains only to consider spheres contained in Ci∞ × (Int (D2))

k
.

By Lemma 5.4.4 (ii), these spheres cover one of the spheres by which

U i∞×(Int (D2))
k

is fibred holomorphically. Since we know that all spheres
in M̃ are simple, the covering must be of degree 1.

Because U i∞ ×
(

Int
(

D2
))k

is a complex product with one factor given
by the sphere S, [32, Corrolary 3.3.5] tells us that Du is onto for the

holomorphic sphere contained in Ci∞ ×
(

Int
(

D2
))k

. This concludes the
proof that J is regular and, hence, also the proof of Proposition 5.4.6.

Since all spheres in M̃ are simple, the quotient space

M = M̃ ×Aut(CP 1) CP
1

is a smooth manifold of dimension 2n.
The action of a Möbius transformation φ ∈ Aut

(

CP 1
)

is given by

φ · (u, z) =
(

u ◦ φ, φ−1(z)
)

.

This implies that the evaluation map on M̃ × CP 1 descends to a well-
defined evaluation map on M given by

ev : M → W̃

[u, z] 7→ u(z) .

5.4.3. Spheres Intersecting a Curve

Let γ : R → W̃ be a properly embedded curve that is transverse to the
spheres by which U i∞ × (D2)

k
is fibred and whose image is contained in

the complement of the sets endl. Furthermore, let γ(0) be contained in
the sphere S and γ(R \ [−1, 1]) ⊂ end−.
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Proposition 5.4.8. The space Mγ = ev−1(γ) is a smooth 1-dimensional
manifold.

Proof. The statement of [32, Theorem 3.4.1] tells us that Mγ is a smooth
manifold of dimension 2n + 2c1(S) − 4 − codim γ = 1, provided the
evaluation map is transverse to γ.

Moreover, it tell us that this would be true if J was generic. By [32,
Remark 3.4.8], the evaluation map can still be assumed to be transverse
to γ at every [u, z] such that the image of u intersects an open set where
we chose J generically.

As we have seen in the proof of Proposition 5.4.6, the only holo-
morphic spheres in W̃ for which this is not the case are those inside

U i∞ ×
(

Int
(

D2
))k

. These split into holomorphic spheres u1, . . . , uk+1 on

the factors. Since Int
(

D2
)

is contractible and, hence, exact, all these

spheres but u1 are constant. Because U i∞ ×
(

Int
(

D2
))k

is fibred by these
spheres and γ is transverse to them, the evaluation map ev is transverse
to γ on these spheres, too.

Note that, by Lemma 5.4.4 (iv), for every point x ∈ γ∩Int
(

U i∞ × (D2)
k)

there is exactly one sphere [u, z] ∈ Mγ such that ev([u, z]) = x. This
implies that Mγ is not closed. Since it does not have boundary, it must
be non-compact.

Moreover, the non-compactness cannot be caused by spheres escaping
through C: the holomorphic spheres must be contained in a level set of the
exhausting plurisubharmonic function ψC on C, after extending it to W
and end− by its constant value close to the boundary of C. Furthermore,
this level set cannot belong to a value bigger then the maximum of ψC ◦γ,
which exists because only a compact subset of γ intersects C.

5.4.4. Conclusion of the Argument

Let us first assume that the contact form α is non-degenerate, i.e. that
the linearised Poincaré return map along every closed orbit of the Reeb
vector field Rα, including multiples, does not have an eigenvalue 1.

By the non-compactness of Mγ , there is a sequence in Mγ without
any convergent subsequences. The compactness result from symplectic
field theory [4, Theorem 10.2] tells us that there still is a subsequence
that converges (in the sense of this paper) to a holomorphic building of
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height k− | 1 and total energy at most E(S), because the spheres in the
sequence intersect only a compact subset of C. We want to show that
k− > 0. Since the subsequence does not converge in Mγ ⊂ M, this

is equivalent to showing that no sequence in its preimage in M̃ × CP 1

Gromov-converges (see [32, Definition 5.5.1]) to a stable map (see [32,
Definition 5.1.1]) in W̃ consisting of more then one sphere.

This is the point where we have to take different routs in the proof of
Theorem 5.4.1 and Theorem 5.4.2, i.e. in the cases (L-h) and (L-m), and
the case (L-p).

The cases (L-h) and (L-m)

By Corollary 5.4.5, the intersection number of H with each holomorphic
sphere in W̃ is at least 1. Because the intersection number of H with the
sphere S is 1, this implies that there cannot be any stable map in W̃ that
represents the homology class of S and consists of more then one sphere
or a multiply-covered one. Thus, we know that k− > 0.

Lemma 5.4.9. The building to which the subsequence converges contains
a finite energy plane with a positive puncture.

Proof. Every holomorphic building of height k− | 1 with k− > 0 contains
at least two finite energy planes.

We claim that only one of these two finite energy planes can intersect
the hypersurface H. Since the holomorphic planes are properly embedded
with the puncture going to −∞ in end−, we can apply the same reasoning
as in Corollary 5.4.5 for holomorphic spheres to show that the intersection
number of H and each plane that intersects it must be at least 1. Because
the intersection number of H with S is 1, this implies that only one plane
can intersect H.

Since the complement of H in W̃ is exact, Stokes’s theorem implies
that the Hofer energy of any holomorphic plane in W̃ with a negative
puncture would be negative; cf. [4, Lemma 5.16]. For the same reason,
there cannot be a finite energy plane with a negative puncture in one of
the lower levels of the building, which are all copies of the symplectisation
(R×M,d (etα)) of M . This shows that the second finite energy plane
must have a positive puncture.

Because every sphere in our subsequence can only intersect a compact
subset of the generalised cap C, the finite energy plane with a positive
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puncture must be contained in one of the lower levels (R×M,d (etα)) of
the holomorphic building.

By [4, Proposition 5.8], the holomorphic plane, seen as a punctured
holomorphic sphere CP 1\{∞}, is asymptotic to a cylinder over a periodic
orbit γ∞ in M . By construction of the almost complex structure J on
R×M and the fact that the puncture is positive, at each point, γ̇∞ is
a positive multiple of J∂t = Rα. Consequently, the orbit γ∞ is a closed
orbit of the Reeb vector field Rα, after reparametrisation.

Let us write the finite energy plane as ũ = (a, u) : C → R × M .
Because ũ is asymptotic to the cylinder over γ∞, the loops γr given by
γr(s) = u

(

reis
)

converge to γ∞. Thus, t 7→ γtan(2(1−t)/π) is a contraction
of γ∞. This concludes the proof of Theorem 5.4.1 in the non-degenerate
case.

The case (L-p)

The case (L-p) is considerably more complicated because the complement
of the complex hypersurface H is not exact. Fortunately, for dimensional
reasons, the symplectic manifold W̃ is semi-positive, i.e. every class
A ∈ π2

(

W̃
)

with ω̃(A) > 0 and c1(A) ≥ 3− 1
2 dim W̃ satisfies c1(A) ≥ 0.

This allows us to follow the treatment in [18, Section 6.3].
Let [um, zm] be a sequence in Mγ such that (um, zm) Gromov-converges

to a stable map
(

{uα}α∈T , {α1, z}
)

modelled on a tree T where uα1
(z) ∈

γ. Let e(T ) be the number of edges of T . If we can show that e(T ) =
0, then [um, zm] converges in Mγ . This would imply that every non-
converging sequence in Mγ converges to a holomorphic building of height
k− | 1 with k− > 0.

Proposition 6.1.2 from [32] tell us that there is a simple stable map
(

{vβ}β∈T ′ , {β1, z′}
)

, i.e. a stable map such that the spheres vβ are simple
and such that the images of different non-constant spheres are distinct,
with the following properties:

(v-i)
⋃

α∈T
uα
(

CP 1
)

=
⋃

β∈T ′

vβ
(

CP 1
)

.

(v-ii) There are positive constants mβ such that [S] =
∑

β∈T ′

mβ [vβ ].

(v-iii) vβ1(z
′) = uα1(z).
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Because S has intersection number 1 with the complex hypersurface
H, there must be a unique β0 ∈ T ′ such that vβ0 is a non-constant
holomorphic sphere intersecting H. We claim that this is the only vertex
in T ′.

Lemma 5.4.10 (See [18, Lemma 6.3]). The tree T ′ consists of exactly
one vertex, i.e. e(T ′) = 0.

Proof. We have to consider two cases. First, let us assume that there is a
βU ∈ T ′ such that vβU

is non-constant and its image intersects Up∞ × C.
Then Lemma 5.4.4 (iii) tells us that vβU

is a branched covering of one of
the spheres by which Up∞ × C is fibred. Since vβU

is simple, the covering
is trivial. So, the sphere vβU

represents the class [S].
The total energy of the stable map

(

{vβ}β∈T ′ , {β1, z′}
)

satisfies

E({vβ}) =
∑

β∈T ′

E(vβ) =
∑

β∈T ′

ω̃([vβ ]) ≤
∑

β∈T ′

mβω̃([vβ ]) = E(S)

because of Lemma 5.1.6 and the fact that the energy of each non-constant
holomorphic sphere is positive. This implies that the energy of all spheres
but vβU

must be 0. Consequently, they have to be constant. Since, by the
stability condition in the definition of a stable map (see [32, Definition
5.1.1]), a stable map with one marked point cannot contain constant
spheres as long as it contains only one non-constant sphere, T ′ must
consist of only one component.

Next, let us consider the case that the image of vβ is disjoint from
Up∞ × C for all β ∈ T ′. Then the image of each of these maps intersects
an open subset of W̃ where the almost complex structure J is chosen
generically. Thus, we can use the transversality arguments from [32].

Let us denote by

M∗([vβ ] ; J) = M̃∗([vβ ] ; J)×Aut(CP 1) CP
1

the moduli space of simple unparametrised holomorphic spheres represent-
ing the class [vβ ] whose images are disjoint from Up∞×C and the sets endl.
After possibly choosing our almost complex structure more generic, [32,
Theorem 3.1.5] tells us that these moduli spaces are non-empty smooth
manifolds of dimension (6 + 2c1([vβ ])− 6) = 2c1([vβ ]) for all β ∈ T ′ for
which vβ is not constant. In particular, we have c1([vβ ]) ≥ 0 for all
β ∈ T ′.
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Now, write M∗
T ′({[vβ ]} ; J) for the moduli space of simple unparamet-

rised stable maps modelled on T ′ with one marked point that represent
the classes [vβ ] and whose images are disjoint from Up∞ × C and the sets
endl. Then [32, Theorem 6.2.6] shows that, after possibly refining our
choice of J , this moduli space has dimension

dimM∗
T ′({[vβ ]} ; J) = 6 + 2c1





∑

β∈T ′

[vβ ]



+ 2− 6− 2e(T ′)

= 2 + 2
∑

β∈T ′

c1([vβ ])− 2e(T ′) .

On M∗
T ′({[vβ ]} ; J), we have the evaluation map

ev1 : M∗
T ′({[vβ ]} ; J) → W̃

[{wβ} , {β1, z′}] 7→ wβ1
(z′) .

After possibly further refining our choice of J , this map is transverse to
γ \ (Up∞ × C) by the proof of [32, Theorem 6.3.1] in combination with [32,
Remark 3.4.8]. Accordingly, ev−1

1 (γ) is a smooth non-empty manifold of
dimension

dim ev−1
1 (γ) = 2 + 2

∑

β∈T ′

c1([vβ ])− 2e(T ′)− codim(γ)

= 2
∑

β∈T ′

c1([vβ ])− 2e(T ′)− 3

≤ 2
∑

β∈T ′

mβc1([vβ ])− 2e(T ′)− 3

= 2c1(S)− 2e(T ′)− 3

= 1− 2e(T ′) .

This shows that e(T ′) = 0.

The only remaining possibility for T to consist of more then one
vertex is that several non-constant spheres uα have the same image as
vβ0

. However, this is impossible because each of them would have to
intersect the complex hypersurface H. Then positivity of intersection
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(Proposition 5.1.11) would imply that the intersection number of the class
[S] with the class [H] was greater then 1, which is not true.

The discussion above shows that T also consists of only a single vertex.
Consequently, every sequence [um, zm] in Mγ Gromov-converging to a

stable map in W̃ must converge in Mγ . Accordingly, our non-convergent
sequence converges to a building of height k− | 1 with k− > 0.

In the lowest level, a holomorphic building of height k− | 1 with k− > 0
consists of punctured holomorphic spheres whose punctures are all positive.
Let ũ = (a, u) : CP 1 \Z → R×M be such a sphere in our building where
Z = {z1, . . . , zn} ⊂ C is the finite set of punctures.

As in the cases (L-h) and (L-m), we know by [4, Proposition 5.8] that,
at each puncture zk, the map ũ is asymptotic to a holomorphic cylinder
over an orbit γk0 of the Reeb vector field Rα to α.

Via the homotopies γkt (s) = u
(

zk + tǫeis
)

, these orbits are homotopic

to the curves γk given by γk(s) = u
(

zk + ǫeis
)

; here, the constant ǫ > 0 is

chosen such that the disks
{

zk + reis | s ∈ R, r ∈ [0, ǫ]
}

do not intersect.
This shows that the link γk0 , k = 1, . . . , n, is nullhomologous, because the
link γk, k = 1, . . . , n, is the boundary of u|

CP 1\(
⋃n

k=1 Bǫ(zk)).

This concludes the proof of Theorem 5.4.2 in the non-degenerate case.

Degenerate case

Now, let α be degenerate. Then we can follow the last paragraph of [1]
to recover the result from the non-degenerate case.

Let λn, n ∈ N, be a sequence of positive functions on M converging
in C∞ to the constant function of value 1 with the property that the
contact forms λnα are non-degenerate. Then, for all n ∈ N, there are
orbits γln, l = 1, . . . , kn, of the Reeb vector field to λnα that constitute a
nullhomologous link.

We claim that the contact area

Aln = An

(

γln
)

=

∫

(

γln
)∗
λnα

of these orbits is both bounded away from 0 by a constant δ > 0 and
bounded from above by a constant m. We start with the lower bound.

By Darboux’s theorem (Theorem 1.1.3), every point p ∈ M has a
neighbourhood Up with coordinates z, x1, . . . , xn−1, y1, . . . , yn−1 in which
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α is given by α|Up
= dz +

∑

xi dyi. Without loss of generality, we may
assume that these neighbourhoods are of the form (−ǫp, ǫp)×B2ǫp(0) for
a positive constant ǫp. Since M is compact, it is covered by finitely many
of the sets Vp = (−ǫp, ǫp) × Bǫp(0) ⊂ Up. Let ǫ be the minimum of the
corresponding constants ǫpn .

Inside Up, the Reeb vector field Rα is given by ∂z. Hence, every
orbit γ̃ of Rα must have contact area at least 2ǫ. Moreover, after a
C∞-perturbation of α, the orbits still do not close inside Up, and those
intersecting Vp still leave Up through {−ǫp, ǫp} × B2ǫp(0), because the
Reeb vector field smoothly depends on the contact form. Consequently,
the action of all orbits is still bounded from below by δ = 2ǫ.

Next, let us prove that the contact area is bounded from above. Since
the contact area of every orbit is positive, it is sufficient to obtain a
uniform upper bound for the total contact area for each n ∈ N, i.e. for
the sum

∑kn
l=1A

l
n of the contact areas of the orbits γln, l = 1, . . . , kn.

Let Sn be the sphere in the proof of the existence of the link γln,
l = 1, . . . , kn. Then [4, Lemma 5.16] tells us that the total contact area
for this n is bounded from above by the total energy of the holomorphic
building in the corresponding proof, which itself is bounded from above
by the energy of the sphere Sn. Using Example 1.3.5, we can arrange our
construction in a way such that the energy of the spheres Sn is uniformly
bounded from above by m = 2max |λn − 1|E(S), where S is the sphere
in the construction corresponding to α. Because of this bound of the
total contact area, the contact area of every individual orbit is bounded,
as well.

The combination of the upper bound for the total contact area and
the lower bound for the individual contact areas shows that there can
be at most m/δ orbits in each of the links. Thus, after descending to a
subsequence, we may assume that the number kn of orbits in each link
does not depend on n.

After reparametrisation, we may further assume that the orbits γln are
all defined on [0, 1] and satisfy ιγ̇nλnα ≡ Aln. Because the sequence Aln
is bounded and bounded away from 0 for every fixed l, after descending
to a subsequence, it converges to a positive constant Al.

Next, we obtain a uniform C2-bound for the sequences γln. Choose any
Riemannian metric on M . Because the Reeb vector field is smooth in the
contact form, we know that the difference of the Reeb vector fields Rλnα

and Rα and its derivative are bounded uniformly. Since, moreover, the
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sequences Aln are bounded, the sequences γ̇ln = AlnRλnα have a uniform
C1-bound. This implies that the sequences γln have a uniform C2-bound.

Because M is compact, the uniform C2-bound allows us to apply the
Arzelà-Ascoli theorem (see [25, Theorem 7.21]) to obtain a subsequence
of each sequence γln, which we keep calling γln, that converges in C1 to a
closed curve γl. As the limit of a nullhomologous link, the link γl is still
nullhomologous. Moreover, if for a fixed l ∈ {1, . . . , k} the orbits γln are
all contractible, then so is γl.

The orbits γl, furthermore, satisfy

ιγ̇lα = lim
n→∞

ιγ̇l
n
α = lim

n→∞
Al

n

λn
≡ Al

and
ιγ̇ldα = lim

n→∞
ιγ̇l

n
dα = lim

n→∞
− 1
λn
ιγ̇l

n
(dλn ∧ α) ≡ 0,

where we used the uniform bound for γ̇ln in the last equation. Con-
sequently, the limits γl are orbits of Rα.

This completes the proof of Theorem 5.4.1 and Theorem 5.4.2.



A. The Between Theorem

In this appendix, we would like to remind the reader of a simple yet quite
useful theorem from general topology, the Between Theorem.

Theorem A.1 (The Between Theorem; see [25, Problem 5.X]). Let f
and g be a lower and an upper semi-continuous real-valued function on
a paracompact space X, respectively, such that g(x) < f(x) for every
x ∈ X. Then there is a continuous real-valued function h satisfying
g(x) < h(x) < f(x) for every x ∈ X.

Proof. For each x ∈ X, choose a number px such that g(x) < px < f(x).
By the semi-continuity of f and g there is a neighbourhood Ux of x
such that g(y) < px < f(y) for all y ∈ Ux. Now, choose a partition of
unity {λx}x∈X subordinate to the covering of X by the sets Ux. Then
h(x) =

∑

y∈X pyλy(x) is the desired continuous function.

At first glance, this theorem does not look very impressive, but in this
thesis it plays a major role in the construction of various weak deformation
retractions. Our setup usually looks as follows.

We consider some compact smooth manifold M which contains a
submanifold B with trivial normal bundle, e.g. the binding of an open
book or the boundary of the manifold. There, we restrict our attention
to a neighbourhood U ∼= Dn × B of B. Depending on the situation we
either choose polar coordinates on Dn or a collar coordinate in the case
in which B is the boundary of M .

Now, let there be a vector bundle π : V → B and denote by π′ : Dn ×
V → U an extension over U . Then we are interested in non-empty
paracompact spaces X with maps ψ into the space of smooth sections of
π′, e.g. the space of forms α adapted to an open book with the restriction
map to the families of forms α|T ({x}×B), x ∈ D2. The Between Theorem
yields the following.

I
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Corollary A.2. In the setup above, let O be an open subset of the smooth
section of π such that ψ(x) |B ∈ O for all x ∈ X.

Then there is a continuous function ǫ : X → (0, 1) such that the restric-
tion of ψ(x) to {y} ×B is contained in O for all y ∈ B̄ǫ(x)(0) ⊂ Dn.

Proof. As the upper semi-continuous function g from the Between The-
orem we choose the constant zero-function. It remains to construct a
lower semi-continuous function f : X → (0, 1] such that ψ(x) |{y}×B ∈ O
for all y ∈ B̄f(x)(0). Then the Between Theorem shows that the desired
function exists.

Since the set O is open and the restriction morphism a continuous map,
we may choose f to be given by

f(x) = sup
{

r ∈ [0, 1] | ψ(x) |{y}×B ∈ O for all y ∈ B̄r(0)
}

.



B. Quasifibrations

Throughout this thesis we encounter several instances of maps π : E → B
that seem to be fibrations but for which we are not quite able to prove
this because we do not know of all paths in B how to lift them. The
aim of this appendix is to show that these maps still induce long exact
sequences in homotopy.

To set us on a firm ground, we remind the reader of the definition of a
fibration.

Definition B.1. We say that a map π : E → B has the homotopy
lifting property for a topological space W if the following commutative
diagram can always be completed as indicated.

W × {0} g //
� _

��

E

π

��
W × I

G //

g̃

;;

B

We say that the map π is a Hurewicz fibration or fibre space if it
has the homotopy lifting property for all topological spaces. If the map π
is surjective and has the homotopy lifting property for Dn for all n ∈ N0,
we call it a (Serre) fibration.

One of the most interesting properties of fibrations is that they induce
long exact sequences in homotopy.

Theorem B.2 (See [5, Theorem VII.6.7]). Let π : E → B be a fibration
and denote by F the fibre π−1(∗) over the base point ∗ of B. Then there
is a long exact sequence

· · · // πk+1(B)
∂∗ // πk(F )

i∗ // πk(E)
π∗ // πk(B) // · · ·

· · · // π1(E)
π∗ // π1(B)

∂∗ // π0(F )
i∗ // π0(E)

π∗ // π0(B)

III
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where i : F →֒ E is the natural inclusion.

Remark B.3. At the level of π0, the sequence above is only exact as a
sequence of pointed spaces. For a definition of this term, see Appendix C.

Taking a closer look at the proof of Theorem B.2, as given in [5], we
realise that we do not really need a proper fibration: it is sufficient that
π : (E,F ) → (B, ∗) be a weak homotopy equivalence of pairs, i.e. that the
induced maps π∗ : πn(E,F ) → πn(B, ∗) are isomorphisms for all n ∈ N.
This motivates the following generalisation of a fibration.

Definition B.4. Let π : E → B be a map and BE the union of those
components of B that intersect the image of π. Then we say that π
is a quasifibration if, for every b ∈ π(E), the map π :

(

E, π−1(b)
)

→
(BE , b) induces maps πk∗ : πk

(

E, π−1(b)
)

→ πk(BE , b) in homotopy that
are isomorphisms for all k ∈ N.

Remark B.5. This definition deviates from the original definition by
Dold and Thom [11] in two points: first, we do not demand a quasifibra-
tion π to be onto and, second, we forgo demanding that the induced
map π0 : π0(E,F ) → π0(B, ∗) be an isomorphism; here, π0(E,F ) is the
topological quotient π0(E) /π0(F ).

Remark B.6. A quasifibration need not be onto on BE , in contrast to a
fibration. The prime example for this is the inclusion of a point into a
disc.

The concept of a quasifibration is truly a generalisation of a fibration
because of the following theorem.

Theorem B.7 (Cf. [5, Theorem VII.6.6]). Every fibration is a quasi-
fibration.

This statement was already given by Dold and Thom in [11] for their
version of a quasifibration, though without proper proof. In fact, it does
not hold for their definition because of a problem at the level of π0.

Let us now present conditions that guarantee that a map is a quasi-
fibration. The proof of Theorem B.7 can be modified to obtain the
following.

Lemma B.8. Let π : E → B be a map, b ∈ π(E), F = π−1(b), n ∈ N,
and BE the union of those components of B that intersect the image of
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π. Then the induced map πn∗ : πn(E,F ) → πn(BE , b) is an isomorphism,
provided the following two conditions hold for every choice of base point
e ∈ F of E.

(1 ) Every map G : Dn−1 × I → B such that G
(

∂
(

Dn−1 × I
))

= {b} is

homotopic relative ∂
(

Dn−1 × I
)

to a map that can be lifted with
initial condition e.

(2 ) For every pair of maps G : Dn × I → B and g : Dn → E such that
G(∂Dn × I ∪Dn × {1}) = {b} and G|Dn×{0} = π ◦g there is a pair
of maps G′ and g′ such that

• g′ represents the same class as g in πn(E,F ),

• G′|Dn×{0} = π ◦ g′,
• G′(∂(Dn × I)) = {b}, and

• G′ can be lifted with initial condition g′.

Before we prove this lemma, let us state which consequences it has
concerning quasifibrations.

Corollary B.9. Let π : E → B be a map, b ∈ π(E), and BE the union of
those components of B that intersect the image of π. If the assumptions
of Lemma B.8 are satisfied for all b ∈ π(E) and n ∈ N, then π is a
quasifibration.

Proof of Lemma B.8. We first prove the surjectivity of the induced map
πn∗ : πn(E,F ) → πn(B, b). So, let G : Sn → B be a map of pointed spaces.

Because Sn is the quotient
(

Dn−1 × I
)

/∂
(

Dn−1 × I
)

, the map G in-
duces a map on Dn−1× I with the property that the boundary is mapped
to b. By a slight abuse of notation, we call this map G, as well.

Now, let g : Dn−1 × {0} → E be the constant map with value e. Then,
by condition (1), there is a map G′ homotopic to G relative ∂

(

Dn−1 × I
)

that can be lifted to a map g̃ : Dn−1 × I → E which maps Dn−1 ×{0} to
e. In particular, this map maps ∂

(

Dn−1 × I
)

to F . Hence, it represents
an element of πn(E,F ) that is mapped by πn∗ to [G′] = [G] ∈ πn(BE , b).

This proves the surjectivity of the map πn∗ .
The proof of the injectivity of the map πn∗ turns out to be somewhat

more involved. We start with two maps of pointed spaces fi : D
n → E,

i = 0, 1, that map the boundary to F . Moreover, let H : Dn × I → B be
a homotopy relative ∂Dn from (π ◦ f0) to (π ◦ f1).
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Our goal is to lift some homotopy H ′ relative ∂Dn, which probably
differs from H, to a homotopy H̃ relative ∗ from f0 to f1, where ∗ ∈ ∂Dn

is the base point of Dn. To do this, we need some preparation.

Let Ψ be a homeomorphism of Dn× I such that (Dn × ∂I)∪ ({∗} × I)
is mapped to Dn×{0} and denote by S the image of this set. Furthermore,
let r : Dn×{0} → S be the time-1-map of a strong deformation retraction
of Dn × {0} to S with the property that r((Dn × {0}) \ S) ⊂ ∂S.

  

Figure B.1.: Strong deformation retraction from Dn × {0} to S

We can define a map f on S by fi ◦ Ψ−1 on Ψ(Dn × {i}) and the
constant map with value e on Ψ({∗} × I). Then we set g = f ◦ r and
G = H ◦Ψ−1. This pair of maps satisfies the assumption of condition (2).
Accordingly, there is a pair of maps G′ and g′ such that G′ can be lifted
with initial condition g′ to a map g̃ : Dn × I → E, and a homotopy
Hg : D

n × I → E relative base point from g to g′ with the property that
Hg(∂D

n × I) ⊂ F .

We concatenate the homotopy Hg and the map g̃ and call the result g̃′.
Then g̃′ coincides with g on Dn × {0} and maps (∂Dn × I) ∪ (Dn × {1})
to F . So H̃ = g̃′ ◦Ψ is a homotopy relative base point from f0 to f1 with
the property that H̃(∂Dn × I) ⊂ F .

This proves the injectivity of the map πn∗ .

Up to now, we considered rather abstract conditions. Now, we apply
these to a more concrete setup.

Theorem B.10. Let M be a compact smooth manifold, V →M a smooth
vector bundle, and B the intersection of a convex and an open subset of
the space Γ∞(V ) of smooth sections of V . Furthermore, let π : E → B be
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a map of pointed spaces for which the diagram

Dn × {0} g //
� _

��

E

π

��
Dn × I

G //

g̃

::

B

can always be completed as indicated, provided the map G is smooth in
the factor I and constant on {x} × (I \ (1/4, 3/4)) for all x ∈ Dn.

Then π is a quasifibration whose image contains the components of B
that it intersects.

Proof. By Corollary B.9, it is sufficient to verify the two conditions from
Lemma B.8. We deal with them simultaneously.

Let n ∈ N0 and G : Dn × I → B be a map that maps ∂Dn × I to
the base point b of B. We claim that there is a map G̃ homotopic to G
relative ∂ (Dn × I) such that G̃ is smooth in the factor I and constant on
{x} × (I \ (1/4, 3/4)) for all x ∈ Dn. This proves that the two conditions
from Lemma B.8 hold. Moreover, it proves that the image of π contains
the components of B that it intersects.

We prove the existence of the map G̃ in two steps: first, we smoothen
in the factor I relative ∂I and, then, we reparametrise.

To smoothen G relative Dn × ∂I, we use a smooth partition of unity
{λα} on I, i.e. we replace G by the map

G′ : Dn × I → Γ∞(Ṽ
)

(x, t) 7→
∑

α

λα(t)H(x, tα)

where tα is a point in the support of λα.
Since we only take convex combinations of elements in B, the image of

G′ is contained in the convex set defining B. Consequently, to see that
G′ is a map to B, we only have to verify that it is contained in the open
set defining B, as well. This is the case for a sufficiently fine partition of
unity because Γ∞(Ṽ

)

is locally convex, G continuous, and Dn compact.
To be a bit more precise, the support of λα is chosen such that for all

x ∈ Dn the points G(x, t) with t ∈ supp(λα) are contained in a convex
open neighbourhood of G(x, t) that itself is contained in the open set
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defining B. This does not only show that G′ is a map to B, but also that
this is the case for every convex combination of G and G′. Accordingly,
G and G′ are homotopic relative Dn × ∂I.

Finally, note that, whenever the restriction of G to {x} × I is constant
for some x ∈ Dn, the restriction of any convex combination of G and
G′ to this set is constant, too, with the same value as G. Since G maps
∂Dn × I to the base point b, this shows that G and G′ are homotopic
relative ∂ (Dn × I).

It remains to change G′ such that it is constant on {x} × (I \ (1/4, 3/4))
for all x ∈ Dn. To do this, we choose a smooth monotonously increasing
function µ : I → I that vanishes on [0, 1/4] and is constant of value 1 on
[3/4, 1]. Then the map

H : Dn × I × I → B

((x, t) , s) 7→ G′(x, (1− s) t+ sµ(t))

is a homotopy relative ∂ (Dn × I) from G′ to a map G̃ that is smooth
in the factor I and constant on {x} × (I \ (1/4, 3/4)) for all x ∈ Dn. This
concludes the proof.

So far, the base space B has to be a subset of the sections of a vector
bundle. By a result of Dold and Thom [11, Satz 2.2], we can relax this
condition.

Definition B.11. Let π : E → B be a map. Then we call a subset U ⊂ B
distinguished if the restriction πU : π−1(U) → U of π is a quasifibration.

Theorem B.12 (Cf. [11, Satz 2.2]). Let π : E → B be a map and
U = {Uα} an open covering of B such that each Uα is distinguished and
every non-empty intersection Uα ∩ Uβ contains a set Uγ ∈ U .

Then π is a quasifibration.

Proof. We have to show that the proof by Dold and Thom still works for
our less restrictive definition of a quasifibration. We only explain why no
problems in the proof arise and do not repeat it here.

The only two points in the proof where the injectivity of the induced
maps (π|U )0∗ : π0

(

π−1(U) , π−1(b)
)

→ π0(U, b) is used are the proof of the
injectivity of π0

∗ and that of the surjectivity of π1
∗.

To show that π is a quasifibration in our sense, we do not have to show
that π0

∗ is injective. Furthermore, we do not really need the injectivity
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of (π|U )0∗ in the proof of the surjectivity of π1
∗: it is only used in a

special application of [11, Hilfssatz 2.6] in [11, Hilfssatz 2.7]. In the
special case of π0, [11, Hilfssatz 2.6] is only applied to maps of the form
h : {∗} →

(

π−1(U) , π−1(V ) , y
)

given by h(∗) = y, where y is the base

point of π−1(U). Then the injectivity of the maps (π|U )0∗ is used to
guarantee that there is a homotopy from h to the map to the base point,
i.e. to the map h itself. Since the constant homotopy always satisfies the
demands, we do not really need the injectivity of the maps (π|U )0∗.

The theorem above shows that it is sufficient in Theorem B.10 that B
satisfy the assumptions locally.

Corollary B.13. Let M be a compact smooth manifold and B a space
that locally has the structure of the intersection of a convex and an
open subset of the space of smooth sections of a vector bundle over M .
Furthermore, let π : E → B be a map of pointed spaces for which the
diagram

Dn × {0} g //
� _

��

E

π

��
Dn × I

G //

g̃

::

B

can always be completed as indicated, provided the map G is smooth in
the factor I and constant on {x} × (I \ (1/4, 3/4)) for all x ∈ Dn.

Then π is a quasifibration whose image contains the components of B
that it intersects.

Remark B.14. The assumptions on B are satisfied by open subsets of
the space of smooth sections σ of a fibre bundle that are fixed on a
closed subset A of the base space such that σ|B\A does not intersect the
boundary of the fibres, e.g. the space of diffeomorphisms of a compact
manifold with boundary that agree with the identity on the boundary; cf.
[27, Chapter IX].

Example B.15. The space Ξ(M) of contact structures on a closed manifold
M is an open subset of the smooth sections of the Grassmannian of
oriented hyperplanes in TM . This Grassmannian is a fibre bundle with
fibres diffeomorphic to the Grassmannian of hyperplanes of Rn. Moreover,
the Gray stability theorem (Theorem 1.1.4) provides lifts for smooth
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families of contact structures. Thus, Corollary B.13 shows, in combination
with the remark above, that the map π : Diff(M) → Ξ(M) given by
π(Ψ) = Ψ∗ξ0 is a quasifibration.

A useful application of Corollary B.13 is the following result about
spaces of smooth technical loops.

Corollary B.16. If B satisfies the assumptions on the corresponding
space in Corollary B.13, then the inclusion of the space Ω∞

t B of smooth
technical loops at the base point b of B into the space ΩB of continuous
loops at the same point is a weak homotopy equivalence.

Proof. By the usual path-loop fibration and Corollary B.13, we get the
following long exact ladder diagram.

· · · // πk+1 (B) //

id

��

πk(Ω
∞
t B) //

��

πk (P
∞
t B) //

i∗

��

πk(B) //

id

��

· · ·

· · · // πk+1 (B) // πk(ΩB) // πk (PB) // πk(B) // · · ·

Both the space PB of continuous paths starting in b and its subspace
P∞
t B consisting of the technical smooth paths are contractible. Hence,

the Five Lemma shows that i is a weak homotopy equivalence. That the
Five Lemma applies to this sequence at the level of π0, we explain in
Appendix C.



C. Homotopy Sequences and

the Five Lemma

The goal of this appendix is to show to which extent the Five Lemma
applies to long exact homotopy sequences induced by a quasifibration.
The results seem to be standard knowledge, but they are nowhere to be
found readily. We start by discussing sufficient conditions that apply to
general exact sequences of pointed spaces. Then we apply our findings to
the long exact sequence induced by a quasifibration.

To set the discussion on a firm ground, we recall the definition of an
exact sequence of pointed spaces.

Definition C.1. Let A, B, and C be pointed spaces and denote their
base points by ∗. Furthermore, let f : A→ B and g : B → C be maps of
pointed spaces, i.e. maps sending the base point to the base point. Then
we say that the sequence

A
f−→ B

g−→ C

is exact if g−1(∗) = f(A).

As can be seen easily, exactness of a sequence

{∗} → A
f−→ B

g−→ C → {∗}

for a single base point does only imply surjectivity of g but not injectivity
of f . If, however, the sequence is exact for all possible consistent choices
of base points, then f is one-to-one.

This short discussion shows that, in general, we need to impose as-
sumptions for all base points in the Five Lemma.

For the remainder of the discussion for general exact sequences of
pointed spaces, we consider the following commutative diagram of pointed
spaces with exact rows.

XI
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A1
∂1 //

ϕ1

��

A2
∂2 //

ϕ2

��

A3
∂3 //

ϕ3

��

A4
∂4 //

ϕ4

��

A5

ϕ5

��
B1

∂̃1 // B2
∂̃2 // B3

∂̃3 // B4
∂̃4 // B5

(C.1)

We start with the part of the Five Lemma concerning injectivity of the
map ϕ3.

Proposition C.2. Let the map ϕ3 be fixed and assume that for every
choice of base point in A3 there is a diagram like (C.1) with the additional
property that ϕ1 is onto and that ϕ2 and ϕ4 are one-to-one. Then ϕ3 is
one-to-one.

Proof. Let a, a′ ∈ A3 such that ϕ3(a) = ϕ3(a
′). We may choose a′ to be

the base point of A3. Then the same diagram chase as in the proof of
the usual Five Lemma shows that a has to be the base point, as well.

Remark C.3. In the case that ϕ3 is a group homomorphism, it is sufficient
that the sequence in the proposition above exist for the case that the base
point is the identity element of A3: the usual proof of the Five Lemma
applies in this setup.

The situation regarding surjectivity is more complicated.

Proposition C.4. Let the maps ϕ3, ϕ4, ∂3, and ∂̃3 be fixed. Furthermore,
assume that for every choice of base point in A3 there is a diagram like
(C.1) with the additional property that ϕ2 and ϕ4 are onto and that ϕ5 is
one-to-one. Then ϕ3 is onto.

Proof. Let b ∈ B3. Then there is an a4 ∈ A4 such that ϕ4(a4) = ∂3(b).
Because ∂̃4

(

∂̃3(b)
)

is the base point and the map ϕ5 is one-to-one, the
map ∂4 maps a4 to the base point. Hence, there is an a3 ∈ A3 such that
a4 = ∂3(a3). Choose a3 to be the base point of A3.

Then ∂̃3(b) is the corresponding base point of B4. As a result, there is
a b2 ∈ B2 such that ∂̃2(b2) = b. Since ϕ2 is onto, this implies that there
is an a2 ∈ A2 such that ϕ3(∂2(a2)) = b.

Remark C.5. In the case that ϕ3 is a group homomorphisms and ∂3 and
∂̃3 are induced by actions of A3 on A4 and of B3 on B4, respectively, it
is sufficient that the sequence in the proposition above exist for the case
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that the base point is the identity element of A3: the usual proof of the
Five Lemma applies in this setup.

Now, let there be a commutative diagram

Fb
� � i //

hFb

��

E
p //

hE

��

B

hB

��
F ′
b′
� � ĩ // E′ p̃ // B′

where the rows are quasifibrations with fibres Fb = p−1(b) and F ′
b′ =

p̃−1(b′) over the base points b and b′ of B and B′, respectively. Then, for
every base point in E, there is the following long exact homotopy ladder
diagram; cf. [11].

· · · // π1(E)
p1∗ //

(hE)1∗
��

π1(B)
∂1
∗ //

(hB)1∗
��

π0(Fb)
i0∗ //

(hFb
)0∗

��

π0 (E)
p0∗ //

(hE)0∗
��

π0(B)

(hB)0∗
��

· · · // π1(E′)
p̃1∗ // π1(B′)

∂̃1
∗ // π0(F ′

b′)
ĩ0∗ // π0 (E′)

p̃0∗ // π0(B′)

(C.2)
A priori it is not clear that the Five Lemma may be applied to this

ladder diagram whenever its assumptions are satisfied for all base points
in E: at the level of π0 the ladder diagram is just a ladder diagram of
pointed spaces and the maps ∂1∗ and ∂̃1∗ do depend on the base point.
Nevertheless, it can be applied.

Proposition C.6. The Five Lemma applies to the diagram (C.2) when-
ever the assumptions of the (usual) Five Lemma hold for all choices of
the base points of E.

Proof. To all maps left of those shown in (C.2) and to the map (hE)
1
∗

the Five Lemma applies as usual since the corresponding maps are group
homomorphisms, which allows us to apply Remark C.3 and Remark C.5.
Consequently, we only have to take a closer look at the maps to the right
of (hE)

1
∗.

Since the diagram ends at π0(B) and π0(B
′) the assumptions of the

Five Lemma can never be satisfied for (hB)
0
∗. Moreover, this is also true

for (hE)
0
∗ for the part of the Five Lemma about surjectivity.
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The part about injectivity, however, applies to (hE)
0
∗ because this

map does not depend on the base point in E. Thus, we may invoke
Proposition C.2. Analogously, the map (hFb

)
0
∗ does not depend on the

base point in Fb and, hence, the part of the Five Lemma concerning
injectivity may be applied to this map, as well. Here, the situation is
even better as the maps (hE)

0
∗, i

0
∗, and ĩ0∗ also do not depend on the base

point in Fb. Consequently, the part about surjectivity can be applied by
Proposition C.4.

It remains to discuss the map (hB)
1
∗. The part about injectivity applies

because (hB)
1
∗ is a group homomorphism and because of Remark C.3.

The part about surjectivity is more complicated: by the construction of
the ladder diagram (C.2) the base point of π1(B) always has to be the
identity element. So we have to verify the assumptions of Remark C.5.

We show that, for a quasifibration p : E → B with fibres Fb the maps
∂e∗ : π1(B, b) → π0(Fb) are induced by a right action of π1(B, b) on π0(Fb),
where e ∈ Fb is the base point of E.

The canonical candidate for this action is given by

ρ : π1(B, b)× π0(Fb) → π0(Fb)

(a, [x]) 7→ ∂x∗ (a) .

We have to verify two things: ρ is well defined, and it is an action.

Let x and x̃ be two points in the same path component of Fb and
a ∈ π1(B, b). Then ∂x∗ (a) is given by the component of the end point

of a path γxa : I → E representing (p∗)
−1

(a) ∈ π1(E,Fb, x), i.e. a path
such that γxa (0) = x, γxa (1) ∈ Fb, and [p ◦ γxa ] = a. Now, let γ be a path
from x′ to x in Fb. Then the concatenation γ̃ = γ ∗ γxa satisfies γ̃(0) = x′,
γ̃(1) ∈ Fb, and [p ◦ γ̃] = a, i.e. γ̃ represents (p∗)

−1
(a) ∈ π1(E,Fb, x

′).
Since p1∗ : π1(E,Fb, x

′) → π1(B, b) is an isomorphism, such a path is
unique up to a homotopy that fixes the start point and varies the end
point only in Fb. Consequently, we have ∂x

′

∗ (a) = [γ̃(1)] = ∂x∗ (a). This
shows that ρ is well defined.

It remains to show that ρ is an action. So, let a0, a1 ∈ π1(B) and

x ∈ Fb. Let γxa0 be a path representing (p∗)
−1

(a0) ∈ π1(E,Fb, x)
and write y for γxa0(1). Furthermore, let γya1 be a path representing

(p∗)
−1

(a1) ∈ π1(E,Fb, y). Then the concatenation γ̃ = γxa0 ∗ γya1 satisfies
[p ◦ γ̃] =

[

p ◦ γxa0
] [

p ◦ γya1
]

= a0a1. Accordingly, the path γ̃ represents
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(p∗)
−1

(a0a1) ∈ π1(E,Fb, x). This shows that ρ(a0a1, x) = ρ(a1, y) =
ρ(a1, ρ(a0, x)), i.e. that ρ is a right-action. This concludes the proof.

As an application of the proposition above, we prove that the weak
homotopy type of the fibres of a quasifibration with path connected base
does not depend on the base point.

Theorem C.7 (See [11, Satz 1.10]). Let p : E → B be a quasifibration
over a connected base space B. Then the weak homotopy type of the fibres
Fb = p−1(b) with b ∈ p(E) does not depend on the point b.

Proof. The idea of the proof is to replace the quasifibration p by a
Hurewicz fibration p′ : E′ → B for which we can show that all fibres are
homotopy equivalent. This Hurewicz fibration is constructed as follows.

Denote the space of continuous paths γ : I → B by P . Then we define
the total space E′ to be the subset of E × P given by those pairs (y, γ)
such that γ(0) = p(y) and the fibration by p′(y, γ) = γ(1). This is a
Hurewicz fibration because, for a family γ̄i of paths in B over some index
set I and a family (yi, γi) in E′ with γi(1) = γ̄(0), a lift is given by the
family

(

yi, γi ∗ γ̄i|[0,t]
)

.

Define a map h : E →֒ E′ given by h(y) =
(

y, cp(y)
)

where cp(y) is the
constant path at p(y). Then h is an inclusion of E into E′ that induces
the identity on the base space. In other words, the diagram

Fb
� � i //

hFb

��

E
p //

h

��

B

id

��
F ′
b
� � ĩ // E′ p′ // B

commutes where hFB
is the restriction of h to the fibre Fb of p over the

base point b of B.
Consequently, we get a long exact ladder diagram in homotopy for

the two quasifibrations. Moreover, the map h is a homotopy equivalence
because E′ can be deformed into h(E) by the deformation retraction given
by ((y, γ) , s) 7→ (y, t 7→ γ((1− s) t)). Hence, h induces isomorphisms
between the homotopy groups of E and E′. Accordingly, we can apply
Proposition C.6 to this ladder. This shows that the map hFb

is a weak
homotopy equivalence between the fibres Fb and F ′

b.
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It remains to show that the fibres of the Hurewicz fibration p′ are
all homotopy equivalent. We may either refer to the fact that this is
always true for Hurewicz fibrations with a connected base space (see [23,
Proposition 4.61]) or prove it directly for this special Hurewicz fibration.
We do the latter.

Let x, y ∈ B and γ : I → B be a path from x to y. Then we define a
map Lγ : F

′
x → F ′

y by Lγ(y, γ̃) = (y, γ̃ ∗ γ). A homotopy inverse of this
map is given by Lγ−1 where γ−1 is the inverse path to γ. This is the
case since both γ ∗ γ−1 and γ−1 ∗ γ are homotopic to the constant path
relative to the endpoints. This concludes the proof.
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