THE SPACE OF CROSS SECTIONS OF A BUNDLE

KATSURO SAKAI

(Communicated by Doug W. Curtis)

ABSTRACT. Let B be a nondiscrete compactum, Y a separable complete metrizable ANR with no isolated point and $p\colon X\to B$ a locally trivial bundle with fiber Y admitting a section. It is proved that the space $\Gamma(X)$ of all cross sections of $p\colon X\to B$ is an l_2 -manifold.

0. Introduction. Through the paper, spaces are separable metrizable and maps are continuous. Let $p: X \to B$ be a locally trivial bundle with fiber Y, that is, each point $b \in B$ has a neighborhood U and a homeomorphism $\varphi: U \times Y \to p^{-1}(U)$ such that $p\varphi = \pi_U$, the projection to U. A map $s: B \to X$ is called a *cross section* of $p: X \to B$ provided ps = id. The space of all cross sections of $p: X \to B$ with compact-open topology is denoted by $\Gamma(X)$. Then $\Gamma(X)$ is a closed subspace of the space C(B, X) of all maps from B into X. If B is compact and d is a compatible metric for X, the topology of $\Gamma(X)$ (and C(B, X)) is induced by the sup-metric

$$\hat{d}(f,g) = \sup\{d(f(b),g(b)) \mid b \in B\}.$$

A manifold modeled on Hilbert space l_2 is called an l_2 -manifold. In this note, we prove the following

MAIN THEOREM. Let B be a nondiscrete compactum, Y a complete metrizable ANR with no isolated point and $p: X \to B$ a locally trivial bundle with fiber Y admitting a section. Then $\Gamma(X)$ is an l_2 -manifold.

For the trivial bundle $\pi_B \colon B \times Y \to B$, the space $\Gamma(B \times Y)$ can be regarded as the space C(B,Y). Thus the space C(B,Y) is an l_2 -manifold if B is a nondiscrete compactum and Y is a complete-metrizable ANR with no isolated point. This is a generalization of Eells-Geoghegan-Toruńczyk's result $[\mathbf{E}, \mathbf{Ge}, \mathbf{To_1}]$.

The author would like to thank Doug Curtis for helpful comments.

1. Preliminaries. Our proof is based on the following:

TORUŃCZYK'S CHARACTERIZATION THEOREM FOR l_2 -MANIFOLDS [To₂] (CF. [To₃]). A complete-metrizable ANR X is an l_2 -manifold if and only if X has the discrete approximation property, that is, for each map $f: \bigoplus_{n \in \mathbb{N}} I^n \to X$ of the free union of n-cells $(n \in \mathbb{N})$ into X and each map $\varepsilon: X \to (0,1)$ there is a

©1988 American Mathematical Society 0002-9939/88 \$1.00 + \$.25 per page

Received by the editors February 27, 1987 and, in revised form, April 22, 1987. Presented to the Mathematical Society of Japan, April 2, 1988.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58D15, 57N20, 55F10.

Key words and phrases. Space of cross sections, locally trivial bundle, ANR, l2-manifold.

This work was done while the author was visiting the University of California at Santa Barbara during July 1986-March 1987.

map $g: \bigoplus_{n \in \mathbb{N}} I^n \to X$ with $d(f(x), g(x)) < \varepsilon f(x)$ for all $x \in \bigoplus_{n \in \mathbb{N}} I^n$ and $\{g(I^n) \mid n \in \mathbb{N}\}$ a discrete family in X.

In order to verify the discrete approximation property of $\Gamma(X)$, we use the following easy modification of $[\mathbf{DT}, \text{Remark 2}]$ (cf. Proof of $[\mathbf{DT}, \text{Lemma 1}]$).

- LEMMA 1. Let X = (X, d) be a locally path-connected metric space with a tower $X_1 \subset X_2 \subset \cdots \subset X$ satisfying the following properties:
- (a) Given a compactum $A \subset I^n$, a map $f: I^n \to X$ with $f(A) \subset X_i$ and $\varepsilon > 0$, there is a map $g: I^n \to X_j$ into some $X_j \supset X_i$ with f|A = g|A and $\hat{d}(f,g) < \varepsilon$;
- (b) Given $\varepsilon > 0$, there is a $\delta > 0$ such that any map $f: I^n \to X_i$ is ε -homotopic to a map $g: I^n \to X_j$ in some $X_j \supset X_i$ with $\operatorname{dist}(f(I^n), g(I^n)) > \delta$.

Then X has the discrete approximation property.

By the next lemma, we can treat noncompact ANR like a compact one.

- LEMMA 2 [Mi, LEMMA 2.1]. Every metric ANR $Y = (Y, d_0)$ has a compatible metric $d \ge d_0$ with the following property:
- (h) For each $\varepsilon > 0$, there is a $\delta = \delta(\varepsilon) > 0$ such that any two δ -near maps of an arbitrary space to Y = (Y, d) are ε -homotopic
- Let $p: X \to B$ and $q: Z \to B$ be given maps. A map $f: Z \to X$ is said to be fiber-preserving (f.p.) if pf = q. We call $p: X \to B$ an absolute neighborhood fiber extensor (ANFE) if any f.p. map $f: A \to X$ of a closed set in an arbitrary space Z with a map $q: Z \to B$ can be extended to an f.p. map $\tilde{f}: U \to X$ of a neighborhood of A in Z. A map $p: X \to B$ is called an absolute neighborhood fiber retract (ANFR) provided whenever X is embedded in a space Z with a map $q: Z \to B$ as a closed set with p = q|X there is an f.p. retraction $r: U \to X$ of a neighborhood of X in X onto X. A map X is an ANFR if and only if X is an ANFE. (See §1 of [Ya].) By [Ya, 1.2], we have the following

LEMMA 3. Any locally trivial bundle $p: X \to B$ with ANR fiber is an ANFR, that is, an ANFE.

We refer to [Du, Chapter XII] for function spaces and to [Hu] for ANR's.

2. Proof of main theorem. First we show that $\Gamma(X)$ is an ANR. Let $f: A \to \Gamma(X)$ be a map from a closed set in a space Z. Then f induces the map $F: A \times B \to X$ with $pF = \pi_B$, the projection. By Lemma 3, F extends to a map $\widetilde{F}: W \to X$ from a neighborhood of $A \times B$ in $Z \times B$ with $p\widetilde{F} = \pi_B$. From compactness of B, there is a neighborhood U of A in X that $X \to B \to X$ induces the map $\widetilde{f}: U \to \Gamma(X)$ which is an extension of X. Hence X is an ANR.

Since Y is complete-metrizable, X is locally complete-metrizable, hence complete-metrizable (cf. [**BP**, Chapter II, Theorem 4.1]). Since B is nondiscrete, B has a cluster point b_{∞} . From local triviality of p, there is an open neighborhood U of b_{∞} in B and a homeomorphism $\varphi \colon \operatorname{cl} U \times Y \to p^{-1}(\operatorname{cl} U)$ such that $p\varphi = \pi_{\operatorname{cl} U}$. Since Y has no isolated point, Y admits a compatible complete metric d_Y such that each component of Y has diam > 1 (cf. [**BP**, Chapter II, Theorem 3.2]). We may assume that (Y, d_Y) has the property (h) in Lemma 2. Let ρ be the product metric on $\operatorname{cl} U \times Y$ defined by a metric for $\operatorname{cl} U$ and d_Y . And let d be a compatible complete metric for X extending the metric on $p^{-1}(\operatorname{cl} U)$ induced from ρ by φ (cf.

[**BP**, Chapter II, Theorem 3.2]). Then the sup-metric \hat{d} on $\Gamma(X)$ is a compatible complete metric.

Let $(b_i)_{i\in\mathbb{N}}$ be a sequence of distinct points in $U\setminus\{b_\infty\}$ which converges to b_∞ . For each $i\in\mathbb{N}$, let

$$\Gamma_i(X) = \{ s \in \Gamma(X) \mid \pi_Y \varphi^{-1} s(b_j) = \pi_Y \varphi^{-1} s(b_\infty) \text{ for all } j \ge i \}.$$

Thus we have a tower $\Gamma_1(X) \subset \Gamma_2(X) \subset \cdots \subset \Gamma(X)$. We will show that this tower satisfies the properties (a) and (b) relative to \hat{d} . Then $\Gamma(X)$ is an l_2 -manifold by Toruńczyk's characterization.

(a) Let $A \subset I^n$ be a compactum, $f: I^n \to \Gamma(X)$ a map with $f(A) \subset \Gamma_i(X)$ and $\varepsilon > 0$. Then f induces the map $F: I^n \times B \to X$ such that $pF = \pi_B$ and

$$\pi_Y \varphi^{-1} F(a, b_k) = \pi_Y \varphi^{-1} F(a, b_\infty)$$
 for all $a \in A$ and $k \ge i$.

Let $\delta = \delta(\varepsilon) > 0$ in the property (h) for (Y, d_Y) . Since $I^n \times B$ is compact, $\pi_Y \varphi^{-1} F$ is uniformly continuous. Thus we can choose $j \geq i$ so that

$$d_Y(\pi_Y \varphi^{-1} F(z, b_k), \pi_Y \varphi^{-1} F(z, b_\infty)) < \delta$$
 for all $z \in I^n$ and $k \ge j$.

By using (h) and the Homotopy Extension Theorem [Hu, Chapter IV, Theorem 1.2], we can obtain a map $g': I^n \times \operatorname{cl} U \to Y$ such that

$$g'|A \times \operatorname{cl} U \cup I^n \times \operatorname{bd} U = \pi_Y \varphi^{-1} F|A \times \operatorname{cl} U \cup I^n \times \operatorname{bd} U,$$

 $g'(z, b_k) = \pi_Y \varphi^{-1} F(z, b_\infty)$ for all $z \in I^n$ and $j \leq k \leq \infty,$
 g' and $\pi_Y \varphi^{-1} F|I^n \times \operatorname{cl} U$ are ε -homotopic.

Define a map $G: I^n \times B \to X$ with $pG = \pi_B$ as follows:

$$G(z,b) = \begin{cases} \varphi(b, g'(z,b)) & \text{if } b \in \operatorname{cl} U, \\ F(z,b) & \text{otherwise.} \end{cases}$$

Then G induces the map $g: I^n \to \Gamma_i(X)$ such that g|A = f|A and for each $z \in I^n$,

$$\hat{d}(g(z), f(z)) = \sup \{ d(g(z)(b), f(z)(b)) \mid b \in cl U \}
= \sup \{ d_Y(\pi_Y \varphi^{-1} G(z, b), \pi_Y \varphi^{-1} F(z, b)) \mid b \in cl U \}
= \sup \{ d_Y(g'(z, b), \pi_Y \varphi^{-1} F(z, b)) \mid b \in cl U \} < \varepsilon.$$

(b) For each $\varepsilon > 0$, let $\delta = \delta(\varepsilon) > 0$ in (h) for (Y, d_Y) . We may assume $\delta < 1$. Let $f \colon I^n \to \Gamma_i(X)$ be a map. Then f induces the map $F \colon I^n \times B \to X$ such that $pF = \pi_B$ and

$$\pi_Y \varphi^{-1} F(z, b_k) = \pi_Y \varphi^{-1} F(z, b_\infty)$$
 for all $z \in I^n$ and $k \ge i$.

From compactness, there exist $y_1, \dots, y_m \in Y$ such that

$$\pi_Y \varphi^{-1} F(I^n \times B) \subset B(y_1, \delta/3) \cup \cdots \cup B(y_m, \delta/3),$$

where $B(y,r) = \{x \in Y \mid d_Y(x,y) < r\}$. For each $j = 1, \ldots, m$, choose a point $z_j \in B(y_j, \delta) \setminus B(y_j, 2\delta/3)$. (Since each component of Y had diam > 1, we can choose such a point.) Using the Homotopy Extension Theorem and (h), we have a map $g_j \colon Y \to Y$ such that $g_j(B(y_j, \delta/3)) = z_j$, $g_j|Y \setminus B(y_j, \delta) = \mathrm{id}$ and g_j is ε -homotopic to id. Then it follows

(*)
$$\max\{d_Y(y,g_j(y)) \mid j=1,\ldots,m\} > \delta/3 \text{ for each } y \in \pi_Y \varphi^{-1} F(I^n \times \operatorname{cl} U).$$

Again using the Homotopy Extension Theorem, we can obtain a map $g' : I^n \times \operatorname{cl} U \to Y$ such that

$$g'|I^{n} \times \operatorname{bd} U = \pi_{Y} \varphi^{-1} F|I^{n} \times \operatorname{bd} U,$$

$$g'(z, b_{k}) = \pi_{Y} \varphi^{-1} F(z, b_{\infty}) \quad \text{if } i + m < k \leq \infty,$$

$$g'(z, b_{i+j}) = g_{j} \pi_{Y} \varphi^{-1} F(z, b_{i+j}) \quad \text{if } j = 1, \dots, m,$$

$$g' \text{ is } \varepsilon\text{-homotopic to } \pi_{Y} \varphi^{-1} F|I^{n} \times \operatorname{cl} U \text{ rel. } I^{n} \times \operatorname{bd} U.$$

As in the proof of (a), define a map $G: I^n \times B \to X$ with $pG = \pi_B$ by using the above g'. It is easy to see that G is f.p. ε -homotopic to F. Then G induces the map $g: I^n \to \Gamma_{i+m+1}(X)$ which is ε -homotopic to f. We show $\operatorname{dist}(f(I^n), g(I^n)) \ge \delta/6$. Suppose that $\hat{d}(f(z), g(z')) < \delta/6$ for some $z, z' \in I^n$. Then

$$d_Y(\pi_Y \varphi^{-1} F(z, b_\infty), \pi_Y \varphi^{-1} F(z', b_\infty)) = d_Y(\pi_Y \varphi^{-1} F(z, b_\infty), g'(z', b_\infty))$$

= $d(F(z, b_\infty), G(z', b_\infty)) \le \hat{d}(f(z), g(z')) < \delta/6.$

And for each $j = 1, \ldots, m$,

$$\begin{split} d_{Y}(\pi_{Y}\varphi^{-1}F(z,b_{\infty}),g_{j}\pi_{Y}\varphi^{-1}F(z',b_{\infty})) \\ &= d_{Y}(\pi_{Y}\varphi^{-1}F(z,b_{i+j}),g_{j}\pi_{Y}\varphi^{-1}F(z',b_{i+j})) \\ &= d_{Y}(\pi_{Y}\varphi^{-1}F(z,b_{i+j}),g'(z',b_{i+j})) = d(F(z,b_{i+j}),G(z',b_{i+j})) \\ &\leq \hat{d}(f(z),g(z')) < \delta/6. \end{split}$$

Hence for each j = 1, ..., m,

$$d_Y(\pi_Y \varphi^{-1} F(z', b_\infty), g_i \pi_Y \varphi^{-1} F(z', b_\infty)) < \delta/3.$$

This contradicts (*). Therefore $d(f(z), g(z')) \ge \delta/6$ for any $z, z' \in I^n$, that is, $\operatorname{dist}(f(I^n), g(I^n)) \ge \delta/6$. The proof is completed. \square

3. The space of fiber-preserving maps. Let $p: X \to B$ and $q: Z \to B$ be given maps. By $C_B(Z,X)$, we denote the space of f.p. maps from Z to X with compact-open topology. The following is a generalization of Main Theorem which can be proved directly by the same method but it follows from Main Theorem as a corollary.

COROLLARY. Let $q: Z \to B$ be a map of a nondiscrete compactum Z, Y a complete-metrizable ANR with no isolated point and $p: X \to B$ a locally trivial bundle with fiber Y. Then $C_B(Z,X)$ is an l_2 -manifold if $C_B(Z,X) \neq \emptyset$.

PROOF. Consider the fiber-product $X \times_B Z = \{(x,z) \in X \times Z \mid p(x) = q(z)\}$ of X and Z over B. Let $\pi_X \colon X \times Z \to X$ and $\pi_Z \colon X \times Z \to Z$ denote the projections. Then $\pi_Z | X \times_B Z$ is a locally trivial bundle with fiber Y because so is $p \colon X \to B$. Let $\Gamma(X \times_B Z)$ be the space of cross-sections of this bundle. Define a map $\theta \colon \Gamma(X \times_B Z) \to C_B(Z,X)$ by $\theta(s) = \pi_X \circ s$. Then it is easy to see that θ is a homeomorphism. The result follows from Main Theorem. \square

As mentioned in Lemma 3, any locally trivial bundle with ANR fiber is an ANFR. Besides a Hurewicz fibration between ANR's and a proper strongly regular map onto a finite-dimensional space with ANR fibers are also ANFR's (cf. [Ya, 1.2]). We have the f.p. Homotopy Extension Theorem [Ya, 1.1 (iv)] and the f.p. version of Lemma 2. By the same method as Main Theorem, we can prove the following theorem which is analogous to the above corollary but in a little different setting.

THEOREM. Let $q: Z \to B$ be a map of a compactum and $p: X \to B$ an ANFR such that X is complete-metrizable. Then $C_B(Z,X)$ is an l_2 -manifold if $C_B(Z,X) \neq \emptyset$, $q^{-1}(b)$ is nondiscrete and $p^{-1}(b)$ has no isolated point for some $b \in B$.

Because of similarity, the proof is left to the reader. (We can also prove the relative version of this theorem, i.e., the f.p. version of [To₁, Theorem 5.5].) Here we give the proof of the f.p. version of Lemma 2.

LEMMA 2'. Let $p: X \to B$ be an ANFR and d_0 a metric for X. Then X has a compatible metric $d \ge d_0$ with the following property

(h') For each $\varepsilon > 0$, there is a $\delta = \delta(\varepsilon) > 0$ such that any two δ -near f.p. maps of an arbitrary space Z with a map $q: Z \to B$ to X = (X, d) are f.p. ε -homotopic.

PROOF. Since $X=(X,d_0)$ can be isometrically embedded in a normed linear space E as a closed set (cf. [**BP**, Chapter II, Corollary, 1.1]), we have an f.p. closed embedding $i\colon X\to B\times E$ such that $\pi_E i$ is an isometry, where $\pi_E\colon B\times E\to E$ is the projection. Identify X with $i(X)\subset B\times E$ and $p=\pi_E|$. Let d_1 be the product metric on $B\times E$. Then $d_1\geq d_0$ on X. Since $p\colon X\to B$ is an ANFR, there is an f.p. retraction $r\colon G\to X$ of a neighborhood G of X in $B\times E$. For a subset $S\subset B\times E$, we denote

$$\operatorname{conv}_B S = \bigcup \{ \{b\} \times \operatorname{conv} \pi_E(S \cap \{b\} \times E) \mid b \in B \},$$

where conv A denotes the convex hull of $A \subset E$. For each $x \in X$ and each neighborhood V of x in X, there is a basic open set $U = U_1 \times U_2$ in $B \times E$ such that $\pi_E(U) = U_2$ is convex and $x \in U \subset r^{-1}(V)$. Let $W = U \cap X$. Then $\operatorname{conv}_B W \subset U \subset G$ and $r(\operatorname{conv}_B W) \subset r(U) \subset V$. By the same way as [Mi, Lemma 2.1], we have a compatible metric $d \geq d_1$ on X with the following property:

(c) To every $\varepsilon > 0$ corresponds a $\delta = \delta(\varepsilon) > 0$ such that if $S \subset X$ with diam $S < \delta$ then $\operatorname{conv}_B S \subset G$ and $\operatorname{diam} r(\operatorname{conv}_B S) < \varepsilon$.

By standard arguments, (h') follows from (c). (Cf. [**Hu**, Chapter IV, Theorem 1.1].) \Box

REFERENCES

- [BP] C. Bassaga and A. Pełczyński, Selected topics in infinite-dimensional topology, Monogr. Mat. 58, PWN, Warsaw, 1975.
- [DT] T. Dobrowolski and H. Toruńczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology Appl. 12 (1981), 229-235.
- [Du] J. Dugundji, Topology, Allyn & Bacon, Boston, Mass., 1966.
- [E] J. Eells, Jr., On geometry of function spaces, Symp. Intern. de Topologia Algebraica Univ. Nacional Autónoma de México and UNESCO, Mexico City, 1958, pp. 303-308.
- [Ge] R. Geoghegan, On spaces of homeomorphisms, embeddings and functions, I, Topology 11 (1972), 159-177.
- [Hu] S.-T. Hu, Theory of retracts, Wayne State Univ. Press, 1965.
- [Mi] E. Michael, Uniform AR's and ANR's, Compositio Math. 39 (1979), 129-139.
- [To₁] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l₂-manifolds, Fund. Math. 101 (1978), 93-110.
- [To₂] ____, Characterizing Hilbert space topology, Fund. Math. 111 (1981), 247-262.
- [To₃] _____, A correction of two papers concerning Hilbert manifolds, Fund. Math. 125 (1985), 89-93.
- [Ya] T. Yagasaki, Fiber shape theory, Tsukuba J. Math. 9 (1985), 261-277.

Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki, 305 Japan