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Abstract. Gardner’s computation of the number of N-bit patterns which can be stored in 
an optimal neural network used as an associative memory is derived without replicas, using 
the cavity method. This allows for a unified presentation whatever the basic measure in 
the space of coupling constants, but above all it gives the clear physical content of the 
assumption of replica symmetry. TAP equations are also derived. 

Foreword 

One of the most exciting recent developments in the theory of neural networks is a 
contribution of Elizabeth Gardner. She showed how one can analyse the space of all 
the networks that are able to memorise a certain number of patterns, using spin-glass 
techniques and ideas. This was a major step forward and this kind of computation ‘ B  
la Gardner’ (as it is often referred to among specialists) has been one of the most 
useful tools in the theory of neural networks since. As a tribute to my greatly missed 
colleague Elizabeth, to her talent and modesty, I decided to write down the following 
notes, which present an alternative and complementary derivation of her results. 

1. Introduction 

We consider a neural network of N binary neurons ui = * l ,  i = 1,. . . , N, fully con- 
nected (i.e. each neuron can interact with all the others). The dynamics of the network 
is deterministic: 

where J j  is the interaction from neuron j to neuron i, which need not be symmetric, 
and the updating can be either parallel or sequential, the type of dynamics having no 
influence on the issues which we shall study hereafter. 

The network is used as an associative memory (Hopfield 1982) to store p patterns 
5’ = { [ y  = 51, i = 1,.  . . , N } ,  p = 1,. . . , p .  Each network is characterised by the set of 
couplings {Ju}. As two networks, which differ by an overall dilation of the couplings 

t Laboratoire Propre du Centre National de la Recherche Scientique, associd B I’Ecole Normale Supdrieure 
et B I’Universitt de  Paris-Sud. 

0305-4470/89/122181+ 10%02.50 @I 1989 IOP Publishing Ltd 2181 



2182 M Mkzard 

(1, -P Aj,,), are clearly identical, we shall always suppose that the couplings have been 
normalised in such a way that the typical value of each is of order 1 = N o  for N -P a. 
For instance we can study cases where j J  = * 1 (Ising model), or 1, is real with X , j i  = N 
(spherical model), or j ,] E [ -1 ,  11 (cubic model), etc. A given network stabilises the 
pattern CL if and only if 6” is a fixed point of the dynamics ( 1 ) :  

V i. 

An important problem is the capacity of the network. Following the usual bench- 
marks (Hopfield 1982, Amit er a1 1985), one can ask for instance how many random 
patterns (6Y = * 1  with probability f )  can be stored by such a network. The answer 
obviously depends on the jv ,  and an important problem is to find good learning 
algorithms which provide a set of Jj that is able to memorise the largest possible 
number of patterns. But apart from any specific algorithm, it was recently realised by 
Gardner (1987, 1988) that one can compute the capacity of the best possible network. 

The idea of her computation is, in the space of all the possible networks, to evaluate 
the fractional volume of the networks which stabilise all the patterns on one given site 
i o .  Obviously the stability equations (2) decouple on different sites, if no constraints 
(e.g. of symmetry) are placed a priori on the matrix of couplings. Denoting vj” = ,$$.$? 
and .$ = j iOj ,  the stability equations of the p patterns on site io reduce to 

where we have introduced the stability parameters A,, (Amari 1971, Gardner 1988, 
Krauth and MCzard 1987). The A,, should be positive in order for the patterns to be 
stable, but it has also been shown that the larger the A,, (in the spherical normalisation 
where Zj  J j  = N ) ,  the larger is the basin of attraction in the associative recall of pattern 
p (Forrest 1988, Krauth et a1 1988a, b, Kepler and Abbott 1988). 

Hereafter we shall follow the approach of Gardner and Derrida (1988) where 
instead of demanding the full stability of the patterns, one introduces an energy 

equal to the number of patterns with stability less than a given number K. Given a 
set of quenched random patterns g”, one seeks the set of couplings 4 which minimises 
the energy. The corresponding partition function at temperature T = 1/p is: 

i 

where we have written the natural measure on the J as I I j p ( J i )  d.4 (e.g. king measure: 
p ( J )  = i [ S ( J  + 1 )  + S ( J  - l)]). This does not exactly include the spherical model but it 
would be easy to incorporate this case into our framework by the use of an appropriate 
Lagrange multiplier. 

This Gardner-Derrida approach allows us to analyse the space of couplings 4: we 
have a kind of spin-glass Hamiltonian (4), where the basic thermalised variables are 
the couplings 4, while the quenched parameters are the patterns f“” which give rise 
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to quenched frustrated random interactions between the 4. Therefore we can compute 
the typical number of networks (related to the entropy) which produce a given number 
of errors (related to the energy), as well as more detailed pieces of information on the 
distribution of overlaps between the networks which stabilise a given set of patterns, 
etc. I t  should be emphasised that this approach can give much more detailed results 
than just the capacity. For the spherical model ZJ JJ2 = N the stabilising volume is 
convex and the capacity is equal to 2 N  (Gardner 1987, 1988) for N + m .  This is a 
rather simple case for which good algorithms can reach the limit of optimality (Rosen- 
blatt 1962, Minsky and Pappen 1969, Gardner et a f  1987, Diedrich and Opper 1987, 
Poppel and Krey 1987) and even produce the largest possible stabilities (Krauth and 
MCzard 1987). But for cases that are of great practical importance, like the Ising case 
(4  = k l ) ,  the situation is much more complicated, as much from the analytic side 
(Gardner and Derrida 1988) as from the numerical side (Amaldi and Nicolis 1988): 
the capacity is still unknown, not to speak of the structure of the stabilising volume 
(overlap distribution, etc). 

Hereafter we shall use the cavity method (MCzard et a1 1987) to study the thermody- 
namics of this problem. We shall essentially work within the approximation of one 
single pure state (replica symmetric approximation) and point out the physical meaning 
of this approximation. There are two equivalent ways to use the cavity method on 
this problem. One way would be to use integral representations of the 8 functions in 
(5) like Gardner (1987): 

and consider the problem of the N + 2 p  variables J,, A’, t” interacting through some 
couplings ( f .  This is probably the easiest way but it hides the physical content of the 
method. Therefore herafter we shall avoid this manipulation and work only in terms 
of the original ‘physical’ variables J,. The cavity method will be implemented in two 
steps: adding a new pattern, or adding a new coupling. We shall always work in the 
limit N >> 1, with a = P / N  fixed. Eventually in the final section we shall derive TAP 

equations. 

2. The cavity method: adding one constraint 

To the problem with N couplings and p patterns (i.e. constraints) defined by the 
partition function ( 5 )  we add one new pattern 6: = *l ,  i = 1, . . . , N. The new partition 
function is 

The stability of the new pattern is: 
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It has a certain thermal distribution due to the thermal fluctuations of the variables 
J i .  Denoting by ( ) the thermal averages (and, for future use, by 0 the quenched 
averages over the distribution of random patterns), we get the first two moments: 

1 
h = (Ao) = - (Ji).$ mi 

(9) 
1 1 ( A 3  - (Ao)2 = y c ( ( J3  - ( J , ) * )  +z c tbtix(JlJ,) - (JJCJ,)). 

I I + J  

Following MCzard er a1 (1988), within one pure state the connected correlation 
functions like ( J A ) - ( J J ( J , )  should be generically small (e.g. of order l/m), a 
property known as clustering which is expressed more rigorously by 

Restricting the thermal measure to within one pure state, such that this clustering 
holds (as well as similar relations on higher-order correlations), one finds that the last 
term in (9) is negligible (since 6; and 6’0 are totally uncorrelated with ( J i 4 ) - ( J i ) ( . $ ) ) ,  
and the higher moments are also easily deduced: the thermal distribution of A. turns 
out to be a Gaussian, truncated by the new constraint introduced in (7): 

where 
1 
N i  

q, = -c ( J f )  =(Jf> 
(12) - 1 

N i  
qo = - ( J J 2  = (.Ii)*. 

The average h of Ao,  defined in (9), depends on the pure state and on the sample. 
To proceed with relatively simple formulae, let us assume that there is only one pure 
state, in which case ( ) is the full Gibbs measure and h fluctuates only from sample 
to sample. The distribution of h is easily deduced from 

1 -  
N I  

- 
i = O  h* = - (J i )2  = q o  etc. 

It is a Gaussian of mean 0 and width d&. Hereafter we shall denote this measure 
D,(h): 

Dm(h)=- dh e x p ( - E ) .  
% 2 40 

Let us suppose for a while that we know qo and ql. Then the internal energy is: 

=aN(O(K-AO)) 

= a N  D,(h) Dql-%)(Ao-h)  e-@B(K -Ao) 
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It is useful to introduce the error function: 

in terms of which the energy is 

K - h  - '  
E = a N  J D,,(h) e-p [ 1 - H (*)I[ G% e-p + ( 1  - e - p ) H (  ,)] . (17) 

We are now left with the computation of qO and q1 which will be done self- 
consistently in the next section by adding one coupling instead of one constraint. 

3. The cavity method: adding one coupling 

Starting from the system with N couplings and p patterns, defined in ( 5 ) ,  we add one 
new coupling Jo.  The values of the patterns on the new site are (rz0 = *l, p = 1, . . . , p .  
The stability of each pattern is slightly changed, by a term of order l/m. This suggests 
the expansion 

where 

Using (5) and (181, we obtain the thermal distribution of the new coupling J o ,  in 
the system with N + 1 couplings and p patterns: 

~ ) N + I , ~ ( J O )  = c 'p (J0)  I n ~ ( 4 )  d 4  f E , ~ .  . . c V k ( 1  
j k = O  l ~ v l < < . . , <  vk s p  

The information we need on the system with N couplings concerns the joint 
probability distribution of the stabilities 

The clustering property means that inside one pure state this probability generically 
factorises into the product of individual distributions of each stability (by generically 
we mean that clustering holds on average for all moments, as in (10): 

as well as generalisations of this formula to higher moments). 
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Then, the thermal distribution of Jo  inside one pure state is: 

In the large-N limit the higher-order terms in 1 / m  become irrelevant and we get 

Physically the situation is rather clear. By adding a new coupling we slightly change 
the stability A,, of each pattern. If the A,, (in the system with N couplings) is far from 
the boundary value K, then nothing changes. The only non-trivial constraints on Jo 
come from those patterns for which A p  was nearly equal to K .  Therefore the distribution 
of Jo depends on the probability distribution of stabilities around the value K .  

But this probability distribution we know from the first part of the cavity method- 
the one in which we added one new pattern: it is explicitly written in (1 1) and (14). 
Therefore the relevant parameters are easily computed: 

A =  a ( 1  -e-P)2[P$,p(K)]2 

= a ( 1  - e -@)’ [P$~~ , (K) ]*  

K - h  1 
= a  1 D,(h)- (1 -e-@) 

91 - 90 JZ.rr(91- 9 0 )  

Apart from these parameters A and E, the distribution of Jo in (24) also depends 
on a field: 

(27) 
50” - P $ J K ) .  H = ( 1  -e-@) 

- If there is only one pure state, this field is only sample dependent, and one gets A = 0, 
H 2  = A, etc, so that H is a Gaussian variable of mean 0 and width a. 

Now we completely know the distribution (24) of J o ,  from which we can deduce 
the values of qo and q l ,  in (12): 
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The set of four equations (25), (26), (28) and (29) defines the four parameters A, B, 
qo and q l .  Once these equations are solved, the whole thermodynamics can be Fecovered 
from expression (15) of the external energy as a function of temperature. 

4. TAP equations 

The previous results were derived by averaging over many samples, within the assump- 
tion of the existence of one single pure state. However, as explained by MCzard er a f  
(1987) the cavity method can be used to study one single sample (always in the 
thermodynamic limit). In the present section we shall derive TAP-like equations 
(Thouless et a1 1977) which are mean-field equations valid for one given sample, within 
one pure state. 

Considering a sample with N couplings J, and p patterns {[y}, we shall need the 
following order parameters: 

mJ = ( T ) , , p  x$,, = (1 - e-@)P%.,( K )  (30) 
where the thermal average is restricted to within one given pure state. 

In § 3 we considered the addition of one new coupling Jo to a system with N 
couplings and p constraints. We derived the distribution (24) of Jo within one pure 
state (assumption of clustering). From (24) we have 

and the field H , ,  has been expressed in (17): 

Equations (31) are cavity equations: they express the distribution of the new 
couplings J o ,  in a sample with N + 1 couplings, as a function of the X’I in a sample 
of N couplings only. Therefore this set of equations is not closed. One needs to 
express (JO),+,,, in terms of the variables x $ + ~ , ~  computed in the same sample. Let 
us express the probability P % + l , p ( K )  that the stability of pattern p be equal to K in 
the system with N + 1 couplings: 

Following the approach of 03, we expand all the terms in powers of J&/m. 
Introducing the joint probability distributions of the stabilities (21) and using the 
clustering hypothesis (22) we obtain eventually (we skip the details which are similar 
to the derivation of (23)): 

1 
P%+ .J  K ) = P%,J K + - m G ( J 0 )  h + 1, ,[P&&,( K ) - ( 1 - e-’ P%,p( K ) ) * I  (35) 
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from which we obtain 

Equations (31) and ( 3 6 )  give the first set of ~ ~ e q u a t i o n s ;  they relate the parameters 
mj and x, in the same sample by 

The last term in the argument of f l  is Onsager’s reaction term. 
We need a second set of equations expressing x” in terms of mj. Adding one new 

pattern to a problem with N couplings and p patterns, we derived in § 2 the distribution 
of the stability of the new pattern. The analogue equation ( 3 1 )  gives the kth derivative 
of the probability that the stability of the new pattern be equal to K as 

where 

and 

As before, we need to express XR:,!+~, and therefore PR:,”+,, in terms of ( . $ ) N , p + l .  We 
have 

Following the method of § 2, this is easily written as 

A N , , + ,  = P N , p + i ( A o ) A o  dAo ( 4 2 )  

h N ,  p +  1 = h N ,  p + (41 - q O ) (  - e-’ ) p%Fi+ 1 ( 

I 
where P N , p + l ( A O )  is given in (11). We thus find 

( 4 3 )  
which gives the second set of TAP equations (written in closed form for a system of N 
couplings and p patterns): 
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This ends the derivation of TAP equations. At this stage it may be useful to summarise 
the results. In one given sample, the order parameters are the average value mj of the 
coupling J, and a quantity x” proportional to the probability that a constraint be strict 
(see (30)). These order parameters satisfy the equations: 

where the parameters qo, ql , A and B, are given by 

v p  = 1 , .  . * , P 
(45) 

and the functionsfk and g k  are given in (32) and (39). 

5. Conclusions 

The results of 0 0  2 and 3 can also be obtained with the replica method. They have 
been derived in this way, for the cases of the spherical model or the Ising model, by 
Gardner and Derrida (1988). I think that, once again, the replica method and the 
cavity method are complementary. The former is much more compact and may be 
more systematic, the latter puts more accent on the physical content. For instance, 
keeping to the replica symmetric approximation, we have seen here that this abstract 
mathematical hypothesis hides two hypotheses: 

the fact that the couplings are weakly correlated (clustering in the space of couplings, 
see (10)); 

the fact that different constraints (related to different patterns) are weakly correlated 
(clustering in the space of the stabilities, see ( 2 2 ) ) .  

Whether these hypotheses are satisfied or not for a given p ( J )  is related to the 
validity of the replica symmetric approximation. A self-consistent check (equivalent 
to a local stability analysis in the replica method) can be done (see MCzard et a1 (1987) 
where a similar computation has been performed), but that goes beyond the aim of 
this paper. 

The TAP equations described in equations (45) and (46) can be quite helpful in 
this respect: these equations are valid within one pure state. Whenever ergodicity 
breaking occurs (which must be the case, for instance, for Ising couplings 4 = i l ) ,  
this should be signalled by the appearance of several solutions of these equations. 
Therefore it will be useful to study the number of solutions of these equations either 
numerically or analytically. 
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I hope the present approach will prove helpful for the understanding of the difficult 
problems where p ( J )  is discrete, like the long-standing problem of the Ising case. 
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