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THE SPACE OF KÄHLER METRICS

XIUXIONG CHEN

Abstract
Donaldson conjectured [16] that the space of Kähler metrics is geodesically
convex by smooth geodesics and that it is a metric space. Following Don-
aldson’s program, we verify the second part of Donaldson’s conjecture com-
pletely and verify his first part partially. We also prove that the constant
scalar curvature metric is unique in each Kähler class if the first Chern class
is either strictly negative or 0. Furthermore, if C1 ≤ 0, the constant scalar
curvature metrics: realizes the global minimum of the Mabuchi K energy
functional; thus it provides a new obstruction for the existence of constant
curvature metrics: if the infimum of the K energy (taken over all metrics in
a fixed Kähler class) is not bounded from below, then there does not exist
a constant curvature metric. This extends the work of Mabuchi and Bando
[3]: they showed that K energy bounded from below is a necessary condition
for the existence of Kähler-Einstein metrics in the first Chern class.

1. Introduction to the problem

1.1 Brief introduction to the classical problems in Kähler
geometry

Let V be a Kähler manifold. E. Calabi conjectured in 1954 that any
(1,1) form which represents C1(V ) (the first Chern class) is the Ricci
form of some Kähler metric on V. Yau [44], in 1976, proved this Calabi
conjecture. Aubin [1] and Yau proved independently the existence of a
Kähler-Einstein metric on a Kähler manifold with negative first Chern
class (also a conjecture of E. Calabi). G. Tian [38], in 1987, proved
the existence of Kähler-Einstein metric in a canonical Kähler class on
complex surfaces if the first Chern class is positive and the group of
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automorphisms is reductive. For further references on this subject, see
[39] and [40]. An important conjecture by Yau [45] relates the existence
of Kähler-Einstein metrics to stability in the sense of Hilbert schemes
and geometric invariant theory.

Kähler-Einstein metrics can be treated as a special kind of extremal
Kähler metric. The question of extremal Kähler metrics was first raised
by E. Calabi in his paper [9]: he considered the L2 norm of curvature as
a functional from a given Kähler class; a critical point of this functional
is called an “extremal Kähler metric.” He showed that any extremal
Kähler metric must be symmetric under a maximal compact subgroup
of the holomorphic transformation group. Using this structure theorem
of Calabi, Marc Levine [30] was able to construct a Kähler surface on
which there is no extremal Kähler metric. In 1992, D. Burns and P. de
Bartolomeis [8] also produced an example of non-existence of extremal
Kähler metrics; their example suggests some new obstruction for the
existence of extremal metrics which is related to some borderline semi-
stability of hermitian vector bundles. LeBrun [26] also demonstrated
that the existence of critical Kähler metrics might be tied up with
the stability of corresponding vector bundles. Donaldson [16] thought
that Yau’s conjecture [45] should extend over to the general extremal
Kähler metrics. For further references on the subject of extremal met-
rics, please; see [27], [26], [19] and references therein.

Futaki [18] in 1983 introduced an analytic invariant for any Kähler
manifold with positive first Chern class. The vanishing of this invariant
is a necessary condition for the existence of a Kähler-Einstein metric on
the manifold. Later, Futaki and Calabi [10] generalized the invariant to
any compact Kähler manifold. This generalized Futaki invariant, i.e.,
Calabi-Futaki invariant, is an analytic obstruction to the existence of
a constant scalar curvature metric on a Kähler manifold. In the same
paper, Calabi also showed that constant scalar curvature metrics and
extremal Kähler metrics with non-constant scalar curvature do not co-
exist in a single Kähler class.

For uniqueness, the known results are as follows:
1) in the 1950s, E. Calabi showed the uniqueness of Kähler-Einstein

metric if C1 ≤ 0.
2) in 1987, Mabuchi and S. Bando [3] showed the uniqueness of

Kähler-Einstein metric up to holomorphic transformation if the first
Chern class is positive. Recently, Tian and X.H. Zhu [43] proved the
uniqueness of Kähler-Ricci Soliton with respect to a fixed holomorphic
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vector field on any Kähler manifold with positive first Chern class. Al-
though very little was known about the uniqueness of general extremal
Kähler metrics, most experts in Kähler geometry expect that the ex-
tremal Kähler metric is unique in each Kähler class up to holomorphic
transformation. In [12] (also see [11] for further references), we demon-
strated two degenerate extremal Kähler metrics in the same Kähler class
with different energy levels and different symmetry groups: one example
is due to Calabi, the other is due to the author. To my knowledge, it
appears that this is the only non-uniqueness example known today.

Main results. Mabuchi ([31])1 in 1987 defined a Riemannian met-
ric on the space of Kähler metrics, under which it becomes (formally)
a non-positive curved infinite dimensional symmetric space. Appar-
ently unaware of Mabuchi’s work, Semmes [35] and Donaldson [16] re-
discover this same metric again from different angles. In [35], S. Semmes
first pointed out that the geodesic equation is a homogeneous complex
Monge-Ampère equation on a manifold of one dimension higher. In [16],
Donaldson further conjectured that the space is geodesically convex and
is a genuine metric space. We prove that it is at least convex by C1,1

geodesics,2 and from which we conclude that the space is indeed a
metric space, thus verifying the second part of Donaldson’s conjecture.
Moreover, this C1,1 geodesic realizes the absolute minimum of length
over all possible paths connecting the two end points; thus the met-
ric aforementioned is a genuine one. Using these results, we are able
to show that the constant curvature metric is unique in each Kähler
class if C1 < 0 or C1 = 0. Furthermore, if C1 ≤ 0, we show that
constant scalar metric (if it exists) realizes the global minimum of K
energy, which gives an affirmative answer to a question raised by Gang
Tian [42] in this special case. This last statement also extends the work
of Mabuchi and Bando [3]: they showed that K energy bounded from
below is a necessary condition for the existence of Kähler-Einstein met-
rics in the first Chern class. Tian [40] showed that in Kähler manifold
with positive first Chern class and no non-trivial holomorphic fields,
the Kähler-Einstein metric exists if and only if the K energy is proper
(he actually uses an equivalent functional instead of the K energy).3

One would like to ask: Is this still true for constant scalar curvature
1Around the same time of Mabuchi’s work, J. P. Bourguignon has worked on

something similar in a related subject [6].
2Here we mean the mixed second derivatives are uniformly bounded. See Theo-

rem 3 in Section 3 for details.
3The sufficient part of this result was proved in [14].
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metrics?4

Organization. In Section 2, we first summarize the different
approaches taken by Mabuchi, Semmes and Donaldson in the space of
Kähler metrics; then we introduce the Riemannian metric on this infinite
dimensional space and prove that it has non-positive sectional curvature
in the formal sense. Then we introduce Donaldson’s two conjectures and
reduce the first conjecture to the existence problem for the complex
homogeneous Monge-Ampère equation with Dirichlet boundary data.
Readers are alerted that material in Sections 2.3-2.5 is essentially a re-
presentation of Donaldson’s work [16], included here for the convenience
of readers. In Section 3, we prove that this geodesic (CHMA) equation
always has a C1,1 solution. In Section 4, we prove that a continuous
solution to the geodesic (CHMA) equation in some appropriate weak
sense is unique. In Section 5, we show that the geodesic distance defined
by the length of C1,1 geodesics satisfies the triangle inequality. Using
this, we prove the space of Kähler metrics is a metric space. In Section 6
we show that the extremal Kähler metric is unique in each Kähler class
if either C1(V ) < 0 or C1(V ) = 0.

Acknowledgments. The author is very grateful to Simon Don-
aldson who introduced him to this problem. He is also grateful for the
constant encouragement and support of E. Calabi, L. Simon and R.
Schoen during this work. He also wants to thank Professor E. Stein
for his help in Soblev functions and embedding theorems. The author
wishes to thank S. Semmes for pointing out some important references
in this problem. Thanks also go to W.Y. Ding and his colleagues, and
P. Guan for pointing out some errors in an earlier version of this paper.

2. Space of Kähler metrics

2.1 Mabuchi and S. Semmes’ ideas

Shortly after introducing the K energy, Mabuchi [31] defined a Rieman-
nian metric on the space of Kähler metrics. Besides showing formally
it is a locally symmetric space with non-positive sectional curvature, he
also pointed out that the K energy is formally convex in this infinite di-
mensional space (in the sense that the Hessian is semi-positive definite).

4Tian informed us that he [41] has conjectured that constant scalar curvature
metrics exist if and only if the K energy is proper.
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Perhaps, this is his original motivation for introducing such a metric.
Unaware of Mabuchi’s work, in [35], S. Semmes studied the geome-
try of solutions of the complex Homogeneous Monge-Ampère equation
(CHMA). He observed that in some special domain Ω×D where Ω is an
n-dimensional domain in Cn andD is a domain in the complex plane, the
solution to CHMA is some sort of geodesic equation if the data is rota-
tionally symmetric when restricted to D. He then considered the space
of pluri-subharmonic functions in Ω and defined a Riemannian metric
in this space according to this geodesic equation. It turns out that
this space becomes a non-positively curved (locally) symmetric space in
some formal sense. Unlike the real homogeneous Monge-Ampère equa-
tion (RHMA) whose solution always has proper geometric meaning, the
solution of a CHMA equation doesn’t have a preferred geometric inter-
pretation. Without a proper geometry interpretation, it is very hard to
work on this subject. Of course, great progress has been made since the
famous work of L. Caffarelli, L. Nirenberg and J. Spruck [24] and later
their joint work with J. Kohn [23], e.g., L. Lempert [29], E. Bedford and
B.A. Taylor [4]; P. Lelong [28] and important work of Krylov [22] and
Evans [25]. This is by no means a complete list of papers on complex
Monge-Ampère equations since the author is quite new to this impor-
tant field. For a complete and updated list of references, please; see S.
Kolodziej [21]. Donaldson’s recent work certainly makes Mabuchi and
Semmes’s original work more interesting.

2.2 Brief summary of Donaldson’s theory on space of Kähler met-
rics

S. K. Donaldson [16] outlined a strategy to relate this geometry of in-
finite dimensional space to the existence problems in Kähler geometry.
In particular, he explains how one can use this extra structure on the
infinite dimensional space to solve the problem of the existence and
uniqueness of extremal Kähler metrics. In general, the latter are in-
tractable problems from traditional means. He regards the space of
Kähler metrics in a fixed Kähler class as an infinite dimensional sym-
plectic manifold with the automorphism group SDiff(V ) (symplectic
diffeomorphism group of V into itself). In [15], he pointed out that
scalar curvature is the moment map µ from this infinite dimensional
symplectic manifold to the dual space of the Lie algebra of its auto-
morphism group5 . Thus, to find an extremal Kähler metric in a fixed

5The moment map point of view here was also observed by A. Fujiki [17].
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Kähler class in classical Kähler geometry could be re-interpreted as to
find a pre-image of 0 of the moment map µ in this symplectic setting.
This acute observation sheds new light into the otherwise intractable
problem of the existence of extremal Kähler metrics on a Kähler man-
ifold; at least conceptually, the picture looks much clearer. He then
proposed several conjectures whose ultimate resolution will lead to a
better understanding of extremal Kähler metrics, and for that matter,
better understanding of Kähler geometry as well. The most fundamental
one among his conjectures is the so called geodesic conjecture: any two
Kähler metrics in the same class are connected by a smooth geodesic. A
second conjecture by him is that this space of Kähler metrics is a metric
space under this metric. If the geodesic conjecture is true, this second
conjecture will be a direct consequence (since this space of Kähler met-
rics in a fixed Kähler class is non-positively curved in the formal sense.).
He went on to show that the uniqueness of extremal Kähler metrics is
a consequence of this geodesic conjecture as well.

2.3 Riemannian metrics on the infinite dimensional space.

Consider the space of Kähler potentials in a fixed Kähler class as:

H = {ϕ ∈ C∞(V ) : ωϕ = ω0 +
√−1∂∂ϕ > 0 on V }.

We now introduce an L2 metric in this space (cf. Mabuchi [31]). Clearly,
the tangent space TH is C∞(V ). Each Kähler potential φ ∈ H defines
a measure dµφ = 1

n!ω
n
φ . Now we define a Riemannian metric on the

infinite dimensional manifold H using the L2 norm provided by this
measure. We define the length of any vector ψ ∈ TϕH as

‖ψ‖2
ϕ =

∫
V
ψ2 d µϕ.

For a path ϕ(t) ∈ H(0 ≤ t ≤ 1), the length is given by

∫ 1

0

√∫
V
ϕ′(t)2dµϕ(t) d t

and the geodesic equation is

ϕ(t)′′ − 1
2
|∇ϕ′(t)|2ϕ(t) = 0,(1)
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where the derivative and norm in the 2nd term of the left-hand side are
taken with respect to the metric ωϕ(t).

This geodesic equation shows us how to define a connection on the
tangent bundle of H. The notation is simplest if one thinks of such a
connection as a way of differentiating vector fields along paths. Thus,
if φ(t) is any path in H and ψ(t) is a field of tangent vectors along the
path (that is, a function on V × [0, 1]), we define the covariant derivative
along the path to be

Dtψ =
∂ψ

∂t
− 1

2
(∇ψ,∇φ′)φ.

This connection is torsion-free because in the canonical “coordinate
chart”, which represents H as an open subset of C∞(V ), the “Christoffel
symbol”

Γ : C∞(V ) × C∞(V ) → C∞(V )

at φ is just

Γ(ψ1, ψ2) = −1
2
(∇ψ1,∇ψ2)φ

which is symmetric in ψ1, ψ2. The connection is metric-compatible be-
cause

1
2
d

dt
‖ψ‖2

φ =
d

dt

∫
V
ψ2dµφ

=
∫
V

∂ψ

∂t
ψ +

1
2
ψ2∆(φ′)dµφ

=
∫
V

∂ψ

∂t
ψ − 1

4
(∇(ψ2),∇φ′)φ dµφ

=
∫
V

(
∂ψ

∂t
− 1

2
(∇ψ,∇φ′)φ

)
ψdµφ

= 〈Dtψ,ψ〉.
Here 	 is a complex Laplacian operator. The main theorem proved in
[31] (and later reproved in [35] and [16]) is:

Theorem A. The Riemannian manifold H is an infinite dimen-
sional symmetric space; it admits a Levi-Civita connection whose cur-
vature is covariant constant. At a point φ ∈ H the curvature is given
by

Rφ(δ1φ, δ2φ)δ3φ = −1
4
{{δ1φ, δ2φ}φ, δ3φ}φ,
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where { , }φ is the Poisson bracket on C∞(V ) of the symplectic form
ωφ; and δ1φ, δ2φ ∈ TφH.

Recall that in infinite dimensions the usual argument gives the
uniqueness of a Levi-Civita [i.e., torsion-free, metric-compatible] con-
nection, but not the existence in general. The formula for the curvature
of H entails that the sectional curvature is non-positive, given by

Kφ(δ1φ, δ2φ) = −1
4
‖{δ1φ, δ2φ}φ‖2

φ.

Different proofs of this theorem have appeared in [31], [35] and [16].
We will skip the proof here; interested readers are referred to these
papers for the proof.

The expression for the curvature tensor in terms of Poisson brackets
shows that R is invariant under the action of the symplectic-morphism
group. Since the connection on TH is induced from an SDiff-connection,
it follows that R is covariant constant, and hence H is indeed an infinite-
dimensional symmetric space.

2.4 Splitting of H
There is obviously a decomposition of the tangent space:

TφH =
{
ψ :
∫
V
ψdµφ = 0

}
⊕ R.

We claim that this corresponds to a Riemannian decomposition

H = H0 × R.

We are interested in seeing this Riemannian splitting more explicitly,
partly because we see the appearance of a functional I on the space of
Kähler potentials, which is well-known in the literature; see [2], [40] for
example. The decomposition of the tangent space of H gives a 1-form
α on H with

αφ(ψ) =
∫
V
ψdµφ,

and it is straightforward to verify that this 1-form is closed. Indeed

(dα)φ(ψ, ψ̃) =
∫
V

(
ψ̃∆ψ − ψ∆ψ̃

)
= 0.
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This means that there is a function I : H → R with I(0) = 0 and
dI = α, and it is this function which gives rise to the corresponding
Riemannian decomposition. We call a Kähler potential φ normalized if
I(φ) = 0. Then any Kähler metric has a unique normalized potential,
and the restriction of our metric on H to I−1(0) endows the space H0

of Kähler metrics with a Riemannian structure; this is independent of
the choice of the base point ω0 and clearly makes H0 into a symmetric
space. The functional I can be written more explicitly by integrating α
along lines in H to give the formula

I(φ) =
n∑
p=0

1
(p+ 1)!(n− p)!

∫
V
ωn−p0 (∂∂φ)p φ.

2.5 Donaldson’ Conjectures

We will now study the geodesic equation in H in more detail, and inter-
pret the solutions geometrically. Suppose φt, t ∈ [0, 1], is a path in H.
We can view this as a function on V × [0, 1] and in turn as a function
on V × [0, 1]× S1, with trivial dependence on the S1 factor; that is, we
define

Φ(v, t, eis) = φt(v).

We regard the cylinder R = [0, 1] × S1 as a Riemann surface with
boundary in the standard way—so t+ is is a local complex coordinate.
Let Ω0 be the pull-back of ω0 to V × R under the projection map and
put ΩΦ = Ω0 + ∂∂Φ, a (1, 1)-form on V × R. Then we have:

Proposition 1. The path φt satisfies the geodesic equation (1) if
and only if Ωn+1

Φ = 0 on V × R.

Proof. Denote the metrics defined by ω0, ωφ as g, g′. Then

1
n!
ωnφ = det g′;

1
n!
ωn0 = det g.

Thus the geodesic equation is equivalent to the following (if det g′ �= 0)

(φ′′ − 1
2
| ∇φ′ |2g′) det g′ = 0,
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which may be given as

det


g′


∂φ′
∂z1
∂φ′
∂z2
...
∂φ′
∂zn


(

∂φ′
∂z1

∂φ′
∂z2

· · · ∂φ′
∂zn

)
φ′′


= 0.

Let w = t +
√−1s. Then t = Re(w). The above equation could be

rewritten as

det


(g + ∂2φ

∂zα∂zβ
)nn


∂2φ
∂z1∂w
∂2φ
∂z2∂w

...
∂2φ

∂zn∂w


(

∂2φ
∂z1∂w

∂2φ
∂z2∂w

· · · ∂2φ
∂zn∂w

)
∂2φ
∂w∂w


= 0.

This is just Ωn+1
Φ = 0. The proposition is then proved. q.e.d.

Given boundary data — a real valued function ρ ∈ C∞(∂(V ×R)),
we consider the set of functions Φ on V ×R which agree with ρ on the
boundary. Then we define the variation of Iρ on this set by

δIρ =
1

(n+ 1)!

∫
V×R

δΦ Ωn+1
Φ ,

where the variation δΦ vanishes on the boundary by hypothesis. This
boundary condition means that we can show easily that this formula
defines a functional Iρ. To prove this, one only needs to show that the
second derivatives of Iρ with respect to two infinitesimal variations δ1Φ
and δ2Φ are symmetric. The second derivatives are:

1
2
· 1
(n+ 1)!

∫
V
δ1Φ 	 δ2Φ Ωn+1

Φ ,

which are clearly symmetric in δ1Φ and δ2Φ. Here 	 is the Laplacian
operator of ΩΦ on V × R.

This functional Iρ reduces to the energy functional on paths, by an
integration by parts, in the case when R is the cylinder and we restrict



the space of kähler metrics 199

to S1-invariant data. Suppose φ(t)(0 ≤ t ≤ 1) is a path in H, and
δφ represents the infinestimal variation of φ while keeping the value of
φ fixed when t = 0, 1. Thus, the variation of Iρ in the δφ direction is
(follow notation in the proof of the previous proposition):

δIρ =
1

(n+ 1)!

∫
V×R

δφ Ωn+1
Φ

=
1

(n+ 1)!

∫ 1

t=0

∫
V
δφ(φ′′ − 1

2
| ∇φ′ |2g′) det g′d t.

On the other hand, the variation of energy functional along this path
is:

δE =
∫ 1

t=0

∫
V
δφ (φ′′ − 1

2
| ∇φ′ |2g′) det g′d t,

where E =
∫ 1
t=0

∫
V φ

′(t)2 det g′d t. Thus, in case when R is the cylinder
and we restrict to S1-invariant data, Iρ equals to the energy functional
on the path up to a constant multiple.

The following is the first conjecture by Donaldson in [16]:

Conjecture 1 (Donaldson). Let R be a compact Riemann surface
with boundary and ρ : V ×∂R → R be a function such that ω0−

√−1 ∂∂ρ
is a strictly positive (1, 1) form on each slice V × {z} for each fixed
z ∈ ∂R. Let Sρ be the set of functions Φ on V × R equal to ρ over the
boundary and such that ω0 −

√−1 ∂∂Φ is strictly positive on every slice
V ×{w}, w ∈ R. Then there is a unique solution of the Monge-Ampère
equation (Ω0 −

√−1 ∂∂Φ)n+1 = 0 in Sρ, and this solution realizes the
absolute minimum of the functional Iρ.

This question is a version of the Dirichlet problem for the complete
degenerate Monge-Ampère equation, a topic around which there is a
substantial literature; see [2], [20] for example. Note that regularity
questions are very important in this theory, since the equation is not
elliptic.

In the case of the geodesic problem, when the functional can be
rewritten as the energy of a path; if these infima are strictly positive,
for all choices of fixed, distinct, end points, they make H into a metric
space, in the usual fashion. In this connection, Donaldson proposes the
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following conjecture (after verifying that it will be satisfied by a smooth
geodesic):

Conjecture 2 (Donaldson). If φ ∈ H0 is normalized and φ̃t, t ∈
[0, 1] is any path from 0 to φ in H, then

∫ 1

0

∫
V

(
dφ̃

dt

)2

dµ
φ̃t
dt ≥M−1

(
max

(∫
φ>0

φdµφ,−
∫
φ<0

φdµ0

))2

.(2)

The restriction to normalized potentials φ is not important since
we know that H splits as a product, and we could immediately write
down a corresponding inequality, involving I(φ), for any φ ∈ H. If this
conjecture and the geodesic conjecture are proved, then H is a metric
space. We want to use the continuity method to treat this existence
problem of geodesics between any two points in H.

3. Existence of C1,1 solutions

Let V be a n− dimensional Kähler manifold without boundary, R
be a Riemann surface with boundary. The case we are concerned the
most is when R is a cylinder. Suppose g = gαβdzαd zβ(1 ≤ α, β ≤ n) is
a given Kähler metric on V. Then g̃ = gαβdzαd zβ + dw dw is a Kähler
metric on V ×R, and ϕ̃ = ϕ− |w|2. For convenience, we still denote g̃
as g, and ϕ̃ as ϕ when there is no confusion. Also, let zn+1 = w. Then
z = (z1, z2, . . . , zn, zn+1) is a point on V × R and z′ = (z1, z2, . . . , zn)
is a point in V. Let ϕ(z) = ϕ(z′, w) be a function on V × R such that
g + ∂z′∂z′ϕ(z′, w) is a Kähler metric on V for each w ∈ R. We want to
solve the degenerate Monge-Ampère equation:

det
(
g +

∂2ϕ

∂zα∂zβ

)
(n+1)(n+1)

= 0 in V × R;

and ϕ = ϕ0 in ∂(V × R).

(3)

We want to use the continuity method to solve this equation. Con-
sider the continuity equation 0 ≤ t ≤ 1:

det
(
g +

∂2ϕ

∂zα∂zβ

)
= tdet

(
g +

∂2ϕ0

∂zα∂zβ

)
, in V × R;

and ϕ = ϕ0 in ∂(V × R).
(4)
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Suppose ϕ0 is a solution to (4) at t = 1 such that

n+1∑
α,β=1

(
gαβ +

∂2ϕ0

∂zα ∂zβ

)
dzαd zβ

is a strictly positive Kähler metric on V × R6 . Let

f = det
(
g +

∂2ϕ0

∂zα∂zβ

)
(det g)−1 > 0.

Then equation (4) can be rewritten in a better form

det
(
g +

∂2ϕ

∂zα∂zβ

)
= t · f · det(g) in V × R;

and ϕ = ϕ0 in ∂(V × R).
(5)

Clearly, ϕ0 is the unique solution to this equation at t = 1. Since the
equation is elliptic, this equation can be uniquely solved for t sufficiently
closed to 1 (the kernel of the linearized operator is zero for any t > 0).
Let t0 be such that (5) has a unique smooth solution for every t ∈ (t0, 1].
We want to show that t0 = 0 in this section. Observe that equation (5)
is elliptic for every t > 0. Hence, the solution will be as smooth as the
boundary data once we show that 2nd derivatives of ϕ are uniformly
bounded. Let h be a super harmonic function on V × R with respect
to g such that 	gh+n+1 = 0. and h = ϕ0 in ∂(V ×R). Then for any
solution of equation (5) for t < 1, we have a C0 bound on the solution:

Lemma 1. If ϕ is a solution of equation (5) for 0 < t < 1, then ϕ
has the following a priori C0 estimate due to the maximum principle:

ϕ0 ≤ ϕ ≤ h, in V × R.

For a C2 estimate, we follow Yau’s famous work on Calabi’s conjec-
ture. Essentially, we reduce it to a boundary estimate since we have a
C0 estimate:

6By definition, for any ϕ0 ∈ H,

n+1∑
α,β=1

(gαβ +
∂2ϕ0

∂zα∂zβ
)dzαd zβ is a strictly pos-

itive Kähler metric on each V − slice V × {w}. Let Ψ be a strictly convex func-

tion of w which vanishes on ∂R. Then for large enough constants m,

n+1∑
α,β=1

(gαβ +

∂2(ϕ0 + mΨ)

∂zα∂zβ
)dzαd zβ is a strictly positive Kähler metric on V × R.
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Lemma 2 (Yau). If ϕ is a solution of equation (5) for 0 < t < 1,
then ϕ has the following a priori C2 estimate:

	′(e−Cϕ(n+ 1 + 	ϕ))

≥ e−Cϕ(	 ln f − (n+ 1)2 inf
i�=l

(Riill))

− Ce−Cϕ(n+ 1)(n+ 1 + 	ϕ)

+ (C + inf
i�=l

(Riill))e
−Cϕ(n+ 1 + 	ϕ)1+

1
n (tf)−1,

where C + inf
i�=l

(Riill) > 1, 	 is the Laplacian operator with respect to g,

while 	′ is the Laplacian operator with respect to g′ = g+ ∂2ϕ
∂zα∂zβ

d zα d zβ
and Riill is the Riemannian curvature of g.

From the a priori estimate in Lemma 2, either e−Cϕ(n + 1 + 	ϕ)
is uniformly bounded in V × R or it achieves its maximum value at
∂(V × R). Lemma 1 asserts that ϕ is uniformly bounded from above
and below, then

Corollary 1. There exists a constant C which depends only on
(V × R, g) such that

max
V×R

(n+ 1 + 	ϕ) ≤ C(1 + max
∂(V×R)

(n+ 1 + 	ϕ)).

Theorem 1. If ϕ is a solution of equation (5) for 0 < t < 1, then
there exists a constant C which depends only on (V × R, g) such that:

max
V×R

(n+ 1 + 	ϕ) ≤ C max
V×R

(|∇ϕ|2g + 1).(6)

In light of Corollary 1, we only need to prove inequality (6) on the
boundary, i.e.,

max
∂(V×R)

(n+ 1 + 	ϕ) ≤ C max
V×R

(|∇ϕ|2g + 1).

We will prove this inequality in the next subsection.

Theorem 2. If ϕi(i = 1, 2, . . . ) are solutions of equation (5) for
0 < ti < 1, and the inequality (6) holds uniformly for all these solutions
{ϕi, i ∈ N}, then there exists a constant C1 independent of i such that

max
V×R

(n+ 1 + 	ϕ) ≤ C max
V×R

(|∇ϕ|2g + 1) < C1.
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This is proved via a blowing up argument. We will show this in
Subsection 3.2.

Remark 1. By now it is a standard estimate of Monge-Ampère
equations, that if

max
V×R

(n+ 1 + 	ϕ) ≤ C max
V×R)

(|∇ϕ|2g + 1) < C1

then equation (5) for t1, t2, . . . is a sequence of uniform elliptic equations.
The higher derivative of the solution ϕi has a uniform bound as long as
lim inf
i→∞

ti > 0.

Theorem 3. There exists a C1,1(V ×R) function which solves equa-
tion (3) weakly. In other words, for any two points ϕ0, ϕ1 ∈ H, there
exists a geodesic path ϕ(t) : [0, 1] → H and a uniform constant C such
that the following holds:

0 ≤
(
gij +

∂2ϕ

∂zi∂zj

)
(n+1)(n+1)

≤ C
(
g̃ij

)
(n+1)(n+1)

.

Here z1, z2 . . . , zn are local coordinates in V and t = Re (zn+1). And
g̃ = gαβdzαd zβ + dw dw is a fixed product metric on V × R.

Following notation in Theorem 2, we want to show that t0 = lim inf
i→∞

ti

= 0. Otherwise, assume t0 > 0. Then equation (5) has a unique smooth
solution for 1 ≥ t > t0. By Theorem 2 we have a uniform upper bound
for 	ϕ + (n + 1) for all ti > t0 > 0. Then equation (5) implies that
g′i = g + ∂2ϕi

∂zα∂zβ
d zα d zβ is bounded uniformly from below by a uniform

positive constant (this positive lower bound approaches 0 when t→ 0).
Thus, from equation (5), we obtain uniform higher derivative estimates
for solutions ϕi. Therefore these solutions converge to a regular solution
at t0 > 0. Again, since equation (5) at t0 is an elliptic equation and
the kernel of the linearized operator is zero, it can then be solved for
any t sufficiently close to t0. But this contradicts the definition of t0.
Thus t0 = 0. We can choose a subsequence of ti → 0 such that the ϕi
converge weakly in C1,1(V × R) where Ω is a relative compact subset
of V × R. Again via the maximum principle, we can show this limit is
unique and defines a weak solution of equation (3).
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3.1 Boundary estimate

We want to estimate 	ϕ at any point in the boundary ∂(V × R) =
V × ∂R. Let p be a generic point in ∂(V × R). Now choose a small
neighborhood U of p in V × R (this will be a half geodesic ball since
p ∈ ∂(V ×R)) and a local coordinate chart such that gαβ(p) = δαβ and
p = (z = 0)

1
2
δαβ ≤ gαβ(q) ≤ 2δαβ, ∀q ∈ U.

Since
n+1∑
α,β=1

(
gαβ +

∂2ϕ0

∂zα∂zβ

)
d zαd zβ is a positive Kähler metric on V ×

R, there exists a constant ε > 0 such that

gαβ +
∂2ϕ0

∂zα∂zβ
> 2 ε · gαβ, in V × R.

In the neighborhood U of p, we have

gαβ +
∂2ϕ0

∂zα∂zβ
> ε · δαβ in V × R.(7)

We have the trivial estimates in ∂(V × R):

∂(ϕ− ϕ0)
∂zα

= 0,
∂2(ϕ− ϕ0)
∂zα∂zβ

= 0, ∀ 1 ≤ α, β ≤ n.

In order to estimate 	ϕ =
n+1∑
α,β=1

gαβ
∂2ϕ

∂zα∂zβ
in ∂(V ×R), we only need

to estimate ∂2(ϕ−ϕ0)
∂zα∂zβ

when either α or β is n + 1. We will estimate
∂2(ϕ−ϕ0)
∂zα∂zn+1

(α ≤ n) first, then use equation (5) to derive as estimate for

∂2(ϕ−ϕ0)
∂zn+1∂zn+1

.

Now we set up some conventions:

zα = xα +
√−1 yα, ∀ 1 ≤ α ≤ n; zn+1 = x+

√−1 y,

where R near ∂R is given by x ≥ 0.
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Lemma 3. There exists a constant C which depends only on (V ×
R, g) such that ∣∣∣∣ ∂2ϕ

∂zα∂zn+1
(p)
∣∣∣∣ ≤ C(max

V×R
|∇ϕ|g + 1).

Proof of Theorem 1. At point p, equation (5) reduces to

det
(
δαβ +

∂2ϕ

∂zα∂zβ

)
= t · f.

In other words,

∂2ϕ

∂zn+1∂zn+1
= t · f − ∂2ϕ

∂zα∂zn+1
· ∂2ϕ

∂zα∂zn+1
.

Lemma 3 then implies that∣∣∣∣ ∂2ϕ

∂zn+1∂zn+1

∣∣∣∣ ≤ C(max
V×R

|∇ϕ|2g + 1).

Thus,

|	ϕ(p)| =

∣∣∣∣∣∣
n+1∑
α,β=1

gαβ
∂2ϕ

∂zα∂zβ
(p)

∣∣∣∣∣∣ ≤ C(max
V×R

|∇ϕ|2g + 1).

Since p is a generic point in ∂(V × R), Theorem 2 holds true. q.e.d.

Let D be any constant linear 1st order operator near the boundary
( for instance D = ± ∂

∂xα
, ± ∂

∂yα
for any 1 ≤ α ≤ n). Notice D is just

defined locally. Define a new operator L as ( φ is any test function):

Lφ =
n+1∑
α,β=1

g′αβ
∂2φ

∂zα∂zβ
,

where (g′αβ) = (g′
αβ

)−1 =
(
gαβ + ∂2ϕ

∂zα∂zβ

)−1
. Differentiating both side

of equation (5) by D, we get

L Dϕ = D ln f +
n+1∑
α,β=1

g′αβDgαβ.
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Thus there exists a constant C which depends only on (V ×R, g) such
that

LD(ϕ− ϕ0) ≤ C

(
1 +

n+1∑
α=1

g′αα
)
.(8)

We will now employ a barrier function of the form

ν = (ϕ− ϕ0) + s (h− ϕ0) −N · x2(9)

near the boundary point, and s,N are positive constants to be de-
termined. We may take δ small enough so that x is small in Ωδ =
(V × R) ∩Bδ(0). The main essence of the proof is:

Lemma 4. For N sufficiently large and s, δ sufficiently small, we
have

L ν ≤ − ε
4

(
1 +

n+1∑
α=1

g′αα
)

in Ωδ, ν ≥ 0 on ∂Ωδ.

Proof. Since gαβ + ∂2ϕ0

∂zα∂zβ
≥ εδαβ, we have

L(ϕ− ϕ0) =
n+1∑
α,β=1

g′αβ
[(
gαβ +

∂2ϕ

∂zα∂zβ

)
−
(
gαβ +

∂2ϕ0

∂zα∂zβ

)]

≤ n+ 1 − ε

n+1∑
α=1

g′αα

and

L(h− ϕ0) ≤ C1

(
1 +

n+1∑
α=1

g′αα
)

for some constant C1. Furthermore, L x2 = 2g′(n+1)n+1. Thus

Lν = L(ϕ− ϕ0) + s · L(h− ϕ0) − 2 ·N · g′(n+1)n+1

≤ n+ 1 − ε

n+1∑
α=1

g′αα + sC1 + sC1

n+1∑
α=1

g′αα

− 2Ng′(n+1)n+1
.
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Suppose 0 < λ1 ≤ λ2 ≤ · · · ≤ λn+1 are eigenvalues of (g′
αβ

)(n+1)(n+1).

Then

n+1∑
α=1

g′αα =
n+1∑
α=1

λα
−1, g′(n+1)n+1 ≥ λ−1

n .

Thus,

ε

4

n+1∑
α=1

g′αα +Ng′(n+1)n+1 ≥ ε

4

n∑
α=1

λα
−1 + (N +

ε

4
)λn+1

−1

≥ (n+ 1)
ε

4
N

1
n+1 (λ1 · λ2 · · ·λn+1)

− 1
n+1

= C2N
1

n+1 .

Choose N large enough so that

−C2N
1

n+1 + (n+ 1) + sC1 < − ε
4
.

Choose s small enough so that s · C1 ≤ ε
4 . Then

Lν ≤ − ε
4

(
1 +

n+1∑
α=1

g′αα
)
.

From now on we fix N. Observe that 	(h − ϕ0) < −2ε. Then there
exists a constant C0 which depends only on g such that h− ϕ0 > C0 x
near ∂(V × R). Choose δ small enough so that

s(h− ϕ0) −Nx2 ≥ (sC0 −Nδ)x ≥ 0.

Then ν ≥ 0 in ∂Ωδ. q.e.d.

Proof of Lemma 3. Let M = max(|∇ϕ|g + 1). Choose A � B �
C,C1. In addition, choose A,B as big multiples of M. Notice that
|Dϕ| ≤ 2M in Ωδ. For δ fixed as in Lemma 4, we have Bδ2 − |D(ϕ −
ϕ0)| > 0. Consider w = A ν +B |z|2 +D(ϕ− ϕ0). Then w ≥ 0 in ∂Ωδ

and w(0) = 0. Moreover,

Lw ≤
(
−εA

4
+ 2B + C

)(
1 +

n+1∑
α=1

g′αα
)
< 0.
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The Maximum Principle implies that w ≥ 0 in Ωδ. Since w(0) = 0, we
have ∂w

∂x ≥ 0. In other words,

∂

∂x
Dϕ(0) < C3 ·M

for some uniform constant C3. Since D is any 1st order constant oper-
ator near ∂(V × R), replacing D with −D, we get

− ∂

∂x
Dϕ(0) < C3 ·M.

On the other hand, since ∂R is given by x = 0 in our special case, we
then have the trivial estimate:

∂

∂y
D(ϕ− ϕ0)(0) = 0.

Therefore, ∣∣∣∣ ∂

∂zn+1
Dϕ(0)

∣∣∣∣ < C3 ·M

Lemma 3 follows from here directly. q.e.d.

3.2 Blowing up analysis

Lemma 5. Any bounded weakly sub-harmonic function on the two
dimensional plane is a constant.

This is a standard fact in geometric analysis. We will omit the proof
here. Note that the lemma is false if the dimension is no less than 3.

The essence of blowing up analysis is to use a “microscope” to an-
alyze what happens in a small neighborhood via rescaling. Hence it
doesn’t make any difference what the global structure of the background
metric is, or what the metric is. Under rescaling, everything become
Euclidean anyway. We might as well view the manifold as a domain in
Euclidean space. We will use the variable x to denote the position in
V × R.

Proof of Theorem 2. Suppose 1
εi

= max
V×R

|∇ϕi|g → ∞. We want to

draw a contradiction from this statement.
Suppose |∇ϕi|g(xi) = 1

εi
. By Theorem 1, we have max

V×R
	ϕi ≤ 1

ε2i
.

Choose a convergent subsequence of xi such that xi → x. Choose a
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tiny neighborhood Bδ(x) of x so that gαβ(x) = δαβ and g is essentially
an identity matrix in Bδ(x). For simplicity, let us pretend that g is a
Euclidean metric in Bδ(x). There are two cases to consider: the first
case is when x ∈ ∂(V ×R) and the 2nd case is when x is in the interior
of V × R.

We define the blowing up sequence as

ϕ̃i(x) = ϕi(xi + εix),∀x ∈ B δ
εi

(0).

Then |∇ϕ̃i(0)| = 1 and

max
B δ

εi

(0)
|∇ϕ̃i| ≤ 1, and max

B δ
εi

(0)
|	ϕ̃i| ≤ C.

Observe ϕ0 ≤ ϕi ≤ h ( ∀i). Rescale ϕ0 and h accordingly:

ϕ̃0(x) = ϕ0(xi + εix), h̃(x) = h(xi + εix), ∀ x ∈ B δ
εi

(0).

Thus lim
i→∞

ϕ̃0(x) = ϕ0(x) and lim
i→∞

h̃(x) = h(x). Moreover,

ϕ̃0 ≤ ϕ̃i ≤ h̃, ∀i = 1, 2, . . . .(10)

There exist a subsequence of ϕ̃i and a limit function ϕ̃ in Cn+1 (or
half plane in case x is in the boundary) such that in any fixed ball Bl(0)
(or half ball if x is in the boundary) we have ϕ̃i → ϕ̃ in C1,η in the ball
Bl(0) (or half ball) for any 0 < η < 1. This implies

|∇ϕ̃(0)| = 1.(11)

In addition, inequality (10) holds in the limit:

ϕ0(x) ≤ ϕ̃(x) ≤ h(x), ∀ x.(12)

Case 1. Suppose x ∈ ∂(V × R). Then h(x) = ϕ0(x). Inequality
(12) implies that ϕ̃ is a constant function in its domain. In particular,
we have |∇ϕ̃(x)| ≡ 0. This contradicts our assertion (11). Thus the
theorem is proved in this case.

Case 2. Suppose x is in the interior of V × R. Then ϕ̃(x) is a
well defined C1,η and bounded function in Cn+1. We claim that this
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function is weakly sub-harmonic on any complex line through the ori-
gin. If this claim is true, then Lemma 5 says it must be constant for any
complex line through the origin. Therefore, the function itself must be
a constant as well. Thus |∇ϕ̃| ≡ 0. It again contradicts our assertion
(11). Thus the theorem is proved also, provided we can prove this claim.

Without loss of generality, we consider the complex line T to be

z2 = z3 = · · · = zn+1 = 0.

Observe that (near x) the following holds

0 <
(
δαβ +

∂2ϕi
∂zα∂zβ

)
(n+1)(n+1)

<
C

ε2i
(δαβ)(n+1)(n+1),∀ i.

After rescaling, we have

0 < ε2i · (δαβ)(n+1)(n+1) +
(

∂2ϕ̃i
∂zα∂zβ

)
(n+1)(n+1)

< C · (δαβ)(n+1)(n+1).

Restricting this to a complex line T, we have

0 < ε2i +
∂2ϕ̃i
∂z1∂z1

< C.(13)

Thus one can choose a subsequence of ϕ̃i which converges C1,η(0 < η <
1) locally in T to some function ψ. Since the convergence is in C1,η, we
have ψ = ϕ̃|T ; i.e., ψ is the restriction of ϕ̃ to this complex line T. By
taking a weak limit in inequality (13), the ϕ̃i|T weakly converge to ψ in
the H2,p

loc topology for any p > 1. Hence, ψ is a weakly sub-harmonic
function by taking a weak limit in inequality (13). Therefore ψ = ϕ̃|T
is a constant by Lemma 5. Our claim is then proved. q.e.d.

4. Uniqueness of weak C0 geodesic

Notation follows from previous section.

Definition 1. A function ϕ is generalized-pluri-subharmonic in V ×
R if

n+1∑
α,β=1

(
gαβ +

∂2ϕ

∂zα∂zβ

)
dzαd zβ defines a strictly positive Kähler

metric on V × R.



the space of kähler metrics 211

Definition 2. A continuous function ϕ in V × R is a weak C0

solution to the degenerate Monge-Ampère equation (3) with prescribed
boundary data ϕ0 if the following statement is true: ∀ ε > 0, there exists
a pluri subharmonic function ϕ̃ in V × R such that |ϕ − ϕ̃| < ε and ϕ̃
solves equation (5) with some positive function 0 < f < ε at t = 1, and
with the same boundary data ϕ0.

Clearly, the solution we obtain through the continuity method is a
weak C0 solution of equation (3).

Theorem 4. Suppose ϕ1, ϕ2 are two C0 weak solutions to the de-
generate Monge-Ampère equation with prescribed boundary conditions
h1, h2. Then

max
V×R

|ϕ1 − ϕ2| ≤ max
∂(V×R)

|h1 − h2|.

Corollary 2. The solution to the degenerate Monge-Ampère equa-
tion is unique as soon as the boundary data is fixed.

Proof. Suppose φ1, φ2 are two approximate generalized-pluri-
subharmonic solutions of ϕ1, ϕ2 in the sense of Definition 2. More pre-
cisely,

det
(
g +

∂2φi
∂zα∂zβ

)
= fi · det(g) > 0 in V × R;

and φi = hi in ∂(V × R), i = 1, 2

such that max
V×R

( |ϕ1 − φ1| + f1) and max
V×R

( |ϕ2 − φ2| + f2) can be made

as small as we wanted.

∀ε > 0, we want to show

max
V×R

(ϕ1 − ϕ2) ≤ max
V×R

(h1 − h2) + 2ε.

Choose f1 such that 0 < f1 < ε and max
V×R

|ϕ1 − φ1| < ε. Choose f2

such that 0 < f2 ≤ 1
2 min
V×R

f1 < ε and max
V×R

|ϕ2 − φ2| < ε. Then φ1 is a

sub-solution to φ2 (thus φ1 < φ2) if h1 = h2. In general, we have

max
V×R

(φ1 − φ2) ≤ max
∂(V×R)

(h1 − h2).
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Thus

max
V×R

(ϕ1 − ϕ2) = max
V×R

(ϕ1 − φ1) + max
V×R

(φ1 − φ2) + max
V×R

(φ2 − ϕ2)

≤ ε+ max
∂(V×R)

(h1 − h2) + ε

= max
∂(V×R)

(h1 − h2) + 2ε.

Change the role of ϕ1 and ϕ2, we obtain

max
V×R

(ϕ2 − ϕ1) ≤ max
∂(V×R)

(h2 − h1) + 2ε.

Hence

max
V×R

|ϕ1 − ϕ2| ≤ max
∂(V×R)

|h1 − h2| + 2ε.

Let ε→ 0, we obtain the desired result. q.e.d.

5. The space of Kähler metric is a metric space—Triangle
inequality

In this section, we want to prove that the space of Kähler metric is
a metric space, and the C1,1 geodesic between any two points realizes
the global minimal length over all possible paths. To prove this claim,
one inevitably needs to take derivatives of lengths for a family of C1,1

geodesics. However, the length for a C1,1 geodesic is just barely defined
(the integrand is in Lp space). In general, one cannot take derivatives.
Therefore, we must find ways to circumvent this difficulty.

Definition 3. A path ϕ(t)(0 < t < 1) in the space of Kähler metrics
is a convex path if ϕ(t) is a generalized-pluri-subharmonic function in
V × (I × S1) (cf. Definition 1).

Suppose vol(t)(0 ≤ t ≤ 1) is a family of strictly positive volume form
in V such that ∫

V
vol(t) =

∫
V

det g.

The notion of ε-approximate geodesic is defined with respect to such a
volume form:
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Definition 4. A convex path ϕ(t) in the space of Kähler metrics is
called an ε-approximate geodesic if the following holds:(

ϕ′′ − |∇ϕ′|2g(t)
)

det g(t) = ε · vol(t),

where g(t)αβ = gαβ + ∂2ϕ
∂zα∂zβ

(1 ≤ α, β ≤ n).

Remark 2. The definition is really independent of these volume
forms since we only care what happens when ε is really small. For
convenience, sometimes we choose vol(t) ≡ det g (a volume form inde-
pendent of t).

Lemma 6. Suppose ϕ(t)(0 ≤ t ≤ 1) is an ε-approximate geodesic.

Define the energy element as E(t) =
∫
V
ϕ′(t)2d g(t). Then

max
t

∣∣∣∣dEd t
∣∣∣∣ ≤ 2 ε · max

V×I
|ϕ′(t)| ·M,

where M =
∫
V

det g is the total volume of V which depends only on the

Kähler class.

Proof.∣∣∣∣dEd t
∣∣∣∣ = ∣∣∣∣∫

V
(2ϕ′′ϕ′ + ϕ′2	g(t)ϕ

′) d g(t)
∣∣∣∣

= 2
∣∣∣∣∫
V
ϕ′(ϕ′′ − 1

2
|∇ϕ′|2g(t)) det g(t)

∣∣∣∣
= 2

∣∣∣∣∫
V
ϕ′ ε vol(t)

∣∣∣∣ ≤ 2 ε · max
V×I

|ϕ′(t)| ·M. q.e.d..

Proposition 2. Suppose ϕ(t) is a C1,1 geodesic in H from 0 to ϕ
and I(ϕ) = 0. Then the following inequality holds

∫ 1

0

√∫
V
ϕ′2dµϕtdt ≥M−1

(
max

(∫
ϕ>0

ϕdµϕ,−
∫
ϕ<0

ϕdµ0

))
.

In other words, the length of any C1,1 geodesic is strictly positive.
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Proof. As in Definition 4, suppose ϕ(ε, t) is a ε-approximate
geodesic between 0 and ϕ. (We will drop the dependence of ε in this
proof since no confusion shall arise from this omission). First of all,
from the definition of ε-approximate geodesic, we have

ϕ′′ − 1
2
|∇ϕ′|2g(t) > 0.

In particular, we have ϕ′′(t) ≥ 0. Thus

ϕ′(0) ≤ ϕ ≤ ϕ′(1).(14)

Consider f(t) = I(tϕ), t ∈ [0, 1]. Then f ′(t) =
∫
V
ϕ dµtϕ and

f ′′(t) =
∫
V
ϕ 	g(tϕ) ϕ dµtϕ ≤ 0.

Thus, we have f ′(0) ≥ f(1)−f(0)
1−0 ≥ f ′(1). In other words, we have∫

V
ϕ d µ0 ≥ I(ϕ) ≥

∫
V
ϕ d µϕ.

Since we assume I(ϕ) = 0, and ϕ is not identically zero, it must take
both positive and negative values. Then the length (or energy) of the
geodesic is given by

E =
∫
V
ϕ′2dµϕt ,

for any t ∈ [0, 1]. In particular, taking t = 1,√
E(1) ≥M−1/2

∫
V
|ϕ′(1)|dµϕ > M−1/2

∫
ϕ′(1)>0

ϕ′(1)dµϕ,

where M is the volume of V (which is of course the same for all metrics
in H). It follows from inequality (14) that∫

ϕ′(1)>0
ϕ′ dµϕ ≥

∫
ϕ>0

ϕ dµϕ,

where the last term is strictly positive by the remarks above, and de-
pends only on ϕ and not on the geodesic. A similar argument gives√

E(0) > −M−1/2

∫
ϕ<0

ϕ dµ0.
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The previous lemma implies that for any t1, t2 ∈ [0, 1], we have

|E(t1) − E(t2)| < C · ε
for some constant C independent of ε. Thus√

E(t) ≥M−1/2 max
(∫

ϕ>0
ϕdµϕ,−

∫
ϕ<0

ϕdµ0

)
− C · ε.

Now integrate from t = 0 to 1 and let ε→ 0. Then∫ 1

0

√∫
V
ϕ′2dµϕ d t ≥M−1/2 max

(∫
ϕ>0

ϕdµϕ,−
∫
ϕ<0

ϕdµ0

)
.

This proposition is proved. q.e.d.

Remark 3. This proposition verifies Donaldson’s second conjec-
ture. Unfortunately, it does not imply H is a metric space automati-
cally since the geodesic is not sufficiently differentiable. On the other
hand, one can easily verify that the C1,1 geodesic minimizes length over
all possible convex curves between the two end points. To show that it
minimizes length over all possible curves, not just convex ones, we need
to prove that the triangle inequality is satisfied by the geodesic distance
(see Definition 5 below).

Definition 5. Let ϕ1, ϕ2 be two distinct points in the space of
metrics. According to Theorem 3 and Corollary 2, there exists a unique
geodesic connecting these two points. Define the geodesic distance as
the length of this geodesic, denoted it by d(ϕ1, ϕ2).

Theorem 5. Suppose C : ϕ(s) : [0, 1] → H is a smooth curve in H.
Suppose p is a base point of H. For any s, the geodesic distance from
p to ϕ(s) is no greater than the sum of the geodesic distance from p to
ϕ(0) and the length from ϕ(0) to ϕ(s) along this curve C. In particular,
if C : ϕ(s) : [0, 1] → H is a geodesic, then the geodesic distance satisfies

d(0, ϕ(1)) ≤ d(0, ϕ(0)) + d(ϕ(0), ϕ(1)).

Lemma 7 (Geodesic approximation lemma). Suppose Ci : ϕi(s) :
[0, 1] → H(i = 1, 2) are two smooth curves in H. For ε0 small enough,
there exist two parameter smooth families of curves C(s, ε) : φ(t, s, ε) :
[0, 1] × [0, 1] × (0, ε0](0 ≤ t, s ≤ 1, 0 < ε ≤ ε0) such that the following
properties hold:
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1. For any fixed s and ε, C(s, ε) is an ε-approximate geodesic from
ϕ1(s) to ϕ2(s). More precisely, φ(z, t, s, ε) solves the correspond-
ing Monge-Ampère equation:

det
(
g +

∂2φ

∂zα∂zβ

)
= ε · det(g) in V × R;

and φ(z′, 0, s, ε) = ϕ1(z′, s), φ(z′, 1, s, ε) = ϕ2(z′, s).
(15)

Here we follow notations in Section 3, and zn+1 = t+
√−1 θ where

the dependence of φ on θ is trivial.

2. There exists a uniform constant C (which depends only on ϕ1, ϕ2)
such that

|φ| +
∣∣∣∣∂φ∂s

∣∣∣∣+ ∣∣∣∣∂φ∂t
∣∣∣∣ < C; 0 ≤ ∂2φ

∂t2
< C,

∂2φ

∂s2
< C.

3. For fixed s, let ε → 0 : the convex curve C(s, ε) converges to the
unique geodesic between ϕ1(s) and ϕ2(s) in the weak C1,1 topology.

4. Define the energy element along C(s, ε) by

E(t, s, ε) =
∫
V

∣∣∣∣∂φ∂t
∣∣∣∣2 d g(t, s, ε),

where g(t, s, ε) is the corresponding Kähler metric define by
φ(t, s, ε). Then there exists a uniform constant C such that

max
t,s

∣∣∣∣∂ E∂ t
∣∣∣∣ ≤ ε · C ·M.

In other words, the energy/length element converges to a constant
along each convex curve if ε→ 0.

Proof. Everything follows from Theorems 3, 4 and Lemma 6 except
the bound on |∂φ∂s | and an upper bound on ∂2φ

∂s2
which follow from the

maximum principle directly since

L
(
∂φ

∂s

)
= 0

and

L
(
∂2φ

∂s2

)
= trg′

{
Hess

∂φ

∂s
· Hess

∂φ

∂s

}
≥ 0. q.e.d.
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Proof of Theorem 5. Apply the geodesic approximation lemma in
the special case that ϕ1(s) ≡ p. We follow notations in the previous
lemma. For ε0 small enough, there exist two parameter smooth families
of curves C(s, ε) : φ(t, s, ε) : [0, 1]×[0, 1]×(0, ε0](0 ≤ t, s ≤ 1, 0 < ε ≤ ε0)
such that

det
(
g +

∂2φ

∂zα∂zβ

)
= ε · det(g), in V × R;

and φ(z′, 0, s, ε) = 0, φ(z′, 1, s, ε) = ϕ(z′, s).

Denote the length of the curve φ(t, s, ε) from p to ϕ(s) by L(s, ε), denote
the geodesic distance between p and ϕ(s) by L(s), and denote the length
from ϕ(0) to ϕ(s) along curve C by l(s). Clearly,

l(s) =
∫ s

0

√∫
V
|∂ϕ
∂τ

|2d g(τ) d τ,

where g(τ) is the Kähler metric defined by ϕ(τ), and

L(s, ε) =
∫ 1

0

√
E(t, s, ε) d t =

∫ 1

0

√∫
V
|∂φ
∂t

|2d g(t, s, ε) d t,

and limε→0 L(s, ε) = L(s). Define F (s, ε) = L(s, ε) + l(s) and F (s) =
L(s)+ l(s). What we need to prove is : F (1) ≥ F (0). This will be done
if we can show that F ′(s) ≥ 0, ∀ s ∈ [0, 1]. The last statement would
be straightforward if the deformation of geodesics is C1. Since we do
not have that, we need to take derivatives of F (s, ε) for ε > 0 instead.
Notice ∂φ

∂s = 0 at t = 0 in the following deduction:
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dL(s, ε)
d s

=
∫ 1

0

1
2
E(t, s, ε)−

1
2

∫
V

(
2
∂φ

∂t

∂2φ

∂t∂s

+
(
∂φ

∂t

)2

	g(t,s,ε)
∂φ

∂s

)
dg(t, s, ε) d t

=
∫ 1

0
E(t, s, ε)−

1
2

{
∂

∂t

(∫
V

∂φ

∂t

∂φ

∂s
d g(t, s, ε)

)

−
∫
V

∂φ

∂s

(
∂2φ

∂t2
− 1

2

∣∣∣∣∇∂φ

∂t

∣∣∣∣2
)
d g(t, s, ε)

}
d t

=
{
E(t, s, ε)−

1
2

∫
V

∂φ

∂t

∂φ

∂s
d g(t, s, ε))

}∣∣∣∣1
0

−
∫ 1

0

{
E(t, s, ε)−

1
2

∫
V

∂φ

∂s

(
∂2φ

∂t2
− 1

2

∣∣∣∣∇∂φ

∂t

∣∣∣∣2
)
d g(t, s, ε)

}
d t

+
∫ 1

0

{
E(t, s, ε)−

3
2

∫
V

∂φ

∂t

∂φ

∂s
d g(t, s, ε)

·
∫
V

∂φ

∂t

(
∂2φ

∂t2
− 1

2

∣∣∣∣∇∂φ

∂t

∣∣∣∣2
)
d g(t, s, ε)

}
d t

=
∫
V

∂φ(1, s, ε)
∂t

dϕ

d s
d g(s) ·

{∫
V

∣∣∣∣∂φ(1, s, ε)
∂t

∣∣∣∣2 d g(s)
}− 1

2

−
∫ 1

0

{
E(t, s, ε)−

1
2

∫
V

∂φ

∂s
ε · det g

}
d t

+
∫ 1

0

{
E(t, s, ε)−

3
2

∫
V

∂φ

∂t

∂φ

∂s
d g(t, s, ε) ·

∫
V

∂φ

∂t
ε · det g

}
d t.

Observe that by the Schwartz inequality, we have

d l(s)
d s

=

√∫
V

∣∣∣∣∂ϕ∂s
∣∣∣∣2 d g(s)

≥ −
∫
V

∂φ(1, s, ε)
∂t

dϕ

d s
d g(s) ·

{∫
V

∣∣∣∣∂φ(1, s, ε)
∂t

∣∣∣∣2 d g(s)
}− 1

2

.
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Observe that F (s, ε) = L(s, ε) + l(s). Thus

dF (s, ε)
d s

≥ −
∫ 1

0

{
E(t, s, ε)−

1
2

∫
V

∂φ

∂s
ε · det g

}
d t

+
∫ 1

0

{
E(t, s, ε)−

3
2

∫
V

∂φ

∂t

∂φ

∂s
d g(t, s, ε)

·
∫
V

∂φ

∂t
ε · det

}
d t.

Integrating from 0 to s ∈ (0, 1], we obtain

F (s, ε) − F (0, ε) ≥ −
∫ s

0

∫ 1

0

{
E(t, τ, ε)−

1
2

∫
V

∂φ

∂τ
ε · det g

}
d t d τ

+
∫ s

0

∫ 1

0

{
E(t, τ, ε)−

3
2

∫
V

∂φ

∂t

∂φ

∂τ
d g(t, τ, ε)

·
∫
V

∂φ

∂t
ε · det g

}
d t d τ

≥ − Cε

for some large constant C depending only on (V ×R, g) and the initial
curve C : ϕ(s) : [0, 1] → H. Now taking the limit as ε → 0, we have
F (s) ≥ F (0). In other words, the geodesic distance from p to ϕ(s) is
no greater than the sum of the geodesic distance from p to ϕ(0) and the
length from ϕ(0) to ϕ(s) along this curve C. q.e.d.

Corollary 3. The geodesic distance between any two metrics real-
izes the absolute minimum of the lengths over all possible paths.

Proof. For any smooth curve C : ϕ(s) : [0, 1] → H, we want to
show that the geodesic distance between the two end points ϕ(0) and
ϕ(1) is no greater than the length of C. However, this follows directly
from Theorem 5 by taking p = ϕ(1) and s = 1. q.e.d.

Theorem 6. For any two Kähler potentials ϕ1, ϕ2, the minimal
length d(ϕ1, ϕ2) over all possible paths which connect these two Kähler
potentials is strictly positive, as long as ϕ1 �= ϕ2. In other words, (H, d)
is a metric space. Moreover, the distance function is at least C1.

Proof. Immediately from Corollary 3 and Proposition 2, we see
that (H, d) is a metric space. Now we want to prove the differentiability
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of the distance function. From the proof of Theorem 5, we have

dL(s, ε)
d s

=
∫
V

∂φ(1, s, ε)
∂t

dϕ

d s
d g(s)

·
{∫

V

∣∣∣∣∂φ(1, s, ε)
∂t

∣∣∣∣2 d g(s)
}− 1

2

−
∫ 1

0

{
E(t, s, ε)−

1
2

∫
V

∂φ

∂s
ε · det g

}
d t

+
∫ 1

0

{
E(t, s, ε)−

3
2

∫
V

∂φ

∂t

∂φ

∂s
d g(t, s, ε)

·
∫
V

∂φ

∂t
ε · det g

}
d t.

Integrating this from s1 to s2 and dividing it by s2 − s1, gives∣∣∣∣∣L(s2, ε) − L(s1, ε)
s2 − s1

− 1
s2 − s1

∫ s2

s1

∫
V

∂φ(1, s, ε)
∂t

dϕ

d s
d g(s)

·
{∫

V

∣∣∣∣∂φ(1, s, ε)
∂t

∣∣∣∣2 d g(s)
}− 1

2

d s

∣∣∣∣∣
≤ 1
s2 − s1

∫ s2

s1

∫ 1

0

{
E(t, s, ε)−

1
2

∫
V

∣∣∣∣∂φ∂s
∣∣∣∣ ε · det g

}
d t d s

+
1

s2 − s1

∫ s2

s1

∫ 1

0

{
E(t, s, ε)−

3
2

∫
V

∣∣∣∣∂φ∂t
∣∣∣∣ ∣∣∣∣∂φ∂s

∣∣∣∣ d g(t, s, ε)
·
∫
V

∣∣∣∣∂φ∂t
∣∣∣∣ ε · det g

}
d t d s

≤ Cε.

Let ε→ 0, and s2 → s1. Then we have
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lim
s2→s1

L(s2) − L(s1)
s2 − s1

= lim
s2→s1

1
s2 − s1

∫ s2

s1

∫
V

∂φ(1, s)
∂t

dϕ

d s
d g(s)

·
{∫

V

∣∣∣∣∂φ(1, s)
∂t

∣∣∣∣2 d g(s)
}− 1

2

d s

=
∫
V

∂φ(1, s)
∂t

dϕ

d s
d g(s)

·
{∫

V

∣∣∣∣∂φ(1, s)
∂t

∣∣∣∣2 d g(s)
}− 1

2

.

The distance function L is therefore a differentiable function. q.e.d.

6. Application: Uniqueness of extremal Kähler metrics if
C1(V ) < 0 and C1(V ) = 0

In this section, we want to show that if C1(V ) < 0, or if C1(V ) = 0,
then the extremal Kähler metric is unique in any Kähler class. Further-
more, if C1(V ) ≤ 0, the extremal Kähler metric (if it exists) realizes the
global minimum of the K energy functional in any Kähler class, thus
giving an affirmative answer to a question raised by Tian Gang in this
special case.

6.1 Uniqueness of c.s.c metric when C1(V ) = 0 and the lower bound
of K energy for C1(V ) ≤ 0

We should now introduce an important operator— the Lichernowicz
operator D. For any function h, Dh = h,αβdz

α ⊗ dzβ. If Dh = 0, then
↑ ∂h = gαβ ∂h

∂β
∂
∂zα

is a holomorphic vector field. Now let us introduce the
K energy. Like Iρ, I, it is again defined by its derivatives and one should
check it is well defined by verifying the second derivatives is symmetric
(we will leave this to the reader). Let R be the scalar curvature of the
metric g = g0 +

√−1∂∂ϕ and R be the average scalar curvature in the
cohomology class. Let ψ ∈ TϕH. Then the variation of K energy of g
in the direction ψ is:

δψE = −
∫
V

(R−R) · ψ det g.
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Along any smooth geodesic ϕ(t) ∈ H, S. Donaldson shows

d2E

d t2
=
∫
V
|Dϕ′(t)|2g det g.

Using this, Donaldson shows that the constant curvature metric is unique
in each Kähler class if the smooth geodesic conjecture is true. Now we
want to prove the uniqueness of constant curvature metrics in each
Kähler class when C1(V ) < 0 or C1(V ) = 0, despite the fact we have
not proved the smooth geodesic conjecture yet.

Theorem 7. If either C1(V ) < 0 or C1(V ) = 0, then the constant
curvature metric (if it exists) in any Kähler class must be unique.

Proof. Notation follows from Section 5. Suppose ϕ(t) is an ε-
approximate geodesic. Then

det g
(
ϕ′′ − 1

2
|∇ϕ′|2g

)
= ε · deth,

where h is a given metric in the Kähler class such that Ric(h) < −ch if
C1(V ) < 0 and Ric(h) ≡ 0 if C1(V ) = 0. Let f = ϕ′′ − 1

2 |∇ϕ′|2g ≥ 0.
Then

∇ ln
det g
deth

= −∇ ln f(16)

and

d

d t

(∫
V
ϕ′(t) det g

)
=
∫
V
f · det g = ε ·

∫
V

deth.(17)

Let E denote the K energy functional. Then

dE

d t
= −

∫
V

(R−R) · ψ det g.

A direct calculation yields

d2E

d t2
=
∫
V
|Dϕ′(t)|2g det g

−
∫
V

(ϕ′′ − 1
2
|∇ϕ′|2g) ·R det g + ε ·R ·

∫
V

deth,
(18)
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where we already use Equation (17). Now the second term on the right-
hand side of the above equation is:

−
∫
V
R·f det g =

∫
V

∆g ln det g · f · det g

=
∫
V

∆g
ln det g
ln deth

· f · det g +
∫
V

∆g ln deth · f · det g

= −
∫
V
∇g

ln det g
ln deth

· ∇ ln f det g −
∫
V
trg(Ric(h)) f det g

=
∫
V
|∇f |2g

1
f

det g −
∫
V
trg(Ric(h)) f det g.

Integrating from t = 0 to 1 gives∫
V×I

|Dϕ′|2g det g d t+
∫
V×I

|∇f |2
f

det g d t

−
∫
V×I

trg(Ric(h)) f det g d t

=
dE

d t

∣∣∣∣1
0

− εR ·
∫
V

deth d t.

(19)

If ϕ(0) and ϕ(1) are both constant scalar curvature metrics, then dE
d t |10=

0 and ∫
V×I

|Dϕ′|2g det g d t+
∫
V×I

|∇f |2g
f

det g d t

−
∫
V×I

trg(Ric(h)) f det g d t

= −εR ·
∫
V

deth d t.

(20)

Observing that f det g = ε · deth, then∫
V×I

|Dϕ′|2g
f

deth+
∫
V×I

|∇ ln f |2g deth−
∫
V×I

trg(Ric(h)) deth

= −R
∫
V

deth.

If C1(V ) = 0, then R = 0. Consequently∫
V×I

|Dϕ′|2g
f

dethd t+
∫
V×I

|∇ ln f |2g deth d t = 0.
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This easily implies that Dϕ(t) ≡ 0 and ↑ ∂ϕ′(t) is a holomorphic vector
field. Since C1 = 0, the only holomorphic vector field is constant vector
field. Thus ϕ′(t) is constant in the V direction. In other words, ϕ′(t) is
a functional of t only. Hence, there exists at most one constant scalar
curvature metric in each Kähler class when C1 = 0. We postpone the
proof of the case C1 < 0 to the next subsection.

Theorem 8. If C1(V ) ≤ 0, then a constant scalar curvature metric,
if it exists, realizes the global minimum of the K energy functional in
each Kähler class. In other words, if K energy doesn’t have a lower
bound, then there exists no constant curvature metric in that cohomology
class.

Proof. Suppose ϕ0 ∈ H is a metric of constant curvature. Then

dE

d t
|ϕ0 = −

∫
V

(R−R) · ψ det g = 0.

For any metric ϕ(1), let ϕ(t)(0 ≤ t ≤ 1) be a path in H which connects
ϕ(0) and ϕ(1). In addition, let us assume this is an ε-approximate
geodesic where ε > 0 may be chosen arbitrarily small. From equation
(17), we have

d2E

d t2
=
∫
V
|Dϕ′(t)|2g det g −

∫
V

(ϕ′′ − 1
2
|∇ϕ′|2g) ·R det g

+ ε ·R ·
∫
V

deth

=
∫
V
|Dϕ′(t)|2g det g +

∫
V
|∇f |2g

1
f

det g

−
∫
V
trg(Ric(h)) f det g + ε ·R ·

∫
V

deth

> − Cε.

The last inequality holds since the average of the scalar curvature is a
topological invariant. Thus

E(t) − E(0) ≥ −Cεt
2

2
, ∀t ∈ [0, 1].

In particular, this holds for t = 1

E(ϕ(1)) − E(ϕ(0)) = E(1) − E(0) ≥ −C · ε
2

.
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Let ε→ 0, we have

E(ϕ(1)) ≥ E(ϕ(0)).

The theorem is proved since ϕ(1) is arbitrary.

6.2 Uniqueness of c.s.c. metric when C1 < 0

Now we turn our attention to the case C1 < 0. By our initial assump-
tion, Ric(h) < −ch for some positive constant c > 0. Thus∫

V×I

|Dϕ′|2g
f

deth+
∫
V×I

|∇ ln f |2g det h+ c ·
∫
V×I

trg(h) deth

≤ C(= −R
∫
V

deth).
(21)

We want to show that in the limit as ε→ 0, we still have Dϕ′(t) = 0 in
some weak sense. Let us first get an integral estimate on f

q
2−q (1 < q <

2) with respect to the measure deth d t :∫
V×I

f
q

2−q deth d t ≤ C ·
∫
V×I

f deth d t

≤ C ·
∫
V×I

{
f · det g

deth

} 1
n

·
{
det h

det g

} 1
n

deth d t

≤ ε
1
n

∫
V×I

{
deth
det g

} 1
n

deth d t

≤ C · ε 1
n

∫
V×I

trg(h) deth d t→ 0.

LetX =↑ ∂ϕ′(t) = gαβ ∂ϕ
′

∂zβ

∂
∂zα

. We want to show thatX is uniformly
in L2 with respect to the measure h+ d t2.∫

V×I |X|2h deth d t =
∫
V×I

∑
α,β

hαβX
αXβ deth d t

=
∫
V×I

∑
α,β,γ,δ

hαβg
αγ ∂ϕ

′

∂zγ

{
gβδ

∂ϕ′

∂zδ

}
deth d t

=
∫
V×I

∑
α,β,γ,δ

hαβg
αγgδβ

∂ϕ′

∂zγ

∂ϕ′

∂zδ
deth d t

≤
∫
V×I

trg(h)|∇ϕ′|2g deth

≤ C ·
∫
V×I

trg(h) deth d t ≤ C.
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The second to last inequality holds since f = ϕ′′ − 1
2 |∇ϕ′|2g ≥ 0 and

ϕ′′ < C. Thus X ∈ L2(V × I) has a uniform upper bound for the L2

norm.
Consider |Dϕ′|g as a function in L2(V × I). First of all, it has a

weak limit in L2(V × I); secondly, its Lq(1 < q < 2) norm tends to 0 as
ε→ 0. ∫

V×I
|Dϕ′|gq deth d t = ·

∫
V×I

|Dϕ′|gq
f l

· f l deth d t

≤ ·
(∫

V×I

|Dϕ′|gsq
f ls

deth d t
) 1

s

·
(∫

V×I
f lτ deth d t

) 1
τ

(where
1
s

+
1
τ

= 1).

Now l is some number which we should choose appropriately:

ls = 1; qs = 2;
1
s

+
1
τ

= 1.

Since for any q < 2, we have

s =
2
q
; l =

q

2
; τ =

2
2 − q

,

the above inequality reduces to∫
V×I

|Dϕ′|gq deth d t

≤ C ·
(∫

V×I

|Dϕ′|g2
f

deth d t

) 2
q

·
(∫

V×I
f

q
2−q deth d t

) (2−q)
2

→ 0.

For any vector Y ∈ T 1,0(V ×I) (i.e., Y =
n∑
i=1

Y i ∂

∂zi
where z1, z2, . . . , zn

are all of the coordinate functions in a local chart in V . We use ∂Y
∂z to

denote the vector valued (0,1) form
n∑

i,j=1

∂Y i

∂zj

∂

∂zi
⊗ d zj .) For a scalar

function ψ in V × I, let ∂ψ
∂z =

n∑
j=1

∂ψ

∂zj
d zj . Now the norms of ∂Y

∂z and
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∂ψ
∂z in terms of the metric h are:

∣∣∣∣∂Y∂z
∣∣∣∣2
h

=
n∑

α,β,r,δ=1

hαrh
βδ ∂Y

α

∂zβ

(
∂Y r

∂zδ

)
(22)

and ∣∣∣∣∂ψ∂z
∣∣∣∣2
h

=
n∑

α,β=1

hαβ
∂ψ

∂zα

∂ψ

∂zβ
.(23)

We claim the following inequality holds (for some uniform constant
C):

∣∣∣∣∂X∂z
∣∣∣∣
h

≤
√√√√ n∑

α,β,r,δ=1

hαrh
βδ ∂X

α

∂zβ

(
∂Xr

∂zδ

)
≤ C

√
trg(h) |Dϕ′|g.(24)

This could be proved by choosing preferred coordinates, where hij =
δij(1 ≤ i, j ≤ n) while gij = λiδij(1 ≤ i, j ≤ n) at an arbitrary point
O. Here λi are eigenvalues of the metric g in terms of the metric h.
These λi’s are uniformly bounded from above since g is so. We want to
verify the above inequality at this point O.∣∣∣∣∂X∂z

∣∣∣∣2
h

=
n∑

α,β,a,b=1

∂Xα

∂zβ

∂Xa

∂zb
hαah

β b

=
n∑

α,β,a,b,c,d=1

hαah
β bgαcϕ′

,cβϕ
′
,d bg

ad

=
n∑

α,β=1

δαaδ
β b 1
λα
δαcϕ′

,cβϕ
′
,d b

1
λa
δad

=
n∑

α,β=1

1
λ2
α

ϕ′
,αβϕ

′
,α β

≤
 n∑
α,β=1

λβ
λα

 n∑
α,β=1

1
λαλβ

ϕ′
,αβϕ

′
,α β

≤ C · trg(h) · |Dϕ′|2g.

Here C is a uniform constant. From inequality (21) and the fact that g
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is bounded from above, it follows that∫
V×I

∣∣∣∣∇ log
det g
deth

∣∣∣∣2
h

=
∫
V×I

| ∇ log f |2h

≤ C ·
∫
V×I

| ∇ log f |2g det gd t ≤ C,

and ∫
V×I

(
deth
det g

) 1
n

deth ≤
∫
V×I

trg(h) deth ≤ C.

From now on, all of the norms, inner products, and integrations are
taken with respect to the the metric h+ d t2 unless otherwise specified.
Now define a new vector field Y by

Y = X · det g
deth

.

Then

|Y |h = |X|h det g
deth

≤ C.

In other words, Y has a uniform L∞ bound. This implies that Y ·
∂ ln det g

deth/∂z has a uniform Lq bound for any 1 < q < 2. Moreover, for
any 1 < q < 2, we have∫

V×I

∣∣∣∣∣∂Y∂z − Y · ∂ ln det g
deth

∂z

∣∣∣∣∣
q

h

=
∫
V×I

(∣∣∣∣∂X∂z
∣∣∣∣
h

det g
deth

)q
≤
∫
V×I

(√
trg(h)

det g
deth

)q
|Dϕ′|qg

≤
∫
V×I

C |Dϕ′|qg → 0.

This immediately implies that ∂Y
∂z is uniformly bounded in Lq for any

1 < q < 2.

Now, all of these quantities, X,Y, ∂Y∂z , and det g
deth , . . . are geometric

quantities which depend on ε. Since their respective Soblev norms are
uniformly controlled, we can take weak limits of these quantities in some
appropriate sense. Denote the corresponding weak limits (when ε→ 0)
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as X,Y, det g
deth , . . . . Then X(ε) ⇀ X weakly in L2(V × I), Y (ε) ⇀ Y

weakly in L∞(V × I) and det g
deth(ε) ⇀ det g

deth weakly in L∞(V × I), . . . .

Consider u = ln deth
det g . For simplicity, assume u > 0 (otherwise

u > −c for some positive constant). Then the following two equations
hold in the limit

∂Y

∂z
+ Y · ∂u

∂z
= 0, and Y = X e−u

in the sense of Lq(V × I) for any 1 < q < 2. Moreover, we have the
following estimates:∫

V×I
e

1
n
u ≤ C;

∫
V×I

∣∣∣∣∂u∂z
∣∣∣∣2 ≤ C; and

∫
V×I

|X|2 ≤ C.

Now define a new sequence of vectors X,k(k = 1, 2, . . . ) by X,k =

Y

k∑
i=0

ui

i!
. This is well defined since u is in Lp(V × I) for any p > 1.

Then

|X,k| = |Y |
k∑
i=0

ui

i!
≤ (|X|e−u)eu ≤ |X|.

Equality holds in the last inequality whenever e−u �= 0. Thus∫
V×I

|X,k|2 ≤
∫
V×I

|X|2 ≤ C.

By definition, it is clear ‖X,k‖L2(V×I) ≤ ‖X,m‖L2(V×I) whenever k ≤
m. Thus, there exists a positive number A ≤ ‖X‖L2(V×I) such that
lim
k→∞

‖X,k‖L2(V×I) = A. For m > k, we have

‖X,m‖2
L2(V×I) =

∫
V×I

|X,m|2

=
∫
V×I

|Y |2(
m∑
i=0

ui

i!
)2

≥
∫
V×I

|Y |2
(

(
k∑
i=0

ui

i!
)2 + (

m∑
i=k+1

ui

i!
)2
)

=
∫
V×I

(|X,k|2 + |X,m −X,k|2)
= ‖X,k‖2

L2(V×I) + ‖X,m −X,k‖2
L2(V×I).
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Taking limits as m, k → ∞, we have ‖X,m − X,k‖2
L2(V×I) → 0. Thus

X,k (k = 1, 2, . . . ) is a Cauchy sequence in L2(V × I) and there exists a
strong limit X,∞ in L2(V × I). By definition, we know that X,∞ = X
almost everywhere in V × I 7 . We want to show that X,∞ is weakly
holomorphic in the V direction. A straightforward calculation yields

∂X,k

∂z
=
∂Y

∂z

k∑
i=0

ui

i!
+ Y

∂

∂z

(
k∑
i=0

ui

i!

)

= −Y ∂u
∂z

k∑
i=0

ui

i!
+ Y

(
k−1∑
i=0

ui

i!

)
∂u

∂z

= −(X,k −X,k−1)
∂u

∂z
.

We want to show that ∂X,∞
∂z = 0 in the sense of distributions. We just

need to show it in any open set U × I where U is a coordinate chart
in V. Let (z1, z2, . . . , zn) be coordinate variables in U. Then, for any
vector valued smooth function ψ = (ψ1, ψ2, . . . , ψn) which vanishes on
∂(U × I), and for any 1 ≤ j ≤ n. We have∣∣∣∣∫

V×I
X,k · ∂ψ

∂zj

∣∣∣∣ = ∣∣∣∣−∫
V×I

∂X,k

∂zj
· ψ
∣∣∣∣

=
∣∣∣∣∫
V×I

(X,k −X,k−1)
∂u

∂zj
ψ

∣∣∣∣
≤ C · ‖X,k −X,k−1‖L2(V×I) ·

√∫
V×I

|∇u|2

≤ C‖X,k −X,k−1‖L2(V×I).

Taking the limit as k → ∞ yields∫
V×I

X,∞ · ∂ψ
∂zj

= 0, for any j = 1, 2, . . . , n,

and for any smooth vector valued function ψ = (ψ1, ψ2, . . . , ψn) which
vanishes on ∂(U × I). Thus, X,∞ is a weak holomorphic vector field in
the V direction for almost all t. Now recall that∫

V×I
|X,∞|2h deth d t < C.

7It is easy to prove that X,∞ = X in the sense of Lq(V × I) for any (1 < q < 2).



the space of kähler metrics 231

This implies that X,∞ is in L2(V × {t}) for almost all t ∈ [0, 1]. Since
X,∞ is weakly holomorphic in V × {t} for all t, X,∞ must be holomor-
phic for those t where X,∞ is in L2(V × {t}). However, there is no
holomorphic vector field on V since C1 < 0. Thus X,∞ ≡ 0 for all of
those t where X,∞ is in L2(V ×{t}). This shows that X,∞ = 0 in V ×I.
Thus X = 0 since X = X,∞ in the sense of Lq(V ×I) for any 1 < q < 2.
Recall

∂ϕ′(t)
∂zα

=
n∑
β=1

gαβX
β =

n∑
β=1

gαβX,∞β = 0.

In other words, ϕ′(t) is trivial in the V direction and it is a function of t
only for all t ∈ [0, 1]. Therefore, ϕ(0) and ϕ(1) differ only by a constant
in the V direction, and hence represent the same metric in each Kähler
class.
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