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Let G be a locally compact abelian group with dual
group Γ, and let A denote a closed subalgebra of A(Γ),
the algebra of all Fourier transforms of functions in L^G),
which separates the points of Γ, and whose members do
not all vanish at any one point on Γ. Then Re A Re A c
Re A implies A—A(Γ) if Γ is totally disconnected.

1* Introduction* Let B be a semi-simple commutative Banach
algebra with maximal ideal space ΣB. We regard B as an algebra
of functions on ΣB. We consider a closed subalgebra A of B which
separates points on ΣB, and whose members do not all vanish at
any one point on ΣB.

Let Re A denote the space of real functions μ on ΣB such that
for some / in A, μ — Ref.

Let G be a locally compact abelian group with dual group Γ.
We denote by A(Γ) the algebra of all Fourier transforms of func-
tions in L\G). That is,

feA(Γ) <=>f(x) = F(x) - \ F(y)(~y, x)dy

xeΓ, yeG, FeL\G)

with norm ] | / | | = 11^]]^. A(Γ) is a semi-simple commutative
Banach algebra and Γ is its maximal ideal space. We consider,
also, a closed subalgebra A of A(Γ) which separates the points on
Γ, and whose members do not all vanish at any one point of Γ.

In [4] and [5] the following theorems were proved by Rudin
and Katznelson: (cf. [5], p. 239-244).

THEOREM 1.1. // B is spanned by its set of idempotents, then
self-adjointness of A implies A = B.

THEOREM 1.2. // Γ is totally disconnected, then A(Γ) is spanned
by its set of idempotents.

THEOREM 1.2. // Γ is not totally disconnected, then there is an
A which is proper and self-ad joint. That is: self-ad jointness of A
implies A = A(Γ)" if and only if Γ is totally disconnected.

Here we shall show that, for B as in Theorem 1.1 and for any
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subalgebra C of B, jB-norm denseness and uniform denseness are
exactly equivalent. That is:

THEOREM 1.4. // B is spanned by its set of idempotents, then,
for a subalgebra C of B, C is B-norm dense in B if and only if C
is uniformly dense in B; more strongly, if and only if Re C is
uniformly dense in ReB.

In the case of Theorem 1.1, by the Stone-Weierstrass theorem
A is uniformly dense in C0(ΣB), and so in B, so that A is JS-norm
dense in B, and hence A = B.

As an immediate consequence of Theorem 1.4, we have

THEOREM 1.5. If B is spanned by its set of idempotents, then
Re A - Re A c Re A implies A = B.

In this case, Re A is uniformly dense in Re B by the Stone-
Weierstrass theorem. In the case that B = C(X) and A is a func-
tion algebra on X, the last statement of the above theorem holds
for any compact X(=ΣB) [8]. In the case of B = A(Γ), we rewrite
the above theorem:

THEOREM 1.6. If Γ is totally disconnected, then

R e i R e i c R e i implies A = A(Γ) .

Now we conclude that "ReA R e A c R e A implies A = A{Γ)" if
and only if Γ is totally disconnected.

Note. Self-adjointness of A always implies Re A Re
but the latter condition does notimply self-adjointness in general.

2* Idempotent elements in a Banach algebra* To prove
Theorem 1.4, we obtain a general version of this theorem in a
complex commutative Banach algebra B, without assuming semi-
simplicity of B, after an investigation of the behavior of idempotent
elements in B.

Let the set Sp (B, b) be the spectrum of an element b of B, and
let 3Sp(.B, b) denote the topological boundary of Sp(2?, 6). The
following lemma is well known (cf. [1], p. 25):

LEMMA 2.1. Suppose B has a unit, and let C be a closed
subalgebra of B (C with or without unit).
For aeC,
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( i ) Sp (B, a) c Sp (C, a) U {0}, and

(ii) 3Sp(C, α)cdSp(£, α) .

Using the unitization of I?, it is easy to check that Lemma 2.1
is valid in an algebra B without unit.

We then have the following:

THEOREM 2.2. Let C be a closed subalgebra of B such that
Re C is uniformly dense in Re B. Then every idempotent element
in B is contained in C. More strongly, every idempotent element
in B is contained in C.

Here C and B denote the spaces of all Gelfand transforms of
elements of C and B, respectively.

Proof. First we note that uniform denseness of ReC implies
that for every nonzero complex homomorphism on B, φeΣB, its
restriction φ\C to C is a nonzero complex homomorphism on C.
That is

(1) VφeΣB, φ\CeΣC.

Let e be an idempotent element in B, then e is 0 or 1 on ΣB.
Choose a in C so that |Reα — e| < 1/3. Then we have, for all
φeΣB,

(2) -1/3 < Re a(φ) < 1/3 or 2/3 < Re a(φ) < 4/3.

Let r{a) be the spectral radius of a,

r(α) = Max {|λ|: λ e Sp (B, a)} .

Let

o

Then Ku K2 are disjoint compact subsets of C, and since 0 e 1^ and
by (2) we have, whether or not B has a unit,

(3)

Since 3 Sp (J5, α) c JKΊ U iζj* by Lemma 2.1 we have

(4) S S p ^ α J c X x U J S ; .

Since Sp (C, α) is a nonvoid compact subset of C,
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(5) Sp(Cfa)dK1l)K2.

Now, by applying standard functional calculus and by (1), we shall
show that eeC. To see this, let Vl9 V2 be disjoint open neighbor-
hoods of Kl9 K2 respectively. Define f(z) = 0 if z e Vu f(z) = 1 if
z 6 V2, then / is a function analytic on V1 U V2 and /(0) = 0. Choose
c in C such that c = /°α on ΣC (this is possible because of (5)),
then we have,

Vφ e 2B, c (0) = c(φ IC) = / o % IC) = /

Now, it is clear that c = e on 2Ί? and eeC.
The last conclusion is an immediate consequence of the Silov

idempotent theorem and related uniqueness property (cf. [2], p. 88)
and the unitization of B if B has no unit.

Note. In Theorem 2.2, the mapping φ—>φ\C from ΣB into ΣC
is, in fact, one-to-one so that ΣB can be considered as a subset of
ΣC. But the proof does not require this fact, which is stronger
than (1) (cf. [5], p. 240).

Suppose that a closed subalgebra C of B has the property that
members of C do not all vanish at any one point of ΣB. Then (1)
also holds. Thus the argument in the proof of Theorem 2.2 implies
the following:

COROLLARY 2.3. Let C be a closed subalgebra of B with the
above property. Then an idempotent element e of B such that e is
a uniform limit of elements of C or of real parts of elements C is
contained in C.

Suppose B is a semi-simple commutative Banach algebra. We
may regard B as B. Then Theorem 2.2 can be restated as follows:

THEOREM 2.2'. Let C be a closed subalgebra of B such that
Re C is uniformly dense in Re B; then C contains all idempotent
elements of B.

Now Theorem 1.4 is an immediate consequence of Theorem 2.2'.

REMARK. (1) Using Theorem 2.2 and adapting the original
proof of Glicksberg's theorem in function algebras [3], it is easy
to check that "A\E is closed in A{Γ)\E for every compact subset E
of Γ" implies A = A(Γ) if Γ is totally disconnected, which is the
analogue of [3]. (For the proof, see [6].) After this result, in his
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paper [7] B. B. Wells proved this result for any locally compact
abelian group Γ.

(2) The stronger version of Theorem 2.2 was pointed out by
the referee. We would like to thank the referee for his valuable
suggestions and corrections, which makes this paper stronger and
more comprehensive.
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