Pacific Journal of Mathematics

THE SPACE OF REAL PARTS OF ALGEBRAS OF FOURIER
TRANSFORMS Sungwoo Suh

THE SPACE OF REAL PARTS OF ALGEBRAS OF FOURIER TRANSFORMS

Sungwoo Suh

Abstract

Let G be a locally compact abelian group with dual group Γ, and let denote a closed subalgebra of $A(\Gamma)$, the algebra of all Fourier transforms of functions in $L^{1}(G)$, which separates the points of Γ, and whose members do not all vanish at any one point on Γ. Then $\operatorname{Re} A \cdot \operatorname{Re} A \subset$ $\operatorname{Re} A$ implies $A=A(\Gamma)$ if Γ is totally disconnected.

1. Introduction. Let B be a semi-simple commutative Banach algebra with maximal ideal space ΣB. We regard B as an algebra of functions on ΣB. We consider a closed subalgebra A of B which separates points on ΣB, and whose members do not all vanish at any one point on ΣB.

Let $\operatorname{Re} A$ denote the space of real functions μ on ΣB such that for some f in $A, \mu=$ Ref.

Let G be a locally compact abelian group with dual group Γ. We denote by $A(\Gamma)$ the algebra of all Fourier transforms of functions in $L^{1}(G)$. That is,

$$
\begin{gathered}
f \in A(\Gamma) \Longleftrightarrow f(x)=\hat{F}(x)=\int_{G} F(y)(-y, x) d y \\
x \in \Gamma, y \in G, F \in L^{1}(G)
\end{gathered}
$$

with norm $\|f\|=\|F\| L_{1} . \quad A(\Gamma)$ is a semi-simple commutative Banach algebra and Γ is its maximal ideal space. We consider, also, a closed subalgebra A of $A(\Gamma)$ which separates the points on Γ, and whose members do not all vanish at any one point of Γ.

In [4] and [5] the following theorems were proved by Rudin and Katznelson: (cf. [5], p. 239-244).

Theorem 1.1. If B is spanned by its set of idempotents, then self-adjointness of A implies $A=B$.

Theorem 1.2. If Γ is totally disconnected, then $A(\Gamma)$ is spanned by its set of idempotents.

Theorem 1.2. If Γ is not totally disconnected, then there is an A which is proper and self-adjoint. That is: self-adjointness of A implies $A=A(\Gamma)^{\prime \prime}$ if and only if Γ is totally disconnected.

Here we shall show that, for B as in Theorem 1.1 and for any
subalgebra C of B, B-norm denseness and uniform denseness are exactly equivalent. That is:

Theorem 1.4. If B is spanned by its set of idempotents, then, for a subalgebra C of B, C is B-norm dense in B if and only if C is uniformly dense in B; more strongly, if and only if $\operatorname{Re} C$ is uniformly dense in $\operatorname{Re} B$.

In the case of Theorem 1.1, by the Stone-Weierstrass theorem A is uniformly dense in $C_{0}(\Sigma B)$, and so in B, so that A is B-norm dense in B, and hence $A=B$.

As an immediate consequence of Theorem 1.4, we have
Theorem 1.5. If B is spanned by its set of idempotents, then $\operatorname{Re} A \cdot \operatorname{Re} A \subset \operatorname{Re} A$ implies $A=B$.

In this case, $\operatorname{Re} A$ is uniformly dense in $\operatorname{Re} B$ by the StoneWeierstrass theorem. In the case that $B=C(X)$ and A is a function algebra on X, the last statement of the above theorem holds for any compact $X(=\Sigma B)$ [8]. In the case of $B=A(\Gamma)$, we rewrite the above theorem:

Theorem 1.6. If Γ is totally disconnected, then
$\operatorname{Re} A \cdot \operatorname{Re} A \subset \operatorname{Re} A$ implies $A=A(\Gamma)$.
Now we conclude that " $\operatorname{Re} A \cdot \operatorname{Re} A \subset \operatorname{Re} A$ implies $A=A(\Gamma)$ " if and only if Γ is totally disconnected.

Note. Self-adjointness of A always implies $\operatorname{Re} A \cdot \operatorname{Re} A \subset \operatorname{Re} A$, but the latter condition does notimply self-adjointness in general.
2. Idempotent elements in a Banach algebra. To prove Theorem 1.4, we obtain a general version of this theorem in a complex commutative Banach algebra B, without assuming semisimplicity of B, after an investigation of the behavior of idempotent elements in B.

Let the set $\operatorname{Sp}(B, b)$ be the spectrum of an element b of B, and let $\partial \operatorname{Sp}(B, b)$ denote the topological boundary of $\operatorname{Sp}(B, b)$. The following lemma is well known (cf. [1], p. 25):

Lemma 2.1. Suppose B has a unit, and let C be a closed subalgebra of B (C with or without unit).
For $a \in C$,

$$
\begin{gather*}
\operatorname{Sp}(B, a) \subset \operatorname{Sp}(C, a) \cup\{0\}, \quad \text { and } \tag{i}\\
\partial \operatorname{Sp}(C, a) \subset \partial \operatorname{Sp}(B, a) . \tag{ii}
\end{gather*}
$$

Using the unitization of B, it is easy to check that Lemma 2.1 is valid in an algebra B without unit.

We then have the following:
Theorem 2.2. Let C be a closed subalgebra of B such that $\operatorname{Re} \hat{C}$ is uniformly dense in $\operatorname{Re} \hat{B}$. Then every idempotent element in \hat{B} is contained in \hat{C}. More strongly, every idempotent element in B is contained in C.

Here \hat{C} and \hat{B} denote the spaces of all Gelfand transforms of elements of C and B, respectively.

Proof. First we note that uniform denseness of $\operatorname{Re} \hat{C}$ implies that for every nonzero complex homomorphism on $B, \phi \in \Sigma B$, its restriction $\phi \mid C$ to C is a nonzero complex homomorphism on C. That is

$$
\begin{equation*}
\forall \phi \in \Sigma B, \phi \mid C \in \Sigma C . \tag{1}
\end{equation*}
$$

Let e be an idempotent element in \hat{B}, then e is 0 or 1 on ΣB. Choose a in C so that $|\operatorname{Re} \hat{a}-e|<1 / 3$. Then we have, for all $\phi \in \Sigma B$,

$$
\begin{equation*}
-1 / 3<\operatorname{Re} \hat{a}(\phi)<1 / 3 \text { or } 2 / 3<\operatorname{Re} \hat{a}(\phi)<4 / 3 . \tag{2}
\end{equation*}
$$

Let $r(a)$ be the spectral radius of a,

$$
r(a)=\operatorname{Max}\{|\lambda|: \lambda \in \operatorname{Sp}(B, a)\} .
$$

Let

$$
\begin{aligned}
& K_{1}=\{z \in C:|z| \leqq r(a)\} \cap\left\{z \in C:-\frac{1}{3} \leqq \operatorname{Re} z \leqq \frac{1}{3}\right\}, \\
& K_{2}=\{z \in C:|z| \leqq r(a)\} \cap\left\{z \in C: \frac{2}{3} \leqq \operatorname{Re} z \leqq \frac{4}{3}\right\} .
\end{aligned}
$$

Then K_{1}, K_{2} are disjoint compact subsets of C, and since $0 \in K_{1}$ and by (2) we have, whether or not B has a unit,

$$
\begin{equation*}
\operatorname{Sp}(B, a) \subset K_{1} \cup K_{2} . \tag{3}
\end{equation*}
$$

Since $\partial \operatorname{Sp}(B, a) \subset K_{1} \cup K_{2}$, by Lemma 2.1 we have

$$
\begin{equation*}
\partial \operatorname{Sp}(C, a) \subset K_{1} \cup K_{2} . \tag{4}
\end{equation*}
$$

Since $\operatorname{Sp}(C, a)$ is a nonvoid compact subset of C,
(5)

$$
\mathrm{Sp}(C, a) \subset K_{1} \cup K_{2} .
$$

Now, by applying standard functional calculus and by (1), we shall show that $e \in \hat{C}$. To see this, let V_{1}, V_{2} be disjoint open neighborhoods of K_{1}, K_{2} respectively. Define $f(z)=0$ if $z \in V_{1}, f(z)=1$ if $z \in V_{2}$, then f is a function analytic on $V_{1} \cup V_{2}$ and $f(0)=0$. Choose \hat{c} in \hat{C} such that $\hat{c}=f \circ \hat{a}$ on ΣC (this is possible because of (5)), then we have,

$$
\forall \phi \in \Sigma B, \widehat{c}(\phi)=\hat{c}(\phi \mid C)=f \circ \hat{a}(\phi \mid C)=f(\hat{a}(\phi)) .
$$

Now, it is clear that $\hat{c}=e$ on ΣB and $e \in \hat{C}$.
The last conclusion is an immediate consequence of the Šilov idempotent theorem and related uniqueness property (cf. [2], p. 88) and the unitization of B if B has no unit.

Note. In Theorem 2.2, the mapping $\phi \rightarrow \phi \mid C$ from ΣB into ΣC is, in fact, one-to-one so that ΣB can be considered as a subset of ΣC. But the proof does not require this fact, which is stronger than (1) (cf. [5], p. 240).

Suppose that a closed subalgebra C of B has the property that members of \widehat{C} do not all vanish at any one point of ΣB. Then (1) also holds. Thus the argument in the proof of Theorem 2.2 implies the following:

Corollary 2.3. Let C be a closed subalgebra of B with the above property. Then an idempotent element e of B such that \hat{e} is a uniform limit of elements of \hat{C} or of real parts of elements \hat{C} is contained in C.

Suppose B is a semi-simple commutative Banach algebra. We may regard B as \hat{B}. Then Theorem 2.2 can be restated as follows:

Theorem 2.2'. Let C be a closed subalgebra of B such that $\operatorname{Re} C$ is uniformly dense in $\operatorname{Re} B$; then C contains all idempotent elements of B.

Now Theorem 1.4 is an immediate consequence of Theorem 2.2'.
Remark. (1) Using Theorem 2.2 and adapting the original proof of Glicksberg's theorem in function algebras [3], it is easy to check that " $\left.A\right|_{E}$ is closed in $\left.A(\Gamma)\right|_{E}$ for every compact subset E of $\Gamma^{\prime \prime}$ implies $A=A(\Gamma)$ if Γ is totally disconnected, which is the analogue of [3]. (For the proof, see [6].) After this result, in his
paper [7] B. B. Wells proved this result for any locally compact abelian group Γ.
(2) The stronger version of Theorem 2.2 was pointed out by the referee. We would like to thank the referee for his valuable suggestions and corrections, which makes this paper stronger and more comprehensive.

References

1. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Band 80, 1973.
2. T. Gamelin, Uniform Algebras, Prentice-Hall, 1969.
3. I. Glicksberg, Function algebras with closed restrictions, Proc. Amer. Math. Soc., (1963), 158-161.
4. Y. Katznelson and W. Rudin, The Stone-Weierstrass property in Banach algebras, Pacific J. Math., 11 (1961), 253-265.
5. W. Rudin, Fourier Analysis on Groups, Interscience, 1962.
6. Sungwoo Suh, Characterizations of $L^{1}(G)$ among its subalgebras, Thesis, Univ. of Connecticut, 1978.
7. Benjamin B. Wells, Jr., Algebras of Fourier transforms with closed restrictions, preprint.
8. J. Wermer, The space of real parts of a function algebra, Pacific J. Math., 13 (1963), 1423-1426.

Received April 8, 1980 and in revised form August 4, 1980. This paper is a portion of the author's doctoral dissertation prepared at the University of Connecticut under the direction of Professor Stuart J. Sidney. The author wishes to extend his sincere gratitude to him for his guidance and advice. The author also wishes to thank Professor Jerome H. Neuwirth for suggesting the problems discussed here.

Louisiana State University
Baton Rouge, LA 70803

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

Donald Babbitt (Managing Editor)
University of California
Los Angeles, CA 90024
Hugo Rossi
University of Utah
Salt Lake City, UT 84112
C. C. Moore and Andrew OGg

University of California
Berkeley, CA 94720

J. Dugundji

Department of Mathematics
University of Southern California
Los Angeles, CA 90007
R. Finn and J. Milgram

Stanford University
Stanford, CA 94305

ASSOCIATE EDITORS

| R. Arens E. F. Beckenbach | B. H. Neumann | F. Wolf K. Yoshida |
| :--- | :--- | :--- | :--- | :--- |

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA, RENO
NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY

UNIVERSITY OF OREGON

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of the manuscript. However, you may use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Please propose a heading for the odd numbered pages of less than 35 characters. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. Supply name and address of author to whom proofs should be sent. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

50 reprints to each author are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50 .

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $\$ 102.00$ a year (6 Vols., 12 issues). Special rate: $\$ 51.00$ a year to individual members of supporting institutions.

Subscriptions, orders for numbers issued in the last three calendar years, and changes of address shoud be sent to Pacific Journal of Mathematics, P.O. Box 969, Carmel Valley, CA 93924, U.S.A. Old back numbers obtainable from Kraus Per!odicals Co., Route 100, Millwood, NY 10546.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.).
8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.
Copyright © 1981 by Pacific Jounal of Mathematics
Manufactured and first issued in Japan
Pacific Journal of Mathematics
Vol. 95, No. 2 October, 1981
George E. Andrews, The Rogers-Ramanujan reciprocal and Minc's partition function 251
Allan Calder, William H. Julian, Ray Mines, III and Fred Richman, ε-covering dimension 257
Thomas Curtis Craven and George Leslie Csordas, An inequality for the distribution of zeros of polynomials and entire functions 263
Thomas Jones Enright and R. Parthasarathy, The transfer of invariant pairings to lattices 281
Allen Roy Freedman and John Joseph Sember, Densities and summability 293
Robert Heller and Francis Aubra Roach, A generalization of a classical necessary condition for convergence of continued fractions 307
Peter Wilcox Jones, Ratios of interpolating Blaschke products 311
V. J. Joseph, Smooth actions of the circle group on exotic spheres 323
Mohd Saeed Khan, Common fixed point theorems for multivalued mappings 337
Samuel James Lomonaco, Jr., The homotopy groups of knots. I. How to compute the algebraic 2-type 349
Louis Magnin, Some remarks about C^{∞} vectors in representations of connected locally compact groups 391
Mark Mandelker, Located sets on the line 401
Murray Angus Marshall and Joseph Lewis Yucas, Linked quaternionic mappings and their associated Witt rings 411
William Lindall Paschke, K-theory for commutants in the Calkin algebra 427
W. J. Phillips, On the relation $P Q-Q P=-i I$ 435
Ellen Elizabeth Reed, A class of Wallman-type extensions 443
Sungwoo Suh, The space of real parts of algebras of Fourier transforms 461
Antonius Johannes Van Haagen, Finite signed measures on function spaces 467
Richard Hawks Warren, Identification spaces and unique uniformity 483

