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Abstract

In the current article, we have thoroughly investigated the collective impact of mixed

convection with thermal radiation and chemical reaction on MHD flow of viscous and electri-

cally conducting fluid (Cattaneo–Friedrich Maxwell-CFM model) over a permeable surface

embedded in a porous medium. Here we have utilized the Caputo time-fractional deriva-

tives and mechanical laws (generalized shear stress constitutive equation and generalized

Fourier’s and Fick’s laws) are being used to fractionalize the presented model. The effects

of radiative heat flux, Ohmic dissipation, and internal absorption are presented through gen-

eralized Fourier’s law while Fick’s law or mass transfer equation offers the effects of first

order chemically reactive species. The finite element method and finite difference method are

being utilized to numerically solve the nonlinear coupled differential equations. It is estab-

lished, through compression of numerical and analytical solutions, that the presented model

is convergent. Further, error analysis of the subject model is also carried out. Moreover, for

better illustration of results, we have also offered a graphical and tabular presentation of

impacts of the parameters of interest on velocity, temperature, concentration profile, local

skin friction coefficient, and heat and mass transfer. It is evident from the obtained results

that velocity near and away from the surface increases with the enhancement of fractional

derivative parameter whereas an opposite trend is observed in the case of temperature. Fur-

thermore, it is noticed that temperature shows a decreasing behavior for the value �θ < 2

and �φ < 2, on the other hand entirely opposite trend is witnessed for �θ ≥ 3 and �φ ≥ 3.

From an engineering perspective, we have acquired comprehensive outcomes such that the

heat transfer offers an increasing trend in the case of TR and thermal fractional parameter

β1 . Additionally, the chemical reaction parameter and Sc significantly contribute towards

the mass transfer rate. Since, in literature, one cannot refer to such results with non-integer

Caputo fractional derivatives thus the results obtained through the current assessment hold

significance for future research avenues. Moreover, the numerical inferences of the subject

study may contribute to an advanced thermal processing method in the food industry to

swiftly increase the temperature for cooking or sterilization drives.
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Introduction

Most physical phenomena in the natural environment are developed in the combination of

initial and boundary value problems in time and space respectively. To interpret the long-term

behavior and attitude of solutions with reference to time, the equations that characterize adap-

tation in time (named as initial value problems) are significant. We need stable solutions which

are either bound by initial conditions or any physical constraint for these time-dependent equa-

tions. From the point of view of fluid dynamics, fluid flows that exhibit viscoelastic nature

is of great importance. Moreover, viscoelastic fluid flow is a complicated phenomenon and

due to the challenging non-linearity associated with governing equations (Navier–Stokes

equations), it is difficult to analyze the entire flow field. In this respect, boundary layer

approximations offer comprehensive knowledge regarding the solutions without solving the

complete equations of Navier–Stokes throughout the whole domain [21] yet not sacrificing

the consistency of the solutions. Here we have considered boundary layer viscoelastic non-

Newtonian liquids because of significant advancement in different sectors such as geothermal

engineering, meteorological, observational astronomy bio-fluid, and oil manufacturing com-

panies. Due to its adaptable existence, many fundamental associations of non- Newtonian

fluids are taken into consideration. Non-Newtonian fluids have earned the consideration of

professionals and researchers due to their advanced and manufacturing implementations,

i.e., passing on paper, manufacturing of plastic products, metals industry, food processing,

cables, and surface coating and ecological fluid growth, etc. It has been established through

experimental data that blood may be handled as non-Newtonian fluid at low shear concentra-

tions in small blood vessels. Numerous physiological processes are designed for biological

tissues as porous layers. To understand the behavior of such bioliquids, many non-Newtonian

liquid models exist. Maxwell fluid model is the simplest of all existing non-Newtonian fluid

models. Recently heat transfer analysis of fractional Maxwell fluid together with radiation

and chemical reaction effects are considered by [14]. They thoroughly study the impact of the

MHD and fractional parameters on the fluid flow. They have found that fractional derivatives

improve the fluid velocity while the opposite trend was noticed for the relaxation and mag-

netic effect. Effects of electrically conductive Maxwell fluid combined with free convection

and chemical reaction over a stretched surface embedded with porous medium are analyzed

[18]. They used the analytical technique to get the results for flow parameters. They noticed

remarkable effects of thermal radiation on thermal profiles. A semi-analytical solution for

the fractional Maxwell fluid model together with MHD effects is studied by [7]. The main

finding of the article is when the Reynolds number enhances, they directly affect the viscosity

and fluid motion. Further, they notice the opposite effects for Pr and Sc numbers on concen-

tration and temperature profile. One can find in the literature that many scholars have studied

Maxwell fluid through multiple mechanical and thermal boundary conditions [8, 16, 19, 39,

43]. Convective flow with simultaneous heat and mass transfer, under the involvement of an

electromagnetic essence and chemical reaction, has gained significant interest from scholars

since this phenomenon occurs in man disciplines of engineering and innovative technologies.

In several fields, including but not limited to freezing of nuclear power plants and hydromag-

netic (MHD) power generators in the chemical industry, potential embodiments of this form

of flow can be observed. The flow of free convection also exists in a natural environment. It
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happens not only because of the temperature variations but due to the variation in concentra-

tion or the mixture of these two. In industrial applications in which simultaneous heat and

mass transfer occur as a result of the cumulative buoyancy impact of the diffusion of chem-

ical reactions, numerous transportation processes occur. Free convection flows in chemical

reaction porous structures have widespread applicability in the technologies of geothermal

and petroleum reservoirs, and also in highly porous chemical reactors. Besides, substantial

concern in radioactive interference with chemical reaction and convection for heat and mass

transport in liquids has already been shown. This is due to the crucial role of solar radiation

in the transmission of surface heat if convection heat transfer is prohibited, specifically in

the situations of free convection having absorption-emitting liquids. Very recently, the study

of axisymmetric convection fractional Maxwell viscoelastic fluid combined with velocity

and temperature jump effects as demonstrated by [26]. They find a significant impact of

velocity and temperature jump on velocity and temperature. Transport of heat and mass of

free convection fractional Maxwell fluid model between two parallel plates are analyzed by

[46]. They find the closed-form solutions of the Maxwell fluid model by using the Laplace

method. The impact of chemical reactions on MHD Maxwell fluid induced by a stretched

surface is investigated by [36]. They find the analytical solution by using HAM and notices

that Deborah and Biot’s numbers play a significant role in heat transfer. Further, they notice

a remarkable improvement in concentration profile for the Archimedes number. For more

refs see [17, 25, 37, 48].

Low cost/ economical raw structures have to encounter chemical reactions in all man-

ufacturing chemical procedures to convert into potentially high manufactured goods. In a

reactor design, that have certain toxic chemical transitions take place. The reactor plays a

key role to bring reactants into intimate contact and provides a suitable atmosphere to extract

the final product. We are therefore highly interested in situations where diffusion and chem-

ical reaction happen at approximately the same velocity. Thus, in connection with many

physical problems, such as liquids experiencing exothermic or endothermic chemical reac-

tions, the analysis of heat generation or absorption impacts in fluid transport holds significant

importance. In several manufacturing methods, which involve flow and mass transport past a

variable sheet, the diffusing species may be produced or consumed due to chemical reaction

with the atmospheric liquid which can significantly influence the flow and accordingly the

characteristics and quality of the end product. The mechanisms employing mass transfer

impact have recently been accepted as significant mainly in chemical processing equipment.

Physical properties of heat and mass transfer over a stretched surface embedded with porous

medium are considered by [27]. Different impacts on fluid-like chemical reactions and ther-

mal radiation are taken into consideration. They used a numerical Keller box approach to

analyze the fluid parameters. The effects of thermal radiation and chemical reaction on a

nonlinear stretched surface embedded with the permeable medium are studied by [45]. They

used the FEM method to get the numerical solution of the considered heat and mass transfer

flow of nanofluid. They concluded from their finding that velocity and temperature are greatly

affected by Brownian motion while the opposite trend for concentration profile. For more

literature, the author suggests [30, 33, 44].

Keeping in view the assumption that time-fractional operators are satisfactory methods for

differentiation, conventional derivatives are substituted by fractional derivatives in several

physio-mathematical natural phenomena. Convolutions of the fractional operator kernels and

ordinary local derivatives form the basis to formulate these fractional operators. In literature,

one can find a vast variety of kernels to construct fractional operators yet in [15] Caputo is

applied on time derivatives to formulate a fractional operator. Here it is pertinent to mention

that fractional operators enjoy diverse applicability in relaxation processes, viscoelasticity,
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diffusion, and electrochemistry. Recently, many researchers are dedicatedly doing efforts to

generalize classic dynamical systems to fractional dynamical systems. In this regard [2, 47]

and [20] perform pioneering work on fractional calculus for different rheological problems.

Fractional derivatives have recently identified the complex patterns of viscoelastic materials

in different physical and industrial fields, particularly cryptographic products, planer system

plastic liquid extruding, crystalline substances, metal plate deflation, exotic oils, fiberglass

processing, and plastic blowing [12, 22]. It was confirmed by [32] that it was For the Maxwell

model with standard derivatives, it is unsatisfactory to acquire adequately innovative data

due to the varying spectrum of frequencies. Recently [3] performed numerical analysis for

the Covid-19 model using the fractional calculus approach. For more interesting numerical

studies on Covid-19 applications for instance see [1, 10]. Several methods are used to get

the solutions of fractional derivatives like analytical and semi-analytical see [11, 24, 31, 35].

To study the hyperchaotic attractors and harmonic oscillator with position-dependent mass

using fractional calculus approach is investigated [13, 41]. The numerical study of optimal

control theory using the fractional calculus approach is analyzed by [23, 34]. In this article,

we will use a stable numerical method to find solutions to the aforementioned models. Several

researchers have applied a numerical technique to solved FDEs [4–6, 42].

Owing to potential applications in technology and industry and having broader intuition

in comprehending the basic physics of the problems, fundamental flows are of significant

importance. In practice, such flow geometries can be witnessed in several instances such

as extrusion process, journal bearing, respiratory and circulatory systems. In literature, we

have enough indication to deduce that the effects of Ohmic heating along with chemical

reaction and thermal radiation are not studied by considering Caputo fractional derivatives.

The problem under consideration is coupled in heat mass transfer by taking into account the

effect of a magnetic field. Nevertheless, adopting a real approach, the Ohmic effect is being

included to investigate the effect of thermal transport in magnetized boundary layer flow.

For two-dimensional non-Newtonian flow, the impact of electrified and magnetized mixed

convection heat transport has been analyzed [18]. Further, [9] offered an exact analysis of the

free convection flow of the viscoelastic Jeffery fluid model with the latest Caputo-Fabrizio

fractional derivative of the non-singular kernel. Hence in the current study, we have presented

a collective analysis of Simultaneous upward force or buoyancy force impacts and first-order

homogeneous chemical reaction in one-dimensional MHD flow, heat, and mass transfer of a

fractional viscoelastic non-Newtonian fluid over a moving permeable surface embedded in a

porous medium by considering exothermic and endothermic reaction, ohmic dissipation and

thermal radiation. The acceleration of the moving plate is altered by changing the exponent

n over the time interval [0, T ]. In order to have a stable solution for the system of governing

equations, finite element discretization and finite difference discretization (FED and FDD)

are used for space and time variables, respectively. Moreover, we have offered a comparative

analysis of the exact and numerical solutions of the system of equations in addition to carrying

out error analysis to validate the numerical methods. At last, we have given a graphical and

tabular view of the impacts of several physical parameters on velocity, temperature, and

concentration profiles as well as local Nusselt and Sherwood numbers. The current article

may significantly contribute to comprehend the characteristics of the boundary layer flow of

Caputo fractional viscoelastic fluids. The layout plan of this study is as follows: The problem

under consideration is mathematically modeled in Sect. 2. Sections 4, 6 deal with deriving

transformation solutions methodology/ homogeneous model for the governing equations. In

Sect. 7 8 and 9, finite element and finite difference method (FEM and FDM) are being utilized

with the help of MATLAB oriented code to solve the system of principal equations, and the

main results obtained through the subject computational scheme are presented through flow
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charts while error analysis in respect of subject scheme is also performed. Section 11 is

mainly about the results and discussion followed by conclusions. Finally, the right-hand side

term appears in the model equation, and the transformation used for the homogeneous model

is presented in Sect. 13.

Mathematical Modeling of Physical Process

Unidirectional boundary layer flow of a viscous incompressible electrically conducting and

radiating fluid over an accelerating moving surface immersed with a uniform permeable mate-

rial subjected to thermal and concentration resilience impacts are considered. Moving surface

acceleration varies with the flow exponent of n. The entire flow environment is steady at the

initial time after t > 0 the flow motion starts. The wall is retained at a steady temperature (T0)

and concentration (C0) (depending on t and y) higher than the atmospheric temperature and

concentration, respectively. Fluid flow heat and mass propagation regulation is accomplished

along with other physical parameters by fractional time derivatives α, β1andγ1. It is also pre-

sumed that there is a heat generation/absorption interaction among the diffusing species and

the liquid together with a first-order homogeneous chemical reaction with a rate constant of

k1. The Caputo fractional time derivative [15] is employed for mathematical formulation in

this paper. The interpretation of the Caputo fractional time derivative is defined by

CFD
ηq(t) :�

1

Ŵ(p − η)

t

∫
0

qn(τ )

(p − τ)η+1−p
dτp − 1 < η < p ∈ N (1)

where Ŵ(·) signifies Gamma function. Under the aforementioned premises, the boundary

layer free convection flow with mass transfer, generalized Ohm’s and Fick’s laws Jc � σ

(EF + U × BF) and fractional Maxwell’s equations [20] are given by [8, 28].

∂t

(
1 + �αCFD

α
t

)
:� ν

(
1 + �α

2 CFD
α
t

)
∂yyu + σρ−1

(
1 + �αCFD

α
t

) (
EM BM + B

2
M

)

− νK −1
(
1 + �αCFD

α
t

)
u

+ gaβT E

(
1 + �αCFD

α
t

)
(T − T0) + gaβC E

(
1 + �αCFD

α
t

)
(C − C0) ,

∂t

(
1 +

τ
β1

2

Ŵ (1 + β1)
CFD

β1

t

)
:�

(
α1 +

16σ ∗T 3
0

3k∗ρcp

)
∂yy T

+ σρ−1C−1
p

(
1 +

τ
β1

2

Ŵ (1 + β1)
CFD

β1

t

)
(EM BM − u)2 −

Q0

ρcp

(T − T0) ,

∂t

(
1 +

τ
γ1

3

Ŵ (1 + γ1)
CFD

γ1

t

)
C :

� D∂yyC − k1

(
1 +

τ
γ1

3

Ŵ (1 + γ1)
CFD

γ1

t

)
(C − C0) .

(2)

Form the above equations α, ρ,�1,�2, T , C, K1, Q0, cp memory effect, the density of

fluid, relaxation time, retardation time, temperature, concentration, permeability parameter,

heat generation/absorption coefficient, and specific heat of constant pressure, respectively.

Further, we have ga gravitational acceleration, βT E , βC E are the thermal and concentration

expansion coefficients, D is the molecular diffusivity,BF � (0, BM, 0) shows magnetic field

intensity, BM magnetic field coefficient, EF electric field intensity, and Jc is the current

123



112 Page 6 of 23 Int. J. Appl. Comput. Math (2021) 7 :112

density. The continuity equation is identically satisfied for the proposed model. In contrast

with other chemical species, the concentration of diffusing species is quite small, and far

away from the wall is incredibly small. Chemical reactions occur in the flow and all thermo-

physical characteristics are supposed to be unchanged in the linear momentum equation,

which is estimated as per the Boussinesq interpretation, apart from density involve in upthrust

or buoyancy terms. Near the solar radiation and concentration buoyancy impact, a uniform

electric and magnetic field of magnitude BM, EF is implemented. The permeable material is

considered to be homogeneous and exists throughout in the local thermodynamic stability.

The appropriate boundary conditions (ICs and BCs) for the above dimensional model

(2) as given below:

u(0, t) :� u0

(
νl−2

)n
, u(l, T ) :� 0,

T (0, t) :� T0

(
l4 + ν2t2

)
l−4, and T (l, t) :� T0

(
l2

)
l−2, t > 0

C(0, t) :� C0

(
l4 + ν2t2

)
l−4, and C(l, T ) :� C0

(
l2 + νt

)
l−2, t > 0

u(y, 0) :� 0 :� u y(y, 0), T (y, 0) :� T0, C(y, 0) :� C0,

Tt (y, 0) :� l−3(T0ν)y :� Ct (y, 0), |y| ≤ l. (3)

Here u0 and ν indicates dimensional constant and kinematic viscosity. The current flow

domain is described by the flow conditions are given in (3).

Engineering Aspects Physical Parameters

The physical quantities of interest are the surface heat flux and surface mass flux. Concen-

tration gradients are used by many cells to complete a wide variety of tasks. There is energy

stored in the concentration gradient because the molecules want to reach equilibrium. So, this

energy can be utilized to accomplish tasks. In particular, the thermal gradient is very signif-

icant for the production reliability of the final goods in manufacturing processes. In thermal

and mass flux estimation at the boundaries, the Nusselt number and Sherwood number play

a very important role. In the present situation, Nusselt and Sherwood numbers are specified

as
(

1 +
τ

β1

2

Ŵ(1 + β1)
CFD

β1

t

)
Nu1 :�

−l
(
Ty

)
y�0

Tsl − T0

(
1 +

τ
γ1

3

Ŵ(1 + γ1)
CFD

γ1

t

)
Sh1 :�

−l
(
Cy

)
y�0

Csl − C0

At y � 0, T s1 and Cs1 are upper surface temperature and concentration respectively.

Moreover, for upper surface y: � l we have heat and mass transfer rate are
(

1 +
τ

β1

2

Ŵ(1 + β1)
CFD

β1

t

)
Nu2 :�

−l
(
Ty

)
y�l

Tsl − T0
,

(
1 +

τ
γ1

3

Ŵ(1 + γ1)
CFD

γ1

t

)
Sh2 :�

−l
(
Cy

)
y�l

Csl − C0
(4)

temperature and concentration at the upper surface (y :� l) are Ts2 and Cs2.
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Non-dimensional Caputo Fractional Flow Equations

To find the solutions of the above EQs (2–3) we have to convert the model’s equations into

dimensionless form. To simplify the model in the context of parameters, certain suitable units

less quantities are incorporated:

ŷ∗ :� yl−1, t̂∗ :� (νt)l−2, û∗ :� uu−1
0 , θ̂∗ :�

T − T0

T0
, φ̂∗ :�

C − C0

C0
. (5)

Utilizing Eq. (5) the IBVP (2)-(3) (for simplicity “.̂∗
′′
is excluded) can be turned into

∂t

(
1 + �αCFD

α
t

)
u :�

(
1 + �α

2 CFD
α
t

)
u yy + MN E f

− (MN + Pm)
(
1 + �αCFD

α
t

)
u + �θ

(
1 + �αCFD

α
t

)
θ

+ �φ

(
1 + �αCFD

α
t

)
φ,

Pr∂t

(
1 + �rθ CFD

β1

t

)
θ :

� (1 + TR) θyy + Pr Ecn MN

(
1 + �rθ CFD

β1

t

) (
u − E f

)2
− Pr ET θ,

Sc∂t

(
1 + �rφCFD

γ1

t

)
φ :� φyy − ScCrsφ.

(6)

The ICs and BCs are below
{

u(0, t) :� tn, u(1, t) :� 0, θ(0, t) :� t2, θ(1, t) :� t :� φ(1, t)

u(y, 0) :� 0 :� ∂yu(y, 0), θ(y, 0) :� 0 :� φ(y, 0), ∂yθ(y, 0) :� y :� ∂yφ(y, 0).

(7)

In the above, � is momentum relaxation time parameter, �2 refers retardation time

parameter, MN , MT and E f signifies magnetic field, electric and exothermic/ endothermic

parameters respectively, Pνr stand for porosity variable, �θ ,�φ are convection and diffusion

parameters, Pr is the Prandtl number, Ecn stand for Eckert number, βrθ stands for thermal

relaxation time parameter, TR shows thermal radiation parameter, ScandCrs are Schmidt

number and chemical reaction parameter respectively, and �rφ denotes the concentration

relaxation time parameter. All the above non-dimensionless parameters are mathematically

written as follow:

(8)

�θ :�
gal2βT E T0

u0ν
, �φ :�

gal2βC E C0

u0ν
, Pνr :�

K

νl
, �rθ :�

τ
β1

2 νβ1

Ŵ (1 + β1) l2β1
,

�rθ :�
τ

γ1

3 νγ1

Ŵ (1 + γ1)
l2γ1 , MN :�

σB2
M l2

μ
,

E f :�
EM

BM u0
, Pr :�

ν

α1
, Sc :�

ν

D
, Ecn :

�
u2

0

cpT0
, TR :�

16σ ∗T 3
0

3k∗μcp

, Crs :�
k1l2

ν
, ET :�

Q0l2

μcp

.

Heat and mass transfers rate in the dimensionless form are given by
(

1 + �rθCF D
β1

t

) Nu1

Re2
:� −

(
∂yθ

)
y�0

and
(

1 + �rθCFD
β1

t

) Nu2

Re
:� −

(
∂yθ

)
y�1

,

(
1 + �rφCFD

γ1

t

) Sh1

Re2
:� −

(
∂yφ

)
y�0

and
(
1 + �rφCFD

γ1

t

) Sh2

Re
:� −

(
∂yφ

)
y�1

(9)
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Here Re :� u0 L
ν

stands for Reynold’s number.

Fractional HomogenousModel

Equations (2–3) reflect a set of dimensionless PDEs that cannot be easy to get the solution

in closed form however these types of equations can easily tackle numerically. Hence, we

will use the finite element (FEM) as well as the (FDM) finite difference method. For the sake

of convenience, we will first convert the above PDEs into homogeneous boundary condition

by choosing the appropriate transformation given in (13) and the converted homogeneous

model along with boundary conditions as follows

∂t

(
1 + �αCFD

α
t

)
:�

(
1 + �α

2 CFD
α
t

)
wyy + MN E f − (MN + Pνr )

(
1 + �αCF D

α
t

)
w

+ �θ

(
1 + �αCFD

α
t

)
θ̄ + �φ

(
1 + �αCFD

α
t

)
φ̄ + F1u(y, t),

Pr∂t

(
1 + �rθ CFD

β1

t

)
θ � (1 + TR) θyy + Pr Ecn MN

(
1 + �rθ CFD

β1

t

)
(w)2

− Pr Ecn MN tncos
(π

2

)
y
(

1 + �rθ CFD
β1

t

)
(w)

+ wPr Ecn MN cos
(π

2

)
y

(
tn +

�rθŴ (n + 1) tn−β1

Ŵ (n + 1 − β1)

)

− 2Pr Ecn MN E f

(
1 + �rθ CFD

β1

t

)
(w)

− Pr ET

(
1 + �rθ CFD

β1

t

)
θ + F2θ (y, t) ,

Sc∂t

(
1 + �rφCFD

γ1

t

)
φ :� φyy − ScCrsφ + F3φ(y, t).

together with homogeneous Dirichlet BCs and ICs we have
⎧
⎨
⎩

w(0, t)0 :� w(1, t), θ(0, t)0 :� φ(0, t), θ(1, t)0 :� φ(1, t)

w(y, 0)0 :� ∂yw(y, 0), θ(y, 0)0 :� φ(y, 0), ∂yθ(y, 0)0 :� ∂yφ(y, 0)(10)

,

(10)

SolutionMethodology for Numerical Simulations

The finite-element (FEM) and finite-difference (FDM) algorithm is proposed together with

suitable time-fractional operators is utilized to discretize the considered flow model equations.

After getting the aforementioned model to discretize form, we have numerically solved the

below nonlinear algebraic equations [29, 40]

M
i
1L

α+1
k

[
W

i
h

]
+ T

i
1 H

α
k

[
W

i
h

]
− (MN − Pνr ) M

i
1L

α
k

[
W

i
h

]

− �θM
i
1L

α
k

[
�

i
h

]
− �φM

i
1L

α
k

[
�

i
h

]
K1

i
.

PrM
i
2L

β1+1
k

[
�i

h

]
+ T

i
2

[
�i

h

]
− 2 Pr Ecn MN N

i
1

[
W i

k−1h

]
L

β1

k

[
W i

kh

]

− tn
k−1n MN D1L

β1

k

[
W

i
h

]
− Pr Ecn MN

(
tn +

�rθŴ (n + 1) tn−β1

Ŵ (n + 1 − β1)

)
D1

[
W

i
h

]

+ 2Pr Ecn E f MN M
i
2L

β1

k

[
W

i
h

]
K2

i
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M
i
3L

γ1+1
[
�

i
h

]
+ T

i
3

[
�

i
h

]
− ScCrsM

i
3L

γ1

[
�

i
h

]
K3

i
.(11) (11)

Solution Technique

The nonlinear system of coupled equations (11) with the associated boundary conditions

(10) are numerically solved for the velocity, temperature, and concentration distributions. In

order to have a precise and efficient solution to the considered initial and boundary value

problem, we have utilized the finite element method and finite difference method. The basic

steps involved in the approach are given below:

Discretization of the Domain

In the first step, we discretized the entire domain into a finite number of sub-domains such as

a method or process called domain discretization. In the discretized domain each sub-domain

is named a finite element. The collection of all subdomain or elements is assigned to the finite

element grid.

The Equation Derivation

The below main three steps required for the derivation of the finite element method, i.e., alge-

braic equations contained the unknown parameters during the finite element approximation:

• At the first step, we developed a variational formulation for the given system of equations.

• Presume the approximate solution form over a conventional finite element.

• At the last, we put the considered approximate solutions into constructed variational form

and get the required finite element system of equations.

Assembling the Elements Equations

By implementing the conditions of inter-element continuity, we acquired the algebraic equa-

tions are assembled. This comprises a broad number of algebraic equations that govern the

entire flow domain.

Boundary Conditions Implementation

After performing the above steps the specified boundary conditions are imposed on the

assembled equation.

The Final Solution of the Assembled Form

For the numerical solutions of the final matrix, we construct a finite element base code by

implementing a P2 element. For seeking the convergence and stability of our implemented

numerical scheme we slightly change the values of u, θ , and φ and add ǫ in the source terms

and change the value of an added term ǫ no significant change was observed in the values of
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u, θ , and φ. And in the solutions, we find no disruption. The applied numerical methodology

is thus robust and convergent.

Flowchart of Computational Scheme
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Validation of Numerical Solutions

Before running real simulations, verification of the numerical scheme is essential. We, there-

fore, computed estimates of numerical error and made comparisons with theoretical error

estimates. We claimed that the model being investigated was fulfill the following definitions

of error:

ϑh(tk) − ϑext (tk)L2(�) ≤ C
∗
1

(
hr+1

1 + τ̂ ∗
)

ϑh(tk) − ϑext (tk)H
1(�) ≤ C

∗
2

(
hr

1 + τ̂ ∗
)

(12)

where the constants C∗
2 > 0 and C∗

1 > 0 are free of step sizes h1and τ̂ ∗, see [38].

∂t

(
1 + �αCFD

α
t

)
w :�

(
1 + �α

2 CFD
α
t

)
wyy + MN E f − (MN + Pνr )

(
1 + �αCFD

α
t

)
w

+ �θ

(
1 + �αCFD

α
t

)
θ̄ + �φ

(
1 + �αCFD

α
t

)
φ̄ + f1(y, t),

Pr∂t

(
1 + �rθ CFD

β1

t

)
θ :� (1 + TR) θyy + Pr Ecn MN

(
1 + �rθ CFD

β1

t

)
(w)2

− Pr Ecn MN tncos
(π

2

)
y
(

1 + �rθ CFD
β1

t

)
(w)

+ wPr Ecn MN cos
(π

2

)
y

(
tn +

�rθŴ (n + 1) tn−β1

Ŵ (n + 1 − β1)

)

− 2Pr Ecn MN E f

(
1 + �rθ CFD

β1

t

)
(w)

− Pr ET

(
1 + �rθ CFD

β1

t

)
θ + f2 (y, t) ,

Sc∂t

(
1 + �rφCFD

γ1

t

)
φ :� φyy − ScCrsφ + f3(y, t).

Validation of numerical solutions is verified by introducing source terms f1(y, t), f2(y,

t), and f3(y, t) in the momentum, energy, and concentration equations. Which are given as

follows:

f1 (y, t) :� 2t y (1 − y) + �α y (1 − y)
2t1−α

Ŵ (2 − α)
+ 2t2 +

4t2−α�α
2

Ŵ (3 − α)
− MN E f

+ (MN + Pνr )

(
t2 y (1 − y) + �α y (1 − y)

2t2−α

Ŵ (3 − α)

)

− �θ

(
t2sin2 (2πy) + �αsin (2πy)

2t2−α

Ŵ (3 − α)

)

− �φ

(
t2sin (2πy) + �αsin (2πy)

2t2−α

Ŵ (3 − α)

)
− F1u,

f2 ( y, t) :� P r

(
2tsin (2πy) + �rθ sin (2πy)

2t1−β1

Ŵ (2 − β1)

)
+ (1 + TR) (2π t)2sin (2πy)

+ 2sin (2πy) Pr Ecn MN E f t2 +
4sin (2πy) �rθ Pr Ecn MN E f

Ŵ (3 − β1)
tn−β1

− sin (2πy) Pr ET t2 −
2sin (2πy) �rθ Pr ET

Ŵ (3 − β1)
tn+2−β1

− Pr Ecn MN

[
t4sin2 (2πy) +

24sin2 (2πy) �rθ

Ŵ (5 − β1)
t4−β1

]

− t2sin (2πy) cos
(πy

2

)
Pr Ecn MN

[
tn +

Ŵ (n + 1) �rθ

Ŵ (n + 1 − β1)
tn−β1

]
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Fig. 1 Compression of Exact and Approximate Solutions for velocity and Temperature

f3(y, t) :� Sc2tsin(2πy) +
2sin(2πy)�rφ

Ŵ(2 − γ1)
t1−γ1 + (2π t)2 sin(2πy)

+ ScCrs sin(2πy)t2 +
2sin(2πy)�rφ

Ŵ(3 − γ1)
t2−γ1 − F3φ (13)

Here F1, F2andF3 are the right term of the solutions. With the same initial and boundary

conditions
{

w(0, t) :� 0 :� w(1, t), θ̄ (0, t) :� 0 :� φ̄(0, t), θ̄ (1, t) :� 0 :� φ̄(1, t)

w(y, 0) :� ∂y(w, 0), θ̄ (y, 0) :� 0 :� φ̄(y, 0), ∂y θ̄ (y, 0) :� 0 :� ∂y φ̄(y, 0)

(14)

The exact solutions can be obtained as follows

wex (y, t) :� t2 y(1 − y) and θex (y, t) :� t2 sin(πy) :� φex (y, t)

Figure 1 shows the velocity and temperature distribution of the fluid along the y-direction

obtained by the numerical solution and the analytical solution. It can be found that the

numerical solutions agree well with the analytical solutions. Similarly, we found the results

for concentrations equations also agreed with an analytical solution. The results demonstrate

that the numerical method developed in this study is reliable to be used in solving the fractional

Maxwell model along with Fourier and Fick’s Laws of heat conduction and concentrations.

Moreover, in the logarithmic scales, in Fig. 2a–c, approximate error estimates are illustrated
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Fig. 2 L2(�)and H1(�) Error for velocity (a), Temperature (b) and Concentration (c)

by assigning eight separate values for the space discretization phase h. It is essential to

mention that the slope of the (L2(�)) error curve will be almost 3 and that of the
(
H1(�)

)

error curve is approximately 2. Theoretically, error slopes should be roughly equal to r + 1

and r respectively for the Lagrange polynomial degree of r �. Since degree two polynomials

from Lagrange are utilized in this method. Therefore, the estimates of numerical errors are

considered to be in reasonable agreement with the theoretical estimates. This guarantees that

the method is convergent and appears to agree with theoretical errors.

Discussion

Numerical results/findings for velocity, temperature, and concentrations governing

Eqs. (11) with ICs and BCs (10) are achieved in the current analysis using the approach

of finite element and finite difference. In this assessment, we analyze the electrically con-

ducted mixed convection boundary layer flow in the existence of Joule heating and thermal

radiation over an accelerated surface. The fractional parameters i.e. (α, β1andγ1) influence

on velocity, temperature, and concentration field were also calculate and analyzed. In a graph-
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Fig. 3 Fractional number α, relaxation time �, thermal buoyancy ratio parameter �θ and solutal buoyancy

ratio parameter �φ on velocity profile when β1 � �rθ � γ1 � 0.95,�rφ � 0.7,�2 � 0.5,MN � 0.1 �

E f , n � 2.0, Pvr � 0.3, Crs � 0.5, TR � Ecn � Sc � 0.4, Pr � 1.2.

ical and tabular manner, the simulated results are demonstrated. We have obtained fascinating

knowledge about the impact of all the physical parameters that govern the model problem.

Figure 3a illustrates the fractional parameter (α) impact on the velocity profile u (y, t). As

the (α) values rise, the velocity gradient significantly increases and thus the thickness of the

momentum boundary layer improves. The velocity boundary layer has a maximal spike for

(α � 15%), while the fluid has no memory implications for (α � 0%). This ensures that the

fractional parameter regulates the boundary layer of momentum. The greater the fractional

stress parameter (α) is for a fixed value of Y , the better the elastic behavior and the higher

the velocity magnitude. This is based on the assumption that the thickness of the velocity

boundary layer improves with the improvement in the elastic function. We noticed that

the velocity boundary-layer reduces its thickness as � increases in Fig. 3b. The relaxation

time at 15% maximal level although we have recorded minimal relaxation at 0.0% or no

relaxation time. We say from this result that the fluid’s viscoelasticity increases but there is

more gap in recovery. The buoyancy ratio parameter �θ represents the ratio between mass

and thermal buoyancy forces. When � �θ 0 or less than 3 there is no mass transfer or less

mass transfer in the fluid domain and the buoyancy force is due to the thermal diffusion

only. This indicates that the mass buoyancy force behaves in almost the same direction as

the thermal buoyancy force for (�θ > 0) or (> 3). In Fig. 3c, the role of (�θ ) on the velocity

profile can be seen. An identify trends of (�θ ), which raises the velocity profile, is displayed
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Fig. 4 Porosity variable Pvr , Magnetic number MN , moving exponent n and final time on velocity profile when

β1 � α � �rθ � γ 1 � 0.95, �1 � 0.1,, Crs � Ef � 0.5, �rϕ � 0.1, Sc � TR � Ecn � ET � 0.2, Pr � 1.2

in the figure. It happens when the buoyancy force raises, which leads to an increased in

the velocity of the fluid and an improvement in the thickness of the boundary layer. The

optimum velocity for a higher value of (�θ ) near the upper surface. From Fig. 3d we can see

the effect of solutal Grashof number (�ϕ) on velocity. The improvement in (�ϕ) is expected

to enhance the velocity in the momentum boundary layer. Besides that, it is observed that the

maximum value of velocity increases dramatically near the upper surface and declines in the

vicinity of the bottom surface as the value of (�ϕ). Figure 4a for the case when permeable

permeability value is continued to increase. Initially when (Pvr � 0) no pore resistance to

the fluid after increasing the value of porosity parameter from (0.0 to 0.9) pore provide more

resistance to the fluid. We can therefore note that the impact of maximizing the value of

(Pvr) is to reduce the effect of the velocity component in the boundary layer due to undergo

degradation or significantly increases the friction of the fluid by increasing the value of the

porous permeability on the fluid flow, resulting the velocity reduces. The same pattern has

been observed in Fig. 4b. The velocity begins from the highest value of the upper surface

and declines unless it hits the maximum level or holds significant friction and afterward

the flow pressure reduces before it exceeds the required value at the end of the boundary

layer. It is significant to mention that the strength of the magnetic fields in the boundary

layer is to diminish the value of the velocity profile. We notice that, with an enhancement

in the strength of the magnetic field, the maximal strength decreases significantly, since the

involvement of an MHD in an electrified fluid generates a resisting force that we call the

Lorentz force which operates against the liquid if, as in the present problem, the magnetic
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Fig. 5 Thermal memory parameter β1, Magnetic parameter MN , Electric parameter Ef and Thermal relaxation

time parameter �rθ , on temperature profile when α � γ 1 � 0.95, �θ � 4 � �ϕ , �rϕ � 0.1, n � 2.0, R �

0.1, Sc � ET � 0.5

field is implemented in the normal direction. As seen in this figure, this kind of opposing

force delays the fluid velocity drop. The moving number n and the final time properties are

specified in Fig. 4c, d. Rises in the moving number n the velocity u(y, t) enhance over the

interval [0, 1.5] shows in 4(c). In particular, an improvement in (n) generating velocity of flow

rate increases over [0, 1.5], which leads to an increase in flow rate. Likewise, it is inferred

that the velocity rises for the fixed moving number (n � 1) by continuing to increase the final

time (t), see Fig. 4d. Implications of the fractional parameter (β1) on the (θ (y, t)) presented

in 5(a). As the surface temperature increases, the continuous pattern of the temperature

gradient declines, and the thickness of the thermal boundary layer tends to increase as values

of (β1) raise. It indicates that in the thermal boundary layer, (β1) plays a significant role. We

concluded in Fig. 5b that the thermal field variable is affected by the magnetic field variable

(MN ) in the domain [0, 2] and the dual tendency of the dimensionless temperature profiles

is witnessed to enhance the value of the domain in the specified domain. When (�θ < 2),

the temperature is a declining (MN ) function. This is because the longitudinal magnetic

field gives rise to a resistive force defined as the Lorentz force of an electrically conducting

fluid. This force allows the liquid to encounter friction by growing the resistance among the

layers and thereby reducing its temperature. Whereas the adverse attitude of the (MN ) on

the (θ (y, t)) is noticed when � �θ 4. In this situation, when (MN ) is enhanced, we realized

that the thermal boundary layer thickness is raised, thus the temperature rises. Figure 5c

demonstrates the influence on (θ (y, t)) for an electric field variable. The heat transfer rate
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Fig. 6 Eckert parameter Ecn, Heat generation/absorption parameter ET , Thermal Radiation parameter TR and

Prandtl number Pr on temperature profile when α � β1 � γ 1 � 0.95, � � �2 � 0.1, MN � Ef � 0.5, n �

2.0, �rϕ � Pvr � �rθ � 0.1, �ϕ � �θ � 4 Sc � 0.5

Fig. 7 Chemical reaction parameter Crs, and Schmidt number Sc on Concentration profile when α � β1 � γ 1
� 0.95, � � �2 � 0.4, MN � Ef � 0.5,Pr � 1.0, Ecn � 0.5 � ET , n � 2.0, �rϕ � Pvr � �rθ � 0.1, �

�φ�θ � 4, TR � 0.5

declines as the electric field increases. Because of the Lorentz strength, the electric field

accelerates the fluid temperature. This result gives enhancement in the thermal boundary

layer thickness and temperature field. The improvement in the temperature distribution with
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the increment of the (�θ ) is depicted in 5(d). It is acknowledged that with the rise of Y over the

interval [0, 2], the temperature profile significantly reduces. Changing the thermal relaxation

parameter (�θ ) takes more time for viscoelastic material to shift heat energy from insulated

to non-insulated molecules, resulting in a reduction in the temperature profile for higher

values of Y . The result on the (θ (y, t)) of the Eckert number (Ecn) can be seen in Fig. 6a. For

increasing values of Eckert number (Ecn), the temperature profile (θ (y, t)) is evaluated. The

thermal boundary layer thickness remains thicker and the temperature distribution rises as the

(Ecn) increases. This contributes significantly to a low heat transfer rate on the surface. An

exothermic reaction is a chemical process that, that releases energy in the form of light and

heat. It is the reverse of an endothermic response. It provides energy to its surroundings. The

energy required for the reaction to proceed is far less or significantly higher than the overall

endothermic or exothermic reaction energy released, accordingly. The alteration of heat

generation/absorption (ET ) on the non-dimensional temperature profile (θ (y, t)) is shown

in Fig. 6b. (ET > 0) leads to the generation of heat and (ET < 0) corresponds to the heat

absorption. It was acknowledged that, in comparison to heat absorption, the temperature

profile and thickness of the thermal layer are progressed for heat generation. As the variable

of heat generation continues to rise, the temperature and thickness of the thermal layer

start rising while an opposite trend is seen in the case of heat absorption. Enough heat is

generated by the heat generation method, contributing to temperature field improvement.

The significant importance of the thermal conductivity to the thermal radiation exchange is

described by the radiation parameter. The growing influence of (TR) on temperature is shown

in Fig. 6c. It is evident that an improvement in the radiation parameter in the flow environment

increases with an increase in temperature. Attributed to the higher thermal radioactive effect,

the rate of heat transport at the surface decreases. With substantial radiation parameters,

elevated temperatures and thicker thermal boundary layer thickness are connected. Increasing

radiation variable values contribute to a weak heat transport rate at the surface since the

temperature of the liquid is strengthened. The impact of the Prandtl number (Pr) over the

dimensionless temperature θ (y, t) is shown in Fig. 6d. Because of its increasing values over

the non—dimensional liquid temperature, the Prandtl number has a diminishing impact and

the thermal boundary layer thickness is also decreased. This is because the low thermal

conductivity of relatively high Prandtl number fluid decreases conduction and thus decreases

the thermal boundary layer thickness boundary layer. The influence of the reaction rate

variable (Crs) on generative chemical reaction species concentration profiles is included in

Fig. 7a. The analysis indicates that the influence of maximizing the value of the chemical

kinetics variable (Crs) on the (ϕ(y, t)) in the boundary layer is indicated. From this figure,

it is specifically concluded that the magnitude of species concentration declines from (0 to

1.5). Besides, it is recognized that a higher amount of the (Crs) reduces the concentration

of species in the boundary layer, attributed to the reason that the boundary layer declines

with an increase in the value of (Crs), i.e., the chemical reaction in this system results in

the chemical accumulation and thus causes a decrease in the concentration profile. In the

circumstance where the Schmidt number (Sc) is enhanced as shown in Fig. 7b, comparable

findings are shown with the last figure. It can also be ascertained from this result that for

significantly greater values of (Sc), the influence of the Schmidt number (Sc) on concentration

distribution declines gradually. As can be predicted, as (Sc) continues to increase with all

other parameters set, the mass transfer rate rises, i.e., an increment in (Sc) causes a decline

in the thickness of the concentration boundary layer, correlated with the decrease in the

concentration profiles. Higher the value of (Sc) implies decreasing molecular diffusion by

(D). The species concentration is thus significantly greater for relatively small (Sc) values

and reduces for larger (Sc) values. Tables 1 and 2 shows the computational values of Nusselt
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Table 1 Numerical values for heat

transfer rate (Lower and Upper

surface) for different values of

coupled nonlinear fluid model

parameters when α � 0.1, n �

1.0, TR � ET � � � 0.5,�θ �

�φ � 0.1, Pvr � 0.5.

β1 �rθ MN Pr TR E f Ecn ET Nu1 Nu2

0.1 0.3 0.2 0.4 0.5 0.1 0.2 0.5 0.2840 0.5591

0.2 0.4098 0.9226

0.3 0.5900 1.5520

0.1 0.3 0.2840 0.5591

0.4 0.2801 0.5360

0.5 0.2779 0.5170

0.3 0.2 0.2840 0.5591

0.3 0.2934 0.5559

0.4 0.3032 0.5525

0.2 0.4 0.2840 0.5591

0.5 0.3019 0.5319

0.6 0.3198 0.5046

0.4 0.5 0.2840 0.5591

0.6 0.2796 0.5659

0.7 0.2756 0.5719

0.5 0.1 0.2840 0.5591

0.2 0.2843 0.5588

0.3 0.2845 0.5586

0.1 0.2 0.2840 0.5591

0.3 0.2928 0.5561

0.4 0.3015 0.5531

0.2 0.5 0.2840 0.5591

0.6 0.2929 0.5761

0.7 0.2844 0.5993

and Sherwood numbers for different values of coupled nonlinear fluid problem. It notices

from Table 1 the presence of thermal radiation and the fractional derivative parameter is to

increase Nusselt number at the upper surface. Further, it is found from Table 2 the increasing

influence of chemical reaction parameter (Crs) and concentration relaxation time parameter

decreases the values of the Sherwood number.

Final Remarks

The current study offers a detailed overview regarding the effects of solar radiation (TR) and

magnetic field (MN ) on the unstable heat and mass transport of an electrically conducting

fluid by mixed convection beside a moving surface where homogeneous first-order chemical

reaction with the influence of Ohmic heating and exothermic and endothermic reactions

are taken into consideration. The Cattaneo-Friedrich fractional technique is being utilized to

formulate the principal equations of the subject flow problem. After modeling the problem, the

very well-known techniques named finite element and finite difference method are utilized

to have a numerical solution of the problem. Three fractional parameters α, β1 and γ 1

are introduced in momentum, energy, and concentration equations. The numerical scheme

presented by us is being validated by performing an error analysis of the same. In order to
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Table 2 Numerical values for

mass transfer rate (Lower and

Upper surface) for different

values coupled nonlinear fluid

model parameters when α �

0.1, n � 1.0,� � 0.5, Pr �

0.4,�θ � �φ � 0.1, Pvr � 0.5.

γ1 �rφ Sc Crs Ecn Sh1 Sh2

0.1 0.5 0.4 0.5 0.1 0.5115 0.0893

0.2 0.6553 0.3603

0.3 0.8131 0.9255

0.1 0.5 0.5115 0.0893

0.6 0.5209 0.0447

0.7 0.5313 0.0016

0.5 0.4 0.5115 0.0893

0.5 0.5765 −0.0536

0.6 0.6403 −0.1936

0.4 0.5 0.5115 0.0893

0.6 0.5270 0.0516

0.7 0.5424 0.0142

0.5 0.1 0.5115 0.0893

0.2 0.5115 0.0893

0.3 0.5115 0.0893

have a pictorial view, the quantities of interest like velocity, temperature, and concentration

profile as well as Nusselt and Sherwood numbers are presented through graphs and tables. The

physical variables that have been observed to influence the different fields under discussion

are the relaxation time parameters (�, �rθ , �rϕ ), fractional parameter (α, β1, γ 1), magnetic

parameter (MN ), porosity parameter (Pvr), electric parameter (Ef ), thermal and solutal

Grashof number (�θ , �ϕ), chemical reaction parameter (Crs), radiation parameter (TR),

Prandtl number (Pr), Schmidt number (Sc) and heat absorption parameter(ET ). The following

inferences can be deducted from the above discussion and numerical computations:

• The velocity field is greatly influenced by the relaxation time parameters and the frac-

tional derivative. One can observe that corresponding to an increase in the fractional derivative

and relaxation time parameter, the thickness of the momentum boundary layer becomes thin-

ner. Moreover, increasing fractional derivative and relaxation parameters increase the velocity

near and away from the surface (upper and lower surface).

• A higher magnetic resistance is observed which cause a reduction in the velocity through

dual trend is observed for temperature in (case 1) temperature shows decreasing behavior

for (�θ < 2) whereas in (case 2) increasing trend is witnessed in temperature for (�θ

≥ 2) which is due to thermal buoyancy frictional force. However, this trend cannot be

generalized as other parameters of interest also contribute to determining this trend.

• Thermal gradient behaves like a decreasing function for β1 and Pr, whereas an increasing

trend is noticed for TR and Ecn where the temperature is a quadratic function of time at

the heated boundary.

• It is also observed that the existence of thermal radiation and the fractional derivative

parameter contributes to the increment of Nusselt number at the upper surface. On the

other hand, the effect of thermal radiation on Nusselt number at the lower surface is almost

negligible. Further, one can observe that fractional derivative parameters greatly affect

heat transfer.

Furthermore, the value of the Nusselt number increases on both surfaces due to the exis-

tence of a heat source.

123



Int. J. Appl. Comput. Math (2021) 7 :112 Page 21 of 23 112

An increment in chemical reaction parameter and concentration relaxation time parameter

results in a decrease in the value of Sherwood number whereas as opposite behavior is

witnessed in case of the upper surface.
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Appendix

Transformation for Homogeneousmodel
⎧
⎨
⎩

w(y, t) :� u(x, t) − tncos
(πy

2

)
,

θ̄ (y, t) :� θ(y, t) −
(
t2(1 − y) + t y

)
,

φ̄(y, t) :� φ(y, t) −
(
t2(1 − y) + t y

)
,

Right hand side term

F1u :� −ntn−1cos
(πy

2

)
− cos

(πy

2

) �αŴ (n + 1)

Ŵ (n − α)
tn−α−1

−

(π

2

)2
cos

(πy

2

) (
tn +

�α
2 Ŵ (n + 1)

Ŵ (n + 1 − α)
tn−α

)

− cos
(πy

2

)
(MN + Pvr )

Ŵ (n + 1)

Ŵ (n + 1 − α)
tn−α

− cos
(πy

2

)
(MN + Pvr ) tn +

2�θ� (1 − y)

Ŵ (3 − α)
t2−α

+ �θ t2 +
�θ y

Ŵ (2 − α)
t1−α + �θ t +

2�φ (1 − y)

Ŵ (3 − α)
t2−α + �φ t2 +

�φ y

Ŵ (2 − α)
t1−α�φ t,

F2θ :� Pr Ecn MN tncos
(πy

2

)2
[

tn +
�rθŴ (n + 1)

Ŵ (n + 1 − β1)
tn−β1

]

+ Pr Ecn MN E2
f − 2Pr Ecn MN E f tncos

(πy

2

)

− 2Pr Ecn MN E f

[
�rθŴ (n + 1)

Ŵ (n + 1 − β1)
tn−β1 cos

(πy

2

)
tn−β1

]

+ Pr ET

[
t2 (1 − y) + t y +

2�rθ

(
1 − y

)
t2−β1

Ŵ (3 − β1)
+

�rθ yt1−β1

Ŵ (2 − β1)

]

− 2t Pr (1 − y) −
�rθ Pr

(
1 − y

)

Ŵ (2 − β1)
t1−β1 − Pry −

�rθ Pry

Ŵ (1 − β1)
t−β1 ,

F3φ :� −ScCrs t2 (1 − y) + Sc2t (1 − y)

− Sc

(
2 (1 − y) �rφ

Ŵ (2 − γ1)
t1−γ1 +

y�rφ

Ŵ (1 − γ1)
t−γ1

)
− Scy − ScCrs
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