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Abstract The assumption of linear confinement leads to

a proportionality of the energy–momentum and space–time

pictures of fragmentation for a simple qq̄ system in the Lund

string model. The hadronization of more complicated sys-

tems is more difficult to describe, and in the past only the

energy–momentum picture has been implemented. In this

article also the space–time picture is worked out, for open and

closed multiparton topologies, for junction systems, and for

massive quarks. Some first results are presented, for toy sys-

tems but in particular for LHC events. The density of hadron

production is quantified under different conditions. The (not

unexpected) conclusion is that this density can become quite

high, and thereby motivate the observed collective behaviour

in high-multiplicity pp collisions. The new framework, made

available as part of the Pythia event generator, offers a start-

ing point for future model building in a number of respects,

such as hadronic rescattering.

1 Introduction

The Standard Model of particle physics is solidly established

by now, and has been very successful in describing all per-

turbatively calculable observables for LHC pp collisions, i.e.

those dominated by large momentum transfer scales [1]. But

at lower scales the perturbative approach breaks down, and

phenomenological models have to be developed.

One of the underlying assumptions for these models has

been that the nonperturbative hadronization process, wherein

the perturbatively produced partons turn into observable

hadrons, is of a universal character. Then relevant nonpertur-

bative parameters can be determined e.g. from LEP data, and

afterwards be applied unmodified to LHC pp collisions. The

hadronizing partonic state is quite different in the two pro-

cesses, however. Firstly, the composite nature of the incom-
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ing protons leads to multiple semiperturbative parton–parton

collisions, so-called MultiParton Interactions (MPIs) [2,3],

and also to beam remnants and initial-state QCD radiation.

Secondly, the high number of interacting partons leads to

the possibility of nontrivial and dynamically evolving colour

topologies, collectively referred to as Colour Reconnection

(CR) phenomena. Both MPIs and CR need to be modelled,

and involve further new parameters. (CR has been observed

in the cleaner e+e− → W+W− process by the LEP collab-

orations [4], but that information is not easily transposed to

the pp context.)

The most successful approach to providing a combined

description of all relevant phenomena, at all scales, is that

of event generators. Here Monte Carlo methods are used

to emulate the quantum mechanical event-by-event fluctu-

ations at the many stages of the evolution of an event [5].

For pp physics the three most commonly used generators are

Pythia [6,7], Herwig [8,9] and Sherpa [10]. Fragmentation

here proceeds either via strings [11], for the former, or via

clusters [12], for the latter two. A note on terminology: “frag-

mentation” and “hadronization” can be used almost inter-

changeably, but the former is more specific to the breakup

of a partonic system into a set of primary hadrons, whereas

the latter is more generic and can also include e.g. decays of

short-lived resonances.

In spite of an overall reasonable description, glaring dis-

crepancies between data and models have been found in

some cases. Most interesting is that high-multiplicity LHC

pp events show a behaviour that resembles the one normally

associated with heavy-ion collisions and the formation of a

Quark-Gluon Plasma (QGP). In particular, ALICE has shown

that the fraction of strange baryons increases with multiplic-

ity, the more steeply the more strange quarks the baryon con-

tains, while the proton rate is not enhanced [13]. Long-range

azimuthal “ridge” correlations have also been observed by

both CMS [14,15] and ATLAS [16], as well as other signals

of collective flow [17–19].
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This is unlike conventional expectations, that QGP for-

mation requires volumes and timescales larger than the one

that can be obtained in pp collisions [20–22]. Nevertheless

core–corona models have been developed, like the one imple-

mented in EPOS [23], where a central high-density region

can turn into a QGP, while the rest of the system remains as

normal individual strings. Other mechanisms that have been

proposed include rope formation [24] and shoving [25], or

an environment-dependent string tension [26]. Common for

all of them is that they introduce a space–time picture of the

collision process.

In the traditional Lund string model [11] the linear con-

finement potential leads to a linear relationship between the

energy–momentum and space–time pictures of a simple qq̄

fragmenting system. Many of the above models are based on

the approximation of a number of such simple strings, paral-

lel along the pp collision axis but displaced in the transverse

plane by the collision/MPI geometry.

For a generic multiparton system, like qg1g2 . . . gn q̄, only

an energy–momentum picture has been available until now

[27]. The purpose of this article is to overcome that limita-

tion, and provide a full space–time picture of the hadroniza-

tion process, as part of the Pythia event generator.1 This

will offer a natural starting point for more detailed future

studies of a number of collective effects. The models men-

tioned above deal with the space–time structure before (like

core–corona or shove) or during (like ropes or QGP) frag-

mentation. To this we would also add a possibility for studies

of what happens after the first stages of the hadronization,

when hadronic rescattering and decays can occur in paral-

lel. In addition to the already mentioned observables, Bose–

Einstein correlations could also be used to characterize final

states.

A warning is that we are applying semiclassical mod-

els to describe the quantum world. Formally the Heisenberg

uncertainty relations impose limits on how much simultane-

ous energy–momentum and space–time information one can

have on an individual hadron. Our approach should still make

sense when averaged over many hadrons in many events, as

will always be the case.

The plan of the article is as follows. Section 2 gives a

brief summary of relevant earlier work, on the “complete”

description of the simple qq̄ system [11], and on the energy–

momentum picture of an arbitrary partonic system [27]. Sec-

tion 3 then introduces the new framework that provides a

space–time picture also in a general configuration. Several

special cases need to be addressed, and technical complica-

tions have to be sorted out, with some details relegated to

two appendices. Section 4 contains some first studies, partly

1 After posting the preprint, we learned of another related implemen-

tation [28]. It does not address all the issues considered here, however,

and therefore is insufficient e.g. for LHC studies.

Fig. 1 A simplified colour-field topology in a qq̄ system and its further

simplified string representation

for toy systems but mainly for LHC events. This is without

any of the collective effects that may be added later, but still

provides an interesting overview of the overall space–time

evolution of hadronization at the LHC. Finally, Sect. 5 con-

cludes with a summary and outlook.

Natural units are assumed throughout the article, i.e. c =
h̄ = 1. By default energy, momentum and mass is given in

GeV, and space and time in fm.

2 The Lund String model

2.1 The linear force field in QCD

Confinement is one of the most fundamental properties of

QCD. It can be viewed as a consequence of an approximately

linear term in the QCD potential,

VQCD(r) ≈ −4

3

αs

r
+ κ r, (1)

between a quark and an antiquark in an overall colour singlet

state, where r is the distance between them and αs is the

strong coupling constant. The presence of a linear term was

first inferred from hadron spectroscopy (Regge trajectories),

from which a κ ≈ 1 GeV/fm can be extracted, and has later

been confirmed by lattice QCD calculations.

The linear term dominates at large distances, and in the

Lund string model only this term is used to describe the

breakup of a high-mass qq̄ system into several smaller-mass

ones. Then the full colour field can be approximated by a

one-dimensional string stretched straight between the q and

q̄, Fig. 1. This string can be viewed as parametrizing the

center of a cylindrical region of uniform width along its full

length, such that the longitudinal and transverse degrees of

freedom almost completely decouple.

2.2 The two-parton system

The Lund model is easiest to understand in the context of

a simple quark–antiquark pair created at the origin (e.g.

by e+e− annihilation) and moving out along the ±z axis.

Neglecting the transverse degrees of freedom, the Hamilto-

nian can then be written as [11]

H = Eq + Eq̄ + κ|zq − zq̄|. (2)

Here |zq −zq̄| is the distance between q and q̄, and Eq and Eq̄

are the energies of the q and q̄. With both assumed massless,

it also holds that Eq/q̄ = |pq/q̄| = |pz,q/q̄|.

123



Eur. Phys. J. C (2018) 78 :983 Page 3 of 23 983

Fig. 2 The motion of a qq̄ system, with massless q and q̄

From the Hamiltonian, the equation of motion gives rise

to a linear relation between the space–time and the energy–

momentum pictures,
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The signs of the derivatives depend both on the direction of

motion of the parton and on the direction the string pulls it

in. When the parton moves out along the +z axis, e.g., the

string pulls the parton in the −z direction, and all signs are

negative.

2.2.1 Simple string motion

In the absence of string breaks, the motion of the simple qq̄

system in its rest frame can be described as a “yo-yo” motion,

where a string is alternatingly “reeled out” and “reeled in”,

Fig. 2a. In the first quarter of a period the q and q̄ are mov-

ing apart from each other with the speed of light, z = ±t ,

such that the string length lstring = 2t . Therefore, the four-

momenta of the q, q̄ and the string evolve with time as

pq/q̄(t) =
(

Ecm

2
− κt

)

(1; 0, 0,±1),

pstring(t) = (2κt; 0, 0, 0), (4)

where Ecm is the center-of-mass energy of the full system.

At time t = Ecm/2κ all the energy is carried by the string,

whose string tension then forces the q and q̄ to turn around.

In the second quarter of the period the string length decreases

like lstring = 2(Ecm/κ − t), and energy and momentum is

transferred back to the q/q̄. At t = Ecm/κ the string has

vanished and the q/q̄ are back at the origin, but now moving in

the ∓z direction. The second half of the full period therefore

becomes a repeat of the first half, only with the role of q and

q̄ interchanged. Normally string breaks are assumed to occur

so rapidly that only the first quarter of the first period needs

to be considered.

The kinematics of the yo-yo motion can conveniently be

rewritten in terms of light-cone coordinates, both in energy–

momentum, p̃± = E±pz , and in space–time, z̃± = t±z.

For instance, for the quark in the first quarter period, z̃−
q =

p̃−
q = 0, z̃+

q = 2t , p̃+
q = Ecm − 2κt = Ecm − κ z̃+

q , such

that d p̃+
q /dz̃+

q = −κ . p̃± also obey the relation

p̃+ p̃− = (E + pz)(E − pz) = m2 + p2
x + p2

y

= m2 + p2
⊥ = m2

⊥, (5)

which reduces to p̃+ p̃− = m2 when px = py = 0.

The simplest yo-yo system can be generalized as illus-

trated in Fig. 2b, where the quark and the antiquark have

different initial energies, Eq �= Eq̄. Equivalently, this

system can be viewed as a boosted copy of the rest-

frame setup in Fig. 2a. The energy–momentum and space–

time coordinates suffer simultaneous transformations under

a longitudinal boost, and Eq. (3) holds also after the

boost. The transformation is especially easily formulated

in light-cone coordinates, where p̃′± = k±1 p̃± with k =√
(1 + β)/(1 − β) for a boost with velocity β, and similarly

for z̃±.

Note that a string piece with E = κl but pz = 0 in the

original rest frame will obtain a pz �= 0 after a boost to the

frame with Eq �= Eq̄. This is in seeming contradiction with

a description set up in a rest frame where Eq �= Eq̄ from the

onset, where one would again expect pz = 0. The solution is

that a string piece is an extended object, so that the two ends

of it, if originally simultaneous, will no longer be it after the

boost. Only a string piece at constant time in the new frame

will obey E = κl and pz = 0 there.
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Fig. 3 Simple qq̄ system, where q and q̄ are massless, with two breaks,

b1 and b2. The light-cone coordinates are normalized to unity

2.2.2 String breaking and hadron formation

As described in the previous section, the potential energy

stored in the string increases with the separation between an

original q0 and q̄0. This makes the creation of a new q1q̄1 pair

in the string energetically favourable, if the invariant mass of

the system is big enough. It is here assumed that colours are

matched so that the original colour-singlet q0q̄0 string breaks

into two pieces, q0q̄1 and q1q̄0, that separately are colour sin-

glets. By local flavour conservation the q1 and q̄1 have to be

created in the same vertex. They are created with vanish-

ing energy, and are then pulled apart by the string tension.

Naively, the probability for the string to break increases with

time, because the string length increases. On the other hand,

a break can inhibit later breaks, since each break fragments

the string into two smaller systems, leaving an in-between

region without a string. If on-mass-shell criteria for hadrons

are ignored, as in the Artru–Mennessier model [29], a naive

constant breakup probability per unit string area then is mod-

ified by an exponential-decay factor.

In general, several string breaks can occur between the

q0 and q̄0. Consider two adjacent ones, b1 at (t1, z1) and

b2 at (t2, z2), as depicted in Fig. 3. The q1 from the b1

vertex combines with the q̄2 from the b2 vertex, forming a

hadron q1q̄2 with mass mh . Since q1 and q̄2 are created with

no energy–momentum, the four-momentum of the hadron

entirely comes from the intervening string piece, which can

be read off like [11]

Eh = κ(z1 − z2), pzh = κ(t1 − t2),

p̃±
h = κ

∣

∣z̃±
1 − z̃±

2

∣

∣ . (6)

Next consider the quantities x̂± and x±, illustrated in

Fig. 3a. The former represent the light-cone coordinates of

breakup vertices, scaled by the corresponding coordinates

of the q0 and q̄0 turning points, so as to be restricted to

a physical region 0 ≤ x± ≤ 1. The latter represents the

light-cone separation between two (adjacent) breaks, cor-

respondingly scaled. For the q1q̄2 hadron this translates to

x+
h = x̂+

1 − x̂+
2 , x−

h = x̂−
2 − x̂−

1 . Defining the two four-

vectors p+ = pq0(t = 0) = Eq0(1; 0, 0, 1) and p− =
pq̄0(t = 0) = Eq̄0(1; 0, 0,−1), and using the proportional-

ity between space–time and energy–momentum, the hadron

four-momentum then becomes

ph = x+
h p+ + x−

h p−. (7)

Although Eq. (7) has been derived for a system in which

q and q̄ are moving in opposite directions, it is valid in all

frames, which makes the x̂± coordinates and x± fractions

most useful. Since E2
cm = (p++p−)2 = 2p+ p−, the hadron

mass obeys

m2
h = p2

h =
(

x+
h p+ + x−

h p−)2

= x+
h x−

h 2p+ p− = x+
h x−

h E2
cm. (8)

Do note the factor of 2 for the p± vectors in E2
cm = 2p+ p−,

as opposed to the relation E2
cm = p̃+ p̃− for the two scalar

quantities p̃±, and correspondingly for the hadronic subsys-

tems.

Each breakup vertex is characterized by its invariant time

τ . A convenient corresponding energy–momentum quantity

is

Γ = (κτ)2 = κ2
(

t2 − x2 − y2 − z2
)

. (9)

which geometrically corresponds to the string area in the

backwards light cone of the vertex. Using the notation of

Fig. 3a it can also be expressed as

Γ =
(

x̂+ p+ + x̂− p−)2 = x̂+ x̂− E2
cm. (10)

2.2.3 Selection of breakup vertices

The breakup vertices are causally disconnected. That is, b1

and b2 in Fig. 3 have a spacelike separation. Which hap-

pens first then depends on the Lorentz frame in which the

event is studied. It is therefore possible to describe the frag-

mentation process starting from the hadron closest to the q0

end and then moving towards the q̄0 one, or the other way

around. Assuming e.g. that b1 has already been selected, so

that x̂±
1 are fixed, then the selection of the two x±

h values

of the hadron defines the location of b2. But, assuming that

the hadron and its mass are already specified, the mass con-

straint in Eq. (8) reduces it to one degree of freedom. For
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the fragmentation from the q0 side this is conveniently cho-

sen to be the x+
h values. More specifically, z+ fractions are

introduced, as illustrated in Fig. 3b, as the hadron fraction

of whatever system light-cone momentum that still remains

after the production of previous hadrons. That is, the first

hadron q0q̄1 acquires a fraction z+
1 = x+

1 of the total p̃+

of the system, while the remnant-system is left with a p̃+

fraction of 1 − z+
1 = 1 − x+

1 . The second hadron q1q̄2 takes

a fraction z+
2 from the leftover p̃+, i.e. x+

2 = z+
2 (1 − z+

1 ),

leaving a new remainder fraction (1− z+
1 )(1− z+

2 ). Since the

fragmentation process is iterative, the x± fractions related to

hadron i can be written as

x+
i = z+

i

i−1
∏

j=1

(

1 − z+
j

)

,

x−
i =

m2
i

x+
i E2

cm

, (11)

where the relation for x−
i is given by Eq. (8).

Alternatively the fragmentation could have been described

from the q̄0 end in terms of negative light-cone fractions z−

and x−. Since the breakup points are causally disconnected,

the two procedures should result in the same average particle

distribution. This requirement, “left–right symmetry”, gives

a probability distribution [11,30]

f (z) ∝ (1 − z)a

z
exp

(

−b
m2

h

z

)

, (12)

for the z value of each new hadron, where z = z+ (z = z−)

for fragmentation from the q0 (q̄0) end. The a and b are

parameters that should be tuned to reproduce the experimen-

tal data. Hence, f (z) determines how the individual vertices

correlate in order to create a hadron of mass mh by taking a

fraction z of the energy–momentum left in the system. Note

that the form of f (z) does not depend on previous steps taken,

which leads to a flat rapidity plateau of the inclusive hadron

production.

The Γ values of breakup vertices can be obtained recur-

sively by simple geometrical considerations,

Γi = (1 − zi )

(

Γi−1 +
m2

i

zi

)

, (13)

where Γi and Γi−1 are the scaled squared invariant times of

the i and i − 1 breakups, respectively. The q0 and q̄0 turning

points define Γ0 = 0. The inclusive Γ distribution, after

some steps away from the endpoint(s), is

P(Γ ) ∝ Γ a exp (−bΓ ) (14)

with the same a and b as in Eq. (12).

The breaks of the string can be determined from Eq. (11)

by iteratively picking zi values according to Eq. (12) for the

hadrons with masses mi . This works well for the simple

Fig. 4 Hyperbolae of constant Γ and m2
h represented by dashed and

full lines, respectively

q0q̄0 system, but Eq. (11) will not hold in systems with more

than two partons. To this end an alternative procedure can be

introduced [27] via Γ recursion. Here a z = zi is still selected

by Eq. (12), and converted to a Γi by Eq. (13). As illustrated

in Fig. 4, each fixed Γ value corresponds to a hyperbola

with the origin as its center. Correspondingly each fixed mi

corresponds to a hyperbola with the i −1 vertex as its center.

Therefore a given (mi , Γi ) pair corresponds to the unique

crossing of two hyperbolae at the location of the next vertex.

2.2.4 The tunneling process

Up to this point, we have assumed that the qi q̄i pairs gener-

ated from string breakings are massless and have no trans-

verse momenta. Both qi and q̄i are then created as real

particles at a common space–time location, with vanishing

energy–momentum. If the pair is massive or carries trans-

verse momentum, the qi and q̄i still have to be created in the

same space–time location, but as virtual particles. Each now

has to tunnel out a distance l = m⊥/κ to acquire enough

energy from the string to correspond to its transverse mass

m⊥. This tunneling results in a Gaussian suppression factor

exp

(

−πm2
⊥

κ

)

= exp

(

−πm2

κ

)

exp

(

−πp2
⊥

κ

)

. (15)

A consequence of this mechanism is the suppression of heavy

quark production in string breaks, approximately like uū :
dd̄ : ss̄ : cc̄ ≈ 1 : 1 : 0.3 : 10−11 [11]. It is therefore

assumed that c and b production only occurs by perturbative

processes.

The combination of a qi−1 and a q̄i gives the flavour of

a meson but does not fully specify it. The quark spins can

combine e.g. to produce a pseudoscalar or a vector meson,

and flavour-diagonal mesons mix, and so on. All of these

aspects are relevant for the model as a whole, but for the con-

siderations in this article we only need to know the masses of

the produced mesons. Similarly for baryon production, where

the production mechanisms are less well understood, whether
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Fig. 5 The cc̄ system and the equivalent system formed by massless q

and q̄

“diquark” or “popcorn” [31,32]. In the latter approach actu-

ally three different production vertices are involved, one for

each of the quarks, but also here an effective description in

terms of two, as for mesons, is meaningful. A diquark is taken

to be a colour antitriplet, just like an antiquark, and we thus

use the notation q̄ as shorthand for either of them.

Since the string itself has no transverse motion, it is

assumed that the transverse momentum is locally com-

pensated inside each qi q̄i pair. The transverse momentum

of a hadron qi−1q̄i is then given by the vector sum of

its constituent transverse momenta. The hadron masses in

Sect. 2.2.2 have to be replaced by the corresponding trans-

verse masses.

2.2.5 Massive quarks

Although massive quarks are not created from string break-

ing, they can be generated in the hard process and form a

system that might fragment further. In this section, the yo-yo

model is extended to account for massive quarks as the end-

points of the system. Since the massive q and q̄ do not travel

at the speed of light, their motion is described by hyperbolae

instead of straight lines.

To study the motion of the massive yo-yo system, consider

a cc̄ system in the CM frame, in which c and c̄ are moving

along the z axis in opposite directions. The massive yo-yo

system is depicted in Fig. 5a, along with the massless case

for comparison. At time t = 0,

Ec(0) = E0 = Ecm

2
, pz,c(0) = p0 =

√

E2
0 − m2

c . (16)

The proper relativistic definition of force, d pz/dt = ±κ ,

then gives

pz,c(t) = p0 − κt,

Ec(t) =
√

p2
z,c(t) + m2

c,

zc(t) = E0 − Ec(t)

κ
, (17)

with the motion of the c̄ its mirror image. Notice that the

oscillation time is reduced by a factor p0/E0 relative to the

massless system with the same E0.

Although the motion properties of the massless and mas-

sive cases hold in every longitudinal boosted frame, the

effects of boosts are simpler to address for massless quarks.

A useful trick is to replace the effect of the quark mass by

an extra string piece of length (Ec(t) − pz,c(t))/κ at each

endpoint. Its length is mq/κ at the turning point, see Fig. 5b,

where the massive motion is illustrated by the hyperbolae,

whose asymptotes are the straight lines of the massless case.

Thereby time t = 0 is also offset to account for the reduced

oscillation time. The extra string piece is purely fictitious and

does not break during the fragmentation process. The physi-

cal region, between the hyperbolae, is highlighted in grey in

Fig. 5b. Given that the hadron created from the endpoint is

always heavier than the endpoint quark, all the hadrons are

automatically created inside the physical region.

The four-momenta of the massless reference four-vectors

have to be linear combinations of the massive quark four-

momenta for Lorentz covariance reasons. If pq and pq̄ are

the four-momenta of the massive quarks, while p0q and p0q̄

are the massless four-momenta, the relation between them

becomes

p0q = (1 + k1)pq − k2 pq̄,

p0q̄ = (1 + k2)pq̄ − k1 pq, (18)

where the k1 and k2 values are fixed by p2
0q = p2

0q̄ = 0 [27].

2.3 Multiparton systems

Next, more complicated string topologies need to be con-

sidered. An example is the Z0 decay into a pair of massless

quarks, either of which can emit a gluon:

Z0 → qq̄ → qgq̄.

Both such radiation and the hadronization can occur over

widely varying time scales in high-energy events, but in a

local context the radiation takes place at time scales shorter

than those of the hadronization itself. As a reasonable first

approximation all three partons can thus be assumed created

at the origin.

In the Lund model the colour flow is based on the limit of

infinitely many colours [33]. Then there is one string piece

from the q to the g and another from the g to the q̄, and the

two do not interfere. The gluon thus can be viewed as a kink

on a single string stretched from the q to the q̄.
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Fig. 6 Time evolution of the qgq̄ system formed by massless partons in a frame where the gluon moves in the +x direction, while the q and q̄

move in opposite directions along the z axis

The motion of the qgq̄ string system can conveniently be

studied in a Lorentz frame where the q moves in the +z

direction, g in the +x direction and q̄ in the −z direction.

Two string pieces are present initially, as illustrated in view

1 of Fig. 6. Each string piece defines a separate string region,

which behaves similarly to the string piece of a qq̄ system,

except that it is now transversely boosted. The region formed

by the qg string evolves with time as

pq(t) = (Eq(0) − κt)(1; 0, 0, 1),

pg(t) = (Eg(0) − 2κt)(1; 1, 0, 0),

pstring(t) = κt (2; 1, 0, 1), (19)

and correspondingly for q̄g, but with z → −z. Note the factor

of two in the gluon four-momentum, which comes from the

loss of energy–momentum to both string pieces attached to it.

Unlike the simple qq̄ system, the two string pieces are not at

rest, but move in the transverse direction: the qg string piece

has a velocity vector vx = vz = 1/2, while for the gq̄ piece

vx = −vz = 1/2. The energy per unit string length is higher

than for a string at transverse rest, but the lower string length

drawn out per unit time exactly compensates, such that the

force acting on the endpoints is of the same magnitude [27].

After time t = Eg(0)/2κ the gluon has lost all its energy

and a new string piece is created by the inflowing momentum

from the q and q̄, and is hence denoted as the qq̄ region, see

view 2. Later the q has also lost all its energy and starts to

move in the +x axis as it absorbs g four-momentum. The q

eventually gains and re-emits half of the gluon energy, views

3 and 4. Subsequently it absorbs original q̄ four-momentum

and moves in the −z direction, views 5 and 6. A similar pro-

cess occurs for q̄. As shown in view 7, the gluon will even-

tually reappear, and in view 8 the sequence starts to repeat,

only with the momenta of q and q̄ swapped.

Although Fig. 6 is useful to visualize the time evolution

of the system, the parameter plane picture is most convenient

when addressing the kinematics [27]. This is a diagram that

Fig. 7 The parameter plane picture for the qgq̄ system. The dash lines

indicate the turnover regions, normally neglected

displays the different string regions in terms of the light-cone

four-vectors defining each region, i.e. p+
q = pq, p−

q̄ = pq̄

and p+
g = p−

g = pg/2 in the qgq̄ case, whose parameter

plane is displayed in Fig. 7. The low regions represent the

states in which none of the partons have lost their energy,

corresponding to the two string regions in view 1 of Fig. 6,

the qg and the gq̄ string pieces. The intermediate region cor-

responds to the new string piece created from the q and q̄

momenta once the gluon has lost all its energy. Finally, the

upper regions are related to the two string pieces formed when

g re-appears. Although the complete parameter plane picture

(for half a period) is the one shown in Fig. 7, the dashed upper

regions are normally neglected, since the system is assumed

to fragment before then. This reasonable assumption avoids a

large number of complications for handling fragmentation in

these regions. The three remaining regions are then formed by

the combination of one + component and one − one, where

± no longer relates to motion along the ±z axis, but more

generically denotes the reference vector directed towards (+)

or away from (−) the q end of the system.
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Fig. 8 The parameter plane picture for a multiparton system composed

by five partons

From the parameter plane picture, the equations defin-

ing the hadron properties and the fragmentation process of

Sect. 2.2 can be easily generalized. For the qgq̄ system, the

hadron momentum can generically be written as,

ph = x+
q p+

q + x−
g p−

g + x+
g p+

g + x−
q̄ p−

q̄ ,

= x+
q pq + 1

2

(

x+
g + x−

g

)

pg + x−
q̄ pq̄. (20)

The hadron mass enters via the constraint p2
h = m2

h . The

other Lorentz invariant variable Γ is obtained from the x̂±

fractions defined in Sect. 2.2.2 as,

Γ =
(

x̂+
q p+

q + x̂+
g p+

g + x̂−
g p−

g + x̂−
q̄ p−

q̄

)2
. (21)

The level lines of constant mh and constant Γ again

give hyperbolae inside each string region, where physically

allowed, which connect at the borderline between regions. As

before there will be (at most) one allowed solution to a given

(mh, Γ ) pair, which can be found by starting in the current

region and, if not found there, step by step move on to other

possible regions. There are a number of complications that

have to be overcome to do this [27].

The parameter-plane picture can be extended to a multi-

parton system, resulting in the most convenient approach to

study the kinematics of any multiparton system. As an exam-

ple, the parameter plane for a system consisting of three glu-

ons, one quark and one antiquark is depicted in Fig. 8, where

the turnover regions have been ignored. In such a system,

there are four low regions, or initial regions, and six interme-

diate regions. The number of initial and intermediate regions

can be generalized for any multiparton system formed by n

partons, out of which n−2 are gluons, as n−1 initial regions

and (n − 1)(n − 2)/2 intermediate regions. The expression

for the hadron four-momentum can also be generalized to an

n-parton system by accounting for the momenta taken from

each parton as

ph = x+
q p+

q + x−
q̄ p−

q̄ +
n−2
∑

i=1

(

x+
gi

p+
gi

+ x−
gi

p−
gi

)

, (22)

where usually most of the x± vanish. Apart from these

aspects, the rest of the properties are similarly determined

as in previous cases.

2.4 Fragmentation implementation summary

The fragmentation process in Pythia is based on the four-

momenta of the partons created in the (semi)perturbative

stages of the collision process, plus the partons in the

beam remnants [34]. By the colour-connection between

those partons, an LHC event is likely to contain sev-

eral qg1g2 . . . gn−2q̄ systems, that can be handled sepa-

rately.

The production of each new hadron begins with the selec-

tion at random of whether to split it off from the q end or from

the q̄ one of the system. The flavour of a new qq̄ break of the

string (where q may also represent an antidiquark), leads to

the formation of a new hadron, as already described. Its mass

is selected, according to a Breit–Wigner for short-lived parti-

cles with a non-negligible width. The transverse momentum

is obtained as the vector sum of those of the hadron con-

stituents, assuming that the old and new breakup vertices are

in the same region. Then the longitudinal momentum frac-

tion z is picked according to the probability distribution in

Eq. (12), with the difference that the hadron mass has to be

replaced by the transverse ditto, mh → m⊥h . In a simple qq̄

system, the new breakup vertex is easily obtained from the

(m⊥h, z) pair. Else the Γi value of the new breakup is calcu-

lated using Eq. (13), again with mh → m⊥h , and a solution is

sought to the (m⊥h, Γi ) pair of equations. Vertex i may end

up in the same string region as i − 1, or involve a search in

other regions. Among technical complications of this search

is that the transverse directions are local to each string region,

which leads to discontinuities in the hyperbolae of constant

m⊥h at the borders between string regions, that would not be

there for p⊥ = 0.

The random steps from both string ends continue until

the remaining invariant mass of the system is deemed so

small that only two final hadrons should be produced.

Details on this final step can be found in “Appendix A”,

along with the challenges encountered when implementing

the space–time picture and the methods applied to solve

them. Had the fragmentation always proceeded from the

q end, say, the final step would always have been at the

q̄ end, with the minor blemishes of this step concentrated

there. Now these are instead smeared out over the whole

event.
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Fig. 9 Hadron formation in a qq̄ system. The blue, red and green dots

represent the “early”, “middle” and “late” definitions of hadron produc-

tion points, respectively

3 The space–time description

So far, the fragmentation process in Pythia was developed

in terms of the energy–momentum fractions x± and z± of

breakup vertices and hadrons, presented in Sect. 2.2.2. There-

fore, the location of the breakup vertices is only specified in

the energy–momentum picture. In order to study the den-

sity of hadron production, this information should first be

translated to the space–time one, which will be done in this

section.

3.1 The two-parton system

To begin, consider a breakup point i in a simple qq̄ system. Its

location with respect to the origin of the energy–momentum

picture, where q and q̄ have been created, is given by the x̂±

fractions. Then, considering p+ to be the q four-momentum

and p− the q̄ four-momentum, the location of breakup i in

the energy–momentum picture is defined as x̂+
i p+ + x̂−

i p−.

Recalling the linear relation between space–time and energy–

momentum, Eq. (3), the space–time location of breakup point

i thereby is defined as

vi =
x̂+

i p+ + x̂−
i p−

κ
. (23)

Note that the qi and q̄i generated by the string break are

considered to be created in the same space–time vertex, even

when quark masses and transverse momenta are included,

such that q and q̄ have to tunnel some distance apart before

becoming on-shell. Such effective vertices in practice is the

best one can do.

Since hadrons are formed by two adjacent string breaks,

the hadron production point should be related to these two.

But the definition cannot be unique, since hadrons are com-

posite and extended particles. For that reason, we propose

three alternative definitions, illustrated in Fig. 9. Two breakup

points, i and i + 1, with space–time coordinates vi and vi+1,

together define the qi q̄i+1 subsystem that forms hadron i .

Fig. 10 Parameter plane for a qgq̄ system

One obvious choice is then to define the hadron production

point as the average of the two,

vh
i = vi + vi+1

2
, (24)

red dot in the figure. Alternatively to this “middle” definition,

the “late” hadron production point is where the two partons

forming the hadron cross for the first time, green dot. Tak-

ing into account the hadron four-momentum ph , the “late”

hadron production point is offset from the “middle” defini-

tion as

vh
l,i = vi + vi+1

2
+ ph

2κ
. (25)

Finally, an “early” definition, blue dot, is given by

vh
e,i = vi + vi+1

2
− ph

2κ
, (26)

which is where the backwards light cones of the q̄i and qi+1

vertices cross, just like the “late” definition is where the for-

wards light cones cross. In a causal world, this would be the

latest time for information to be sent out that can correlate the

breakup vertices to give the correct hadron mass. Note that

the two endpoint hadrons are situated on the light cone with

this “early” definition. The different results obtained with

the three alternative definitions can be used as a measure of

uncertainty, see Sect. 4.1. If not stated otherwise, the choice

in this article is the “middle” definition of Eq. (24).

3.2 More complex topologies

Multiparton systems are more complicated to address than

a single qq̄ string, as already demonstrated for the energy–

momentum picture. Their complexity also affects the space–

time implementation, which has to be extended to include

several string regions. Initially consider a qgq̄ system formed

by massless partons, with a parameter plane as in Fig. 10,

ignoring the turnover regions. Since each string region sep-

arately behaves like a simple qq̄ system, Eq. (23) can be

used. Nevertheless, the intermediate region is formed after

the gluon has lost all of its energy, at a different location in

space–time than the initial regions, so an offset has to be taken
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Fig. 11 Parameter plane for a five parton system

into account for it. From the linear relation between space–

time and energy–momentum, the space–time offset for this

region can be calculated as vreg = pg/2κ , where pg is the

four-momentum of the gluon. The factor of 1/2 accounts for

the fact that a gluon loses four-momentum twice as fast as a q

or q̄, since it transfers four-momentum to two string pieces.

Thus, the space–time location of a breakup located in the

intermediate region is given by

vi =
x̂+

i p+ + x̂−
i p−

κ
+ pg

2κ
. (27)

If the system is composed of more than one gluon, also

more than one intermediate region has to be taken into

account, as illustrated in Fig. 11. In such cases, more glu-

ons have to be included when determining the space–time

offset of some intermediate regions, such as the qg3 one.

This region is created when both g1 and g2 have lost their

energies, giving an offset vreg = (pg1 + pg2)/2κ .

A general expression for the space–time offset of any

intermediate region in any multiparton system can be easily

defined, if all partons are numbered consecutively, starting

from the q end, and region labels jk are for ones containing

four-momenta from partons j and k, k ≥ j . The jk region

offset is found to be

v jk =
k−1
∑

m= j+1

pm

2κ
, (28)

where pm is the four-momentum of parton m, and for a

breakup vertex in this region it thus holds that,

vi =
x̂+

i p+
j + x̂−

i p−
k

κ
+

k−1
∑

m= j+1

pm

2κ
. (29)

While seemingly simple enough, there are a number of sig-

nificant challenges to a robust implementation in a multipar-

ton configuration, in part paralleling similar problems in the

energy–momentum picture [27], in part going further. There

are two main problems: the determination of the space–time

Fig. 12 The string configuration and the corresponding parameter

plane for a three gluon-loop topology. In the two initial endpoint regions

the full lines indicate the “active area”, and the dashed ones the com-

plementary excluded one

location of the final breakup in the system, and the non-

physical values of the x̂± fractions that can arise when frag-

mentation moves to a new region. Those issues are further

explained in “Appendices A and B”, respectively, along with

the solutions found to properly implement the space–time

picture.

3.3 Gluon loops

So far, gluons have only appeared in open strings between a q

and a q̄ end, but it is also possible to have closed gluon loops,

as exemplified in Fig. 12a for a ggg system. In order to reduce

the problem to a familiar one, an initial qq̄ is generated by

string breaking in one of the string regions. This break should

be representative of what ordinary fragmentation is expected

to give. Thus the region is chosen at random, but with a

bias towards ones with larger masses, where more ordinary

string breaks are to be expected. Inside that region, the Γ

value of the vertex is chosen according to Eq. (14), and a

further random choice gives the longitudinal location of the

breakup. Having taken this step, the n-gluon-loop topology

is effectively mapped onto an (n+1)-parton open string with

q and q̄ as endpoints. The key difference is that, unlike open

strings considered so far, Γq = Γq̄ �= 0.
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As an example, the parameter plane for a gluon-loop con-

sisting of three gluons is displayed in Fig. 12b. In this case, the

string between g1 and g3 has broken into two string pieces,

generating two new string regions, g1q and g3q̄. Although the

full g1g3 region is duplicated in the parameter plane, in the

right endpoint region only the “active area” between q and

g1 is open to fragmentation, while the left endpoint region

only uses the complementary area between g3 and q̄. Apart

from that, the fragmentation process can now play out in the

same way as for an open string, with the same rules for the

space–time locations of the breakups. Note that the q and

q̄ “endpoints” correctly will be assigned the same creation

vertex in this procedure.

3.4 Smearing in transverse space

Strings can be viewed as the center of cylindrical tubelike

regions of directed colour flow. So far we have assigned pro-

duction vertices as if they all were in the very center of the

string. A more realistic picture is to introduce some trans-

verse smearing. For simplicity this is done according to a

two-dimensional Gaussian

f (x, y) ∝ exp

(

− x2 + y2

2σ 2

)

, (30)

where x and y are transverse spatial coordinates and σ is the

width of the distribution.

The width of the string should be of typical hadronic

scales, but related to confinement in two dimensions rather

than three. Taking the proton radius rp ≈ 0.87 fm [35] as

starting point, the default σ = rp/
√

3 then gives a,

r2
⊥,p = 〈x2 + y2〉 = 2σ 2 = 2

3
r2

p . (31)

The smearing in transverse space might generate unwanted

situations, such as negative values for the Γ parameter of the

breakup points. Since the space–time location is first obtained

from the fragmentation picture in the longitudinal direction,

the squared invariant time should not change when introduc-

ing smearing. Therefore, the time coordinate is adjusted after

including the smearing in transverse space, in order to retain

the Γ value determined by the longitudinal scheme. Alter-

native procedures could be envisioned, in particular when

the collision process itself does not happen in the origin, but

for now this smearing possibility is good enough to indicate

trends.

3.5 Massive quark implementation

As illustrated in Sect. 2.2.5, the origin of the massive and

massless oscillations are displaced for technical reasons; cor-

respondingly the initial point of the massive oscillation is

offset from the origin of the space–time coordinate system.

Fig. 13 Massive qq̄ system and equivalent massless system. The grey

area corresponds to the physical region

Since the fragmentation process is performed in the massless

system, the space–time locations of the breakups have to be

adjusted.

To determine the offset, consider the qq̄ system in Fig. 13a,

studied in the CM frame, with q/q̄ moving in the ±z direc-

tions. In this case the q and q̄ masses are different, with

mq > m q̄. At time t = 0 we have p0 = pz,q = −pz,q̄ and

Ecm = Eq + Eq̄, with p0, Eq and Eq̄ given by standard two-

body decay kinematics. The massive oscillation in Fig. 13a

is offset both in time and z-component of space, represented

as Δt and Δz. The former can be determined from the dif-

ference between the time coordinates at which the massless

and massive quarks lose their three–momenta, tmassless and

tmassive in Fig. 13a, i.e.

Δt = tmassless − tmassive = Ecm

2κ
− p0

κ
= Ecm − 2p0

2κ
.

(32)

The process to define the space offset is slightly different.

In Fig. 13a, the distance of the massive q endpoint to the

centre of the massive oscillation is denoted z1, while z2 is

the distance of the massive q endpoint to the centre of the

massless system. The equation of motion then gives,
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Δz = z1 − z2 = 1

κ

(

Ecm

2
− mq

)

− 1

κ
(Eq − mq)

= Eq̄ − Eq

2κ
. (33)

The time and space offsets can be combined as,

voffset = 1

κ Ecm

(

(Eq̄ − p0)p0q + (Eq − p0)p0q̄

)

, (34)

where p0q and p0q̄ are the four-vectors of the equivalent

massless system, cf. Eq. (18). Hence, for each vertex in a

region formed by at least one massive quark, the space–

time location is defined as usual from the massless system,

vmassless, and then corrected to,

vcorrect = vmassless − voffset. (35)

For more complex topologies, such as multiparton systems

consisting of a massive q and/or q̄ and several gluons, the

effect of the massive q or q̄ is only non-negligible in the

lowest respective endpoint region. Therefore, the massive

correction is only performed in those regions.

Also the space–time location of the massive endpoint

quark “vertex” has to be offset, away from what it would have

been for a massless quark. This is exemplified in Fig. 13b,

for the same massive qq̄ system as before. The three vertices

v1, vq and v2 correspond to the space–time location of the

massless endpoint, the massive turning point and the closest

breakup to the massless endpoint, respectively. The system

can be studied in a Lorentz frame where the three vertices

are simultaneous, v1,t = v2,t = vq,t . Then, linearity between

energy–momentum and space–time gives,

v1,z − v2,z = mh

κ
,

v1,z − vq,z = mq

κ
, (36)

where mq is the mass of the heavy quark and mh the mass

of the hadron formed from the vertices v1 and v2. From this

vz,q can be extracted. Recast in Lorentz-invariant four-vector

notation, this gives,

vq = v1 + mq

mh

(v2 − v1). (37)

Note that, after the correct endpoint location has been deter-

mined, the offset correction of Eq. (35) has to be included.

If a system is formed by a massless q and a massive q̄, say,

Eq. (37) has to be applied only to the massive q̄, while the

offset in Eq. (35) has to be used both for q and q̄.

A final feature is that the oscillation period for a hadron

composed of massive quarks is shorter than a same-mass one

with massless quarks. This discrepancy only affects the esti-

mation of the “late”, vh
l , and “early”, vh

e , definitions of hadron

production points. The expression in Eqs. (25) and (26) now

become,

vh
l/e = vi + vi+1

2
± αred

ph

2κ
, (38)

where αred accounts for the reduced oscillation period. This

parameter is determined in the hadron rest frame by the abso-

lute three-momentum of the quarks forming the hadron

αred = p0

mh

=

√

(

m2
h − m2

q − m2
q̄

)2
− 4m2

qm2
q̄

m2
h

, (39)

where mh is the mass of the hadron and mq and m q̄ the masses

of the constituent q and q̄, respectively. Needless to say, these

semiclassical estimates of oscillation periods cannot be taken

too literally. It could be argued that all hadrons, light as heavy,

have hadronic sizes of order 1 fm, and should have essentially

common oscillation periods related to that. That would give

us problems notably for pions, however, which are abnor-

mally light in relation to their size.

3.6 Other implementation details

Up until now, only open qg1g2 . . . gn−2q̄ and closed g1g2 . . .

gn strings have been considered. A third possibility is junc-

tion topologies, wherein three string pieces meet in a com-

mon vertex [36], and whereby the junction effectively carries

the baryon number of the system. Such topologies can arise

e.g. when the three valence quarks are all kicked out of an

incoming proton, but there are also scenarios in which further

junctions and antijunctions may be formed [37].

A junction system consists of three different “legs”, each

stretched from an endpoint quark via a number of gluons in

to the junction. In Pythia the fragmentation process is most

conveniently defined in the rest frame of the junction. Here

the total energy of each leg is determined, and the two legs

with the lowest energies are fragmented from the respective

q end inwards. The process stops when the next step would

require more energy than left in the leg. Once the two initial

legs have fragmented, the two leftover q from the respective

last breaks are combined to create a diquark. Together with

the third leg and its original endpoint q, this diquark defines

a final string system, which now fragments as a normal open

string.

The assignment of space–time locations in junction

topologies introduces no new principles, but requires some

extra bookkeeping. The three junction legs are considered as

three different systems, to be dealt with in the same order as

they fragmented, starting from the leg with the lowest energy.

Low-invariant-mass systems hadronize about as high-

mass ones, even if kinematics is more constrained. The

exception is when the invariant mass of the system is so low

that only one hadron can be formed. In such cases, the “early”

hadron production point is at the origin of the qq̄ system, i.e.

vh
e = (0; 0, 0, 0). Note that smearing in transverse space will

give rise to negative squared invariant times in such cases.
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This is not a problem if the reason is that the collision of two

Lorentz-contracted proton “pancakes” naturally would lead

to a spread of x, y coordinates of collisions at t = 0. The

“middle” and “late” definitions are calculated from the four-

momentum ph of the hadron as vh = ph/2κ and vh
l = ph/κ ,

respectively.

Finally, many of the hadrons produced during the string

fragmentation are unstable and decay further, a process

known as secondary particle production. In such cases the

invariant lifetime is selected at random according to an expo-

nential decay, P(τ ) ∝ exp(−τ/〈τ 〉), where 〈τ 〉 is the tab-

ulated average lifetime [35]. For short-lived particles it is

rather the width Γ of the mass distribution that is known,

and then one can use 〈τ 〉 = h̄c/Γ . Given a known hadron

production vertex, the decay one becomes

vdecay = vproduction + τ
ph

mh

, (40)

for a hadron with four-momentum ph and mass mh . This

equation can be used recursively through decay chains, also

e.g. for leptons.

Truly stable particles are only e±, p, p̄, γ and the neutrinos.

Also some weakly decaying particles with long lifetimes are

effectively treated as stable by default: μ±, π±, K±, K0
L and

n/n̄.

3.7 A comparison of time scales

In this article we only address the space–time picture of

hadronization. In the context of a hard collision process, say

qg → qg, also perturbative emission of further partons off

the two scattered partons is extended in space and time. This

is related to the regeneration time of the QCD field, mainly

consisting of gluons, at typical time scales of order,

tregen ∼ h̄c E

p2
⊥

= h̄c

p⊥

E

p⊥
∼ τregen γ (41)

for emitted partons of energy E and transverse momentum

p⊥ [38]. This expression is conveniently split into a “Heisen-

berg uncertainty” factor (p⊥ is a measure of the off-shellness

of intermediate propagators) and a “time dilation” factor, as

indicated. Similar relations hold for emissions off the two

incoming partons.

Typically, parton shower descriptions in event generators

such as Pythia stop at scales of the order p⊥min = 0.5–

1 GeV, mainly because αs becomes so big that perturbation

theory cannot be trusted below that. (The current default

value for Pythia final-state radiation is 0.5 GeV, but that

is the p⊥ for each daughter of a branching with respect to the

mother direction, meaning a separation of 1 GeV between the

two daughters. Eq. (41) should not be trusted up to factors

of 2 anyway.) This corresponds to a τregen ≈ 0.25 fm, say, to

be compared with the average hadronization time 〈τhad〉 ≈

1.3 fm (see Sect. 4.2 below), i.e. about a factor five differ-

ence. To a good first approximation, the simulated perturba-

tive activity can therefore be viewed as happening in a single

point as far as the hadronization process is concerned. This

is even more so for the hard perturbative activity that gives

rise to separate jets, for which p⊥ ≫ 1 GeV. The emissions

that possibly are simulated below 1 GeV can only give small

wrinkles on the strings stretched between the main partons.

The comparison of invariant time generalizes to hold

everywhere in an event, since time dilation works the same

way for showers and hadronization. That is, a perturbative

splitting at high energy and low p⊥ may occur at large time

scales as measured in the rest frame of the event, when

hadronization already started in the central region, but still

well before it will begin in the part of the event that could be

affected by the splitting.

At the end of the Pythia showers, the total number of

partons in a typical LHC event is roughly half of the number

of primary hadrons later produced. Given that the size, in each

of three spatial dimensions, is only a fifth for the partonic

system compared with the hadronic one, it might seem that

the partonic density is much higher than the the hadronic

one, and that partonic close-packing would be a more severe

issue than hadronic ditto. Partons don’t have a well-defined

size, however. A newly created parton could be assigned a

vanishingly small size, and then the colour field surrounding

it would expand with the speed of light. Thus the partonic

size could be equated with the time since creation, multiplied

by a standard time dilation factor.

At early times the partonic system of a collision therefore

expands in size at about the same rate as the size of partons,

and any net effect comes from the rise of the total number

of partons as the cascade evolves from early times. Here the

colour coherence phenomenon enters, however [38]. It is the

obervation that the two daughters of a q → qg or g → gg

branching share a newly-created colour-anticolour pair, that

cannot contribute to the radiation until the partons are more

separated than the wavelength of the further radiated partons.

This gives a mechanism for close-packing avoidance, in event

generators implemented in terms of angular or p⊥ ordering

of radiation.

Had the parton shower been allowed to evolve further

than the current cutoff, the partonic multiplicity and the par-

tonic overlap would have increased as the �QCD scale of

≈ 0.3 GeV is approached. By then the naive size of partons

would be of the order of 0.7 fm, which is about the expected

transverse size of strings, and soft partons emitted at this stage

form part of the emergent strings. We do not know how to

model these late stages of the cascade, but any effects coming

from them are included in the tuned parameters of the string

fragmentation framework.

The picture painted here is based on studying one par-

tonic cascade. Since protons are composite object, however,
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several partonic subcollisions can occur when two protons

collide – MPIs. One therefore also should worry about the

overlap of cascades from different MPIs – partonic rescat-

tering. In part this issue has been studied [39], and shown

to give small effects. That study only included the effects of

parton multiplication by initial-state radiation, as encoded in

parton distribution functions, and thus did not address the

effects of collisions between partons from two separate MPI

subcollisions. In general, however, MPIs occur at different

transverse locations when the two Lorentz-contracted pro-

tons collide, and the products move out in different rapidities

and azimuthal directions. Also here it is therefore plausible

with only minor overlap at early times and large perturba-

tive scales. (In a relative sense; most MPIs do not have all

that large p⊥ values.) The overlap becomes relevant at later

scales, where colour reconnection is the currently favoured

mechanism for interactions between the emerging colour

fields.

Another issue that we would like to comment on is the

folklore that “fast particles are produced early”. This would

seem to be in contradiction with the string picture, where

hadronization begins with slow particles in the central region

and then spreads outwards to faster particles at later times,

roughly along a hyperbola of constant invariant time. But it

is all a matter of what comparison one has in mind, and what

production time definition is used [40]. Consider the “first”

(“leading”) hadron, i.e. the one closest to the quark end of a

qq̄ string. For it Γi−1 = Γ0 = 0, such that Eqs. (13) and (9)

together give

Γ1 = 1 − z1

z1
m2

1 = (κτ1)
2. (42)

The faster the hadron, the earlier the string break in invariant

time: Γ1 → 0 for z1 → 1. Also the time in the string rest

frame,

κt1 = Eq(1 − z1) + m2
1

4Eqz1
, (43)

with Eq the quark energy, is decreasing for increasing z1.

This reasoning generalizes: an event with few, fast parti-

cles can only be obtained when the Γ values and the breakup

times are small. Conversely, events with high multiplicities

of lower-momentum hadrons require high Γ values and late

hadronization times. Whether early or late invariant times,

however, the hadronization will still start in the middle and

spread outwards.

4 Hadron density studies

We now proceed to study the implications of the model pre-

sented so far. Toy studies are reported for a simple qq̄ string,

but most results are for pp collisions at
√

s = 13 TeV, for

τ
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Fig. 14 Correlation between rapidity, y, and the equivalent space–time

rapidity, yτ , for all hadrons in 100 inelastic nondiffractive pp events at√
s = 13 TeV

inclusive inelastic nondiffractive events. Although the pp

modelling is not yet complete, enough is in place to per-

form some first semi-realistic studies that form the basis for

future development. Notably we will estimate the hadronic

density in a few different ways, as a means to highlight the

close-packing of hadrons and the need to consider the con-

sequences of that.

4.1 Longitudinal and transverse distributions

Three definitions of hadron production points were presented

in Sect. 3.1, to allow estimates of the uncertainty in the

description. Here the three resulting longitudinal and trans-

verse space–time distributions are compared. For the former

yτ is introduced as a space–time correspondent to ordinary

rapidity y:

y = 1

2
log

(

E + pz

E − pz

)

−→ yτ = 1

2
log

(

t + z

t − z

)

, (44)

while the latter is shown as a function of r =
√

x2 + y2.

Note that the longitudinal variable is dimensionless while the

transverse one is expressed in units of fermi (fm). Although

formally unrelated, the dynamics of string fragmentation

introduces a strong correlation between y and yτ , as illus-

trated in Fig. 14 for the default “middle” definition of pro-

duction points. The spread from the diagonal comes from

a number of effects, such as the probabilistic fragmentation

process, given by Eq. (12), and hadronic decays.

Figures 15 and 16 display the longitudinal and transverse

spectra for pp collisions at
√

s = 13 TeV given by the “early”,

“middle” and “late” definitions of hadron production points,

represented in green, red and blue, respectively. In the same
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Fig. 16 Transverse spectra for pp events and qq̄ systems, both at
√

s =
13 TeV

figures, the spectra for a single string, at the same CM energy,

using the “middle” definition are also illustrated in black.

Both primary and secondary hadrons are taken into account.

The longitudinal spectra for the different definitions are

very similar, as can be seen in Fig. 15. The largest disagree-

ment is visible around yτ ≈ 0, where the spectra of the

“early” definition peaks more, but “early” also has more par-

ticles at the very largest yτ values. In short, the “early” alter-

native maximizes the extreme behaviour of hadron produc-

tion, whereas the “late” one minimizes it. The differences are

not bigger than that we can consider the “middle” definition

a fairly reliable one.

Similar conclusions are drawn from the transverse spec-

tra, shown in Fig. 16. The spectrum for qq̄ events is a conse-

quence of the transverse smearing, Sect. 3.4, and of particle

decays; otherwise primary production would all be at r = 0.

In contrast, pp events are constructed out of a large number

of strings stretched between the partons from hard collisions,

parton showers and beam remnants, all of them intrinsically

with a transverse motion. Therefore the smearing is impor-

tant for the spectrum at low r values, as can be seen in the

difference between the two “middle” r distributions, while

the distribution at larger r values is rather insensitive. The dif-

ference between the “early”, “middle” and “late” production
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Fig. 17 Hadron number per event as a function of time for a simple qq̄

system formed by massless quarks in the CM frame with
√

s = 20 GeV

points is larger than for the longitudinal spectra, but still suf-

ficiently close as to give confidence that meaningful results

can be obtained. In the following, all plots will be for the

“middle” definition.

4.2 Temporal and radial evolution of hadron production

The number of hadrons is shown as a function of time for a

single string with
√

s = 20 GeV in Fig. 17. The red curve

corresponds to the number of primary hadrons, formed by the

string fragmentation, that have not decayed at the time, while

the green curve represents the number of secondary hadrons,

from particle decays. The total number of hadrons, illus-

trated in blue, is the sum of primary and secondary hadrons.

The brown curve represents the number of final (i.e. stable)

hadrons, see Sect. 3.6. Finally, the black curve depicts the

number of hadrons with |z| < 0.5 fm, to be discussed in

Sect. 4.3.

For the 20 GeV simple qq̄ system in its rest frame, the

string can at most extend 10 fm in the ±z direction (for

κ = 1 GeV/fm). This happens at t = 10 fm, since the

massless quarks move with the speed of light. The primary

hadron production therefore must stop at this time, as visible

in Fig. 17. Decays make the number of hadrons continue to

rise also beyond this time, but only slowly. Actually many

hadrons, like the ρ±,0 ones, are so short-lived that they decay

within some fm of having been produced.

Note that there are almost no hadrons in the system up

until t ≈ 0.5 fm, since the string has to have time to begin

stretching out before it can begin to fragment. This is fur-

ther illustrated in Fig. 18, with the invariant time distribu-

tion of primary hadron production points in the qq̄ system.

By default, the parameters a and b in Eqs. (12) and (14)

are set to a = 0.68 and b = 0.98 GeV−2 [41], giving

rise to a suppression of small Γ values of breakup ver-

tices, and thereby also of small hadron production times.

In detail, the relation between Γ and τ , Eq. (9), implies

P(Γ ) ∝ Γ adΓ ∝ τ 2a τ dτ = τ 2a+1 dτ for τ → 0. Further-
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Fig. 18 Invariant time τ distribution of primary hadrons in qq̄ systems
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Fig. 19 Hadron number per event as a function of time, up until t =
20 fm, for pp collisions at

√
s = 13 TeV

more, the expectation value of 〈Γ 〉 = (1+a)/b ≈ 1.7 GeV2

gives 〈τ 〉 ≈
√

〈Γ 〉/κ ≈ 1.3 fm, in agreement with Fig. 18.

Because those aspects are typical of the fragmentation pro-

cess, a similar behaviour is also observed in pp collisions.

The time evolution of hadron production in 13 TeV pp

events is shown in Fig. 19 for t ≤ 20 fm. Although the

qualitative behaviour is similar to the one in qq̄ systems, the

temporal evolution is smoother and the number of hadrons

generated per unit time increases more rapidly in the pp case.

These effects are direct consequences of the presence of sev-

eral string systems in pp events, possibly extending all the

way out to 6500 fm from the origin.

Figure 20 extends the pp description up to 1015 fm = 1 m.

As in the case of the qq̄ system, the total number of primary

hadrons increases until fragmentation is over, which now is

at t ≈ 103 fm owing to the higher energy. Decays deplete

the number of remaining primary hadrons but increase the

number of secondary ones. The significant drop in the number

of hadrons at t ≈ 108 fm is from electromagnetic decays of

the π0, mainly π0 → γ γ . Although the lifetimes of s, c

and b hadrons typically are at the mm to cm scales (more

long-lived ones, like K±, being considered stable here), their

decays are still ongoing at 1 m, owing to time dilation of the

frequently fast-moving hadrons.
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Fig. 20 Hadron number per event as a function of time for 13 TeV pp

collisions
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Fig. 21 Hadron number per event as a function or radius for 13 TeV

pp collisions

Most of the expansion of the system is along the z axis, i.e.

the |z| distribution of hadron production would look similar

to the t one in Fig. 20, except for the lack of a suppression at

z = 0. It is therefore interesting to show the radial evolution

separately, Fig. 21, for the same t range. Overall the two

figures resemble each other, but all the relevant features have

been compressed owing to the lower radial velocities. The

π0 → γ γ decay is shifted from t ≈ 108 fm to r ≈ 106 fm,

for instance. The impact of weak s, c and b hadron decays are

better visible in the range between 1 and 100 mm; beyond that

scale essentially all relevant decays have already occurred.

At the other end of the scale, note that around half of the

hadron production occurs in r < 1 fm; there is no equivalent

dynamical suppression of small r as there is of small t .

4.3 Close-packing of hadron production in the central

region

One of the key objectives of this article is to assess the space–

time density of hadron production, dN/dV . Eventually we

will need to use Lorentz invariant quantities, but these will

then hide the time aspect of the evolution. To begin with, we

will therefore study the density for |z| ≤ 0.5 fm as a function

of r and t ,
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Fig. 22 Hadronic density as a function of the radius for different con-

stant times, for a central slice |z| < 0.5 fm
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= dN
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∣

∣

∣

∣

|z|≤0.5

= dN

dx dy
= dN

2π r dr
, (45)

giving a measure of the hadronic densities as a function of

radius. The r -integrated number as a function of t is shown in

Figs. 17 and 19. This number only increases up to t ≈ 2 fm, a

time after which the longitudinal expansion leads to a steady

decrease. Therefore, in Fig. 22a, the r distribution is only

shown for a few different t ≤ 2 fm. The hadron density at

times t = 0.5 fm is extremely low both for 20 GeV qq̄ sys-

tems and for 13 TeV pp events, since they hardly have had

time to start hadronizing yet. From this point on, hadrons are

generated from fragmentation and particle decays, giving an

increasing hadron density in the central region. The maxi-

mal value is at t ≈ 1.5 fm, a value that relates well with

typical hadronization time scales, and where the density at

r = 0 approaches 2 hadrons per fm3. A proton has a volume

Vh = 4πr3
p/3 ≈ 2.76 fm3 if we use rp = 0.87 fm [35] so,

assuming the same volume for all hadrons and disregarding

potential Lorentz contraction effects, this implies that five

hadrons overlap in the center of the collisions. That number

increases rather slowly with the collision energy; it is around

four hadrons at 2 TeV and seven at 100 TeV. Also other mea-

sures of close-packing are expected to display only a mild

energy dependence, so our results at 13 TeV should offer

guidance for a wide range of collider energies.
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Fig. 23 Longitudinal spectra for 13 TeV pp collisions and different

multiplicity ranges

4.4 Hadron production at different multiplicities

In order to extend the previous analysis to a Lorentz invari-

ant measure of hadronic density, instead the volume element

d3x/t will now be used:

t
dN

d3x
= dN

d2r dz
t

= dN

π dr2 dyτ

→ N

π r2
m Δyτ

. (46)

In the last step rm is introduced as the median radius of the

hadron creation vertices in the event and Δyτ is the full width

at half maximum of the dN/dyτ distribution. Together rm and

Δyτ thus define a characteristic volume over which much of

the production will occur, and relate it to a typical maximum

density. For instance, the |yτ | distribution is roughly triangu-

lar in shape, cf. Fig. 15, so N/Δyτ is about the height of the

dN/dyτ distribution at its maximum.

Note that the hadronic multiplicity studied here is different

from typical experimental definitions, e.g. the charged mul-

tiplicity in vertex detectors. Since we are interested in the

hadronization process, only strong decays should be taken

into account in our analysis. This excludes electromagnetic

and weak decays, such as the π0 one, but furthermore decays

with r > 10 fm are not taken into account, since beyond that

hadronic densities have fallen to modest levels anyway. In

order to avoid double-counting of a hadron and its decay

products, all secondary hadronic decay vertices enter with a

weight one less than the hadronic multiplicity of the decay.

Counted this way, the average multiplicity of inelastic non-

diffractive 13 TeV pp events is nhad = 169.

Inside this sample, ten multiplicity ranges are defined such

that each of them corresponds to roughly 10% of the events.

The resulting longitudinal yτ and transverse r spectra are

presented in Figs. 23 and 24, respectively. For the sake of

clarity, some intermediate multiplicity bins are left out of the

figures. By energy–momentum conservation the yτ (and y)

spectra are more peaked around the middle for increasing

multiplicities. Not so for the r spectra, where the distribution

shifts towards larger values for the higher multiplicities. It is
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Fig. 24 Transverse spectra for 13 TeV pp collisions and different mul-

tiplicity ranges
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lisions. The red curve corresponds to the approach with colour recon-

nection, while the blue and green curves represent the model without

colour reconnection and a tuned model without colour reconnection,

respectively

here useful to remind that the basic MPI framework implies

that high multiplicities primarily come from having more

MPIs, rather than e.g. from a single hard interaction at a

larger p⊥ scale, and that therefore 〈p⊥〉(ncharged) is expected

to be reasonably flat. The experimental observation of a rising

〈p⊥〉(ncharged) actually was the reason to introduce colour

reconnection (CR) as a key part of a realistic MPI modelling

[2].

The effect of CR on the median radii rm is shown in Fig. 25,

as a function of the median hadronic multiplicity nhad of each

multiplicity range. The red and blue curves represent results

with and without CR, respectively, and these match very well

with expectations from the 〈p⊥〉(ncharged) behaviour; also the

rise of rm is driven by the CR mechanism. Note that switching

off CR gives higher event multiplicities, well above data. To

this end also a green curve is introduced, wherein the p⊥0

parameter of the MPI framework [3] is increased for the no-

CR alternative until the average multiplicity is the same as

in the default with-CR scenario. This gives a slightly larger

rm than the naive no-CR setup, since the 〈p⊥〉 of MPIs is

increased in the process, but otherwise is in line with the

original observation.
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Fig. 26 Hadron density as a function of multiplicity for pp collisions

at 13 TeV. The red, blue and green curves represent the three different

models with and without colour reconnection, also included in Fig. 25

Figure 26 shows the hadron density, defined as in Eq. (46),

for the three same scenarios as above. The nhad, rm and Δyτ

are calculated in each multiplicity range. The space–time

hadron density increases with hadronic multiplicity, but sig-

nificantly faster in the two scenarios without CR, as a direct

consequence of the inverse quadratic dependence on rm . The

lower values with CR on may be partly misleading, how-

ever; only because strings are spread across a bigger trans-

verse area when CR is on, it does not mean that there are

strings everywhere in that area. The typical average density

of 5 hadrons per Lorentz invariant space–time element should

therefore be viewed as a lower estimate.

4.5 Close-packing analysis in the hadron rest frame

As a final measure of close-packing we will next check how

many hadrons overlap with each of the hadrons of an event,

as defined in the rest frame of the hadron at the time when it

is formed. In detail, consider a hadron h1 generated at time

t1, where t1 is defined in the rest frame of hadron h1. The

other hadrons in the system are boosted to the rest frame of

h1, where only the hadrons created at times t ≤ t1 and which

have not decayed at t1 are taken into account. Their location at

t1 is calculated from the respective production point and four-

momentum, from which the distance to h1 can be calculated.

If this distance is shorter than 2rp, rp being the proton radius,

the hadrons are considered to overlap, implying that already

the production of h1 could be affected by the presence of these

other hadrons. Note that Lorentz contraction is not taken into

account, which would decrease numbers, but then neither is

the possibility of closer distances at t > t1, which would

increase them. The analysis is done including or excluding

the adjacent hadron on each side along the string of the hadron

studied. The reason for the latter scenario is that any effects

of same-string-neighbours already effectively should have

been taken into account in the tuning of the fragmentation

process, e.g. in Eq. (12).
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Fig. 27 Hadron overlap for different multiplicity ranges for 13 TeV pp

collisions

The number of overlapping hadrons is shown in Fig. 27

for different hadronic multiplicity ranges, as presented in

Sect. 4.4. Although close-packing also takes place in low-

multiplicity pp events, the number of hadrons overlapping

with a newly created one is not so high. For high-multiplicity

events, on the other hand, close-packing often arises with

a significant number of nearby hadrons, likely leading to

collective effects that are not taken into account in Pythia.

The overlap can be differentiated further. Generally, par-

ticles produced at large transverse momenta are not expected

to experience close-packing as much as those at small ones.

The reason is that, even if parton showers can generate many

partons from each initial high-p⊥ parton, these daughter par-

tons are spread widely in momentum space. Therefore, the

fragmenting strings stretched between them also will have a

modest overlap, unlike the accretion of low-p⊥ strings from

multiple soft MPIs. In order to isolate this feature, we study

the overlap as a function of the hadron transverse momen-

tum, using the same analysis procedure as above, with exclu-

sion of adjacent hadrons along the string, Fig. 28, for “soft”

and “hard” QCD events in red and blue, respectively. The

former is the standard inelastic nondiffractive event sample,

whereas the latter is for the subsample where a hard 2 → 2

QCD process has p⊥ > 100 GeV. In both cases the overlap

peaks for hadrons around p⊥ ≈ 0.5 GeV, and then falls off
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Fig. 28 Average number of overlapping hadrons as a function of the

p⊥ of the hadron studied. The red and blue distributions illustrate the

soft and hard QCD processes, where the former stops at 5 GeV owing

to limited statistics at large p⊥

at larger p⊥ values. The level is somewhat higher for the

hard-QCD events, consistent with such events being biased

towards smaller impact parameters and therefore more MPIs,

but the trends are consistent.

5 Summary and outlook

The motivation for this article is the mounting evidence for

several collective effects in high-multiplicity pp collisions,

similar to those usually associated with the formation of a

Quark–Gluon Plasma in heavy-ion collisions. Whether we

are witnessing QGP also in pp or not remains an open ques-

tion, but the need to allow for some kind of collective mech-

anisms can hardly be in doubt. It should not even come

as a surprise, given that already order-of-magnitude esti-

mates of the size of the fragmentation region told us that

strings would be formed close-packed and fragment into

close-packed hadrons within any realistic MPI-based sce-

nario. Colour reconnection was introduced as a partonic-state

mechanism to describe some signals of collectivity, notably

the rise of 〈p⊥〉(ncharged). But the rising fraction of mul-

tistrange baryon production with event multiplicity implies

that collective effects are needed also in or after the fragmen-

tation stage, or both.

To be able fully to explore various such scenarios it

becomes important to understand the space–time structure

of hadronization in more detail than hitherto. The aim of this

article has been to develop the necessary framework, and

implement it as part of the public Pythia event generator.

Specifically, we have determined the space–time location of

the string breakup vertices and compared three alternative

definitions for primary hadron production points. Although

the implementation of the space–time picture in a sim-

ple qq̄ string topology is straightforward, the picture gets

much more intricate when more complicated topologies are

addressed.

123



983 Page 20 of 23 Eur. Phys. J. C (2018) 78 :983

To illustrate the usefulness of the new framework, some

simple first studies have been presented, notably exploring

space–time hadron densities. Initially, inclusive longitudi-

nal and transverse space-time distributions were shown, and

the production and decay patterns from fm to m scales were

traced. Next the density in a central slice |z| < 0.5 was stud-

ied as a function of t and r . While not explicitly Lorentz

invariant, it gave some first hints of close-packing problems.

Moving from a volume element d3x to d3x/t gave access

to Lorentz-invariant density measures. It was shown that the

median radius of the fragmentation region is increasing with

multiplicity, but almost only because of the colour reconnec-

tion effects. The flip side is that density is increasing sig-

nificantly with multiplicity without CR, whereas it remains

at an average of about five hadrons overlapping with CR

included.

The close-packing of hadrons was finally analysed by

counting the number of hadrons overlapping with a newly

generated one in its rest frame, again for different event mul-

tiplicities. In this case, the number of nearby hadrons does

increase with multiplicity, with CR included, implying that

close-packing becomes increasingly important with multi-

plicity also here. The overlap is largest for low-p⊥ hadrons,

in the MPI-dominated region, whereas it drops for larger p⊥
scales, dominated by hard QCD jets.

A few corners have been cut in the current pp implemen-

tation. Notably no space–time vertices have been assigned

to the individual MPI collisions, although such assignments

are implicit in the MPI impact-parameter and matter-profile

framework [3]. A sensible space–time picture of parton-

shower evolution would introduce offsets, although presum-

ably not major ones. Similarly, the CR between different

MPIs implies that the two ends of a string may start out from

different space–time points. For now, all such effects have

implicitly been made part of the generic smearing step in

Sect. 3.4.

To these minor corrections should be added the potentially

much larger dynamical ones that could generate collective

effects, be it before, during or after the string fragmentation

stage. The shove and rope mechanisms are two examples

for the first two stages, but the immediate continuation of

the current article would be to study the consequences of

hadronic rescattering in a dense hadronic gas. Models for

hadronic rescattering already exist [42], such as UrQMD

[43] and SMASH [44], and could possibly be interfaced.

For better control, however, it would be useful to implement

relevant aspects of such a framework as an integrated part of

the Pythia program.

The longer-term expectation is that continued experimen-

tal studies will provide further information on all kinds of col-

lective phenomena in LHC pp events, and that model building

will try to rise to the challenge. Especially interesting is to

figure out which phenomena can be explained without invok-

ing QGP, and which cannot. This would then reflect back on

the LHC heavy-ion program.
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Appendix A: Space–time location of the final breakup

Fragmentation of an open string is modelled by allowing

hadron production from either string end, until the remaining

invariant mass of the system is only sufficient to generate the

last two hadrons (see Sect. 3.1). At that point, a final breakup

is generated between the last previous breakup on either side.

For the energy–momentum picture, the final breakup occurs

in a fictitious final region, created from the combination of all

the unused parts of all remaining regions. This region does

not have a space–time correspondence, however; in particular

there is no concept of a space–time offset where this region

is created. In this case we therefore have had to depart from

the energy–momentum picture, to develop an unfortunately

rather complex procedure.

To set the stage, consider a simple qq̄ string, where

the flavours of the final breakup helps define the two final

hadrons. The transverse mass constraint of each of those

hadrons is represented by hyperbolae, see Sect. 2.2.3. The

two hyperbolae either do not cross at all or else cross in two

different points. No solution can be found in the former case,

and the fragmentation process then has to be repeated. The

latter case is illustrated in Fig. 29, where the remaining region

is depicted in red and the blue dots represent the two points

where the hyperbolae meet. Since the two possibilities have

different Γ values, the relative probabilities for them to occur

are given by Eq. (14). For simplicity, only the exponential part

is retained, i.e. P(Γi ) ∝ exp(−bΓi ) is used to pick either

point. That choice made, the kinematics is fully defined.

Major complications are found in systems with several

intermediate gluons between the q and q̄ ends, specifically

when the two old breakups are located in different regions. In

those cases, knowing the region in which the final breakup is

located is not always possible. Since that aspect is essential to

calculate the x̂± fractions, several methods have been tested

before settling on the one presented here.
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Fig. 29 The two possibilities for the final breakup, in blue, and the

final region, in red, in a qq̄ system. The two old breakups, vneg and vpos,

are also represented in red

Fig. 30 Final breakup point and final two hadrons, corresponding to

the grey regions, in a qq̄ system. The red and blue points are the previous

breakups and the endpoints of the final region, while the green dots

represents the final breakup

For notational convenience, the old breakup closer to the

q (q̄) end will be called the positive (negative) breakup, at

location vpos (vneg) in the positive (negative) region, together

with the final breakup forming the positive (negative) hadron.

The first implemented method consists in projecting the pos-

itive/negative hadron four-momentum on to the longitudi-

nal and transverse direction vectors of the positive/negative

region [27]. If the two old breakups are in the same region

then that is also the region of the final vertex. This situation

is exemplified in Fig. 30, where the green point is the final

breakup, the red and blue points are the old breakups, which

correspond to the endpoints of the final region, and the grey

squares represent the two final hadrons created. As can be

seen in the figure, the x± fraction of the positive hadron are

x±
p,Had and the x̂± of the positive breakup are x̂±

p,Old. Then,

the x̂±
f of the final breakup can be obtained as,

x̂+
f = x̂+

p,Old − x+
p,Had,

x̂−
f = x̂−

p,Old + x−
p,Had. (47)

The same procedure can be followed with the negative

breakup and the negative hadron, giving,

Fig. 31 Final breakup and final two hadrons of a qq̄ system. The blue

and red areas represent the two final hadrons while the green area cor-

responds to the final region

x̂+
f = x̂+

n,Old + x+
n,Had,

x̂−
f = x̂−

n,Old − x−
n,Had. (48)

In the general case, the solutions of Eqs. (47) and (48) will

agree only if the positive and negative regions coincide. But

the projection method can also be used when the positive and

negative regions are different, in which case the longitudinal

momentum of the positive or negative hadron is projected on

the corresponding region, using either Eq. (47) or Eq. (48).

If either of these give projected values 0 ≤ x̂±
f ≤ 1 then a

solution has been found in the respective region, and we are

done. If not, the search continues.

One of the main complications to obtaining the x̂±
f values

is that the z value of the final breakup is not calculated, since

it is not needed in the energy-momentum picture. If the pro-

jection method fails, the z value can be calculated from the

Γ of the old breakups and the transverse mass of the final

region, i.e. of the final two hadrons combined. These vari-

ables are depicted in Fig. 31, along with z f and z′
f , which

correspond to the z+ fractions of the positive hadron in the

real region and the z+ fraction with respect to the final region,

i.e, when the p̃+ and p̃− of the final region are normalized to

unity. The zreg variable in the figure represents the z+ frac-

tion taken from the negative breakup if the final breakup was

not created. This value can be calculated from the relation

given by Eq. (13), which in this case gives,

Γneg = (1 − zreg)

(

Γpos + M2
⊥

zreg

)

, (49)

where the final breakup was not taken into account. From

this relation, the value of zreg is found to be,

zreg =

√

X2 + 4M2
⊥Γpos − X

2Γpos
, X = M2

⊥ + Γneg − Γpos.

(50)

During the fragmentation process in Pythia only the frac-

tions z′
f are determined by considering zreg = 1, as stated

123



983 Page 22 of 23 Eur. Phys. J. C (2018) 78 :983

Fig. 32 Final region of a qq̄ system. The origin of the region is repre-

sented by v0 while vCM stands for the location of the CM of the region.

The four-momentum of the final region is defined as K . As in other

cases, vpos and vneg represent the old breakups

previously. Hence, the z f = z+
f fractions can be calculated

from z′
f and zreg using the relation z f = z′

f zreg. Note that

z f = z′
f if zreg = 1, as expected. The same process can be

followed to calculate z−
f , swapping the variables Γpos and

Γneg. Once the z f are known, the x̂± fractions of the final

breakup can be determined from Eq. (11) and its space–time

location deduced as in Sect. 3.

Although the last procedure succeeds in the large majority

of cases, sometimes the region of the final breakup cannot

be found. Then the location of the final breakup is calculated

from the old breakups by determining a space–time location

of the origin of the artificial final region used in the energy–

momentum picture. As can be deduced from Fig. 32, the

space–time location of the CM of the final region is defined

by vCM = (vpos+vneg)/2. This final region can be treated as a

qq̄ system with four-momentum K = k++k−, where k± are

the four-momenta vectors of the two endpoints. Following the

same approach as used to derive the early hadron production

point (see Sect. 3.1), the space–time location of origin of the

final region is given by,

v0 = vCM − 1

2
K . (51)

Considering x̂ ′±
f to be the x̂± fractions of the final breakup in

the final region, the space–time location of the final breakup

can then be calculated as,

v f = v0 + x̂ ′+k+ + x̂ ′−k−

= vCM +
(

x̂ ′+ − 1

2

)

k+ +
(

x̂ ′− − 1

2

)

k−. (52)

Eq. (52) holds in the transverse rest frame, when the final

region system is not evolving in time. That is not the case if

the two old breakups are in different regions. In order to find

an expression valid for all the cases, we define the variable

r =
√

l2/K 2, with l2 = −(vneg − vpos)
2, to quantify how

much the final string system differs from the system in the

transverse rest frame. Then, the origin of the final region in

the string system is determined by v0 = vCM − Kr/2 and

the general expression for the space–time location of the final

breakup is

v f = vCM +
(

x̂ ′+ − r

2

)

k+ +
(

x̂ ′− − r

2

)

k−. (53)

The methods presented in this section are implemented in

Pythia to obtain the space–time location of the final breakup.

First the projection method is executed from the q or positive

side. If it fails, the same method from the negative side is

carried out. Whenever the projection method fails, the z+

value is calculated. In case of failure with this, the same

method is carried out to calculate z−. If none of the previous

methods work, the space–time location of the final breakup is

determined by Eq. (53). The different procedures are carried

out in order of decreasing accuracy.

Appendix B: Correction to non-physical situations

As mentioned in Sect. 2.2.3, by definition 0 < x̂± < 1.

Although this should always be the case, Pythia allows val-

ues outside that range whenever a step is taken from one

region to a new one. Since the x̂± fractions were only used

to determine the energy and momentum of the hadrons, step-

ping outside the allowed range was not a problem, as long as

the hadron energy was positive. Nevertheless, fractions out-

side the 0 < x̂± < 1 range are a significant problem in the

space–time picture, since they can lead to negative times or

negative squared invariant times of the breakup locations. In

order to address these unphysical situations, one of two cor-

rections is applied in the space–time implementation, before

adding the region offset, the smearing in transverse space and

the massive correction.

The first option consists in adjusting the old space–time

location of the breakup by a fraction of the region four-

momentum, such that the new squared invariant time is equal

to zero. Then, the expression of the new breakup location is

determined by

vnew = vold + ξpreg, (54)

where ξ is found by requiring v2
new = 0.

In the second option, x̂± fractions outside the 0 < x̂± < 1

are set to the value at the closest border, i.e. 0 or 1, and the

space–time location is recalculated according to Eq. (23).

The option adopted is the one that gives the smallest

change of the space–time breakup location.
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