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SUMMARY 

The problem of the minimup induced drag of wings having a given l i f t  
and a given span is extended t o  include cases i n  which the bending moment 
t o  be supported by the wing is a l s o  given. A s  i n  the  c lass icd l  problem 
of induced drag, the theory is  limited t o  l i f t i n g  surfaces traveling a t  
subsonic speeds. 
t r ibu t ion  can be obtained i n  an elementary way which is  applicable t o  a 
var ie ty  of such problems. 
responding spanwise load d is t r ibu t ions  are a l so  given fo r  the case i n  
which the  l i f t  and the  bending moment about t he  wing root are fixed while 
the span is  allowed t o  vary. 
the  induced drag with a 15-percent increase i n  span as compared with 
r e su l t s  fo r  an e l l i p t i c a l l y  loaded wing having the s a m e  t o t a l  l i f t  and 
bending moment. 

It is  found t h a t  the required shape of the downwash dis- 

Expressions fo r  the minimum drag and the cor- 

The r e su l t s  show a 15-percent reduction of 

INTRODUCTION 

I n  the problem of minimum induced drag as or ig ina l ly  t reated by Munk 
(references 1 and 2) the span of the wing and the  t o t a l  l i f t  w e r e  supposed 
t o  be given and the d is t r ibu t ion  of l i f t  over the span resul t ing i n  a min- 
innun of drag was  sought. The solut ion of t h i s  problem thus provided a 
convenient lower bound f o r  the induced drag of a wing of given dimensions. 

In  the prac t ica l  design of wings the requirements for  low induced 
drag and the requirements for  s t ruc tu ra l  strength are opposed. 
bending moment developed by the l i f t  becomes an important considera- 
t ion - more important i n  many cases than the ac tua l  spanwise dimension 
of the wing. 
minimum drag with l imi ta t ions  imposed on the bending moment as w e l l  as 
on the t o t a l  l i f t .  It is the  purpose of the present paper t o  show how 
the methods of t he  earlier analysis can be extended i n  a very simple way 
t o  the solution of problems involving the bending moment of the load 
dis t r ibut ion.  

H e r e  the  

Such considerations lead t o  the problem of determining the 
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A complete list of symbols employed i n  t h e  ana lys i s  w i l l  be found i n  
t h e  appendix. 

GENERAL FORMULAS FOR LIFT, DRAG, AND BENDING MOMENT 

Reference may be  made t o  t h e  o r i g i n a l  papers of Prandt l  and Munk 
(references 1 and 2 ) ,  o r  t o  any of t h e  standard t e x t  books on aerodynamics, 
f o r  t h e  fundamental developments of wing theory which form t h e  b a s i s  f o r  
the  ca l cu la t ions  of induced drag. 
i s  given by 

I n  these  developments t h e  over-all  l i f t  

+S 

r d y  (1) 
J - S  and t h e  drag i s  given by 

+S 
wi r dy 

I n  these  formulas t h e  wing span is  supposed t o  extend along t h e  y a x i s  
between -s  and +s ,  r is the  l o c a l  c i r c u l a t i o n  o r  vor tex ' s t rength ,  and 
V i s  t h e  constant ve loc i ty  of f l i g h t .  The induced downwash ve loc i ty  w i  
i s  va r i ab le  along the  span and i s  connected with t h e  vor tex  d i s t r i b u t i o n  
l' (y) through t h e  r e l a t i o n  

With t h i s  va lue  f o r  W i  

a double i n t e g r a l  involving the  spanwise d i s t r i b u t i o n  of l i f t  as repre- 
sented by t h e  c i r c u l a t i o n  s t r eng th  

t h e  expression f o r  t h e  drag may be converted t o  

I' 

This i n t e g r a l  may be  reduced t o  a more symmetric form i f  i t  is  in t eg ra t ed  
by p a r t s  on the  supposit ion t h a t  I' f a l l s  t o  zero a t  t h e  wing t i p s .  Thus1 

lThe v a l i d i t y  of equations ( 3 ) ,  ( 4 ) ,  and ( 5 )  can be demonstrated by 
r e f e r r i n g  t o  t h e  l i m i t i n g  values of complex i n t e g r a l s  taken along a pa th  
a shor t  d i s t ance  above t h e  s ingular  po in t  on t h e  real axis. I n  t h e  case 
of equations ( 3 )  and ( 4 )  t h i s  process y i e l d s  t h e  Cauchy p r inc ipa l  value. 
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I n  mathematical terms t h e  problem is  t o  minimize t h e  double i n t e g r a l ,  
equation (5), while holding f ixed  values of 

L = pV lS+' I' dy 

and 

where B is t h e  bending moment spec i f i ed  about t he  poin t  so. For the  
t i m e  being 
although later another example w i l l  appear. 

so w i l l  be taken as t h e  o r ig in ,  o r  wing roo t  (so = 0), 

Although t h e  de r iva t ion  of t h e  formulas f o r  induced drag lfiakes use of 
the  concept of the  l i f t i n g  l i n e ,  i t  is important t o  no te  that t h e  r e s u l t s  
are not a c t u a l l y  r e s t r i c t e d  t o  t h i s  approximation. 
well-known stagger theorem the  induced drag of a l i f t i n g  sur face  w i l l  be  
equal t o  t h a t  of a l i f t i n g  l i n e  i f  t he  spanwise load d i s t r i b u t i o n s  are 
t h e  same. 

According t o  Munk's 

It should be noted f u r t h e r  t h a t  t he  induced drag of a wing having a 
given l i f t  and a given spanwise load d i s t r i b u t i o n  is not  a f f ec t ed  by t h e  
compressibil i ty of t h e  air  a t  subsonic speeds. 
add i t iona l  drag assoc ia ted  with t h e  formation of waves arises and t h e  
induced drag, which i s  assoc ia ted  with t h e  vor tex  wake, becomes only a 
pa r t  of t h e  t o t a l  p ressure  drag. 

A t  supersonic speeds an 

THE DISTRIBUTION OF DOWNWASH FOR MINIMUM DRAG 

I n  general ,  i f  t h e  drag is t o  be a minimum, a s m a l l  v a r i a t i o n  i n  t h e  
shape of t h e  curve of spanwise loading w i l l  produce no f i r s t -o rde r  change 
i n  t h e  drag. 
t o  t h e  o r i g i n a l  loading; i t  is  then necessary t o  f ind  conditions under 
which t h e  drag added by a s m a l l  add i t iona l  loading is  zero. 

The v a r i a t i o n  i n  shape may take  t h e  form of a small addition 

The so lu t ion  of t h i s  lat ter problem is  rendered e spec ia l ly  simple 
by t h e  mutual drag theorem (reference l), which arises from t h e  evident 
symmetry of t h e  i n t e g r a l  t o  be  minimized (equation (5)) .  
states t h a t  i f  t h e  l i f t  d i s t r i b u t i o n  (represented by I' (y)) is t h e  sum 
of two d i s t r i b u t i o n s  r l ,  and I'2, t h e  drag of I'l a r i s i n g  from t h e  
downwash f i e l d  of r2 is  exac t ly  equal t o  t h e  drag of r2 a r i s i n g  from 
the  downwash of 

The theorem 
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Consider now an i n i t i a l  d i s t r ibu t ion  designed t o  achieve minimum 
drag. (See f ig .  1.) The drag added by a s m a l l  addi t ional  loading w i l l  
be composed of three par ts ,  namely: 

1. 
2. 

3. 

The drag of the additional l i f t  act ing alone 
The drag of the or ig ina l  loading a r i s ing  from the downwash 

'J$e drag of the additional loading induced by the downwash f i e ld  
f i e l d  of the addi t ional  loading 

of the or ig ina l  loading 

I t e m  1 is  of second order i n  terms of the  magnitude of the  added l i f t  f o r  
smooth dis t r ibut ions,  t ha t  is, so-called "weak variations." (The f ac t  
tha t  t h i s  second-order t e r m  is invariably posi t ive insures tha t  the  drag 
w i l l  be a minimum and not a maximum.) 
mutual drag theorem. The f i rs t -order  var ia t ion i n  drag can then be com- 
puted by considering only the drag of the  small addi t ional  l i f t  act ing in  
the induced downwash f i e l d  wi(y) of the or ig ina l  l i f t .  

Items 2 and 3 are equal by the 

The conditions of fixed bending moment and fixed t o t a l ' l i f t  are m e t  
by allowing only those curves of l i f t  var ia t ion tha t  produce no change i n  
these quant i t ies ,  t ha t  is, curves having zero area and zero moment. It 
can be seen tha t  such curves of var ia t ion  must have a t  least three ele- 
ments t o  m e e t  the conditions of zero area and zero moment. Furthermore, 
any curve meeting these conditions can be subdivided in to  groups of three 
elements so tha t  the individual groups a l so  s a t i s f y  the conditions. 
Hence, as the representative of such r e s t r i c t ed  curves of var ia t ion w e  
may adopt three small elements having areas 21, 22, and Z3 ( f ig .  1 ) .  
These elements, together with t h e i r  posit ions y l ,  y2, and y3 and the 
loca l  values of the  downwash w -  etc., due t o  the or ig ina l  loading 
must s a t i s f y  the following three equations: I1 , 

> fo r  6L = 0, Z l  + 22 + Z3 = 0 

f o r  

for  

6B = 0, 

6 D i  = 0, 

Z l Y l  + Z2Y2 + Z3Y3 = 0 

Zlwil + Z2wi2 + Z3wi3 = 0 

It can be seen tha t  these equations w i l l  be consistent if 
w - a+by2 and wi3 - a+by3, where a and b are constants t o  be 
determined from the given conditions. 
f ied  f o r  a l l  posit ions y ~ ,  y2, etc. ,  i t  is concluded tha t ,  i n  general, 

w i l  - a+byl, 
52 

Since such equations must be satis- 

w - a + b y  (9) i 
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Hence, f o r  a minimum induced drag with a given t o t a l  l i f t  and a given 
bending moment the  dowzlwash must show a l inea r  var ia t ion  along the span.2 
(See f ig .  2.) 

The foregoing method may be r'eadily extended t o  a more general class 
of problems involving bending moments o r  ro l l i ng  moments. Suppose, f o r  
example, a braced wing is considered, as i n  the dotted out l ine  of f ig-  
ure  3. I n  t h i s  case the bending moment developed by tha t  portion of the 
l i f t  act ing inboard of the  point of bracing attachment may be of no con- 
cern, but it may be desired t o  l i m i t  the bending moment developed by tha t  
portion of the  spanwise load curve extending between t h i s  point and the 
t ip .  I n  t h i s  case so w i l l  not be zero. A t  least three elements are 
required t o  preserve s ta t ionary values of the l i f t  and bending moment, 
and it i s  evident that at least two of the  elements must l i e  t o  the r igh t  
of the point sQ. The three  simultaneous equations are (see f ig .  2): 

Here y2 and y3 are to  the r igh t  of the point so and y1 lies t o  the 
l e f t  of t h i s  point. For these equations3 t o  be consistent wi must have 
the form 

yil - a; wi - a+b(y2-s0); wi3 - a+b(yg-s0) 
2 

Hence, i n  general, the  downwash w i l l  be a constant over the portion of the 
span f o r  which the moment i s  not specified,  as i l l u s t r a t ed  i n  f igure  3. 
I f  no r e s t r i c t ion  whatever is placed on the moment there  is obtained the 
solution of Munk's or ig ina l  problem, namely, t ha t  the  downwash should be 
constant over the e n t i r e  span. 

21t may be noticed a t  t h i s  point tha t ,  whereas the discussion has empha- 
sized the idea of minimizing the  drag, the analysis  actual ly  makes no 
d is t inc t ion  between the l i f t ,  bending moment, or  drag, i n  tha t  station- 
ary values of a l l  three are demanded. Thus equation (9) may be consid- 
ered a necessary condition f o r  the  solution of the following problems: 
(1) given the  t o t a l  l i f t  and the induced drag t o  f ind the d is t r ibu t ion  
of l i f t  over the span tha t  w i l l  r e su l t  i n  a minimum bending moment, 
and (2) given the  bending moment and the induced drag t o  f ind the dis- 
t r ibut ion resu l t ing  i n  the maximum t o t a l  l i f t .  

3See reference 3 fo r  a discussion of solutions of such equations. 
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Determination of Span Loading and Induced 
Drag From t h e  Downwash Dis t r ibu t ion  

The case of b i l a t e r a l  symmetry with moment spec i f i ed  about t h e  
roo t  s ec t ion  w i l l  serve as an example of t h e  ca l cu la t ion  of t he  a c t u a l  
span loading and induced drag. 
t h a t  t h e  downwash d i s t r i b u t i o n  w i l l  cons i s t  of two s t r a i g h t - l i n e  
segments w i th  a reversal of s lope  a t  t h e  plane of symmetry. 
necessary t o  compute t h e  spanwise v a r i a t i o n  of T corresponding t o  
such a curve of downwash. 

It w i l l  be evident from t h e  foregoing 

It is then 

To perform t h i s  c a l c u l a t i o n  by standard methods of a i r f o i l  theory, 
use is made of t h e  idea  t h a t  a t  a g r e a t  d i s t ance  behind t h e  wing t h e  
vor tex  shee t  forms a two-dimensional f i e l d  of motion, with t h e  discon- 
t i n u i t y  i n  t h e  lateral v e l o c i t y  across  t h e  shee t  given by and 
t h e  downwash w given by t w i c e  t h e  va lue  of t h e  induced downwash wi 
a t  t h e  wing. Hence, t h e  quan t i ty  1 / 2  (dI'/dy) - 2iwi can be evaluated 
by means of t he  f ami l i a r  complex ve loc i ty  func t ion  v - i w  of t h e  two- 
dimensional p o t e n t i a l  theory using f o r  
vor tex  sheet.  
is given along t h e  l i n e  represent ing  t h e  trace of t h e  span, then t h e  
ve loc i ty  vec tor  a t  any o ther  po in t  i n  t h e  f i e l d  
obtained from the  r e l a t i o n  (reference 4) 

dr/dy, 

v i t s  value j u s t  abbve t h e  
I n  t h i s  theory i f  t h e  v e r t i c a l  component of ve loc i ty  w 

5 = y + i z  may be  

A s  noted above, 

- -  dr - v(y + o i l  - v(y - o i )  = 2vfy + o i l  
dY 

Introducing w = a + b y  f o r  y > 0 and w = a - by f o r  y < 0 i n t o  
equation (11) y ie lds ,  a f t e r  i n t eg ra t ion ,  

and hence 

r = 2 (a + $) ,/-+ y2 cosh-' - S 
IYI 

lr 

The spanwise loading thus  conta ins  t h e  e l l i p t i c a l  d i s t r i b u t i o n  as one 
component. 
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Equation (13) f o r  the  spanwise d is t r ibu t ion  of c i rculat ion enables 
the determination of the  over-all l i f t ,  bending moment, and drag i n  t e r m s  
of the unassigned constants a and b. The use of equations (2), ( 6 ) ,  
and (7), together with the  wing semispan s, yields  the following values: 

B = 0 V s 3  f 6 a  + I b s )  \ 

a b Di = - 2 V L + V B  

It is  convenient t o  specify the bending moment of the l i f t  i n  t e r m s  of 
the lateral posit ion of the centroid, or  center of pressure, of the load 
curve. The lateral centroid as a f rac t ion  of the  semispan s may be 
denoted by y' (i .e. ,  y'  = 2B/Ls). Then, solving fo r  a and b, 

The expression for  induced drag in  terms of the l i f t  and the lateral 
center of pressure becomes 

This equation y ie lds  the minimum drag for  the given posit ion of 
the lateral center of pressure is specified so as t o  coincide with tha t  
for  an e l l i p t i c a l  loading (i.e., b = 0; y' = 4/33), then the above 
formula reduces t o  

y'.  I f  

The optimum dis t r ibu t ion  of loading for  a given posit ion of the centroid 
y9  
The re su l t  is  

may be obtained from equation (13) with the  a id  of equations (15). 

547 



NACA TN 2249 

Drag f o r  a Given Bending Moment with Unrestricted Span 

The foregoing calculations show, as w a s  t o  be expected, t ha t  the 

However, i f  the  r e s t r i c t ion  on the span is removed, 
e l l i p t i c  loading yields  a smaller drag than any of the others  within a 
r e s t r i c t ed  span. 
s t i l l  lower values of the  induced drag can be obtained without any 
increase i n  the bending moment at  the wing root. 
obtained by permitting the span t o  increase and a t  the  s a m e  t i m e  adopt- 
ing a more tapered form of the  loading curve. 

The lower values are 

Equation (16) which contains the three var iables  l i f t ,  span, and 
center of pressure can be eas i ly  rearranged t o  show the var ia t ion of 
drag with span when the bending moment and the l i f t  are held a t  fixed 
values. I n  t h i s  case, the lateral posit ion of the  center o f  pressure 
y's w i l l  be fixed, while the form and extent s of the load curve w i l l  
vary. I n  order t o  provide a convenient basis  f o r  comparison the span 
and shape of the load curves w i l l  be re la ted t o  the e l l i p t i c  loading. 
I f  S/Se denotes the r a & h  of the  semispan of the  wing t o  that of an 
e l l i p t i c a l l y  loaded wing having the s a m e  t o t a l  l i f t  and bending moment, 
then equation (16) can be rewritten: 

The quantity i n  the bracket is the r a t i o  of the  induced drag t o  that of 
the corresponding e l l i p t i c a l l y  loaded wing. 
f igure 4 t o  show the  decrease of drag possible by increase of the span. 
The forms of load curve required fo r  the minimum drag a t  various values 
of s/se are shown i n  f igure  5 .  

This r a t i o  is plot ted i n  

It w i l l  be noted t h a t  a 15-percent reduction of the induced drag 
below tha t  fo r  e l l i p t i c  loading can be achieved with a 15-percent 
increase i n  span. 
50 percent (s = 1.15 t o  1.50) yield no s ignif icant  reductions, however. 
A t  still la rger  values of s 
a t  an i n f i n i t e  value of s. For extreme values of s/se the curves begin 
t o  show negative loadings a t  the t i p s  and eventually the bending moment 
at  ce r t a in  points along the  span w i l l  exceed t h a t  a t  the wing root. 

Further increases of span between 15 percent and 

the  drag becomes lower, and approaches zero 

Ames Aeronautical Laboratory 
National Advisory Committee for  Aeronautics, 

Moffett Field, Calif . ,  Sept. 25, 1950. 
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APPENDIX 

DEFINITIONS OF SYMBOLS 

t o t a l  l i f t  

element of l i f t  

induced drag 

bending moment 

air density 

circulation 

induced downwash velocity a t  wing 

downwash velocity, a t  i n f in i ty  

lateral velocity 

velocity of f l i gh t  

distances along wing semispan 

point of orggin fo r  bending moment 

length of wing semispan 

lateral position of load centroid as a fraction of 

constants 

( w - 2wi) 

s 
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FiGURE 1.- SPANWISE LOAD 
ELEMENTS OF VARIATION 
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