
The Sparse Grids Matlab kit - a Matlab implementation of sparse

grids for high-dimensional function approximation and uncertainty

quantification

Chiara Piazzola1,2 and Lorenzo Tamellini1

1Istituto di Matematica Applicata e Tecnologie Informatiche “E. Magenes”, Consiglio
Nazionale delle Ricerche, Via Ferrata, 5/A 27100, Pavia, Italy

2Department of mathematics, Technical University of Munich, Boltzmannstraße, 3 85748,
Garching bei München, Germany

chiara.piazzola@tum.de, tamellini@imati.cnr.it

Abstract

The Sparse Grids Matlab Kit is a collection of Matlab functions for high-dimensional interpolation and
quadrature, based on the combination technique form of sparse grids. It is lightweight, high-level and easy
to use, good for quick prototyping and teaching. However, it has some features that allow its use also in
realistic applications: in particular, the Sparse Grids Matlab Kit is somehow geared towards Uncertainty
Quantification, but it is flexible enough for other purposes. The goal of this paper is to provide an overview of
the data structure and of mathematical aspects forming the backbone of the software, as well as to compare
it with similar software available in literature.

1 Introduction

The aim of this manuscript is to introduce the Sparse Grids Matlab Kit as a tool for approximation of high-
dimensional functions and Uncertainty Quantification (UQ). The Sparse Grids Matlab Kit is freely available
under the BSD2 license on Github at https://github.com/lorenzo-tamellini/sparse-grids-matlab-kit,
and full resources (past and current releases, documentation including the user manual [47], other release-
related material) are available at https://sites.google.com/view/sparse-grids-kit; the first version
was released in 2014 (14-4 “Ritchie”), and the current version was released in 2023 (23-5 “Robert”). It
is written in Matlab, and its compatibility with Octave has been tested; it is extensively documented and
commented (release 23-5 has about 9800 lines of code and 5300 lines of comment). The release contain
several tutorials and a testing unit is also available.

From a mathematical point of view, the package implements the combination technique form of sparse grids:
it is a high-level package, with syntax quite close to the mathematical description of sparse grids, which
makes it (hopefully) easy to use, and therefore suitable for quick prototyping and didactic purposes (for
instance, it has been used to write the codes of the book [36]). During the discussion, we will however
point out a few functionalities (interface with the Matlab Parallel Toolbox, evaluation recycling, buffering
strategy for adaptive sparse grids generation, full compatibility with the UM-Bridge protocol [53] for HTTP
communication with external software) that make the Sparse Grids Matlab Kit usable for realistic UQ
problems, see e.g. [11, 48, 8, 54], as well as for academic problems with hundreds of random variables, such
as in [42, 18].

1

ar
X

iv
:2

20
3.

09
31

4v
2

 [
cs

.M
S]

 3
1

M
ay

 2
02

3

https://github.com/lorenzo-tamellini/sparse-grids-matlab-kit
https://sites.google.com/view/sparse-grids-kit

Name Language Ref. Webpage
Dakota C++ [1] https://dakota.sandia.gov

PyApprox Python [30] https://pypi.org/project/pyapprox

MUQ C++, Python [44] https://mituq.bitbucket.io

UQLab Matlab [35] https://uqlab.com

ChaosPy Python [20, 19] https://chaospy.readthedocs.io

SG++ Python, Matlab,
Java, C++

[46] https://sgpp.sparsegrids.org/

Spinterp Matlab [31, 33, 32] http://calgo.acm.org/847.zip1

UQTk C++, Python [14, 13] https://sandia.gov/uqtoolkit

Tasmanian C++, Python,
Matlab, Fortran
90/95

[57, 59, 58] https://github.com/ORNL/TASMANIAN

OpenTURNS C++, Python [4] https://openturns.github.io/www/index.html

URANIE C++, Python [5] https://www.salome-platform.org/?page_id=2019

UncertainSCI Python [39] https://www.sci.utah.edu/cibc-software/uncertainsci.html

Table 1: List of high-dimensional approximation / UQ-related software.

As already mentioned, the Sparse Grids Matlab Kit is geared towards UQ, although it is general enough
to be used for manipulation of high-dimensional functions in other frameworks. As such, it belongs to
the same niche of a number of other software with surrogate modeling functionalities for parameter space
exploration/UQ purposes; we provide a (knowingly incomplete) list in Tab. 1. The software in the table
closest to the Sparse Grids Matlab Kit (in terms of language, functionalities and usability) is probably
Spinterp, which is however no longer maintained and does not implement any UQ function. A deeper
discussion is reported in Sect. 5, where a closer comparison in terms of functionalities between the Sparse
Grids Matlab Kit and the other Matlab-based sparse-grids/UQ software (either natively implemented in
Matlab or providing interfaces to software written in C++/Python), i.e., SG++, Spinterp, Tasmanian, is
given.

The rest of the paper is organized as follows. Sect. 2 introduces the minimal mathematical background
necessary to understand the entities implemented in the Sparse Grids Matlab Kit. Sect. 3 covers how sparse
grids are generated in the Sparse Grids Matlab Kit and how they are stored in memory (data structure);
note in particular that the Sparse Grids Matlab Kit provides two mechanisms to generate sparse grids: a-
priori and adaptive a-posteriori (this is where we will discuss in particular the above-mentioned buffering of
random variables). Sect. 4 discusses the main functionalities available in the Sparse Grids Matlab Kit, with
special emphasis on knots recycling, parallelization, interface with the UM-Bridge protocol and conversion
to polynomial chaos expansions, while Sect. 5 contains the already-mentioned comparison with the other
Matlab sparse-grids/UQ software available in the literature.

2 Mathematical basics of sparse grids

We consider the two problems of a) approximating and b) computing weighted integrals of (the components
of) a function f : RN → RV given some samples of f whose location we are free to choose. More specifically,
we assume that f depends on N random variables y = (y1, . . . , yN) ∈ Γ, with Γ = Γ1 × . . . × ΓN ⊂ RN

being the set of all possible values of y. We denote by ρn : Γn → R+ the probability density function (pdf)
of each variable yn, n = 1, . . . , N and assume independence of y1, . . . , yN , such that the joint pdf of y is

1Last officially released version, to the best of knowledge of the authors of this manuscript. A later version can be found at
https://people.sc.fsu.edu/~jburkardt/m_src/spinterp/spinterp.html

2

https://dakota.sandia.gov
https://pypi.org/project/pyapprox
https://mituq.bitbucket.io
https://uqlab.com
https://chaospy.readthedocs.io
https://sgpp.sparsegrids.org/
http://calgo.acm.org/847.zip
https://sandia.gov/uqtoolkit
https://github.com/ORNL/TASMANIAN
https://openturns.github.io/www/index.html
https://www.salome-platform.org/?page_id=2019
https://www.sci.utah.edu/cibc-software/uncertainsci.html
https://people.sc.fsu.edu/~jburkardt/m_src/spinterp/spinterp.html

ρ(y) =
∏N

n=1 ρn(yn),∀y ∈ Γ.2

The first step to build a sparse grid is to define a set of collocation knots for each variable yn. We denote
the number of knots to be used in each random variable by Kn ∈ N+, and introduce a discretization level
in ∈ N+ and a so-called “level-to-knots function”

m : N+ → N+ such that m(in) = Kn. (1)

Then, we denote by Tn,in the set of m(in) knots along yn, i.e.,

Tn,in =
{
y
(jn)
n,m(in)

: jn = 1, . . . ,m(in)
}

for n = 1, . . . , N. (2)

Typical examples of level-to-knots functions are:

m(i) = i (linear), (3)

m(i) = 2(i− 1) + 1 (2-step), (4)

m(1) = 1, m(i) = 2i−1 + 1 (doubling). (5)

The knots of Tn,in are usually chosen according to the probability distribution of the random variables ρn
for efficiency reasons. For the same reasons, it is also beneficial if the sequences of knots are nested, i.e.,
if Tn,in ⊂ Tn,jn with jn ≥ in. However, the Sparse Grids Matlab Kit does not require nestedness of these
sequences, contrary to other software (as we will discuss later in Sect. 5).

Next, we introduce N -dimensional tensor grids obtained by taking the Cartesian product of the N univariate
sets of knots just introduced. For this purpose we collect the discretization levels in in a multi-index
i = [i1, . . . , iN] ∈ NN

+ and denote the corresponding tensor grid by Ti =
⊗N

n=1 Tn,in . Using standard
multi-index notation, we can then write

Ti =
{
y
(j)
m(i)

}
j≤m(i)

, with y
(j)
m(i) =

[
y
(j1)
1,m(i1)

, . . . , y
(jN)
N,m(iN)

]
and j ∈ NN

+ ,

where m(i) = [m(i1), m(i2), . . . ,m(iN)] and j ≤ m(i) means that jn ≤ m(in) for every n = 1, . . . , N .

A tensor grid approximation of f(y) based on global Lagrangian interpolants collocated at these grid knots
can then be written in the following form

Ui(y) :=
∑

j≤m(i)

f
(
y
(j)
m(i)

)
L(j)
m(i)(y), (6)

where
{
L(j)
m(i)(y)

}
j≤m(i)

are N -variate Lagrange basis polynomials, defined as tensor products of univariate

Lagrange polynomials, i.e.

L(j)
m(i)(y) =

N∏
n=1

l
(jn)
n,m(in)

(yn) with l
(jn)
n,m(in)

(yn) =

m(in)∏
k=1,k ̸=jn

yn − y
(k)
n,m(in)

y
(jn)
n,m(in)

− y
(k)
n,m(in)

.

Similarly, the tensor grid quadrature of f(y), i.e. the approximation of its weighted integral, can be computed
by taking the integral of the Lagrangian interpolant in Eq. (6):

Qi :=

∫
Γ

Ui(y)ρ(y) dy =
∑

j≤m(i)

f
(
y
(j)
m(i)

)(N∏
n=1

∫
Γn

l
(jn)
n,m(in)

(yn)ρ(yn) dyn

)

=
∑

j≤m(i)

f
(
y
(j)
m(i)

)(N∏
i=1

ω
(jn)
n,m(in)

)
=
∑

j≤m(i)

f
(
y
(j)
m(i)

)
ω
(j)
m(i), (7)

2The assumption of independence is kept for simplicity but is actually not needed: a) approximation can be performed
using only the marginal probability density functions of y1, . . . , yN , and b) while independence is needed for quadrature, in
case y1, . . . , yN are correlated it is possible to use the theory of copulas [40] to introduce a change of variables where the new
random variables are independent uniform random variables, and to set the sparse grid in this new set of variables.

3

where ω
(jn)
n,m(in)

are the standard quadrature weights obtained by computing the integrals of the associated

univariate Lagrange polynomials, and ω
(j)
m(i) are their multivariate counterparts. Note that other choices

could be done here, replacing Lagrange polynomials in Eq. (6) by e.g. splines as in [51], or trigonometric
polynomials as in [37]; we discuss further this issue in Sect. 5, when comparing different sparse grid software.

Naturally, the approximations Ui and Qi are more and more accurate the higher the number of collocation
knots in each random variable, and therefore one would ideally choose all the components of i to be large,
say i = i⋆ with i⋆n ≫ 1,∀n = 1, . . . , N . The cost of these approximations could be however too large even for

N moderately large, due to fact that they would require
∏N

n=1 m(i⋆n) evaluations of f , i.e., their cost grows
exponentially fast in N .

To circumvent this issue, the sparse grid method replaces Ui⋆ with a linear combination of multiple coarser
Ui, and similarly for Qi⋆ (from now on we use the generic symbol Fi to denote both Ui and Qi). To this
aim we introduce the so-called “detail operators” (univariate and multivariate). They are defined as follows,
with the understanding that Fi(y) = 0 when at least one component of i is zero. Thus, we denote by en the
n-th canonical multi-index, i.e. (en)k = 1 if n = k and 0 otherwise, and define

Univariate detail: ∆n[Fi] = Fi −Fi−en with 1 ≤ n ≤ N,

Multivariate detail: ∆[Fi] =

N⊗
n=1

∆n[Fi], (8)

where taking tensor products of univariate details amounts to composing their actions, i.e.

∆[Fi] =

N⊗
n=1

∆n[Fi] = ∆1 [· · · [∆N [Fi]]] .

By replacing the univariate details with their definitions, we can then see that this implies that the mul-
tivariate operators can be evaluated by evaluating certain full-tensor approximations Fi, and then taking
linear combinations:

∆[Fi] = ∆1 [· · · [∆N [Fi]]] =
∑

j∈{0,1}N

(−1)∥j∥1Fi−j.

Observe that by introducing these detail operators a hierarchical decomposition of Fi can be obtained;
indeed, the following telescopic identity holds true:

Fi =
∑
j≤i

∆[Fj]. (9)

Example 1 (Telescopic identity) As an example of the previous identity, consider the case N = 2. Re-
calling that by definition F[j1,j2] = 0 when either j1 = 0 or j2 = 0, it can be seen that∑

[j1,j2]≤[2,2]

∆[F[j1,j2]] =∆[F[1,1]] +∆[F[1,2]] +∆[F[2,1]] +∆[F[2,2]]

=F[1,1] + (F[1,2] −F[1,1]) + (F[2,1] −F[1,1]) + (F[2,2] −F[2,1] −F[1,2] + F[1,1])

=F[2,2].

The crucial observation that allows to get to sparse grids is that, under suitable regularity assumptions
for f(y), not all of the details in the hierarchical decomposition in Eq. (9) contribute equally to the ap-
proximation, i.e., some of them can be discarded and the resulting formula will retain good approximation
properties at a fraction of the computational cost: roughly speaking, the multi-indices to be discarded are
those corresponding to “high-order” details, i.e., those for which ∥j∥1 is sufficiently large, see e.g. [7].

4

Example 2 (Dropping high-order details) Following the example above and replacing the constraint
[j1, j2] ≤ [2, 2] with ∥j∥1 ≤ 3 to drop the “highest-order” detail, we obtain the following approximation, that
we call sparse grid approximation/quadrature of f :

F[2,2] ≈
∑

j1+j2≤3

∆[F[j1,j2]] = ∆[F[1,1]] +∆[F[1,2]] +∆[F[2,1]] = −F[1,1] + F[1,2] + F[2,1].

In general, upon collecting the multi-indices to be retained in the sum in a multi-index set I ⊂ NN
+ the

sparse grids approximation of f and of its weighted integral can finally be written as (see e.g. [63]):

f(y) ≈ UI(y) =
∑
i∈I

∆[Ui(y)] =
∑
i∈I

ci Ui , ci :=
∑

j∈{0,1}N

i+j∈I

(−1)∥j∥1 (10)

∫
Γ

f(y)ρ(y) dy ≈ QI(y) =
∑
i∈I

∆[Qi(y)] =
∑
i∈I

ciQi, (11)

and the sparse grid is defined as

TI =
⋃
i∈I
ci ̸=0

Ti. (12)

Remark 1 The sparse grid approximation in Eq. (10) is not necessarily an interpolant operator, i.e., the
sparse grid approximation UI(y) evaluated at the sparse grid knots might be different from the corresponding
values of f(y). More specifically, a sparse grid is interpolatory only if it is built with nested knots. In the
following, with a slight abuse of terminology we will nonetheless refer to the operation of evaluating UI(y) by
means of Eq. (10) as sparse grid interpolation. Another commonly used terminology, especially in the field
of uncertainty quantification, is to refer to UI(y) as sparse grid surrogate model.

The right-most equalities in Eqs. (10) and (11) are known as the combination technique form of the sparse
grids approximation and quadrature (see [27]), which is the form implemented in the Sparse Grids Matlab
Kit. Another possibility would be to implement the first form, i.e., the sum of detail operators

∑
i∈I ∆[Ui(y)],

which is known as the hierarchical form of sparse grids; in Sect. 5 we specify which software implements
which form. In particular, implementing the hierarchical form requires introducing a basis for the detail
operators ∆[Fi] in Eq. (8) rather than for the tensor interpolants Ui: this request naturally suggest using as
basis the hierarchical form of piecewise polynomials, such as the classical hat-functions, which in turn opens
the way to the so-called local adaptivity of sparse grids, see e.g. [45, 15, 43, 34]. Using piecewise polynomials
to introduce a basis for the detail operators ∆[Fi] is not mandatory though, and it would be possible to
use global Lagrange polynomials even in this context, using the hierarchical form of Lagrange polynomials
described e.g. in [16, 10]. Note that the equivalence between the two forms is true only if I is chosen as
downward closed, i.e.

∀k ∈ I, k− en ∈ I for every n = 1, . . . , N such that kn > 1.

see Fig. 1. The choice of implementing the combination technique instead of the hierarchical form allows
to keep the data structure to a minimum, and guarantees ease of use and high-level, “close-to-the-math”
coding.

Coming back to the choice of the set I, the optimal choice depends on the decay rate of the detail operators,
which in turn depends on the regularity of f , see e.g. [7, 41, 10]. One very classical choice of set I is the
following one:

Isum(w) =

{
i ∈ NN

+ :

N∑
n=1

(in − 1) ≤ w

}
, (13)

5

Figure 1: Downward closedness of a multi-index set. The set of the multi-indices marked in blue is downward
closed. Instead, the multi-index [3, 2] (in red) violates the rule in Eq. (2): the multi-index [2, 2] = [3, 2]−e1 is
not contained in the multi-index set and hence the set of blue and red multi-indices is not downward closed.

for some w ∈ N. In particular, together with the doubling level-to-knots, Eq. (5), this results in the famous
Smolyak grid. Other choices are e.g.

Tensor product set: I =
{
i ∈ NN

+ :
N

max
n=1

gn(in − 1) ≤ w
}
, (14)

Total degree set: I =

{
i ∈ NN

+ :

N∑
n=1

gn(in − 1) ≤ w

}
, (15)

Hyperbolic cross set: I =

{
i ∈ NN

+ :

N∏
n=1

(in)
gn ≤ w

}
, (16)

Multi-index box set: I =
{
i ∈ NN

+ : in ≤ bn
}
, (17)

for g1, . . . , gN ∈ R, w, b1 . . . , bN ∈ N, where, in particular, g1, . . . , gN are typically called anisotropy weights
and w sparse-grid level. We refer e.g. to [3] for a thorough discussion about the motivations for introducing
the sets above. The set I could also be built adaptively based on suitable profit indicators; this leads to
adaptive sparse grids algorithms, that will be discussed in Sect. 3.1.

Example 3 Let N = 2 and consider the downward closed multi-index set reported in Fig. 1, i.e. I =
{[1, 1], [1, 2], [2, 1], [3, 1]}. Let us first exemplify the combination technique form of the sparse grid approxi-
mation and quadrature in Eqs. (10) and (11), respectively. We use again the generic symbol Fi to denote
both Ui and Qi and obtain

FI(y) = c[1,1]F[1,1](y) + c[1,2]F[1,2](y) + c[2,1]F[2,1](y) + c[3,1]F[3,1](y)

with

c[1,1] = (−1)∥[0,0]∥1 + (−1)∥[1,0]∥1 + (−1)∥[0,1]∥1 = −1,

c[1,2] = (−1)∥[0,0]∥1 = +1,

c[2,1] = (−1)∥[0,0]∥1 + (−1)∥[1,0]∥1 = 0,

c[3,1] = (−1)∥[0,0]∥1 = +1.

Since c[2,1] = 0, only three Lagrangian interpolant/quadrature operators explicitly appear in the combination
technique formulas (10) and (11), i.e.

FI(y) = −F[1,1](y) + F[1,2](y) + F[3,1](y),

6

(a) T[1,1] (b) T[1,2] (c) T[3,1] (d) TI

(e) T[1,1] (f) T[1,2] (g) T[3,1] (h) TI

Figure 2: Top row: tensor grids (panels a,b,c) and the sparse grid (panel d) for Example 3 with level-to-knots
doubling. Bottom row: tensor grids (panels e,f,g) and the sparse grid (panel h) for the same Example with
level-to-knots linear.

and only the corresponding three tensor grids contribute to the sparse grid (cf. Eq. (12)). Then, considering
the doubling level-to-knots function, cf. Eq. (5), the resulting tensor grids consist of one, three, and five grid
knots, respectively:

T[1,1] =
{[
y11,1 y12,1

]}
,

T[1,2] =
{[
y11,1 y12,3

]
,
[
y11,1 y22,3

]
,
[
y11,1 y32,3

]}
,

T[3,1] =
{[
y11,5 y12,1

]
,
[
y21,5 y12,1

]
,
[
y31,5 y12,1

]
,
[
y41,5 y12,1

]
,
[
y51,5 y12,1

]}
.

Choosing Gauss-Legendre knots as univariate collocation knots on Γ1 = Γ2 = [0, 1] leads to the tensor grids
displayed in Fig. 2a,b,c and the sparse grid of Fig. 2d. If instead we consider the linear level-to-knots
function, cf. Eq. (3), the three tensor grids will consist of one, two and three knots

T[1,1] =
{[
y11,1 y12,1

]}
,

T[1,2] =
{[
y11,1 y12,2

]
,
[
y11,1 y22,2

]}
,

T[3,1] =
{[
y11,3 y12,1

]
,
[
y21,3 y12,1

]
,
[
y31,3 y12,1

]}
.

and the same choice of Gauss-Legendre knots as univariate collocation knots on Γ1 = Γ2 = [0, 1] leads to the
tensor grids displayed in Fig. 2e,f,g and the sparse grid of Fig. 2h.

3 The Sparse Grids Matlab Kit: Sparse grid data structure

As described in the previous section, defining a sparse grid requires choosing a family Tn,in of collocation knots
for each variable yn, a level-to-knots function m(·) and a multi-index set I to be input in the combination
technique formulas of Eqs. (10) and (11). In the Sparse Grids Matlab Kit, the same steps are to be followed
to define a sparse grid, as can be seen in Listing 1, which creates the second sparse grid of Example 3. In

7

(a) Sparse grid structure array

(b) Tensor grid structure

(c) Reduced sparse grid struc-
ture

Figure 3: Sparse grid data structure: a sparse grid is stored in a structure array, each structure corresponding
to one tensor grid and collecting seven fields that identify the current grid.

Listing 1, Line 1 defines the function to be used to compute the collocation knots, Line 2 sets the level-to-
knots function, Line 3 specifies the multi-index set and finally Line 7 creates the sparse grid. The purpose
of Line 8 will be made clearer in a moment.

1 knots = @(n) knots uniform(n,0,1); % Gauss-Legendre knots on [0,1]
2 lev2knots = @lev2knots lin;
3 I = [1 1;
4 1 2;
5 2 1;
6 3 1];
7 S = create sparse grid multiidx set(I,knots,lev2knots);
8 Sr = reduce sparse grids(S);

Listing 1: Basic creation of a sparse grid.

As already discussed, the knots should be chosen according to the distribution of each random variable
yn, then e.g. the choice above is appropriate for uniform random variables. The Sparse Grids Matlab Kit
supports uniform, normal, exponential, gamma, beta and triangular distributions, and provides at least
two choices of collocation knots for almost all of them (namely, Gaussian and weighted Leja knots, see
[50, 38] respectively3); more options are provided for specific choices of random variables, such as midpoint,
equispaced and Clenshaw–Curtis knots [62] for uniform random variables, and Genz–Keister [24] for normal
distributions; the Sparse Grids Matlab Kit user manual [47] reports some discussion on the algorithms used
to compute the knots and quadrature weights for the various choices. Several choices are also available for
the level-to-knots functions, including but not limited to the ones reported in Eqs. (3)-(5), as well as for
generating the multi-index sets in Eqs. (14)-(17). We refer to the Sparse Grids Matlab Kit user manual [47]
for a thorough discussion on the various options available.

The data structure chosen to store sparse grids is also quite close to the mathematical formalism: following
closely the definition of a sparse grid in Eq. (12) as a union of tensor grids, the Sparse Grids Matlab Kit
stores a sparse grid as a struct array, where each struct of the array stores a single tensor grid (see
Fig. 3a). Of course, only tensor grids whose coefficient in the combination technique formula is non-zero get
stored, see Eqs. (10) and (11).

The struct storing a tensor grid are also quite minimal and contain only seven fields, see Fig. 3b: a
matrix knots storing the knots of the tensor grid Ti; a vector weights for the corresponding quadrature
weights multiplied by the combination technique coefficient of the current tensor grid, i.e., ωm(i)ci, an
integer size for the number of knots/weights, a cell array knots per dim containing the the univariate

3Gaussian collocation knots are not provided for triangular distribution.

8

sets of collocation knots Tn,in , a vector m containing the number of knots in each dimension (such that
size = prod(m)), a vector idx containing the multi-index from which the tensor grid is generated (such
that m = lev2knots(idx)) and an integer coeff storing the coefficient ci of the combination technique
formula, see Eq. (10).

As already discussed in Example 3, the sparse grid generated by Listing 1 is formed by three tensor grids
T[1 1], T[3 1], T[1 2], with combination techniques coefficients c[1 1] = −1, c[3 1] = 1, c[1 2] = 1. Consequently,
the sparse grids structure array S is composed by three structures, one for each tensor grid. Conversely, the
multi-index [2 1] has combination coefficients c[2 1] = 0 and therefore the grid T[2 1] does not get stored:

>>S =
1x3 struct array with fields:
knots
weights
size
knots per dim
m
coeff
idx

>> S(1)
ans =

struct with fields:
knots: [2x1 double]

weights: -1
size: 1

knots per dim: {[0.5000] ...
[0.5000]}
m: [1 1]

coeff: -1
idx: [1 1]

>> S(1).knots
ans =

0.5000
0.5000

>> S(2)
ans =
struct with fields:

knots: [2x2 double]
weights: [0.5000 0.5000]

size: 2
knots per dim: {[0.5000] ...

[0.2113 0.7887]}
m: [1 2]

coeff: 1
idx: [1 2]

>> S(2).knots
ans =

0.5000 0.5000
0.2113 0.7887

>> S(3)
ans =
struct with fields:

knots: [2x3 double]
weights: [0.2778 0.4444 0.2778]

size: 3
knots per dim: {[0.1127 ...

0.5000 0.8873] [0.5000]}
m: [3 1]

coeff: 1
idx: [3 1]

>> S(3).knots
ans =

0.1127 0.5000 0.8873
0.5000 0.5000 0.5000

The listing above shows that the same knot [y1, y2] = [0.5, 0.5] appears in more than one tensor grid, and
is thus stored more than once; this phenomenon is even more pronounced (actually, desired!) when nested
sequences of knots are used. Therefore, it is useful to have a disposal a compact representation of a sparse
grid, where duplicate knots are stored only once, together with their “lumped” quadrature weight, obtained
taking the linear combination of the quadrature weights of each instance of the repeated knot with the
combination coefficient weights in Eq. (10). This representation is called reduced sparse grid and is created
by the function reduce sparse grid (Line 8 of Listing 1), which essentially detects (up to a certain tolerance,
tunable by the user) the identical knots, deletes the possible repetitions and computes the corresponding
quadrature weights. The resulting data structure is a single struct (see Fig. 3c), with five fields: a matrix
knots for all the “uniqued” collocation knots of the sparse grid, a vector weights for their corresponding
“lumped” quadrature weights, an integer size containing the number of knots / weights, and finally two
vectors of indices m and n mapping from the non-uniqued list of knots [S.knots] and the reduced version
[Sr.knots] and vice-versa.

Note that both extended and reduced formats are useful for working with sparse grids and should always
be stored in memory. This implies a certain redundancy in memory storage, and reducing a sparse grid
takes a non-negligible computational time, as we further discuss in Example 4 below. However, having the
two structures at hand considerably simplifies coding operations on sparse grids such as interpolation or
conversion to Polynomial Chaos Expansion (these operations are described in details in Sect. 4), and hides
a lot of complexity from the final user.

Remark 2 Once the family of knots and the level-to-knots function are known, it would be in principle
possible to perform the sparse grid reduction comparing indices of knots rather than coordinates, which is

9

faster and does not need to use a tolerance. However, we decided to go for the admittely slower alternative
and compare coordinates rather than indices, because this makes it easier for a generic user to introduce their
own family of collocation knots.

Indeed, especially for non-nested knots, determining if sets of knots at different levels (not just consecutive
ones) have knots in common, i.e., assessing Tn,k ∩Tn,j for generic choices of k, j ∈ N is not straightforward.
This information is however needed if we were to use only indices when reducing a grid, thus the user would
need to provide such information in a suitable format (and possibly precompute it offline – again up to a
tolerance), which might be not easy to do.

Comparing coordinates instead allows much more flexibility in the way knots are provided by the user. In
particular, the user does not even need to precompute knots offline, but could also just provide a function that
computes them at each call, knowing that the reduce operation is robust to difference in coordinates induced
by floating point arithmetics. This is actually what happens for Clenshaw–Curtis and Gaussian knots, that
are not precomputed and tabulated but rather computed at each call.

Example 4 (Computational cost) Let us measure memory usage and CPU time4 for generating Smolyak
sparse grids in reduced format for increasing N = 2, . . . , 10 and for fixed w = 3 or w = 5, i.e., using Eq.
(13) to generate the multi-index set and the level-to-knots function in Eq. (5). In this example, we use the
so-called Clenshaw–Curtis knots, a choice that ensures that the grids generated will be nested, see [47, 62].
In essence, this requires clocking a listing analogous to Listing 1 with suitable adjustments to the definitions
at Lines 1– 3. We display the resulting sparse grid size and the computational time in Fig. 4a, and the
percentage of computational time taken by the reduction step in Fig. 4b.

We then perform the dual experiment, i.e., we measure memory usage and CPU time for generating reduced
Smolyak sparse grids for fixed N = 3 or N = 5 and increasing w = 2, . . . , 10. Sparse grid size and total
CPU time are now reported in Fig. 4c while Fig. 4d shows the percentage of time taken by the reduction
step. Both the computational time and the sparse grid size can be seen to grow faster with respect to w than
N . Moreover, the time taken by the reduction step is mildly impacting on the total time when keeping w to
small values and increasing N (panel b), whereas steadily increasing with w (panel d). This phenomenon is
partially due to the chosen level-to-knots function and using another type of level-to-knots function can be
expected to result in a lower percentage of time being spent on reduction.

3.1 Adaptive sparse grid generation

The straightforward way of generating a sparse grid is by specifying a-priori the multi-index set I, i.e. before
sampling the function f . However, as already mentioned, a greedy adaptive approach in which the multi-
index set (and hence the approximation of f) is constructed in an iterative way, relying on some heuristic
criteria based on the values of the function f obtained so far, is often beneficial.

The adaptive algorithm implemented in the Sparse Grids Matlab Kit is described in details in [42] and
extends the original one by Gerstner and Griebel in [25]; an alternative approach was proposed by Stoyanov
and Webster in [59, 37].

Roughly speaking, the Gerstner–Griebel algorithm starts with the trivial multi-index set I = {[1, 1, . . . , 1]}
and iteratively adds to I the multi-index i with the largest heuristic profit indicator choosing from a set of
candidates, called reduced margin of I and defined as follows:

RI = {i ∈ NN
+ s.t. i ̸∈ I and i− en ∈ I ∀n ∈ {1, . . . , N} s.t. in > 1}.

Note that the condition i ∈ RI is requested to guarantee that I ∪ {i} is downward closed, cf. Eq. (2). The
role of the profit indicator is to balance error reduction and additional computational costs brought in by
each multi-index i (where the cost is measured as the number of new evaluations of f needed to add i to

4This test was carried out in Matlab 2019b on a standard laptop with processor Intel(R) Core(TM) i7-8665U CPU 2.10/4.80
GHz and 16 GB RAM

10

(a) Sparse grid size and total computa-
tional time for increasing N (logarithmic
scale in the vertical axis)

(b) Percentage of computational time
taken by the reduction step for increas-
ing N

(c) Sparse grid size and computational
time for increasing w (logarithmic scale in
the vertical axis)

(d) Percentage of computational time
taken by the reduction step for increas-
ing w

Figure 4: Computational cost and size of sparse grids for different values of N and w.

I); in other words, it quantifies the fact that ideally we would like to add to the sparse grid multi-indices
that carry a large reduction in interpolation/quadrature error for a minimal extra cost. Convergence of this
algorithm was recently proved for certain classes of problems, see [16, 21].

The computation of the profit of a multi-index i actually requires evaluating f at the new collocation knots
that would be added to the sparse grid: this justifies why the algorithm is typically referred to as a-posteriori
adaptive algorithm; this is in sense a sub-optimal procedure, since a certain computational work is invested
in assessing the profit of multi-indices which might then turn out to be “useless”. A variant of the algorithm
where the computation of the profit is based instead on error estimators (that do not require evaluating f
at the new knots) is proposed in [28]; this version is of course only valid for the class of problems that admit
said error estimator.

We also mention that this algorithm is sometimes referred to as dimension-adaptive: indeed, in the framework
introduced so far, the algorithm will add more knots in the variables that are deemed more important,
but these knots are spread throughout the whole support of the random variables (any clustering being a
consequence only of the marginal pdfs ρ1, . . . , ρN) rather than localized in certain regions of the support
where the algorithm has detected local features of f . The latter algorithm is the locally-adaptive one that we
already mentioned in the previous section and can be obtained with suitable modifications of the framework
discussed here; for more information, we refer again to [45, 15, 43, 34].

The Sparse Grids Matlab Kit extends the Gerstner–Griebel a-posteriori dimension-adaptive algorithm in
several ways:

• it can use non-nested knots;

• it can operate on vector-valued functions;

11

• it can use several profit definitions (see user manual);

• it improves the performance of the Gerstner–Griebel algorithm for when the function f at hand is
“very high-dimensional”, N ≫ 1, by implementing the so-called dimension-buffering, see [42, 47].
Indeed, when N ≫ 1, the size of the reduced margin RI grows very quickly, which in turn implies a
quick growth of the number of evaluations of f . In this case, if we know that y1, . . . , yN are “sorted
decreasingly according to their importance”5, the Sparse Grids Matlab Kit adaptive algorithm starts
by exploring only an initial subset of dimensions (the most relevant ones) and then gradually adds
more dimensions to the approximation, thus limiting the number of indices in the candidate set. More
specifically, the algorithm splits the random variables in three groups: activated, buffered (or non-
activated), and neglected. A variable yb is said to be buffered if the algorithm has computed the profit
of the “first non-trivial multi-index” in random variable yk, i.e., of bk = [1 1 1 · · ·] + ek but bk has not
been selected yet (i.e., its profit is not the highest one in the list of candidates); when bk gets selected,
bk is moved from the list of candidates to I and the variable yk becomes activated. Then, when the
adaptive algorithm is run in “buffered mode”, with Nbuf variables:

– it begins considering only Ncur = Nbuf variables y1, . . . , yNcur , with list of candidates RI =
{b1,b2, . . . ,bNbuf

}; the other variables yNbuf
, yNbuf+1, . . . are neglected ;

– as soon as bk gets selected (i.e., yk becomes activated) for some k ∈ {1, . . . , Ncur}, the algorithms
buffers the first neglected variable bNcur+1, i.e., bNcur+1 is added to list of candidates RI , and
the number of current variables Ncur is increased by 1.

In this way, at each iteration the algorithm is forced to explore candidates with at most Nbuf buffered
variables. This approach is also discussed in [10, 52], but only for the special case Nbuf = 1.

4 The Sparse Grids Matlab Kit: operations on sparse grids

The Sparse Grids Matlab Kit implements a number of operations on sparse grids:

• evaluation of f over the collocation knots of the sparse grid;

• interpolation (cf. Remark 1) and quadrature; these operation in practice are the solution to the
problems of approximating and integrating f that were the motivation for introducing sparse grids in
the first place, cf. beginning of Sect. 2;

• computation of gradients and Hessians (by finite differences) of the sparse grid interpolant;

• conversion to Polynomial Chaos Expansions (PCE) and computation of PCE-based Sobol indices for
sensitivity analysis.

We discuss below the most noteworthy features implemented in the code, and refer the reader to the manual
[47] for a thorough discussion of each functionality with practical examples.

4.1 Evaluation recycling

Evaluation of f on the collocation knots of a sparse grid is of course conceptually straightforward – it is simply
a matter of looping through the knots of a sparse grid and calling the evaluation of f on each of them. To this
end, the Sparse Grids Matlab Kit provides a convenience wrapper function (evaluate on sparse grids),
to which f is passed as anonymous function (@-functions in Matlab). This wrapper can take as input a list
of collocation knots where the function has already been evaluated (either another sparse grid or e.g. coming

5This might be e.g. the case when f is the solution of a PDE with uncertain coefficients represented by a Karhunen–Loève
expansion.

12

(a) Number of evaluations without recycling
(solid lines) and with recycling (dashed lines)
(logarithmic scale on the vertical axis)

(b) Percentage of saved evaluation in case of
recycling with respect to the number of eval-
uations without recycling

Figure 5: Assessment of the recycling functionality: test for different values of w.

from a Monte Carlo sampling), and will detect which ones of these evaluations can be “recycled”, to reduce
the amount of calls to f . This algorithm proceeds in two different ways depending on whether the list of
knots is another sparse grid or not.

• If the list of knots is actually another sparse grid (which needs to be passed both in reduced and
non-reduced format): this fact is used to speed up the search for knots in common, by comparing
essentially the multi-indices in the two grids and then using the vectors m and n from the reduced
format (see Sect. 3) rather than comparing the actual coordinates of the knots (i.e. comparing mostly
integer numbers, which is of course faster than comparing floating point numbers). Of course, larger
savings are obtained if nested collocation knots are used when generating the two grids.

• If the list of knots is unstructured (e.g., a simple list of knots): the same algorithm used when reducing
a sparse grid is employed to compare the coordinates of the knots in the list with the knots in the
sparse grid.

Example 5 (Recycling) In Fig. 5a we compare the number of evaluations of f over a Smolyak grid with
Clenshaw–Curtis (i.e. nested) knots for N = 2, 4, 6 and increasing values of the level w, with and without
recycling from the previous grid (i.e., recycling the evaluations at level w − 1 to evaluate f over the grid at
level w). The same information is shown in Fig. 5b, where we display the percentage of evaluations saved
when making use of the recycling functionality, and indeed observe that in this case the saving is considerable
(30 − 50% of the evaluations). However, note that this amount depends on the type of multi-index set, the
level-to-knots function and the type of knots used (nested/non-nested).

4.2 Parallelization

Having wrapped evaluations of f in the dedicated function evaluate on sparse grids also allows to switch
on/off the parallel toolbox of Matlab to allocate the evaluations of f on the workers available in the Matlab
session in a way that is transparent to the user. As soon as at least Npar evaluations of f are requested,
the code takes care of changing from for loop (serial execution) to parfor loop (parallel execution): the
user controls only the value of Npar, that should be set depending on the CPU time required by a single
evaluation of f . Indeed, for very fast evaluations of f the communication time between the parallel workers
and the central Matlab instance might exceed the evaluation time. We conclude this paragraph mentioning
some technical aspects:

13

• The allocation of the evaluations of f on the workers is completely delegated to the built-in scheduler
of Matlab, and, in particular, this means that we are assuming that evaluating f requires the same
CPU time for every value of y (which is not necessarily the case when f is the result of a complex
PDE solver).

• The only part of the Sparse Grids Matlab Kit that makes explicit use of the Matlab parallel environment
is the evaluation of f over the grid knots. All other operations (sparse grid generation and reduction,
other operations on sparse grid mentioned at the beginning of this section) do not have an explicit
parallel implementation.

• If the adaptive algorithm is used, at each iteration several candidate indices are tested by adding them
to the current sparse grid. Then, the question rises whether to consider candidate indices sequentially
and then execute parfor loops only on the knots requested by each index or conversely to gather all
new knots requested by all candidates and parallelize them all in a single parfor loop. We implement
the first strategy, since a) in this way we can use the fast version of the evaluation recycling (indeed,
the union of all new knots needed is not a sparse grid, whereas by testing one index at a time we can
compare two sparse grids: the one with it and without it) and b) it improves code modularity.

4.3 Interface with external software by UM-Bridge protocol

Another advantage of having wrapped evaluations of f in evaluate on sparse grids is that in principle
external software for evaluating f can also be simply connected to the Sparse Grids Matlab Kit by e.g.
encapsulating system calls to such solver in the @-functions) taken as inputs by evaluate on sparse grids.

A particularly efficient way of doing so is through the UM-Bridge software [53], which implements a stan-
dardized HTTP protocol (available in several languages, including Matlab) to put in communication UQ
software with complex software for evaluating f(y) (e.g. when f(y) is the numerical solution of a PDE). The
fact that communication is via HTTP messages also allows interfacing the Sparse Grids Matlab Kit with
software running on remote servers. In particular, if such server allows parallel requests, activating Matlab
parfor as discussed above will automatically enable parallelism on the server. More specifically, the Sparse
Grids Matlab Kit would control e.g. M Matlab workers running on a laptop, whose only task is to trans-
parently control P processors each on the remote server, solving the model in parallel. Since the workload
of the Matlab workers is minimal (just sending an HTTP message), one can activate M ≫ 1 workers, thus
opening the door to large-scale UQ applications. Connecting UM-Bridge and the Sparse Grids Matlab Kit
takes 5 lines of code, see manual [47] for a minimal example and [54] for a naval engineering UQ application,
in which the solver runs remotely in parallel on the Google Cloud Platform.

4.4 Interpolation and quadrature

The interpolation procedure is provided by the function interpolate on sparse grid and consists in eval-
uating Eq. (10). The implementation follows closely the mathematical formulation:

• it loops through the tensor grids, creating a Lagrange interpolant of f on each tensor grid and evaluating
them at the requested knots (the standard form of Lagrange polynomials is implemented in the Sparse
Grids Matlab Kit – another possibility would be to implement their barycentric form);

• the evaluations on each tensor grid are combined with the combination technique coefficients ci.

Note that for this operation both the extended and reduced versions of the sparse grid are needed. This is
because of two reasons:

1. the information about tensor grids (knots, combination technique coefficients) is available only in the
extended format;

14

2. the values of f on the sparse grid knots (needed to evaluate the Lagrange interpolants) provided by
evaluate on sparse grid are stored in containers (vectors for scalar-valued f , matrices for vector-
valued f) whose number of elements is the number of uniqued knots in the reduced grid; in other words,
the values of f are available in compressed format. However, to compute the Lagrange interpolant on
each tensor grid one then needs to know where the value of f at each node of each tensor grid is stored
in such container: to this end, we need to use the vectors m and n provided by the reduced grid format.

Similarly, the quadrature function quadrature on sparse grid provides an implementation for the quadra-
ture formula in Eq. (11). Note however that the implemenation of quadrature on sparse grid actually
does not require looping through the tensor grids, therefore it does not need the extended and reduced format,
but only the reduced one. Indeed, the quadrature weights in the reduced format of the sparse grid already
take into account both the possible occurrences of the knots in multiple grids as well as the combination
technique coefficients, therefore the only operation that quadrature on sparse grid needs to implement is
the linear combination of the evaluations of f with the quadrature weights stored in the reduced grid format.

4.5 Polynomial Chaos Expansion and Sobol indices computation

The sparse-grid approximation of a function f is based on Lagrange interpolation polynomials, and hence
is a nodal approximation. However, sometimes it is interesting to work with modal approximations instead,
specifically with the generalized Polynomial Chaos Expansion (gPCE) [65, 17, 26, 60], i.e., an expansion of
f over multi-variate ρ-orthonormal polynomials [23, 61]:

f(y) ≈
∑
p∈Λ

dpPp(y), (18)

where Λ ⊂ NN is a multi-index set6 and Pp =
∏N

n=1 Ppn(yn) are products of N univariate ρn-orthonormal
polynomials of degree pn. Similarly to the multi-index set I on which a sparse grid is based, also the
multi-index set Λ can be prescribed either a-priori based on the regularity of f [3, 55] or adaptively [6, 9];
the coefficients dp can be computed in several ways, e.g. by quadrature [64], least squares fitting [6], or
compressed sensing approaches [29].

The strategy provided by the Sparse Grids Matlab Kit consists in computing both the multi-index set Λ
and the coefficients dp by re-expressing the sparse-grid interpolant over the ρ-orthogonal basis of choice;
in other words, the Sparse Grids Matlab Kit performs a change of basis to represent the same polynomial
from a linear combination of Lagrange polynomials (the sparse-grid interpolant) to a linear combination of
ρ-orthogonal polynomials. The algorithm that performs the conversion was introduced in [22] (see [12] for a
similar approach) and proceeds in two steps:

• each tensor interpolant Ui in the sparse-grid approximation, cf. Eq. (10), is converted into a linear
combination of N -variate ρ-orthogonal polynomials, which requires solving the following Vandermonde-
like linear system for each tensor interpolant (see [22] for details):∑

p∈NN :
p≤m(i)−1

d̃pPp(yk) = Ui(yk) ∀yk ∈ Ti;

• if the same ρ-orthogonal polynomial Pp is generated by more than one tensor interpolant, the cor-
responding coefficient dp in the final gPCE expansion (18) is the linear combination of the partial

coefficients d̃p with coefficients ci of the combination technique, see again Eq. (10).

Also in this case, we need to loop over the tensor grids, therefore both the extended and reduced format
of a sparse grid are needed in the implementation. Note that the algorithm works in such a way that Λ

6Note that here multi-indices can have entries with value zero.

15

is completely determined by the choices of the level-to-knots function and of the multi-index set of the
sparse grid from which the conversion procedure begins. The condition number of the Vandermonde-like
linear systems depends on the choice of the families of collocation knots used to build the tensor grids. In
particular, the matrix becomes orthogonal if the tensor grids are built using ρ-Gaussian collocation knots
and we want to compute the gPCE expansion over the the corresponding ρ-orthogonal polynomials (e.g.
Gauss–Legendre knots and Legendre polynomials, Gauss–Hermite knots and Hermite polynomials, etc); the
drawback of using ρ-Gaussian collocation knots is that they are typically non-nested.

The Sparse Grids Matlab Kit (function convert to modal) supports conversion to Legendre, Hermite, La-
guerre, generalized Laguerre, and probabilistic Jacobi polynomials, which are the ρ-orthogonal polynomials
for uniform, normal, exponential, gamma, and beta probability density functions (all random variables for
which the Sparse Grids Matlab Kit provides collocation knots for generation of the corresponding sparse
grids). Moreover, conversion to Chebyshev polynomials is also available, since they are a valid alternative to
Legendre polynomials for expanding functions with respect to the uniform measure, even though they are
not orthogonal with respect to it. The evaluation of the orthonormal polynomials is obtained by means of
the well-known three-term recursive formulas, see [23].

An example of a situation when having the gPCE expansion of f is helpful is the computation of the
Sobol indices for global sensitivity analysis of f [56, 2]. An efficient way to compute such Sobol indices is
indeed to perform some algebraic manipulations on the coefficients of the gPCE, cp, see [60, 22]; to this
end, the Sparse Grids Matlab Kit provides a wrapper function compute sobol indices from sparse grid
which calls convert to modal and performs such algebraic manipulations. Another reason to perform the
conversion to gPCE is to inspect the spectral content of the sparse grid approximation, to verify how much
the nodal representation is storing “redundant information”, see e.g. [18].

5 Comparison with other software

In this section, we provide a comparison of the Matlab software for sparse grids and sparse-grids-based UQ,
either natively written in Matlab or that provides an interface to Matlab, see Tab. 2. With reference to Tab.
1, we thus compare the Sparse Grids Matlab Kit with SG++, Tasmanian and Spinterp; we neglect instead
UQLab, since the latter does not provide full sparse grids functionalities (more precisely, it provides sparse
grids quadrature but not sparse grids interpolation). We focus on a comparison in terms of functionalities
rather than on computational efficiency since the typical CPU-intensive utilization scenario of this kind of
software is the construction of surrogate models for UQ (as well as PDE-based optimization) purposes, in
which case the computational cost is largely dominated by the evaluation of the function f , and only a small
fraction of cost is ascribable to the actual sparse grid functionalities.

The comparison table is divided in several “thematic” blocks. We begin by providing the essential software
information: native Matlab/interface and whether the software is currently maintained or not. We then
move to comparing the basics features of sparse grids provided by each piece of software, as discussed
in Sect. 2: the sparse grid forms implemented (combination technique / hierarhical), the supported basis
functions and knots – more specifically whether non-nested knots can be used. The third block focuses on
adaptive algorithms: the dimension-adaptive and locally-adaptive (cf. Sect. 2 and 3.1), and some connected
features, most notably the dimension buffering discussed in Sect. 3.1. Next, we move to features connected to
evaluations of f : the evaluation recycling (cf. Sect. 4.1), parallel evaluation (cf. Sect. 4.2), and possibility to
connect to external software to evaluate f (cf. Sect. 4.3). The last two blocks deal with additional features:
derivatives (i.e., gradients and Hessians) and UQ functionalities.

The main take-away point of this comparison is that the four software have actually quite little overlap:
they all provide Lagrange-based interpolation and gradient computation, and support recycling evaluation
(which in a way can be considered the minimum requirement if a piece of software wants to be any usable for
practical purposes) and dimension-adpativity. Other than this, they all come with their own sets on unique
features. In general, Tasmanian and the Sparse Grids Matlab Kit have more UQ functionalities, whereas
SG++ can be thought as a more generalistic sparse grids software, since it provides also additional modules

16

that implement functionalities for PDE solving and data mining (not discussed here). Spinterp provides an
interesting implementation of the dimension-adaptive algorithm, that a) blends the Gerstner–Griebel and
the Smolyak a-priori grid construction by setting a so-called balancing parameter that can range from 1
(100% of sparse grid knot generated by the adaptive algorithm) to 0 (Smolyak construction); b) can drop
multi-indices added to the approximation with little profit, see [32]. Tasmanian provides the largest choice
of basis functions, whereas Sparse Grids Matlab Kit has some unique functionalities for UQ: dimension
buffering for adaptivity, supports PCE and Sobol indices, as well as computation of Hessians which could
be useful e.g. in parameter identification by Bayesian approaches (see e.g. [49] for more details).

6 Conclusions

In this manuscript we have introduced the combination technique form of the sparse grid methodology
for approximating and computing integrals of high-dimensional functions, in particular for UQ purposes.
The Sparse Grids Matlab Kit is a Matlab software that can be used to this end. We have discussed the
data structure of the software and the mathematical aspects of the functionalities implemented in it, and
we have compared it with other Matlab software for sparse grids and UQ (Spinterp, Tasmanian, SG++).
Compared to alternative software, the Sparse Grids Matlab Kit is the one providing most tools for UQ, such
as dimension-buffering for adaptivity, support for PCE and Sobol indices.

Ackowledgments

Lorenzo Tamellini and Chiara Piazzola have been supported by the PRIN 2017 project 201752HKH8 “Numer-
ical Analysis for Full and Reduced Order Methods for the efficient and accurate solution of complex systems
governed by Partial Differential Equations (NA-FROM-PDEs)”. Lorenzo Tamellini has been also supported
by the Research program CN00000013 “National Centre for HPC, Big Data and Quantum Computing –
Spoke 6 - Multiscale Modelling & Engineering Applications”. Chiara Piazzola has been also supported by
the Alexander von Humboldt Foundation. The authors gratefully acknowledge several persons who con-
tributed to the development of the package either by providing implementation for some functions or by
using the software and reporting success cases, bugs and missing features. In particular: Fabio Nobile (early
version of the code and continued support throughout the development of the project), Alessandra Sordi
and Maria Luisa Viticchiè (early contributions to the code), Francesco Tesei and Diane Guignard (adaptive
sparse grids), Giovanni Porta (Sobol indices and conversion to PCE), Björn Sprungk (adaptive sparse grids
and weighted Leja knots), Francesca Bonizzoni (compatibility with Octave). Finally, we thank Miroslav
Stoyanov and Dirk Pflüger for the help in crafting Tab. 2.

17

Feature Tasmanian SG++ spinterp Sparse Grids
Matlab Kit

Native Mat-
lab/Interface

interface interface native native

Currently
maintained

yes yes no yes

Combitec /
hierarchical

both mainly
hierarchical♭

hierarchical combitec

Lagrange
basis

yes yes yes yes

Piecewise pol.
basis

yes yes yes no

Splines basis no yes no no

Trigonometric
basis

yes no no no

Non-nested
knots?

yes no no yes

Dimension-
adaptive

Webster-
Stoyanov

Gerstner–
Griebel

Gerstner–
Griebel♮

Gerstner–
Griebel

with
non-nested
knots

no no no yes

Buffering implicit† no no yes

Local
adaptivity

yes yes no no

Parallel eval.
of f

OpenMP,
CUDA/Hip

OpenMP no Matlab
Parallel
Toolbox

knot recycling yes yes yes yes

Connection to
external f

yes, through
LibEnsamble♠

no♯ no♢ yes, through
UM-Bridge

Gradients yes yes, in
optimization
module

yes (exact) yes

Hessian no no no yes

Random vars.
beyond
uniform?

yes no♯ no yes

Computation
of PCE

no no♯ no yes

Computation
of Sobol idx

no yes no yes

Table 2: Comparative table of Matlab software for sparse grids and sparse-grids-based uncertainty quantifi-
cation. Annotations:
♭ : limited support for combitec provided by the combitec module
♮ : with blending of dimension-adaptive and Smolyak construction, and dropping of multi-indices with small
profit [32]
† : once the anisotropy estimate in the Webster–Stoyanov algorithm is reliable
♠ : https://libensemble.readthedocs.io
♯ : supported through interface with Dakota [1], but not in the Matlab interface;
♢ : only through Matlab system calls

18

https://libensemble.readthedocs.io

References

[1] B. Adams, W. Bohnhoff, K. Dalbey, M. Ebeida, J. Eddy, M. Eldred, R. Hooper, P. Hough, K. Hu,
J. Jakeman, M. Khalil, K. Maupin, J. Monschke, E. Ridgway, A. Rushdi, D. Seidl, J. Stephens, L. Swiler,
and J. Winokur. Dakota, a multilevel parallel object-oriented framework for design optimization, pa-
rameter estimation, uncertainty quantification, and sensitivity analysis: Version 6.15 user’s manual.
Technical report, Sandia National Laboratiories, November 2021.

[2] G. E. B. Archer, A. Saltelli, and I. M. Sobol. Sensitivity measures, anova-like techniques and the use of
bootstrap. Journal of Statistical Computation and Simulation, 58(2):99–120, 1997.

[3] J. Bäck, F. Nobile, L. Tamellini, and R. Tempone. Stochastic spectral Galerkin and collocation methods
for PDEs with random coefficients: a numerical comparison. In Spectral and High Order Methods for
Partial Differential Equations, volume 76 of Lecture Notes in Computational Science and Engineering,
pages 43–62. Springer, 2011.

[4] M. Baudin, A. Dutfoy, B. Iooss, and A.-L. Popelin. OpenTURNS: An Industrial Software for Uncertainty
Quantification in Simulation, pages 1–38. Springer International Publishing, Cham, 2017.

[5] Blanchard, Jean-Baptiste, Damblin, Guillaume, Martinez, Jean-Marc, Arnaud, Gilles, and Gaudier,
Fabrice. The uranie platform: an open-source software for optimisation, meta-modelling and uncertainty
analysis. EPJ Nuclear Sci. Technol., 5:4, 2019.

[6] B. Blatman, G. Sudret. Adaptive sparse polynomial chaos expansion based on least angle regression.
Journal of Computational Physics, 230(6):2345 – 2367, 2011.

[7] H. J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.

[8] M. Chiappetta, C. Piazzola, M. Carraturo, L. Tamellini, A. Reali, and F. Auricchio. Sparse-grids
uncertainty quantification of part-scale additive manufacturing processes. ArXiv, (2210.06839), 2022.

[9] A. Chkifa, A. Cohen, R. Devore, and C. Schwab. Sparse adaptive Taylor approximation algorithms
for parametric and stochastic elliptic PDEs. ESAIM: Mathematical Modelling and Numerical Analysis,
47(1):253–280, 2013.

[10] A. Chkifa, A. Cohen, and C. Schwab. High-dimensional adaptive sparse polynomial interpolation and
applications to parametric PDEs. Foundations of Computational Mathematics, 14(4):601–633, 2014.

[11] I. Colombo, F. Nobile, G. Porta, A. Scotti, and L. Tamellini. Uncertainty Quantification of geochemical
and mechanical compaction in layered sedimentary basins. Computer Methods in Applied Mechanics
and Engineering, 328:122–146, 2018.

[12] P. Constantine, M. S. Eldred, and E. T. Phipps. Sparse pseudospectral approximation method. Comput.
Methods Appl. Mech. Engrg., 229/232:1–12, 2012.

[13] B. Debusschere, K. Sargsyan, C. Safta, and K. Chowdhary. Uncertainty Quantification Toolkit (UQTk).
In R. Ghanem, D. Higdon, and H. Owhadi, editors, Handbook of Uncertainty Quantification, pages
1807–1827. Springer International Publishing, Cham, 2017.

[14] B. J. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem, and O. P. Le Mâıtre. Numerical
Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes. SIAM Journal on
Scientific Computing, 26(2):698–719, 2004.

[15] A. Eftekhari and S. Scheidegger. High-dimensional dynamic stochastic model representation. SIAM
Journal on Scientific Computing, 44(3):C210–C236, 2022.

19

[16] M. Eigel, O. G. Ernst, B. Sprungk, and L. Tamellini. On the convergence of adaptive stochastic
collocation for elliptic partial differential equations with affine diffusion. SIAM Journal on Numerical
Analysis, 60(2):659–687, 2022.

[17] O. G. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann. On the convergence of generalized polynomial
chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(02):317–339, 2012.

[18] O. G. Ernst, B. Sprungk, and L. Tamellini. Convergence of Sparse Collocation for Functions of Countably
Many Gaussian Random Variables (with Application to Lognormal Elliptic Diffusion Problems). SIAM
Journal on Numerical Analysis, 56(2):877–905, 2018.

[19] J. Feinberg, V. G. Eck, and H. P. Langtangen. Multivariate polynomial chaos expansions with dependent
variables. SIAM Journal on Scientific Computing, 40:199––223, 2018.

[20] J. Feinberg and H. P. Langtangen. Chaospy: an open source tool for designing methods of uncertainty
quantification. Journal of Computational Science, 11:46–57, 2015.

[21] M. Feischl and A. Scaglioni. Convergence of adaptive stochastic collocation with finite elements. Com-
puters & Mathematics with Applications, 98:139–156, 2021.

[22] L. Formaggia, A. Guadagnini, I. Imperiali, V. Lever, G. Porta, M. Riva, A. Scotti, and L. Tamellini.
Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction
model. Computational Geosciences, 17(1):25–42, 2013.

[23] W. Gautschi. Orthogonal Polynomials: Computation and Approximation. Oxford University Press,
Oxford, 2004.

[24] A. Genz and B. D. Keister. Fully symmetric interpolatory rules for multiple integrals over infinite
regions with Gaussian weight. J. Comput. Appl. Math., 71(2):299–309, 1996.

[25] T. Gerstner and M. Griebel. Dimension-adaptive tensor-product quadrature. Computing, 71(1):65–87,
2003.

[26] R. Ghanem, D. Higdon, and H. Owhadi. Handbook of Uncertainty Quantification. Handbook of Uncer-
tainty Quantification. Springer International Publishing, 2016.

[27] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution of sparse grid
problems. In P. de Groen and R. Beauwens, editors, Iterative Methods in Linear Algebra, pages 263–
281. IMACS, Elsevier, North Holland, 1992.

[28] D. Guignard and F. Nobile. A posteriori error estimation for the stochastic collocation finite element
method. SIAM Journal on Numerical Analysis, 56(5):3121–3143, 2018.

[29] J. Hampton and A. Doostan. Compressive sampling of polynomial chaos expansions: Convergence
analysis and sampling strategies. Journal of Computational Physics, 280:363 – 386, 2015.

[30] J. D. Jakeman. Pyapprox: Enabling efficient model analysis. OSTI Technical Report, (1879614), 8 2022.

[31] A. Klimke. Uncertainty modeling using fuzzy arithmetic and sparse grids. PhD thesis, Universität
Stuttgart, Shaker Verlag, Aachen, 2006.

[32] A. Klimke. Sparse grid interpolation toolbox user’s guide v. 5.1. Technical Report 2007/17, Universität
Suttgart, 2008.

[33] A. Klimke and B. Wohlmuth. Algorithm 847: Spinterp: Piecewise multilinear hierarchical sparse grid
interpolation in matlab. ACM Trans. Math. Softw., 31(4):561–579, dec 2005.

20

[34] X. Ma and N. Zabaras. An adaptive high-dimensional stochastic model representation technique for the
solution of stochastic partial differential equations. Journal of Computational Physics, 229(10):3884–
3915, 2010.

[35] S. Marelli and B. Sudret. UQLab: A Framework for Uncertainty Quantification in Matlab. In M. Beer,
S.-K. Au, and J. W. Hall, editors, Vulnerability, Uncertainty, and Risk, pages 2554–2563. American
Society of Civil Engineers, 2014.

[36] J. Mart́ınez-Frutos and F. Periago. Optimal Control of PDEs under Uncertainty: An introduction with
application to optimal shape design of structures. Springer International Publishing, 2018.

[37] Z. Morrow and M. Stoyanov. A method for dimensionally adaptive sparse trigonometric interpolation
of periodic functions. SIAM Journal on Scientific Computing, 42(4):A2436–A2460, 2020.

[38] A. Narayan and J. D. Jakeman. Adaptive Leja Sparse Grid Constructions for Stochastic Collocation
and High-Dimensional Approximation. SIAM Journal on Scientific Computing, 36(6):A2952–A2983,
2014.

[39] A. Narayan, Z. Liu, J. A. Bergquist, C. Charlebois, S. Rampersad, L. Rupp, D. Brooks, D. White,
J. Tate, and R. S. MacLeod. UncertainSCI: Uncertainty quantification for computational models in
biomedicine and bioengineering. Computers in Biology and Medicine, 152:106407, 2023.

[40] R. B. Nelsen. An introduction to copulas. Springer Series in Statistics. Springer, New York, second
edition, 2006.

[41] F. Nobile, L. Tamellini, and R. Tempone. Convergence of quasi-optimal sparse-grid approximation
of Hilbert-space-valued functions: application to random elliptic PDEs. Numerische Mathematik,
134(2):343–388, 2016.

[42] F. Nobile, L. Tamellini, F. Tesei, and R. Tempone. An adaptive sparse grid algorithm for elliptic
PDEs with lognormal diffusion coefficient. In J. Garcke and D. Pflüger, editors, Sparse Grids and
Applications – Stuttgart 2014, volume 109 of Lecture Notes in Computational Science and Engineering,
pages 191–220. Springer International Publishing Switzerland, 2016.

[43] M. Obersteiner and H.-J. Bungartz. A generalized spatially adaptive sparse grid combination technique
with dimension-wise refinement. SIAM Journal on Scientific Computing, 43(4):A2381–A2403, 2021.

[44] M. Parno, A. Davis, L. Seelinger, and Y. Marzouk. Mit uncertainty quantification (MUQ) library, 2014.

[45] D. Pflüger, B. Peherstorfer, and H.-J. Bungartz. Spatially adaptive sparse grids for high-dimensional
data-driven problems. Journal of Complexity, 26(5):508–522, 2010. SI: HDA 2009.

[46] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr. Hut, 2010.

[47] C. Piazzola and L. Tamellini. The sparse grids matlab kit user manual - v. 23-5 robert. https:

//sites.google.com/view/sparse-grids-kit, 2023.

[48] C. Piazzola, L. Tamellini, R. Pellegrini, R. Broglia, A. Serani, and M. Diez. Comparing Multi-Index
Stochastic Collocation and Multi-Fidelity Stochastic Radial Basis Functions for Forward Uncertainty
Quantification of Ship Resistance. Engineering with Computers, 2022.

[49] C. Piazzola, L. Tamellini, and R. Tempone. A note on tools for prediction under uncertainty and
identifiability of SIR-like dynamical systems for epidemiology. Mathematical Biosciences, 332:108514,
2021.

[50] A. Quarteroni, R. Sacco, and F. Saleri. Numerical mathematics, volume 37 of Texts in Applied Mathe-
matics. Springer-Verlag, Berlin, second edition, 2007.

21

https://sites.google.com/view/sparse-grids-kit
https://sites.google.com/view/sparse-grids-kit

[51] M. F. Rehme, F. Franzelin, and D. Pflüger. B-splines on sparse grids for surrogates in uncertainty
quantification. Reliability Engineering & System Safety, 209:107430, 2021.

[52] C. Schillings and C. Schwab. Sparse, adaptive Smolyak quadratures for Bayesian inverse problems.
Inverse Problems, 29(6), 2013.

[53] L. Seelinger, V. Cheng-Seelinger, A. Davis, M. Parno, and A. Reinarz. UM-Bridge: Uncertainty quan-
tification and modeling bridge. Journal of Open Source Software, 8(83):4748, 2023.

[54] L. Seelinger, A. Reinarz, J. Benezech, M. B. Lykkegaard, L. Tamellini, and R. Scheichl. Lowering the
Entry Bar to HPC-Scale Uncertainty Quantification. ArXiv, (2304.14087), 2023.

[55] J. Shen and L.-L. Wang. Sparse spectral approximations of high-dimensional problems based on hyper-
bolic cross. SIAM J. Numer. Anal., 48(3):1087–1109, 2010.

[56] I. M. Sobol’. Sensitivity estimates for nonlinear mathematical models. Math. Modeling Comput. Exper-
iment, 1(4):407–414 (1995), 1993.

[57] M. Stoyanov. User manual: Tasmanian sparse grids. Technical Report ORNL/TM-2015/596, Oak Ridge
National Laboratory, One Bethel Valley Road, Oak Ridge, TN, 2015.

[58] M. Stoyanov. Adaptive sparse grid construction in a context of local anisotropy and multiple hierarchical
parents. In Sparse Grids and Applications-Miami 2016, pages 175–199. Springer, 2018.

[59] M. K. Stoyanov and C. G. Webster. A dynamically adaptive sparse grids method for quasi-optimal
interpolation of multidimensional functions. Computers & Mathematics with Applications, 71(11):2449–
2465, 2016.

[60] B. Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering and
System Safety, 93(7):964 – 979, 2008.

[61] G. Szegö. Orthogonal polynomials. Colloquium Publications - American Mathematical Society. American
Mathematical Society, 1939.

[62] L. N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev., 50(1):67–87, 2008.

[63] G. Wasilkowski and H. Wozniakowski. Explicit cost bounds of algorithms for multivariate tensor product
problems. Journal of Complexity, 11(1):1–56, 1995.

[64] D. Xiu. Efficient collocational approach for parametric uncertainty analysis. Communications in Com-
putational Physics, 2(2):293–309, 2007.

[65] D. Xiu and G. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential equations.
SIAM J. Sci. Comput., 24(2):619–644, 2002.

22

	Introduction
	Mathematical basics of sparse grids
	The Sparse Grids Matlab Kit: Sparse grid data structure
	Adaptive sparse grid generation

	The Sparse Grids Matlab Kit: operations on sparse grids
	Evaluation recycling
	Parallelization
	Interface with external software by UM-Bridge protocol
	Interpolation and quadrature
	Polynomial Chaos Expansion and Sobol indices computation

	Comparison with other software
	Conclusions

