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Abstract

Covariance estimation for high dimensional signals is a classically difficult problem in statistical

signal analysis and machine learning. In this paper, we propose a maximum likelihood (ML) approach

to covariance estimation, which employs a novel non-linearsparsity constraint. More specifically, the

covariance is constrained to have an eigen decomposition which can be represented as a sparse matrix

transform (SMT).

The SMT is formed by a product of pairwise coordinate rotations known as Givens rotations.

Using this framework, the covariance can be efficiently estimated using greedy optimization of the

log-likelihood function, and the number of Givens rotations can be efficiently computed using a cross-

validation procedure. The resulting estimator is generally positive definite and well-conditioned, even

when the sample size is limited. Experiments on a combination of simulated data, standard hyperspectral

data, and face image sets show that the SMT-based covarianceestimates are consistently more accurate

than both traditional shrinkage estimates and recently proposed graphical lasso estimates for a variety of

different classes and sample sizes.

An important property of the new covariance estimate is thatit naturally yields a fast implementation

of the estimated eigen-transformation using the SMT representation. In fact, the SMT can be viewed as

a generalization of the classical fast Fourier transform (FFT) in that it uses “butterflies” to represent an

orthonormal transform. However, unlike the FFT, the SMT canbe used for fast eigen-signal analysis of

general non-stationary signals.
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The Sparse Matrix Transform for Covariance

Estimation and Analysis of High Dimensional

Signals

I. I NTRODUCTION

As the capacity to measure and collect data increases, high dimensional signals and systems have

become much more prevalent. Medical imaging, remote sensing, internet communications, and financial

data analysis are just a few examples of areas in which the dimensionality of signals is growing

explosively, and leading to an unprecedented quantity of information and potential knowledge.

However, this growth also presents new challenges in the modeling and analysis of high dimensional

signals (or data). In practice, the dimensionality of signals (p) often grows much faster than the number

of available observations (n). The resulting “smalln, large p” scenario [1] tends to break the basic

assumptions of classical statistics and can cause conventional estimators to behave poorly. In fact, Donoho

makes the very reasonable claim thatp≫ n is in fact the more generic case in learning and recognition

problems [2]; so, this “curse of dimensionality” [3], [4] represents a very fundamental challenge for the

future.

A closely related problem to the curse of dimensionality is the super-linear growth in computation that

can occur with classical estimators asp grows large. For example, classical methods such as singular

value decomposition (SVD) and eigen-analysis depend on the use of densep × p transformations that

can quickly become intractable to apply (or estimate) as thedimension grows. Therefore, the modeling

and analysis of high dimensional signals pose a fundamentalchallenge not only from the perspective of

inference, but also from the perspective of computation.

A fundamental step in the analysis of high dimensional signals is the estimation of the signal’s

covariance. In fact, an accurate estimate of signal covariance is often a key step in detection, classification,

and modeling of high dimensional signals, such as images [5], [6]. However, covariance estimation for

high dimensional signals is a classically difficult problem because the number of coefficients in the

covariance grows as the dimension squared [7], [8]. In a typical application, one may measuren versions

of a p dimensional vector; so ifn < p, then the sample covariance matrix will be singular withp − n

eigenvalues equal to zero.
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Over the years, a variety of techniques have been proposed for computing a nonsingular estimate

of the covariance. For example, shrinkage and regularized covariance estimators are examples of such

techniques. Shrinkage estimators are a widely used class of estimators which regularize the covariance

matrix by shrinking it toward some positive definite target structures, such as the identity matrix or the

diagonal of the sample covariance [9], [10], [11], [12], [13].

More recently, a number of methods have been proposed for regularizing the covariance estimate

by constraining the estimate of the covariance or its inverse to be sparse [14], [15]. For example, the

graphical lasso method enforces sparsity by imposing anL1 norm constraint on the inverse covariance

[15]. Theoretical justification for the lasso-type penalty onthe inverse covariance matrix is provided in

[16]. Banding or thresholding have also been used to obtain asparse estimate of the covariance [14],

[17]. Some other methods applyL1 sparsity constraints to the eigen-transform itself, and are collectively

referred to as sparse principal component analysis (SPCA) [18], [19], [20], [21].

In this paper, we propose a new approach to covariance estimation, which is based on constrained

maximum likelihood (ML) estimation of the covariance from sample vectors [22], [23]. In particular, the

covariance is constrained to be formed by an eigen-transformation that can be represented by a sparse

matrix transform (SMT) [24]; and we define the SMT to be an orthonormal transformation formed by

a product of pairwise coordinate rotations known as Givens rotations [25]. Using this framework, the

covariance can be efficiently estimated using greedy maximization of the log likelihood function, and the

number of Givens rotations can be efficiently computed using across-validation procedure. The estimator

obtained using this method is generally positive definite andwell-conditioned even when the sample size

is limited.

Due to its flexible structure and data-dependent design, the SMT can be used to model behaviors of

various kinds of natural signals. We will show that the SMT canbe viewed as a generalization of both the

classical fast Fourier transform (FFT) [26] and the orthonormal wavelet transforms. Since these frequency

transforms are commonly used to decorrelate and therefore model stationary random processes, the SMT

inherits this valuable property. We will also demonstrate that autoregressive (AR) and moving average

(MA) random processes can be accurately modeled by a low-order SMT. However, the SMT is more

expressive than conventional frequency transforms because it can accurately model high dimensional

natural signals that are not stationary, such as hyperspectral data measurements. In addition, it is shown

that the SMT covariance estimate is invariant to permutations of the data coordinates; a property that is

not shared by models based on the FFT or wavelet transforms [16]. Nonetheless, the SMT model does

impose a substantial sparsity constraint through a restriction in the number of Givens rotations. When
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this sparsity constraint holds for real data, then the SMT model can substantially improve the accuracy

of covariance estimates; but conversely if the eigenspace of the random process has no structure, then

the SMT model provides no advantage [27].

The fast transformation algorithms resulting from SMT covariance estimation are perhaps just as impor-

tant as the improved statistical power of the method. Conventional PCA analysis requires multiplication

by a p × p dense eigen-transformation to de-correlate and model signals. This requiresp2 operations,

which is typically not practical for high dimensional signals such as images. Alternatively, the eigen-

transformation resulting from the proposed method is constrained to be an SMT, so application of the

de-correlating transform is typically linear inp.1

In order to validate our model, we perform experiments usingsimulated data, standard hyperspectral

image data, and face image data sets. We compare against bothtraditional shrinkage estimates and

recently proposed graphical lasso estimates. Our experiments show that, for these examples, the SMT-

based covariance estimates are consistently more accuratefor a variety of different classes and sample

sizes. Moreover, the method seems to work particularly wellfor estimating small eigenvalues and their

associated eigenvectors; and the cross-validation procedure used to estimate the SMT model order can

be implemented with a modest increase in computation.

II. COVARIANCE ESTIMATION FOR HIGH DIMENSIONAL SIGNALS

In the general case, we observe a set ofn vectors,y1, y2, · · · , yn, where each vector,yi, is p di-

mensional. Without loss of generality, we assumeyi has zero mean. We can represent this data as the

following p× n matrix

Y = [y1, y2, · · · , yn] . (1)

If the vectorsyi are identically distributed, then the sample covariance isgiven by

S =
1

n
Y Y t , (2)

andS is an unbiased estimate of the true covariance matrix withR = E
[

yiy
t
i

]

= E[S].

While S is an unbiased estimate ofR, it is also singular whenn < p. This is a serious deficiency

since as the dimensionp grows, the number of vectors needed to estimateR also grows. In practical

applications,n may be much smaller thanp which means that most of the eigenvalues ofR are erroneously

estimated as zero.

1In our experiments, the SMT requires 1 to 5 rotation per coordinate, depending on the estimated order of the model.
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A variety of methods have been proposed to regularize the estimate of R so that it is not singular.

Shrinkage estimators are a widely used class of estimators which regularize the covariance matrix by

shrinking it toward some target structures [9], [10], [11].Shrinkage estimators generally have the form

R̂ = αD + (1 − α)S, whereD is some positive definite matrix. Some popular choices forD are the

identity matrix (or its scaled version) [10], [11] and the diagonal entries ofS, diag(S) [10], [13]. In both

cases, the shrinkage intensityα can be estimated using cross-validation or boot-strap methods.

Recently, a number of methods have been proposed for regularizing the estimate by making either the

covariance or its inverse sparse [14], [15]. For example, the graphical lasso method enforces sparsity by

imposing anL1 norm constraint on the inverse covariance [15]. Banding or thresholding can also be used

to obtain a sparse estimate of the covariance [14], [17].

A. Maximum Likelihood Covariance Estimation

Our approach will be to compute a constrained maximum likelihood (ML) estimate of the covariance

R, under the modeling assumption that eigenvectors ofR may be represented as a sparse matrix transform

(SMT) [22], [24]. To do this, we first decomposeR as

R = EΛEt , (3)

whereE is the orthonormal matrix of eigenvectors (also referred toas the eigen-transformation) andΛ is

the diagonal matrix of eigenvalues. Then we will estimate thecovariance by maximizing the likelihood

of the dataY subject to the constraint thatE is an SMT of orderK (to be defined below in Section II-B).

By varying the order,K, of the SMT, we may then reduce or increase the regularizing constraint on the

covariance.

If we assume that the columns ofY are independent and identically distributed Gaussian random

vectors with mean zero and positive-definite covarianceR, then the likelihood ofY given R is given by

PR(Y ) =
1

(2π)
np

2

|R|−
n

2 exp

{

−
1

2
tr{Y tR−1Y }

}

. (4)

The log-likelihood ofY is then given by (see Appendix A)

log P(E,Λ)(Y ) = −
n

2
tr{diag(EtSE)Λ−1} −

n

2
log |Λ| −

np

2
log(2π) . (5)

Jointly maximizing the likelihood with respect toE and Λ then results in the ML estimates given by
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(see Appendix A)

Ê = arg min
E∈Ω

{∣

∣diag(EtSE)
∣

∣

}

(6)

Λ̂ = diag(ÊtSÊ) , (7)

whereΩ is the set of allowed orthonormal transforms, and| · | denotes the determinant of a matrix. Then

R̂ = ÊΛ̂Êt is the ML estimate of the covariance matrixR. So we may compute the ML estimate by

first solving the constrained optimization of (6), and then computing the eigenvalue estimates from (7).

An interesting special case occurs whenS has full rank andΩ is the set of all orthonormal transforms.

In this case, (6) and (7) are solved by selectingE andΛ as the eigenvector matrix and eigenvalue matrix

of S, respectively (see Appendix B). So this leads to the well known result that whenS is non-singular,

then the ML estimate of the covariance is given by the sample covariance, i.e.R̂ = S. However, when

S is singular andΩ is the set of all orthonormal transforms, then the log-likelihood is unbounded, with

a subset of the estimated eigenvalues tending toward zero.

B. ML Estimation of Eigen-Transformation Using the SMT Model

The ML estimate ofE can be improved if the feasible set of eigen-transformations, Ω, can be

constrained to a subset of all possible orthonormal transforms. By constrainingΩ, we effectively regularize

the ML estimate by imposing a model. However, as with any model-based approach, the key is to select

a feasible set,Ω, which is as small as possible while still accurately modeling the behavior of real data.

Our approach is to selectΩ to be the set of all orthonormal transforms that can be represented as an

SMT of orderK [22], [24]. More specifically, a matrixE is an SMT of orderK if it can be written as

a product ofK sparse orthornormal matrices, so that

E =

K
∏

k=1

Ek = E1E2 · · ·EK , (8)

where each sparse matrix,Ek, is a Givens rotation operating on a pair of coordinate indices(ik, jk) [25].

More specifically, each Givens rotationEk is an orthonormal rotation in the plane of the two coordinates,

ik and jk, with the form

Ek = I + Θ(ik, jk, θk) , (9)
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Fig. 1. (a) 8-point FFT. (b) An example of an SMT implementation ofỹ = Ey. The SMT can be viewed as a generalization
of both the FFT and the orthonormal wavelet transform. Notice that, unlikethe FFT and the wavelet transform, the SMT’s
“butterflies” are not constrained in their ordering or rotation angles.

whereΘ(ik, jk, θk) is defined as

[Θ]ij =































cos(θk)− 1 if i = j = ik or i = j = jk

sin(θk) if i = ik and j = jk

− sin(θk) if i = jk and j = ik

0 otherwise

. (10)

Figure 1(b) shows the flow diagram for the application of an SMT toa data vectory. Notice that each

2D rotation,Ek, plays a role analogous to a “butterfly” used in a traditional fast Fourier transform (FFT)

[26] in Fig. 1(a). However, unlike an FFT, the organization of the butterflies in an SMT is unstructured;

so each butterfly can have an arbitrary rotation angleθk and can operate on pairs of coordinates in any

order. Both the arrangement of butterflies and their rotations angles in the SMT can be adjusted for the

specific characteristics of the data. This more general structure allows the SMT to implement a larger

set of orthonormal transformations, and can be viewed as a generalization of the FFT.

In fact, the SMT can also be used to represent any orthonormal wavelet transform because, using the

theory of paraunitary wavelets, orthonormal wavelets can be represented as a product of Givens rotations

and delays [28], [29]. The SMT also includes the recently proposed class of treelets [30], which uses

less thanp Givens rotations to form a hierarchical orthonormal transform that is reminiscent of wavelets

in their structure. More generally, whenK =
(

p
2

)

, the SMT can be used to exactly represent anyp× p

orthonormal transformation (see Appendix C). Therefore, byvarying the number of Givens rotationsK,

we can increase or decrease the set of orthonormal transforms that the SMT can represent.
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Using the SMT model constraint, the ML estimate ofE is given by

Ê = arg min
E=

Q

K

k=1
Ek

∣

∣diag(EtSE)
∣

∣ , (11)

whereK is the SMT model order. Unfortunately, evaluating the constrained ML estimate of (11) requires

the solution of an optimization problem with a non-convex constraint. So evaluation of the globally

optimal solutions is difficult. Therefore, our approach will use greedy minimization to compute a locally

optimal solution to (11). The greedy minimization approach works by selecting each new butterflyEk

to minimize the cost, while fixing the previous butterflies,El for l < k.

This greedy optimization algorithm can be implemented with the following simple recursive procedure.

We start by settingS1 = S to be the sample covariance, and initializek = 1. Then we apply the following

two steps fork = 1 to K

Êk = arg min
Ek

∣

∣diag
(

Et
kSkEk

)
∣

∣ (12)

Sk+1 = Êt
kSkÊk . (13)

The resulting values of̂Ek are the butterflies of the SMT.

The problem remains of how to compute the solution to (12). In fact, this can be done easily by first

determining the two coordinates,ik and jk, that are most correlated,

(ik, jk)← arg min
(i,j)

(

1−
[Sk]

2
ij

[Sk]ii[Sk]jj

)

. (14)

It can be shown that this coordinate pair,(ik, jk), can most reduce the cost in (12) among all possible

coordinate pairs (see Appendix D). Onceik and jk are determined, we apply the Givens rotationÊk to

minimize the cost in (12), which is given by (see Appendix D)

Êk = I + Θ(ik, jk, θk) , (15)

where2

θk =
1

2
atan(−2[Sk]ikjk

, [Sk]ikik
− [Sk]jkjk

) . (16)

2Here we useatan(y, x) = atan(y/x) wheny andx are positive. By using the four quadrant inverse tangent function, we
intentionally put the decorrelated components in a descending order alongthe diagonal.
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By iterating (12) and (13)K times, we obtain the constrained ML estimate ofE andΛ given by

Ê =

K
∏

k=1

Êk (17)

Λ̂ = diag (SK+1) . (18)

Notice that the resulting SMT covariance estimateR̂ = ÊΛ̂Êt is always non-negative definite.3 In fact,

as we find in various numerical experiments that this greedy algorithm consistently results in a positive

definite covariance estimate.

C. Model Order Estimation Using Cross-Validation

The model order,K, can be efficiently determined using a simple cross-validation procedure [1]. Let

Y (1) denote ap× n1 matrix containing a randomly selected subset of column vectors from Y . And let

Ȳ (1) be ap × (n − n1) matrix containing the complimentary set of data vectors that will be used for

training. From these data sets, we form the two sample covariance matrices,S(1) = 1
n1

Y (1)
[

Y (1)
]t

and

S̄(1) = 1
n−n1

Ȳ (1)
[

Ȳ (1)
]t

. Then the log-likelihood ofY (1) given the order-k SMT covariance estimate

can be computed by iterating the following steps starting with k = 1,

Êk = arg min
Ek

∣

∣

∣
diag

(

Et
kS̄

(1)
k Ek

)∣

∣

∣
(19)

Λ̂k = diag
(

Êt
kS̄

(1)
k Êk

)

(20)

S̄
(1)
k+1 = Êt

kS̄
(1)
k Êk (21)

S
(1)
k+1 = Êt

kS
(1)
k Êk (22)

L(k|1) = −
1

2
tr
{

diag(Sk+1)Λ̂
−1
k

}

−
1

2
log
∣

∣

∣
Λ̂k

∣

∣

∣
−

p

2
log(2π) , (23)

whereL(k|1) is the cross-validated log-likelihood of the model with orderk using the1st data subset. The

process is then repeated usingt non-intersecting subsets of the data to yield the average cross-validated

log-likelihood of

L(k) =
1

t

t
∑

i=1

log L(k|i) . (24)

From this function, the model order can be estimated by findingK∗ = arg maxk L(k) where the search

can be stopped whenL(k) begins to decrease. OnceK∗ is determined, the SMT covariance estimate is

re-computed using all the data and the estimated model order.

3We know Λ̂ = diag
“

ÊtSÊ
”

= 1
n
diag

“

(ÊtY )(ÊtY )t
”

, thusΛ̂ii ≥ 0.
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Notice that the log-likelihood of (23) is evaluated on-the-fly as the greedy SMT design algorithm

proceeds. This iterative process dramatically reduces the computation by eliminating the need to compute

the cross-validated log-likelihoodK times.4 However, since theL(k|i) must be computed fort values of

i, the implementation of this cross-validation procedure does increase the computation of SMT estimation

by a factor oft, which in our examples is typically a small integer value such as 3.

D. SMT Covariance Estimation with Minimum Eigenvalue Constraint

In some circumstances, it may be known that the eigenvalues of the covariance are bounded below by

some minimum value. For example, this may occur when fixed additive noise or quantization error lower

bounds the eigenvalues of the covariance. The SMT covariance estimate can be extended to satisfy this

constraint. To do this, we use a regularized version of the sample covariance given byS + σI, where

σ > 0 is the required minimum value of the eigenvalue estimate. Inthis case, the maximum likelihood

estimates of the eigenvectors and eigenvalues are given by

Ê = arg min
E∈Ω

{∣

∣diag
(

Et(S + σI)E
)∣

∣

}

(25)

= arg min
E∈Ω

{∣

∣diag
(

EtSE
)

+ σI
∣

∣

}

Λ̂ = diag
(

ÊtSE
)

+ σI . (26)

From the form of (26), it can be seen that all the resulting SMT eigenvalue estimates are then constrained

to be larger thanσ. Also, notice that ifS has full rank andΩ is the set of all orthonormal transforms,

then (25) can still be solved by lettingE be the eigenvector matrix ofS (see Appendix B). Under the

constraint that eigenvector matrixE is an SMT of orderK, then the greedy solution of (25) results in

the following selection criterion at each stepk

(ik, jk)← arg min
(i,j)

(

1−
[Sk]

2
ij

([Sk]ii + σ) · ([Sk]jj + σ)

)

. (27)

The selection criterion of (27) can also be used to stabilize the selection when diagonal entries ofS go to

zero. This can happen if either columns ofY are identically zero, or pairs of columns ofY are linearly

dependent. However, for all numerical experiments in this paper we setσ = 0.

4We will see thatK tends to grow in proportion top, so a reduction in computation by a factor ofK can be quite dramatic.
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III. SMT DESIGN ALGORITHMS AND COMPUTATIONAL COMPLEXITY

Figure 2(a) shows a baseline algorithm to compute the SMT covariance estimate, which is derived

directly from (12) – (18) in Section II. In this algorithm, each of the K iterations of the loop (lines

2–7) computes one Givens rotation in the plane spanned by thecoordinates(ik, jk) with maximum

correlation coefficient. In the end, the estimates forΛ andE are obtained (lines 8 and 9, respectively).

The computation of each iteration of the greedy algorithm tends to be dominated by the time required

to find the best coordinate pair,(ik, jk). A naive search for the best coordinate pair requiresO(p2)

time. Therefore, design of the entire order-K SMT using the baseline algorithm requiresO(Kp2) time.

Moreover, the baseline algorithm also requires the explicit storage of thep× p sample covariance matrix

S, therefore resulting in a memory requirement ofO(p2).

Fortunately, it is possible to reduce the computational complexity and memory requirements of the

SMT design algorithm, as we discuss below.5

A. Fast Computation of the SMT Design

The search for the most correlated coordinate pair can be mademuch more efficient, as shown in

Algorithm 2 of Fig. 2(b). The algorithm can be summarized as follows: (i) An initial scan over all the

elements of each row of the matrixS is performed, and for each rowi we store the maximum correlation

coefficientmaxCi and the indexj associated with withmaxCi; (ii) At each of theK steps of the SMT

design, the vectormaxC with only p elements is scanned instead of the whole matrixS; (iii) only the

ik-th andjk-th rows and columns ofS are modified in line11, thus requiring a corresponding fraction

of the elements inmaxC to be updated.

In the worst-case, every row may point toik or jk as the row for which it is most correlated. In

this case, the elements of all the rows must be re-scanned andtheir entries in the vectormaxC must be

updated. In this worst-case, Algorithm 2 in Fig. 2(b) runs inO(Kp2) time. However, the empirical results

shown in Fig. 3 suggest that the worst-case scenario does not happen in practice, e.g. for the datasets

investigated in this paper. Notice that by keeping the maximum of each row in the vectormaxC, the

SMT design implementation now runs in time close to linear inp (asp grows large) while the baseline

algorithm runs inO(p2) time.

In principle, the low computational complexity observed inpractice allows this algorithm to be deployed

in cases when the data dimension,p, is large. However, this algorithm still requires the storage of the

5We emphasize that regardless of how the SMT is designed, the application of the SMT to data decorrelation is alwaysO(K),
and is therefore typically very fast.
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TABLE I
COMPARISON OF THESMT DESIGN ALGORITHMS. HERE, p IS DIMENSION OF THE DATA VECTORS, n IS NUMBER OF THE

SAMPLES, AND K IS NUMBER OFGIVENS ROTATIONS IN THESMT ESTIMATOR.

algorithm storage initialization computation/step total computation(K steps)
required empirical worst-case empirical worst-case

Algorithm 1
O(p2) O(np2) O(p2) O(p2) O(Kp2) O(Kp2)

(baseline)
Algorithm 2 O(p2) O(np2) O(p) O(p2) O(Kp) O(Kp2)
Algorithm 3 O(np) O(np2) O(np) O(np2) O(nKp) O(nKp2)

p × p sample covariance matrixS in memory. This is impractical whenp is large, a problem that we

address with an improvement on Algorithm 2 as described next.

B. Direct SMT Design Based on Data SamplesY Instead ofS

The storage of the sample covariance matrixS can be prohibitive whenp is large, limiting the

application of Algorithm 2 in Fig. 2(b). For instance, if one wishes to apply the SMT to the eigen-

face problem using faces of100 × 100 pixels, the associated sample covarianceS requires a memory

storage of762MB6, imposing a limitation on the hardware that could be used to compute such a task.

In order to overcome this problem, Algorithm 3 in Fig. 2(c) presents an approach which is conceptually

equivalent to Algorithm 2 in Fig. 2(b), but instead operates directly on thep× n data matrix,Y , rather

than storing the sample covarianceS. The primary difference in terms of complexity is that Algorithm 3

requires that the values ofSii, Sij and Sjj to be computed on-the-fly, each requiring anO(n) scalar

product between two rows ofY .

Table I summarizes all the computational complexities and the storage requirements of the three

algorithms for SMT design. Notice that the empirical complexity is reduced fromO(Kp2) in Algorithm

1 (baseline) toO(Kp) in Algorithm 2, and the amount of memory required is reduced from O(p2) in

Algorithm 2 to O(np) in Algorithm 3.

IV. PROPERTIES OFSMT COVARIANCE ESTIMATOR AND ITS EXTENSIONS

A. Properties of SMT Covariance Estimator

Let R̂ = ÊΛ̂Êt be the SMT covariance estimator of thep dimensional data vectorsY as described in

Section II. The SMT covariance estimator has the following properties.

6Assuming each element is of double float precision, requiring 8 bytes.

July 9, 2010 DRAFT



SUBMITTED TO IEEE TRANSCATIONS ON IMAGE PROCESSING 12

1: S ← Y Y t/n
2: for 1 ≤ k ≤ K do

3: (ik, jk)← arg max
(i,j):i<j



S2

ij

Sii·Sjj

ff

4: θk ←
1
2
atan(−2Sik,jk

, Sikik
− Sjkjk

)
5: Ek ← I + Θ(ik, jk, θk)
6: S ← Et

k
SEk

7: end for
8: Λ← diag (S)
9: E ←

QK
k=1 Ek

(a)

1: S ← Y Y t/n
2: for 1 ≤ i ≤ p do

3: MaxJ(i)← arg max
j:i<j



S2

ij

Sii·Sjj

ff

4: MaxC(i)← max
j:i<j



S2

ij

Sii·Sjj

ff

5: end for
6: for 1 ≤ k ≤ K do
7: ik ← arg max

i
MaxC(i)

8: jk ←MaxJ(ik)
9: θk ←

1
2
atan(−2Sik,jk

, Sikik
− Sjkjk

)
10: Ek ← I + Θ(ik, jk, θk)
11: S ← Et

k
SEk

12: for 1 ≤ i ≤ p do
13: if (i = ik or i = jk) or (MaxJ(i) = ik or MaxJ(i) = jk) then

14: MaxJ(i)← arg max
j:i<j



S2

ij

Sii·Sjj

ff

15: MaxC(i)← max
j:i<j



S2

ij

Sii·Sjj

ff

16: end if
17: end for
18: end for
19: Λ← diag (S)
20: E ←

QK
k=1 Ek

(b)

1: for 1 ≤ i ≤ p do
2: MaxJ(i)← arg max

j:j<i

n

|Y (i,:)tY (j,:)|
‖Y (i,:)‖‖Y (j,:)‖

o

3: MaxC(i)← max
j:i<j

n

|Y (i,:)tY (j,:)|
‖Y (i,:)‖‖Y (j,:)‖

o

4: end for
5: for 1 ≤ k ≤ K do
6: ik ← arg max

i
MaxC(i)

7: jk ←MaxJ(ik)
8: θk ←

1
2
atan(−2Sik,jk

, Sikik
− Sjkjk

)
9: Ek ← I + Θ(ik, jk, θk)

10: Y ← Et
k
Y

11: for 1 ≤ i ≤ p do
12: if (i = ik or i = jk) or (MaxJ(i) = ik or MaxJ(i) = jk) then

13: MaxJ(i)← arg max
j:i<j

n

|Y (i,:)tY (j,:)|
‖Y (i,:)‖‖Y (j,:)‖

o

14: MaxC(i)← max
j:i<j

n

|Y (i,:)tY (j,:)|
‖Y (i,:)‖‖Y (j,:)‖

o

15: end if
16: end for
17: end for
18: Λ← diag(Y tY )/n
19: E ←

QK
k=1 Ek

(c)

Fig. 2. Pseudo-code of the greedy algorithms for the SMT covariance estimation. (a) Algorithm 1: baseline implementation of
the SMT design; (b) Algorithm 2: optimized SMT design algorithm that runs inO(Kp) empirically; (c) Algorithm 3: optimized
SMT design algorithm that operates directly on the data samples, not requiring the matrixS to be explicitly stored in memory.
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Fig. 3. Time to compute the SMT covariance estimate for (a) random data from the normalN(0, 1) distribution; (b) dataset
with 40 face images from the ORL data set. Here, the SMT model order is fixed toK = 100 for each experiment. A polynomial
fit using least-squares was performed for each algorithm. Notice that the time taken by the fast algorithm (Algo. 2) that keeps
track of the maximum correlation of each row of the sample covariance matrix S remains linear asp grows large, while the
time taken by the baseline algorithm (Algo. 1) of the SMT algorithm is verified to vary with p2.

Property 1: The SMT covariance estimate is permutation invariant. More specifically, if R̂ is the unique

order-K SMT covariance estimate of the dataY , then for any permutation matrixP , the order-K SMT

covariance estimate ofPY is given byPR̂P t.

Uniqueness ofR̂ means that (14) is assumed to have a unique minimum at each step k ≤ K. The

proof of Property 1 is given in Appendix E. This property shows that the SMT covariance estimator does

not depend on the ordering of the data. Therefore, it can potentially be used to model data sets whose

ordering does not have explicit meaning, such as text data, financial data, and data from distributed sensor

networks.

Property 2: If the SMT covariance estimatêR is of model orderK, then the resulting eigen-transformation

can be computed inO(K) time.

The eigen-transform resulting from SMT covariance estimation can be efficiently computed by applying

the K Givens rotations in sequence

Êty =
1
∏

k=K

Êt
ky . (28)

Every Givens rotationEk requires at most 4 multiplies (actually only 2 multiplies with a more efficient

implementation [24]). Therefore, the SMT eigen-transformation has a complexity ofO(K). As we find in

our experiments, usuallyK is a small multiple ofp. As a comparison, a general dense eigen-transformation

July 9, 2010 DRAFT



SUBMITTED TO IEEE TRANSCATIONS ON IMAGE PROCESSING 14

has a complexity ofO(p2). The computational advantage of the SMT is due to its sparse structure, which

makes it attractive for applications using high dimensional data such as eigen-image analysis.

Property 3: The inverse covariance matrix estimatorR̂−1 has the same SMT structure asR̂.

In many applications, it is more interesting to know the inverse covariance rather than the covariance

itself. Fortunately, once the SMT covariance estimateR̂ is obtained, its inversêR−1 is immediately

known as

R̂−1 = ÊΛ̂−1Êt =

(

K
∏

k=1

Êk

)

Λ̂−1

(

1
∏

k=K

Êt
k

)

. (29)

Note that the inverse covariance estimateR̂−1 has the same SMT structure as the covariance estimateR̂.

B. SMT Shrinkage Estimator

In some cases, the accuracy of the SMT covariance estimator can be improved by shrinking it towards

the sample covariance. Let̂R be the SMT covariance estimator. Then the SMT shrinkage estimator

(SMT-S) can be obtained as

R̂s = αR̂ + (1− α)S , (30)

whereα is the shrinkage intensity, and̂R = ÊΛ̂Êt is the SMT covariance estimate. The value ofα can

be determined using leave-one-out likelihood (LOOL) cross-validation [10], which can be done efficiently

in the SMT transformed domain. LetS(i) be the sample covariance excludingyi,

S(i) =
1

n− 1

n
∑

j=1
j 6=i

yjy
t
j =

n

n− 1
S −

1

n− 1
yiy

t
i . (31)

Then we can definêRs|i = αR̂+(1−α)S(i) to be the corresponding SMT-S covariance estimator. Notice

that

P (yi | R̂s|i) = P (Êtyi | Ê
tR̂s|iÊ) = P (ỹi | αΛ̂ + (1− α)S̃(i)) , (32)

where ỹi = Êtyi and S̃(i) = ÊtS(i)Ê.

Define

G = αΛ̂ + (1− α)
n

n− 1
S̃ (33)
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whereS̃ = ÊtSÊ, then the log-likelihood ofyi given R̂s|i in (32) can be efficiently computed as

log P
(

yi | R̂s|i

)

= log P
(

ỹi | G− βỹiỹ
t
i

)

(34)

= −
1

2
log (| G | (1− βdi))−

1

2

(

di

1− βdi

)

−
p

2
log (2π) , (35)

whereβ = 1−α
n−1 anddi = ỹt

iG
−1ỹi. Notice that for all theyi, we only need to compute| G | once for a

given value ofα. So this saves a large amount of computation. The value ofα that leads to the maximum

average LOOL is chosen as the final shrinkage intensity

α∗ = arg max
α∈(0,1]

1

n

n
∑

i=1

log P
(

yi | R̂s|i

)

. (36)

Once the shrinkage intensityα∗ is determined, the SMT-S covariance estimatorR̂s is computed using

all the samples and the estimated shrinkage intensity,α∗.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed method to commonly used shrinkage

estimators, and the recently proposed graphical lasso estimator, and in some cases we compare to sparse

PCA. We do this comparison using simulated data, standard hyperspectral remotely sensed data and face

image sets as examples of high dimensional signals.

A. Review of Alternative Estimators

Shrinkage estimators are a widely used class of estimators. Apopular choice of the shrinkage target is

the diagonal ofS [10], [13]. In this case, the estimator (referred to as the shrinkage estimator hereafter)

is given by

R̂ = αdiag (S) + (1− α) S . (37)

Similar to the SMT-S estimator, an efficient algorithm for the leave-one-out likelihood (LOOL) cross-

validation has been suggested for choosing the shrinkage intensityα in [10].

Another popular shrinkage target is the identity matrix as in [12]. In this case, the estimator is given

by

R̂ = α
tr (S)

p
I + (1− α) S . (38)

The analytical form ofα that minimizes a quadratic loss between the estimator and the true covariance

is derived by Ledoit and Wolf in [12]. We used the publically available Matlab code for this estimator
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(referred to as the L-W estimator hereafter) [31]. It is easy to see that the L-W estimator only regularizes

the eigenvalues of the sample covariance, while keeping theeigenvectors unchanged.

An alternative estimator is the graphic lasso (glasso) estimator recently proposed in [15] which is an

L1-regularized maximum likelihood estimate, such that

R̂ = arg max
R∈Ψ

{

[log P (Y | R)]− ρ ‖ R−1 ‖1
}

, (39)

whereΨ denotes the set ofp×p positive definite matrices andρ is a regularization parameter. Glasso en-

forces sparsity by imposing anL1 norm constraint on the inverse covariance, and is a good representative

of the general class ofL1 based methods. We used the implementation of glasso in the R software that is

publicly available without penalizing the diagonal (i.e. “penalize.diagonal=FALSE”) [32]. The parameter

ρ is chosen using cross-validation that maximizes the average log-likelihood of the left-out subset. The

glasso estimate in (39) has a computational complexity ofO(ip3) for a given value ofρ, wherei is the

number of iterations in glasso. Cross-validation forρ requires (39) to be solved for every different value

ρ, which is is computationally very expensive. We compared the SMT estimators with glasso only for

real data cases.

B. SMT Covariance Estimation for Simulated Data

1) Model Order Estimation:The best scenario for the SMT covariance estimator occurs whenthe

true covariance matrix has an eigenvector matrix which is anSMT of orderK whereK is relatively

small (K ≪ p(p − 1)/2). If this is the case, it is important to demonstrate that theSMT covariance

estimator is able to recover an appropriate model order and covariance estimate with limited sample data.

To do this, we first generate a covarianceR =
(

∏K
k=1 Ek

)

Λ
(

∏1
k=K Et

k

)

where everyEk is a Givens

rotation with randomly generated coordinate pair(ik, jk) and rotation angleθk, and eigenvalues given by

Λii = i−2. More specifically, for eachEk both the coordinate pair(ik, jk) and the rotation angleθk are

independent and have uniform distribution. Then Gaussian samples are generated with zero mean and

covarianceR and used for covariance estimation. In simulation, we usedp = 200, n = {50, 100, 200}

and K ∈ [50, 800]. The experiment was repeated 10 times with re-generated covarianceR each time.

The performance measure is based on the average of all the runs.

Figure 4 shows the results of the model order estimation using3-fold cross-validation (i.e.t = 3 in

(24)). As expected, the estimated model order is a function of both the true model orderK and the

sample sizen. We compared the estimated covariance for each method to thetrue covariance using the

Kullback-Leibler (KL) distance (Appendix F) [33]. The KL distance is a measure of the error between
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Fig. 4. Estimated SMT model order when the true covariances consist ofK randomly generated Givens rotations,p = 200.

the estimated and true distributions. Figure 5 shows the KL distances of different estimators as a function

the sample numbern. The error bars indicate the standard deviation of the KL distance due to random

variation in the sample statistics. Notice that when the real model orderK is small, the SMT and SMT-

S perform substantially better than the other estimators. As K becomes large, the SMT performance

becomes close to the shrinkage and L-W estimators, which may be caused by the fact that the SMT

greedy minimization leads to a local minimum. However, the SMT-S still performs best among all the

estimators in this case.

Figure 6 shows the estimated eigenvalues forK = 200 and K = 600 with n = 100, respectively.

It can be seen that the SMT and SMT-S achieves more accurate eigenvalue estimates, especially for

the small eigenvalues. We also measured the agreement of theeigenspaces resulting from the estimated

eigenvectors and the true eigenvectors as in [34]. The measure that was used to compare the eigenspaces

spanned by the firstq eigenvectors is defined in [35] as

D(q) =

q
∑

i=1

q
∑

j=1

(

êt
(i) · e(j)

)2
, (40)

where ê(i) denotes the estimated eigenvector corresponding to thei-th largest estimated eigenvalue, and

e(j) is the correspondingj-th true eigenvector. For any1 ≤ q ≤ p, perfect agreement between the

two eigenspaces will result inD(q) = q. Figure 7 shows for eigenspace measure between the various

estimators and the true covariance for the case ofK = 200 andK = 600 with n = 100. Note that the

plots of the SMT and SMT-S almost overlap with the other in Fig. 7(a), as do the plots of the L-W

estimator and the sample covariance. It can be seen, when thetrue model orderK is small, the SMT

and SMT-S estimator achieve a much better estimate of the eigenspaces. WhenK is large, the SMT-S

improves the estimates of the eigenvectors associated withlarge eigenvalues over the SMT (see Fig. 7(b)).
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(b) n = 100

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

110

True model order K

K
L 

di
st

an
ce

 

 

L−W Estimator
Shrinkage Estimator
SMT Estimator
SMT−S Estimator

(c) n = 200

Fig. 5. Kullback-Leibler distance from true covariances that consist ofK randomly generated Givens rotations,p = 200.
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(b) K = 600

Fig. 6. Eigenvalue estimation when the true covariances consist ofK randomly generated Givens rotations withp = 200 and
n = 100.
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(b) K = 600

Fig. 7. Eigenspace estimation when the true covariances consist ofK randomly generated Givens rotations withp = 200 and
n = 100.

2) Autoregressive Model, Moving Average Model and SPCA:Autoregressive (AR) and moving average

(MA) models are very common test cases for covariance estimators in the literature. It is known that
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AR and MA models represent stationary processes (without considering the boundary effect), therefore,

their eigenvector matrix can be approximately representedby the SMT with a low model orderK. We

also use the AR example to illustrate the difference betweenthe SMT and sparse principal component

analysis (SPCA) methods [19], [20], and we used the publicly available R source code [36] for SPCA

implementation ofn≪ p case.

First, an AR(1) model is constructed with

Rij = ρ|i−j| , (41)

where ρ = 0.5 and p = 200. Then, we generaten Gaussian random samples with zero mean and

covarianceR, and use these sample data for covariance estimation. The experiment was repeated 10

times for n = 50, 100 and 200. Figure 8(a) and (b) show the eigenvalue and eigenspace estimates for

n = 100, respectively. Since the eigenspace estimate of the L-W method is essentially equivalent to

the sample covariance, its corresponding plot is not shown in Fig. 8(b). It is clear that SPCA failed

to estimate the small eigenvalues and eigenvectors (q > 100). This is because the SPCA method only

estimates up ton principal components (PC) whenn < p and results in the remaining PCs being all zero.

The number of non-zero PCs can be smaller(< n) if sparsity regularization is increased. Figure 9(a)

shows the estimated model order for the SMT using 3-fold cross-validation, and Fig. 9(b) shows the

aggregate results of the KL distances of the various estimators. It can be seen that the SMT estimators

outperform the other estimators in all cases. Notice that the KL distance of the low-rank SPCA estimator

is infinity and thus not shown in the figure.

A similar experiment is investigated for an MA(2) model withthe covariance given by

Rij =







ρ|i−j| if |i− j| ≤ 2

0 otherwise
, (42)

whereρ = 0.5 andp = 200. The results, shown in Fig. 10, are quite similar to the AR case.

C. SMT Covariance Estimation for Hyperspectral Data Classification

The hyperspectral data we use is available in the recently published book [37]. Figure 11(a) shows a

simulated color IR view of an airborne hyperspectral data flightline over the Washington DC Mall. The

sensor system measured the pixel response in 191 effective bands (p = 191) in the 0.4 to 2.4µm region

of the visible and infrared spectrum. The data set contains 1208 scan lines with 307 pixels in each scan

line. The image was made using bands 60, 27, and 17 for the red, green, and blue colors, respectively.
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(a) Eigenvalue estimation
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Fig. 8. Eigenvalue and eigenspace estimates for AR(1) model using various methods. Here,p = 200 andn = 100.
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(b) KL distance

Fig. 9. Covariance estimation for AR(1) model withp = 200: (a) Estimated model order of SMT; (b) KL distance.
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Fig. 10. Covariance estimation for MA(2) model withp = 200: (a) Estimated model order of SMT; (b) KL distance.

The data set also provides ground-truth pixels for five classes designated as grass, water, street, roof,

and tree. In Fig. 11(a), the ground-truth pixels of the grass class are outlined with a white rectangle.
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Figure 11(b) shows the spectrum of the grass pixels, and Fig. 11(c) shows multivariate Gaussian vectors

that were generated using the measured sample covariance for the grass class.

For each class, we computed what we will call a “ground-truthcovariance” from the full set of ground-

truth pixels for that class.7 Each ground-truth covariance was computed by first subtracting the sample

mean vector for each class, and then computing the sample covariance for the zero mean vectors. The

number of pixels for the ground-truth classes of grass, water, roof, street, and tree are1928, 1224, 3579,

416, and388, respectively.

1) Gaussian case:First, we compare how different estimators perform when the data vectors are

samples from an ideal multivariate Gaussian distribution.To do this, we first generated zero mean

multivariate vectors with covariance corresponding to thefive ground-truth covariances. Next we estimated

the covariance using the different methods, the L-W estimator, shrinkage estimator, glasso, SMT, and

SMT shrinkage estimation. Since the L-W estimator performed significantly worse than the other methods

for the hyperspectral datasets (see Fig. 13(a) for example),we only focus on the other four methods here

for clarity. In each case, a 3-fold cross-validation (i.e.t = 3 in (24)) is used to choose the regularization

parameter for SMT and glasso. Figure 12 is an example of the plotof the average cross-validated log-

likelihood as a function of the number of Givens rotationsK in the SMT covariance estimate. In order

to determine the effect of sample size, we also performed each experiment for a sample size ofn = 80,

40, and20, respectively. Every experiment was repeated 10 times with re-generated dataY each time.

In order to get an aggregate assessment of the effectivenessof SMT covariance estimation, we compared

the estimated covariance for each method to the corresponding ground-truth covariance using the KL

distance. Figures 13(a), (b) and (c) show plots of the KL distances as a function of sample size for the

four estimators. Notice that the SMT shrinkage (SMT-S) estimator is consistently the best of the four.

Figure 14(a) shows the estimated eigenvalues for the grass class with n = 80. Notice that the

eigenvalues of the SMT and SMT-S estimators are much closer to the true values than the shrinkage

and glasso methods. In particular, the SMT estimators tend togenerate better estimates of the small

eigenvalues.

Table II compares the computational complexity, CPU time (with and without cross-validation) and

the chosen regularization parameter values of the different covariance estimation methods. The numerical

results were based on the Gaussian case of the grass class with n = 80. Notice that even with cross-

validation, the SMT and SMT-S estimators are much faster than glasso without cross-validation. In this

7We call this the “ground-truth covariance” because it will be used to generate multivariate Gaussian simulation data in some
experiments.
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(a) (b) (c)

Fig. 11. (a) Simulated color IR view of an airborne hyperspectral data over the Washington DC Mall [37]. (b) Ground-truth
pixel spectrum of grass pixels that are outlined with the white rectangles in (a). (c) Synthesized data spectrum using the Gaussian
distribution.

example, the SMT uses an average ofK = 495 rotations, which is equal toK/p = 495/191 = 2.59

rotations per spectral sample.

2) Non-Gaussian case:In practice, the sample vectors may not be from an ideal multivariate Gaussian

distribution. In order to see the effect of the non-Gaussianstatistics on the accuracy of the covariance

estimate, we performed a set of experiments which used random samples from the ground-truth pixels

as input. Since these samples are from the actual measured data, their distribution is not likely to be

precisely Gaussian. Using these samples, we computed the covariance estimates for the five classes using

the four different methods with sample sizes ofn = 80, 40, and20.

Plots of the KL distances for the non-Gaussian case8 are shown in Fig. 13(d), (e) and (f); and

Figure 14(b) shows the estimated eigenvalues for grass withn = 80. Note that the results are similar to

those found for the ideal Gaussian case. This indicates that the SMT estimators perform robustly with

real data that often have non-Gaussian distributions.

D. SMT Covariance Estimation for Eigen Image Analysis

Eigen-image analysis is an important problem in statisticalimage processing and pattern recognition.

For example, eigenface analysis is a well-known technique in face recognition and face image compression

[38].

Figure 15 shows how the SMT can be used to efficiently perform eigen-image analysis. First, SMT

covariance estimation is used to estimate the covariance from n image samples, as in Fig. 15(a). Here

every column ofY is an 2D face image. The SMT estimator can produce a full set of eigenfaces from

8In fact, these are the KL distances between the estimated covariance and the sample covariance computed from the full set
of training data, under the assumption of a multivariate Gaussian distribution.
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Fig. 12. Plot of the average log-likelihood as a function of the number of Givens rotationsK in the SMT cross-validation of
the grass class. The value ofK that achieves the highest average log-likelihood is chosen as the numberof rotations in the final
SMT covariance estimator.K = 495 in this example (Gaussian case,n = 80).
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Fig. 13. Kullback-Leibler distance from true distribution versus sample size for various classes: (a) (b) (c) Gaussian case (d)
(e) (f) non-Gaussian case.

the limited number of images. Also, with the fast transform property, one can either compute the eigen-

image decomposition of a single image (see Fig. 15(b)), or using the adjoint transform, one can compute

individual eigen images on-the-fly (see Fig. 15(c)). Notice that it is typically not practical to store all

the eigen images since this would require the storage of ap× p matrix, wherep is the number of pixels
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Fig. 14. The distribution of estimated eigenvalues for the grass class withn = 80: (a) Gaussian case (b) Non-Gaussian case.

TABLE II
COMPARISON OF COMPUTATIONAL COMPLEXITY ANDCPU TIME OF VARIOUS COVARIANCE ESTIMATORS. THE

COMPLEXITY DOES NOT INCLUDE THE COMPUTATION OF THE SAMPLE COVARIANCE . HERE, THE NUMERICAL RESULTS ARE

BASED ON THEGAUSSIAN CASE OF THE GRASS CLASS WITHn = 80. m – NUMBER OF TEST VALUES FOR THE

REGULARIZATION PARAMETER, t – NUMBER OF SPLIT SUBSETS IN CROSS-VALIDATION , AND i – NUMBER OF ITERATIONS IN

GLASSO. C.V. STANDS FOR CROSS-VALIDATION .

Observed Complexity CPU time (sec.) Parameter
w/o c.v. with c.v. w/o c.v. with c.v.

Shrinkage p m(p3 + np2) ≈ 0 8.6 α = 0.0016

glasso p3i tmp3i 422.6 38141.3 ρ = 0.0005

SMT p2 + Kp t(p2 + Kp) 1.6 6.5 K = 495

SMT-S p2 + Kp m(p3 + np2) 1.6 7.2 (K, α) = (495, 0.6)

in the image. However, the new method only requires the storage of the parameters of theK Givens

rotations, which can be easily stored even for large images.

The face image dataset we used is from the ORL Face Database [39], with the images re-scaled to

28×23 pixels (p = 644). There are 40 different individuals and we used 2 face imagesfor each individual

as our training data, which results inn = 80. Examples of the image set used in the experiments are

shown in Fig. 16. First, we subtracted the sample mean from these images, and used the mean-subtracted

images as our sample data for covariance estimation. We compared the SMT estimators with other

covariance estimators in terms of both the accuracy and visual quality. In particular, we included the

diagonal covariance estimator, i.e.R̂ = diag(S), which represents an independent pixel model.
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1) Eigenfaces:Figure 17(a) shows the plot of average cross-validated log-likelihood (t = 3) for the

face images as a function of model orderK. The value ofK that achieved the highest average log-

likelihood is 974 in this example. Figure 17(b) shows the values of the regularization parameters for

different estimators chosen by cross-validation (except the L-W estimator). Figures 18(a) – (f) show the

first 80 estimated eigenfaces (i.e. columns ofÊ) using the different methods. Interestingly, compared to

the eigenfaces resulting from the other estimators, the SMT eigenfaces clearly show much more visual

structure corresponding to hair, glasses etc. Also notice that the SMT eigenfaces tend to be sparse.

2) Cross-Validated Log-Likelihood:Since it is not possible to obtain the “true” covariance of face

images due to the limited sample size, we used the cross-validated log-likelihood as a measure of accuracy

of different estimators. Figure 19(a) shows the average 3-fold cross-validated log-likelihood of the face

images using the SMT covariance estimators, as compared to the diagonal, L-W, shrinkage, and glasso

covariance estimators. Notice that the SMT covariance estimators produced much higher average cross-

validated log-likelihood than the traditional shrinkage estimator, and the SMT-S estimator resulted in the

highest likelihood. In Fig. 19(b), we show the maximum log-likelihood values for all the methods, and the

differences from the traditional shrinkage estimator. Notice that SMT-S has an increase in log-likelihood

of 167.3 as compared to the shrinkage estimate. Also notice the difference between shrinkage and an

independent pixel model (i.e. diagonal covariance) is 349.7. This is interesting since an independent pixel

model of faces is known to be a poor model. The glasso has an increase in log-likelihood of 164.5, which

is consistent with the common belief that a sparse inverse covariance is a good model for images.

3) Automated Generation of Face Image Samples:In order to better illustrate the advantage of

SMT covariance estimation, we generated random face image samples using these different covariance

estimates. Specifically, the face image samples were generated under the Gaussian distribution

y ∼ N(ȳ, R̂) , (43)

where ȳ is the sample mean of the training images andR̂ denotes different covariance estimates. The

generated sample images are shown in Fig. 20(a)–(f). While these results are subjective in nature, the

faces generated by the SMT models tend to have substantially more detail than those generated with the

shrinkage model, and are perhaps comparable in quality to the faces generated by the glasso model.

VI. CONCLUSION

We have proposed a novel method for covariance estimation ofhigh dimensional signals. The new

method is based on constrained maximum likelihood (ML) estimation in which the eigen-transformation
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Fig. 15. This figure illustrates how the SMT covariance estimation can be used for eigen-image analysis. (a) A set ofn images
can be used to estimate the associated SMT. (b) The resulting SMT can be used to analyze a single input image, or (c) the
transpose (i.e. inverse) of the SMT can be used to compute thek-th eigen image by applying an impulse at positionk. Notice
that both the SMT and inverse SMT are sparse fast transforms even when the associated image is very large.

Fig. 16. Face image samples from the face image database [39] for eigen-image analysis (n = 80 andp = 28 × 23)

is constrained to be the composition ofK Givens rotations. This model seems to capture the essential

behavior of the signals with a relatively small number of parameters. The constraint set is aK dimensional

manifold in the space of orthonormal transforms, but since it is not a linear space, the resulting ML

estimation optimization problem does not yield a closed form global optimum. However, we show that

a recursive local greedy optimization procedure is simple,intuitive, and yields good results.

We demonstrate the effectiveness of the new approach on simulated data, hyperspectral data and face
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(a)

Method Parameter
Diagonal –

L-W α = 0.14

Shrinkage α = 0.28

glasso ρ = 0.08

SMT K = 974

SMT-S (K, α) = (974, 0.8)

(b)

Fig. 17. (a) Plot of the average log-likelihood as a function of the numberof Givens rotationsK in the SMT cross-validation.
The value ofK that achieves the highest average log-likelihood is chosen as the numberof rotations in the final SMT covariance
estimator.K = 974 in this example. (b) The values of the regularization parameters that werechosen by cross-validation for
different covariance estimation methods.

image sets. In addition to providing a more accurate estimate of the covariance, the new method offers

the potential for large computational advantages when the dimension of siginals is high, as is the case

with images. The resulting SMT eigen-transformation is shownto be a generalization of the classical

FFT and orthonormal wavelet transform. However, unlike the FFT and wavelet transform, the SMT is

suitable for fast decorrelation of general non-stationarysignals. The MATLAB code for SMT covariance

estimation is available at: https://engineering.purdue.edu/˜bouman.
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 18. Experimental results of eigen-image analysis. First 80 eigen-images for each of the following methods: (a) Diagonal
covariance estimate (i.e. independent pixels); (b) L-W covariance estimate; (c) Shrinkage covariance estimate; (d) graphical lasso
covariance estimate; (e) SMT covariance estimate; (f) SMT-S covariance estimate. Notice that the SMT covariance estimate tends
to generate eigen-images that correspond to well defined spatial features such as hair or glasses in faces.
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Diagonal
L−W
Shrinkage
glasso
SMT
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(a)

Method Log-Likelihood ∆

Diagonal -3213.3 -349.7
L-W -2857.2 6.4

Shrinkage -2863.6 0
glasso -2699.1 164.5
SMT -2764.2 99.4

SMT-S -2696.3 167.3

(b)

Fig. 19. (a) The graph shows the average cross-validated log-likelihood of the face images using the diagonal, L-W, shrinkage,
glasso, SMT and SMT-S covariance estimates. (b) The table shows the value of the cross-validated log-likelihood for each
estimator and their difference. Notice that SMT-S has an increase in log-likelihood over shrinkage of 167.3. This is comparable
to 349.7, the difference between shrinkage and an independent pixelmodel (i.e. diagonal covariance).
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(a) diagonal

(b) L-W

(c) shrinkage

(d) glasso

(e) SMT

(f) SMT-S

Fig. 20. Generated face image samples under the Gaussian distribution withthe sample mean and different covariance estimates:
(a) Diagonal covariance estimate (b) L-W covariance estimate (c) Shrinkage covariance estimate (d) Glasso covariance estimate
(e) SMT covariance estimate (f) SMT-S covariance estimate.
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APPENDIX A

DERIVATION OF MAXIMUM L IKELIHOOD ESTIMATES OFEIGENVECTORS ANDEIGENVALUES

If the columns ofY are independent and identically distributed Gaussian random vectors with mean

zero and positive-definite covarianceR, then the likelihood ofY given R is given by

P(E,Λ)(Y ) =
1

(2π)
np

2

|R|−
n

2 exp

{

−
1

2
tr{Y tR−1Y }

}

(44)

=
1

(2π)
np

2

|Λ|−
n

2 exp

{

−
1

2
tr{Y tEΛ−1EtY }

}

(45)

=
1

(2π)
np

2

|Λ|−
n

2 exp

{

−
1

2
tr{EtY Y tEΛ−1}

}

(46)

=
1

(2π)
np

2

|Λ|−
n

2 exp
{

−
n

2
tr{EtSEΛ−1}

}

(47)

=
1

(2π)
np

2

|Λ|−
n

2 exp
{

−
n

2
tr{diag(EtSE)Λ−1}

}

. (48)

Taking the logarithm yields

log P(E,Λ)(Y ) = −
n

2
tr{diag(EtSE)Λ−1} −

n

2
log |Λ| −

np

2
log(2π) . (49)

Therefore, the maximum likelihood (ML) estimator of(E, Λ) is given by

(Ê, Λ̂) = arg max
(E,Λ)

log P(E,Λ)(Y ) (50)

= arg max
E

max
Λ

log P(E,Λ)(Y ) . (51)

We first maximize the log-likelihood with respect toΛ. Setting the derivatives oflog P(E,Λ)(Y ) with

respect to all the diagonal entries ofΛ to zero, we obtain

Λ̂ = diag(EtSE) . (52)

Therefore, the ML estimation ofE is given by

Ê = arg max
E∈Ω

log P(E,Λ̂(E))(Y ) (53)

= arg max
E∈Ω

{

−
np

2
log(2π)−

n

2
log
∣

∣diag(EtSE)
∣

∣−
np

2

}

(54)

= arg min
E∈Ω

{∣

∣diag(EtSE)
∣

∣

}

, (55)

whereΩ is the set of allowed orthonormal transforms. So the minimization of
∣

∣diag(EtSE)
∣

∣ leads to
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the ML estimate ofE, and hence the ML estimate ofΛ which is given by

Λ̂ = diag(ÊtSÊ) . (56)

APPENDIX B

UNCONSTRAINEDML ESTIMATE

Proposition: Let S be ap × p positive definite symmetric matrix with eigenvalue decomposition given

by S = E∗ΛSE∗t, and letΩ be the set of allp×p orthonormal transforms. ThenE∗ achieves the global

minimization of (6), so that

∣

∣diag(E∗tSE∗)
∣

∣ = min
E∈Ω

{∣

∣diag(EtSE)
∣

∣

}

. (57)

First, we show for any symmetric, positive definite matrixS, we have

|diag(S)| ≥ |S| . (58)

We know there exists a unique lower triangularp× p matrix G, such that

S = GGt , (59)

which is called the Cholesky factorization [40]. Therefore,|S| = |G|2 =
∏p

i=1 G2
ii. Clearly, we have

Sii =
∑p

j=1 G2
ij ≥ G2

ii for i = 1, 2, . . . , p. This gives

|diag(S)| ≥

p
∏

i=1

G2
ii = |S| . (60)

The equality holds if and only ifSii = G2
ii for i = 1, 2, . . . , p, which is equivalent to the fact thatS is

diagonal. Therefore, we know for any orthonormal transformE,

∣

∣diag(EtSE)
∣

∣ ≥
∣

∣EtSE
∣

∣ = |S| . (61)

If S = E∗ΛSE∗t is an eigen-decomposition ofS, then we know

∣

∣diag(E∗tSE∗)
∣

∣ = |ΛS | = |S| . (62)

Therefore,E∗ is the solution of global minimization of (6) if the sample covarianceS is non-singular.
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APPENDIX C

EXACT SMT FACTORIZATION OF ORTHONORMAL TRANSFORMS

We know the Givens QR factorization can be used to find a decomposition of ap× p matrix into
(

p
2

)

Givens rotations [40]. LetA be anp× p orthonormal matrix, and letQ = G1G2...GK with K =
(

p
2

)

, so

that

A = QR , (63)

where everyGk is a Givens rotation andR is upper triangular. SinceA andQ are orthonormal,R must

be orthonormal. SinceR is also upper triangular, this means that it must be diagonal. Therefore,R is a

diagonal orthonormal matrix, which means that it is the identity matrix. Hence, we haveA = Q.

APPENDIX D

SOLUTION OF (12) FOR A SPECIFIEDCOORDINATE INDEX PAIR

In this appendix, we will find the solution to the optimizationproblem of (12) for a specified coordinate

pair and the corresponding change of the cost function. Sincethe coordinate index pair is specified, we

can assume all the matrices to be2× 2 without loss of generality.

From Appendix B, we know thatE minimizes the cost function (12) if and only ifE is the eigenvector

matrix of S. Next we obtain an expression forE in terms of a Givens rotation. Let

S =





s11 s12

s21 s22



 , (64)

and letE = I + Θ(1, 2, θ) with θ = 1
2atan(−2s12, s11 − s22). Then we have

EtSE =





s′11 0

0 s′22



 , (65)

where

s′11 =
1

2

(

s11 + s22 +
√

(s11 − s22)2 + 4s2
12

)

(66)

s′22 =
1

2

(

s11 + s22 −
√

(s11 − s22)2 + 4s2
12

)

. (67)

This shows thatE of the given form is the eigenvector matrix ofS. HenceE must minimize the cost

function of (12). Based on (62), we know that the ratio of the cost function before and after the transform
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of E is given as
∣

∣diag
(

EtSE
)∣

∣

|diag (S)|
=

|S|

|diag (S)|
= 1−

s2
12

s11s22
. (68)

APPENDIX E

PERMUTATION INVARIANCE OF THE SMT ESTIMATOR

Property: The SMT covariance estimate is permutation invariant. More specifically, if R̂ = ÊΛ̂Êt is the

unique order-K SMT covariance estimate of the dataY , then for any permutation matrixP , the order-K

SMT covariance estimate of the permuted dataPY is given byPR̂P t.

Uniqueness ofR̂ means that (14) is assumed to have a unique minimum at each step k ≤ K. Let S

be the sample covariance ofY , andS̃ = PSP t be the sample covariance of the permuted dataPY . The

proof can be shown by construction. First consider the case ofk = 1. Let

(ik, jk)← arg min
(i,j)

(

1−
[Sk]

2
ij

[Sk]ii[Sk]jj

)

, (69)

and the Givens rotation is given byEk = I + Θ(ik, jk, θk). Let i′k and j′k be the corresponding row (or

column) indices ofik andjk in the permuted matrix̃S. Without loss of generality, we assumeik < jk and

i′k < j′k. Then the Givens rotation resulting from the permuted data isgiven by Ẽk = I + Θ(i′k, j
′
k, θk).

We know Ẽk = PEkP
t. Thus we have

Λ̃k = diag(Ẽt
kS̃Ẽk) = diag(PÊt

kSÊkP
t) = Pdiag(Êt

kSÊk)P
t = P Λ̂kP

t . (70)

Therefore, the order-k SMT covariance estimator ofPY is given by

R̃(k) = ẼkΛ̃kẼ
t
k = PÊkΛ̂kÊ

t
kP

t = PR̂(k)P t . (71)

Next at stepk + 1, we have

S(k+1) = Et
kSEk (72)

S̃(k+1) = Ẽt
kS̃Ẽk = PS(k+1)P t . (73)

Following the same derivation, we know the conclusion in (71) still holds at stepk + 1.
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APPENDIX F

KULLBACK -LEIBLER DISTANCE

The Kullback-Leibler (KL) distance between two distributionsPθ(y) andPθ̂(y) is defined as [33]

d(θ, θ̂) = Eθ

[

log Pθ(y)− log Pθ̂(y)
]

.

So if θ = (E, Λ) and θ̂ = (Ê, Λ̂), then under the assumption of Gaussian distribution the KL distance is

given by

d(θ, θ̂) = Eθ

[

log Pθ(y)− log Pθ̂(y)
]

(74)

= −
1

2
tr{diag(EtRE)Λ−1} −

1

2
log |Λ|+

1

2
tr{diag(ÊtRÊ)Λ̂−1}+

1

2
log
∣

∣

∣
Λ̂
∣

∣

∣

=
1

2
tr{diag(ÊtRÊ)Λ̂−1 − I}+

1

2
log
∣

∣

∣
Λ̂Λ−1

∣

∣

∣
.

We use the Kullback-Leibler distance as one of the measures for the various covariance estimators.
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