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Abstract

The sparse null space basis problem is the following: A ¢ X n matrix 4 (t < n) is given.
Find a matrix N, with the fewest nonzeros in it, whose columns span the null space of
A. This problem arises in the design of practical algorithms for large-scale numerical

optimization problems.

Surprisingly, this problem can be formulated as a combinatorial optimization prob-
lem under a non-degeneracy assumption on A. The theory of matchings in bipartite
graphs—marriage theorems—can then be used to obtain the nonzero positions in N.

Numerically stable matrix factorizations are used in the next phase to compute N.

We use conformal decompositions to characterize the columns of a sparsest null
basis. Matroid theory is used to prove that a greedy algorithm constructs a sparsest
null basis. We prove that finding a sparsest null basis is NP-hard by showing that
associated matroidal and graph-theoretic problems are NP-complete. We propose two
approximation algorithms to construct sparse null bases. Both of them make use of
the Dulmage-Mendelsohn decomposition of rectangular matrices. One algorithm is a
sparsity exploiting variant of the variable-reduction technique. The second is a locally
greedy algorithm that constructs a null basis with an upper triangular submatrix. These
results are extended to computing sparse orthogonal null bases. We discuss how this
‘two-phase’ approach can construct sparser null bases than a purely numerical approach;
it is also potentially faster than the latter. Finally, we classify all known methods for

constructing null bases, and show some unexpected equivalences between some of them.
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1. Introduction and Overview

The development of practical algorithms for the Linear Equality Problem (LEP) is at the
heart of numerical optimization. (LEP) can be expressed as
minimize I(z)

zeR"
subject to Az =b.

Here f(z) is a nonlinear ‘objective’ function, f : R" — R, and we assume that f is
twice-continuously differentiable. The matrix A has f rows and n columns, and ¢ < n.
Since each row corresponds to an equation, and each column to a variable, there are fewer
constraining equations than there are variables. We assume also that A has full row rank,
i.e., rank{4) = ¢.

One strategy for solving (LEP), the null space method, involves two phases: In phase 1,
a ‘feasible’ vector y is determined that satisfies Ay = 0. In phase 2, y is corrected
by a vector z in the null space of A that decreases the value of f; so, Az = 0, and
f(y+2) < f(y). Weset y:=y+ z, and repeat phase 2 until / is small enough in value,
or no further reduction in its value can be made.

A little cleverness in choosing the correction z will help the algorithm to converge
speedily, i.e., at a quadratic rate, to a stationary point of f. We model f about the point
y by a quadratic function, and choose y + z to be the minimizer of this model function.

This results in the system of equations
NTH(y)Np=—NTa(u), (1)
which is solved for the vector p, and then the correction z is computed from the equation
z= Np.

Here N is a basis for the (n — t)-dimensional null space of A (a null basis), g(y) € R" is
the gradient of f at y, and H(y) € R"*" is the Hessian matrix of f at y. The system
of equations (1) may be solved by computing a factorization of the projected Hessian
NTH N when n — t is small. For problems where n — ¢t is large, an iterative technique
such as the conjugate gradient method may be used. Gill, Murray, and Wright (1981)

contains a more detailed discussion of the (LEP).
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Efficient algorithms to solve (LEP) are needed for two reasons: First, (LEP)s arise
from mathematical models of several optimization problems that arise in practice. Sec-
ond, (LEP)s arise as subproblems of more general optimization problems. Nonlinearly
constrained optimization problems are often solved by linearizing the constraints, and
solving a succession of resulting (LEP)s. Thus, the generalized gradient method, the aug-
mented Lagrangian method, and the projected Lagrangian method to solve these problems
are based on efficient algorithms to solve (LEP)s. (LEP)s also arise as subproblems when

active set strategies are used to solve optimization problems with inequality constraints.

Our concern will be with the large-scale (LEP). In large-scale problems, the constraint
matrix A has a large number of rows and columns. Fortunately, however, most of the
matrix elements of A are zeros and do not need to be stored. This redeeming feature
results from each equation being involved with only a few variables, and each variable
occurring only in a small number of equations. The nonzero elements, a small fraction of
the total number of matrix elementé, can be stored without exceeding storage capacities
of the computer. Such matrices, whose zero-nonzero structure can be used to advantage,
are called sparse matrices. Coleman (1984) discusses the various issues that arise in large

sparse numerical optimization.

Sparsity in A is good, but is not enough. The null space algorithm needs a represen-
tation of a null basis N of A. Such a basis, being a set of n — ¢ vectors that span the
null space of A, is not unique. Hence, unless proper care is taken in the construction of
N, even though A is sparse, N may be dense and beyond the storage capabilities of the

computer.

With the above discussion to motivate us, we study the sparse Null Space Basis

Problem: . .
A t x n matrix 4 of rank r < t is given.

(NSP) Find a matrix N with the fewest nonzeros,

whose columns span the null space of A.

4

Hereafter, we will abbreviate this to the Null Space Problem. Such an n x (n - r)
matrix N is a basis for the null space of A. We have called N a null basis. It is also a
. sparsest null basis, since it contains the fewest nonzeros.

Surprisingly, (NSP) can be formulated as a combinatorial optimization problem un-

der a non-degeneracy assumption on A. Consequently, concepts from both discrete and

continuous mathematics are involved in our study of (NSP).
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We describe our distinctive combinatorial approach to (NSP) in the second and third
sections of this paper. In Section 2, we show how a linearly dependent set of columns can
be recognized from a knowledge of which of the matrix elements of A are nonzeros. This
dependence which we can identify is independent of the numeric values of the nonzeros of

A, so no numeric computations are involved at this stage.

In Section 3, we show how to construct such a ‘structurally’ dependent set of columns
using the theory of matchings in bipartite graphs. Under a non-degeneracy assumption
on A, this dependent set is minimal—that is, all proper subsets of this set of columns are

linearly independent. The algorithm we have designed finds a minimal dependent set from

. a maximum matching of A. The requisite matching theory is introduced and discussed

in this section.

Since a linear combination of dependent columns of A yields the zero vector, the
coefficients of the combination form a null vector of A. From the dependent set we
construct, we can identify the nonzero components of the corresponding null vector of A.
The numeric values of the nonzeros of the null vector can be computed in a second stage

from a numeric factorization of A.

Solving (NSP) in two distinct stages is helpful in the preservation of sparsity in N,
and in reducing the computational effort needed to construct a null basis. From the first
stage, we can predict the storage needed for N, and even a sparse data structure for it
since we know where its nonzeros occur. Hence the second numeric stage can use a static

data structure, which is advantageous from an algorithmic perspective.

Sparsest null bases are characterized in Section 4. First, we show that any column of
such a basis can arise only from a minimal dependent set of columns of A. Then we show
that a greedy algorithm solves (NSP). This algorithm chooses, at a given step, a sparsest
null vector linearly independent of the null vectors it has chosen in previous steps. This is
quite surprising; a short-sighted local strategy seldom solves optimization problems. This
result is true because underlying (NSP) is a combinatorial structure called a matroid.
We use the theory of network flows and matroid theory to prove these results. Again,
our discussion is self-contained, and we do not assume any previous knowledge of these

subjects by the reader.

We characterize the zero-nonzero structure of sparsest null bases in Section 5. The
complexity of (NSP) is investigated in the next section. We show that (NSP) is NP-hard,

so it is unlikely that a polynomial time algorithm can be designed to solve it. We prove
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that finding sparsest fundamental null bases is also NP-hard by using the fact that an

associated spanning tree problem on undirected graphs is NP-complete.

A decomposition of matrices introduced by Dulmage and Mendelsohn is the theme
of Section 7. We show how a rectangular matrix can be decomposed into a block lower
triangular structure by means of a maximum matching. Surprisingly, even though this
decomposition is induced by a matching, it is independent of the matching. That is, two
different maximum matchings lead to the same matrix decomposition, so this is a canonical
decomposition. The relevance of the Dulmage-Mendelsohn decomposition to (NSP) is also

discussed in this section.

For general matrices, we propose an approximation algorithm for (NSP) in Section 8.
We show that it can be viewed as a sparsity exploiting variant of Wolfe’s variable-reduction
technique. Computational issues associated with this algorithm are discussed in Section 9.
We also show that the Dulmage-Mendelsohn decomposition can be used to reduce the com-
putational effort needed to find null bases; the complexity of the combinatorial algorithm
is also reduced by the decomposition. A variant algorithm that constructs a null basis with
an upper triangular submatrix is described in Section 10. In the next section we show
how to find null bases when the non-degeneracy assumption we made, the weak Haar
property, does not hold for a matrix. Null bases whose columns are orthogonal can be
found by modifying the algorithms we have constructed. This is discussed in Section 12.
We classify all known methods for the construction of null bases, show some surprising

equivalences between some of these methods, and summarize our work in Section 13.

Finally, in the appendix we discuss a paradox that arises from this paper and the

work of Hoffman and McCormick (1982) on the sparse range space problem.

3. A Structural Approach to (NSP)

. Let A be as in Section 1. The following observation is central to our approach to the

solution of (NSP).

A

Suppose we can find a subset C of the columns of A that have nonzeros only in a
subset R of the rows of A. If C has more columns than R has rows, i.e., |C| > |R|, then

the columns in C are linearly dependent. This follows from linear algebra, since

rank(C) < min {|R}, |C|} = |R|.
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c

Figure 2.1.
The dependent set C .

We call such a set of columns C a dependent set. Figure 2.1 shows a dependent set. We
can form a linear combination of the columns in C to get the zero vector. Equivalently,

the coefficients of the linear combination yield a vector in the null space of A.

Suppose C has the following structure:

{x 0 x x\
C=,0 %x X X .
\ 0 0 0 O }
Here ‘% ’s denote strictly nonzero elements of the matrix, and ‘0’s denote zero elements

of the matrix.

No matter what the numerical values of the nonzero matrix elements are, these four
columns are linearly dependent. This follows from the rank of this matrix being at most
two, the number of rows in which C has nonzeros. Hence this is a structural property,
‘. and we say that the columns are structurally dependent. So we can find a vector z such

that
Cz=0.

If the columns of A are partitioned as

A=(C D),

then

and we have a vector in the null space of A.
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We can be a bit more choosy. Since we want sparse null bases, we do not want C to
be any bigger than necessary. Since the maximum rank of C is |R|, in general we need
|C| = |R] + 1. Such a submatrix C is necessarily structurally dependent. We call a set
of columns a circuit, if it is a minimal dependent set—that is, if C is dependent, but all
proper subsets of C are independent. In the previous example, the first three columns

form a circuit. Hence, we could construct a null vector of A from those three columns.

Let B denote the submatrix defined by the first three columns and the first two rows
of C. The null vector associated with the circuit in our example can be computed from
an L Q decomposition of B,

BQQ=(L 0).
Here Q is a 3 x 3 orthogonal matrix, and L isa 2 x2 lower triangular matrix. Let z

denote the last column of Q@ . Since
B:z=0,

the vector z is a null vector of B. As before, from z we obtain a null vector of A by
appending n — 3 zeros to it.

We will be schizophrenic in calling the null vector associated with a minimal dependent
set of columns also a circuit. Note that the null vector is numerically determined to within
a scalar constant by the set of columns and the numeric values of the matrix. However,
we make a distinction between a set of columns and the submatrix of A defined by the
set of columns. The latter will not be called a circuit. It should be clear from the context

in which the word circuit is used whether a set of columns or a null vector is meant.

W hat makes our structural approach attractive is the existence of a ‘good’ (polynomial
time) algorithm to find circuits, if we are willing to make a non-degeneracy assumption
about A. ‘Marriage theorems’, the theory of matchings in bipartite graphs, will help us
to find circuits faster than numerical techniques. We avoid the ‘fIl' in A caused by a
numerical technique, since we are dealing with only the structure of A. We can predict
the number of nonzeros in the null basis N by first constructing circuits. Further, we can
compute the null vectors in the basis N using a static data structure for N since we know
where nonzeros occur in N. This is a great advantage since dynamic storage allocation is
quite expensive in terms of time.

The non-degeneracy assumption we make won’t hurt us since in the computational
phase we can detect the situations when it fails. This failure arises from ‘lucky’ numerical
dependence in the columns of A, and it will help us to get even sparser bases. This

assumption is introduced and discussed in the next section.
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3. A Bipartite Graph Model

Our solution to (NSP) is through the structural approach outlined in Section 2, so we
now introduce a model of the problem that reflects this approach. This model will help
us design a polynomial time algorithm to construct circuits—minimal dependent sets of
columns. In keeping with our philosophy, we ignore the numeric values of the nonzero
matrix elements of A, and distinguish only two types of matrix elements—those that are
strictly nonzero, and those that are strictly zero. A model from graph theory captures
this zero-nonzero structure (hereafter we will call this structure) of the matrix A.

The bipartite graph G(A) of the matrix A’ has a row vertex corresponding to each’
row of A, and a column vertex corresponding to each column of A. An edge joins a row
vertex to a column vertex if and only if the corresponding matrix element is nonzero. An

example is shown in Figure 3.1.

a b ec d e f a b ¢ d e f j
1f1 3 0 5 0O \ l(x x 0 x 0 0\~ b
212 0 4 6 0 8 2l x 0 x x 0 Xx
3k0 0 0 0 7 QJ 3L 0 O X xJ d 1
C o— Yz
€= >3
X Y

Figure 3.1.
The matrix A, the structure of A, and the bipartite graph G(A).

The bipartite graph G(A) is denoted by the triple G(4) = (X,Y,E), where X is the
set of columns, Y is the set of rows, and E is the set of edges. Clearly there are no edges
between two vertices in X, or between two vertices in Y. The tuple (X,Y) is referred to
as the bipartition of G(A4).

A matching in A is a set of nonzeros of A such that no two elements in the set are
chosen from the same column or the same row. A matching of A corresponds in G(A)

to a set of edges (and hence a subset of E) no two of which are incident on a common
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vertex. A matching M of A (or G(A)) is shown in Figure 3.2. A vertex is M -saturated

if it is an endpoint of an edge in M. A vertex that is not M-saturated is M -unsaturated.

®

d I a
l{x x 0 ® O 0\
2Lx 0 ® x 0 xJ f
3\0 0 0 ® x b
d 1
c
2
e 3
Figure 3.2, X Y

A matching M in 4.

The matched nonzero elements of A are circled, and the corresponding matched edges in
G(A) are drawn with thick lines. The matching M in the previous example has maximum
cardinality, and hence is a maximum matching of A. The cardinality of a maximum

matching of A is the matching number of A.

The theory of matchings in bipartite graphs has been called ‘marriage theorems’ due
to the following colorful interpretation. Think of the vertices in ¥ as women, and the
vertices in X as men, all eminently eligible to marry. If Ms. r and Mr. ¢ are willing to
marry each other, we indicate that fact by the edge (r,c) in the graph G(A). If Mr. ¢ is
willing to marry Ms. r, but she is not willing, or vice versa, no edge results in the graph.
Each person can express as many preferences as he/she likes, but for a marriage to be

possible (for an edge to be present in the graph) such preferences have to be mutual.

We consider only heterosexual monogamous marriages. A métching corresponds to
a pairing of men and women willing to marry each other. A maximum matching at-
tempts to maximize initial nuptial happiness, by arranging as many marriages as possible.
There exist several polynomial time algorithms to find maximum matchings in bipartite
graphs. The fastest known has time complexity O( lVll/2 |E|), and is due to Hopcroft and

Karp (1973). Good discussions of matching algorithms may be found in Papdimitriou and
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Steiglitz (1982), and Lawler (1976). We make use of the maximum matching algorithm
to construct circuits, under a non-degeneracy assumption on A.

We assume that in any maximum matching M of A, all the row vertices are M-
saturated. Such a matching is a complete matching (row-perfect matching) of A. When
we consider the Dulmage-Mendelsohn decomposition in Section 7, we shall elaborate on
this assumption.

A complete matching M of A partitions the columns of A into two sets: M, the set of
M -saturated columns, and U, the set of M-unsaturated columns. For each column u € U,

we can construct a circuit of A, n(u), containing u by an ‘alternating path algorithm’.

A path in a graph is a sequence of distinct vertices vy, ..., vg, where (vi-1,vi) is

an edge of the graph, for 1 < i < k. An M-alternating path is a path whose edges are

alternately chosen from the set M.

b a

f
d
1 d 1 c 2
(») 2 c 2 e 3
Figure 3.3.

M -alternating paths in A.

Some of the alternating paths in a graph are shown in Figure 3.3. As before, the thick
edges form the matching M in the graph. The sequence of edges (b, 1), (1,d), (d,2), (2,¢)
is an M -alternating path in A. The sequences (a,1), (1,d), (d,2), (2,¢) and (a,2), (2,¢)
are alternating paths from the unmatched column a. From f there are two such paths,
(7,2), (2,¢) and (/,3), (3,¢). For this matching, M = {e,d,e}, and U = {a,/[,b}.
We say that ¢ and d are reachable from b by M-alternating paths. We indicate this by
b M, c and b M, d. Often we will say simply that ¢ is reachable from b. The rows 1
and 2 are also reachable from b.

For u € U, the following algorithm constructs a circuit n(u) containing u under a

non-degeneracy assumption on 4.
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' Algorithm 8.1.

1. Find a complete matching M of A; partition the columns of A as
A=(M U).
2. For u € U, construct the set n(u) by following all M -alternating paths from u. Thus

n(u)=u+{v6M:u——A—l+v}.

For each row vertex reachable from u by an M -alternating path, the column m

" matched in M to r is reachable too. Hence n(u) is a set of columns whose cardinality is

one greater than the set of rows it is adjacent to. Under a non-degeneracy assumption on

A, the set of columns n(u) is indeed a circuit. From Figure 3.3, it is easy to see that

n(a) = {a,d,c}, n(b)={bd,c}, and n(f)={/[,ce}.

This algorithm that constructs a circuit is the major building block we use to construct

sparse null bases.

Let r be the number of nonzeros in A. The algorithm of Hopcroft and Karp takes
o(r(t+ n)1/2) time to find a maximum matching. The set n(u) can be constructed in
O(r) time by a depth first search. Hence the worst-case complexity of the Algorithm 3.1
is O(r (t + n)1/?).

The time has come to speak of the non-degeneracy assumption we make on A. A

matrix has the weak Haar property (WHP) if every set of columns C satisfies
rank (C) = m(C),

where m(C) is the matching number of C. This assumption prevents ‘lucky’ numerical
dependences in the columns. It is always possible to assign numeric values to the nonzero
elements of A such that it has wHP. For instance, if the nonzero elements are chosen to
be algebraic indeterminates, then A has wHP. However, algebraic indeterminacy implies,
and is therefore a stronger condition than, wHP.

The weak Haar property can be considered as a much we'aker version of the Haar
property, and hence its name. A ¢ X n matrix with ¢ < n has the Haar property if every

subset of its columns C with |[C| < ¢ has numeric rank |[C|. Clearly the Haar property
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is quite a strong condition on the columns of A. Cheney (1966) discusses the importance

of the Haar property in approximation theory.

The weak Haar property is also weaker than the matching property (MP), an assump-
tion under which Hofman and McCormick (1982) solved the sparse range space problem.
The matrix A has MP if for every subset of its rows R, and for every subset of its columns
C, the submatrix Apc has

rank (Aprc ) = m(Agrc),

where m(Apc) is the matching number of the submatrix. Since we do not consider

subsets of the rows of A, but deal only with subsets of columns, wHP is a weaker condition

" on A than MP. Clearly, MP implies the weak Haar property.

In what follows, we extensively use two properties of matrices which we introduce
now. A £ x n matrix A, with ¢ < n, has the Hall property if every subset of k rows has
nonzeros in at least k columns. This condition is necessary and sufficient for the matrix

to have a complete (row-perfect) matching.

Theorem 8.1. (Philip Hall Theorem) A has a complete matching if and only if it has
the Hall property.

Bondy and Murty (1976) present a proof. @

A stronger condition on A is the Strong Hall property. A ¢txn matrix 4, with ¢ < n,
has the Strong Hall property if every subset of 0 < k < n rows has nonzeros in at least
k + 1 columns. The terms Hall property and Strong Hall property are due to Coleman,
Edenbrandt, and Gilbert (1983).

Theorem 8.3. (Circuit Theorem) If A has wHP, then n(u) is a circuit.

Proof: Let C be the set of columns in the dependent set n{u), and let C have nonzeros

only in the row set R. For ease of notation, denote by B the submatrix Agc.

We first show that B has the Strong Hall Property. Consider any subset S of k rows
of B. S is matched in M to k columns, all of which are in C. If the unmatched column

u has a nonzero in any of the rows in S, then S has nonzeros in at least k + 1 columns.

Suppose that u has no nonzero in S. Since rows in S are reachable from u by
M -alternating paths, there must exist a column, not matched to any row in S, with a

nonzero in S. Again, S has nonzeros in at least k + 1 columns.
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Let b be any column in B. Since B has the Strong Hall property, B \ b has the Hall
Property. By Theorem 3.1, the necessary and sufficient condition for a matrix to have a
complete matching is that it should have the Hall property. Hence B \ b has a complete
matching of size |R|. Since A has wHP, the rank of B \ b is also |R[, and so the columns

in B \b are linearly independent. Since B is dependent, it follows that n{u) is a circuit.

Our assumption of wHP is not a restrictive one; suppose A does not have wHP, and in
particular that it does not hold for n(u). By construction, the matching number of n(u)

is |n(u)| - 1, and its rank is now less than this number. But n(u) is a dependent set, and

' so it contains at least one subset that is minimal and dependent. Define the submatrix B

as in the proof of Theorem 3.2. Since n(u) does not have wHP, B is rank deficient. As in
Section 2, the L Q decomposition of B can be used to construct a null vector, and hence

a minimal dependent set of columns of B.

Theorem 3.3. (Consolation Theorem) If n(u) does not have wHP, it contains a circuit.

Further, a numeric factorization of n(u) can construct one such circuit. §

Theorem 3.4. Every circuit of a matrix A with wHP can be consiructed by Algo-

rithm 3.1 from some maximum matching M of A.

Proof: Let C be the set of columns in a circuit, and let R and B be as in the proof
of Theorem 3.2. Denote |C| by ¢, and distinguish any one column of B as u. We claim
B \ u has the Hall property.

Suppose not. Then R has a subset of k rows adjacent to fewer than k columns, for

some k. The submatrix B then looks like Figure 3.4.

(When we say B looks like a figure, we mean its columns and rows can be permuted to
the structure shown in the figure.) The submatrix B then contains a dependent set of

columns of size ¢ — k, violating the minimality of C. So B \ u has the Hall property.

Again by Theorem 3.1, B \ u has a complete matching M;. Partition A as shown in
Figure 3.5.
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] <k 2c~k
k (1]
e—k-1
Figure 3.4
The submatrix B .
u C c
R
R |o 0

Figure 3.5.
A partition of A.

In any maximum matching of A, the row set R can match only to the column set
C. Let M2 be a maximum matching of the submatrix Aﬁ&' The required maximum

matching is MjuU M2. B
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4. A Characterisation of Sparsest Null Bases

To solve (NSP), we clearly need to recognize when a null basis we have constructed is the

sparsest possible basis. In this section, we characterize sparsest null bases by means of a

" tgreedy’ algorithm, which chooses at each step a sparsest possible null vector to be in the

basis.

Algorithm 4.1 (Greedy Algorithm). Given a ¢ X n matrix A with rank(4) =r < ¢,
find a null basis N.
fori=1,...,n—r do
find a sparsest null vector n;
such that rank ((ny,...,n;)) = 1.

od
N = (nl,-..,nn—').

Theorem 4.1. (Optimality Theorem) The matrix N is a sparsest null basis of A if and
only if it can be constructed by the greedy algorithm.

Algorithm 4.1 is greedy, since it augments the partial null basis at each step by
a sparsest null vector linearly independent of those previously chosen. Theorem 4.1 is
a surprising result; locally greedy strategies seldom lead to globally optimal solutions
to optimization problems. Its proof uses network flow theory and matroid theory. No
previous knowledge of these subjects is required by the reader, since our discussion is
more or less self-contained.

Let the j-th component of a vector z be denoted by (z);. (This should not to be

confused with the notation for a vector, say n;.) We define the support of z, S(z), to be
S(2) = {i: (2); #0).

Since circuits are minimal dependent sets of A, for a circuit ¢, there cannot exist a null

vector z with S(z) c S(¢).

Lemma 4.3. If c, d are circuits of A, and S(c) = S(d), then c is a scalar multiple of d.

Proof: Suppose the lemma is false. Then we can pick a scalar A such that (c); -

A(d); = 0, for some j € S(c). But then S(c — Ad) € S(c), and c is not minimal. @
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Hence circuits of A are unique to within a multiplicative constant. We now introduce
a linear algebraic concept from network flow theory, conformal decomposition, studied
first by Camion (1968), Fulkerson (1968), and Rockefellar (1969). Lemmas 4.2 through

4.4 follow immediately from their work.

A vector z conforms to a vector y if
(2); #0= (y); # 0, and sgn{(z);} = sen{(v);}-

Here sgn denotes the sign function. For example, let

sgn(z) =(+ 0 -0+ 0)
sgn(y) =(++ -0+ - ),

then z conforms to y, but y does not conform to z. Note that if z conforms to y, then

S(z) € S(v).

Lemma 4.8. Given a null vector n, there exists a circuit ¢ that conforms to it.

Proof: Again, the proof is by contradiction. Choose a null vector z with the smallest
|S(2)| such that no circuit of A conforms to it. Let ¢ be a circuit with S(c) c S(z).
Define the set

J={j:(c); #0, and (¢); and (); disagree in sign }.

J is not the empty set, else ¢ would conform to z. Let

Consider the vector z = z +ac. By construction, z conforms to z, and S(z) € S(z). By

the selection of z there is a circuit d that conforms to z. But then d conforms to z. §

We can now apply Lemma 4.3 repeatedly to get

Lemma 4.4. A null vector z can be expanded in a sum of distinct circuits
z=cy+---+cp,

where each circuit c¢; conforms to z. |
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We call the above expansion the conformal decomposition of a null vector of A. It is
not necessarily unique. A more general decomposition exists for a vector of any subspace
of ®", and is discussed by both Fulkerson and Rockefellar. We can now use Lemma 4.4

to prove that we need concern ourselves with only circuits to solve (NSP).

Theorem 4.5. Each sparsest null vector n; chosen by the greedy algorithm is a circuit.

Proof: The proof is by induction on i. The result is clearly true for ny. By the

inductive hypothesis, assume that the theorem is true for all nj, where 1 < j <.

Suppose that n; is not a circuit. Conformally decompose n; into a sum of circuits. At

_ least one of the circuits in this sum, say ¢, must be linearly independent of (n1,...,ni—1)

since n; is independent of them. Since n; is not a circuit, S(c) € S(n;), and c is a sparser

null vector than n; which the algorithm could have chosen at this step. @

A similar argument can be used to prove

Theorem 4.8. Each column of a sparsest null basis N is a circuit.

Theorem 4.6 states that the only dependent sets of interest in (NSP) are circuits. Since
the greedy algorithm chooses only circuits by Theorem 4.5, the possibility now looms that
the greedy algorithm could find a sparsest null basis. As Theorem 4.1 states, this suspicion
is correct; a stronger result holds, namely, every sparsest null basis can be found by the
greedy algorithm.

We now develop the matroid theory needed to prove the Optimality Theorem (Theo-
rem 4.1). Let C be a finite set. Some of the subsets of C are defined to be independent;
a subset of C that is not independent is dependent. Let

¥ ={ICC:Iisindependent}.

We consider the sitnation when the independent sets satisfy the following two properties:

(M1) All subsets of an independent set are independent. (The empty set is independent by

this property.)

(M2) Let I, and Ip4; be independent sets with p and p + 1 elements respectively. Then

there is an element ¢ € Ipy; \ Ip such that I, + c is independent.

Let the family of independent sets X satisfy (M1) and (M2). Then the structure
C = (C,}) is defined to be a matroid.
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The reader may find it convenient to think of C as the set of columns of a matrix.
An independent subset of C has linearly independent columns. By linear algebra, one
can establish that both (M1) and (M2) hold. Hence C is a matroid, and we call it the

matroid generated by the columns of the matrix C.

A minimal dependent set of a matroid is called a circuit. We have used the word
circuit to denote a minimal linearly dependent set of columns of a matrix. This usage is
consistent with the definition of a circuit of a matroid. What we call a circuit of a matrix

is indeed a circuit of the matroid generated by the columns of the matrix.

Hassler W hitney (1935), in founding matroid theory, observed that (M1) and (M2)
were satisfied by matrices, and generalized these properties of linear independence of
matrices to other combinatorial structures. Matroids that can be generated by the columns
of matrices are called matric matroids. Columns of vertex-edge incidence matrices of
graphs generate graphic matroids. There exist matroids that cannot be generated by any

matrix, and so matroid theory is a proper generalization of linear algebra.

Consider now the following problem on a matroid C. Each element ¢ € C has a
non-negative weight w(c) given to it. The weight of an independent set is defined to be
the sum of the weights of its elements. A maximal independent set is an independent set
all supersets of which are dependent. We call such a set a basis of C. Every basis of C
has the same size, which is called the rank of C. We are required to construct a basis of

minimum weight.

Edmonds (1971) and Rado (1957) proved that the locally greedy strategy for solving
the above problem constructs a basis of minimum weight. To state this result more

precisely, consider the following algorithm:

Algorithm 4.2 (Matroid Greedy Algorithm).  Given a matroid ¢ = (C, ¥ ), and non-
negative weights w(c) for each element ¢ € C, find a basis N of minimum weight.

1. [initialize] Let N be the empty set.

2. |[augment partial basis]
Choose ¢ € C \ N of minimum weight such that N + ¢ is independent.
N:=N+¢;C=C\e.

3. Repeat 2 until further augmentation is not possible.

Theorem 4.7. A basis N has minimum weight if and only if it can be constructed by
Algorithm 4.2.

A proof may be found in Lawler (1976). In addition to the work of Edmonds and
Rado, it draws upon a result of Gale (1968). 8
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We state one more result before proving the Optimality Theorem.

Theorem 4.8. A matroid of rank r has at most ('_'*'_1) circuits.

Welsh {1976) contains a proof. §

Proof of Theorem 4.1:

By Theorems 4.5 and 4.6, we can restrict our attention to circuits of A. By Theorem
4.8, A has at most ('_';l) circuits. Let C be the circuit matrix whose columns are all the
circuits of A. Thus

C = (cl,...,cq).

Let C be the matroid generated by the columns of C. Recall that S(cj) is the support
of the circuit ¢j. To each circuit c;, assign the positive integer weight |S(es)].

For the circuit matroid C, Algorithms 4.1 and 4.2 are equivalent under this choice
of weights. We can now conclude from Theorem 4.7 that a null basis N is the sparsest

possible if and only if it can be constructed by Algorithm 4.1. §-

We remark that if we wanted to find a basis of C of maximum weight, the locally
greedy strategy would work. Now, at each step, the greedy alkorithm would choose an

element of largest weight independent of elements previously chosen.

Unfortunately, the proof of Theorem 4.1 does not iéa.d immediately to a polynomial
time algorithm to solve (NSP). The difficulty is that the a matrix A of rank r might have
O(n") circuits.

It is difficult to determine the number of bases and circuits of a matroid. Let b(C)

denote the number of bases of a matroid €. The following bounds are easy to show:

1<b(C) < (':)

Theorem 4.8 gives an upper bound on the number of circuits of a matroid. Welsh (1976)
feels that most matroids have more bases than circuits. He cites W. Quirk and P. D. Sey-
mour, who show that graphic matroids have more bases than circuits. This result holds
when the graphs underlying these matroids do not have loops. Knuth (1974) studies these

numbers for matroids generated at random.
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5. The Structure of Sparsest Null Bases

Null space algorithms used currently to solve the Linear Equality Problem make use of
the variable-reduction technique proposed by Wolfe (1962) to construct null bases. We

assume that the ¢ X n matrix A has rank ¢t. The matrix A is partitioned as
A=(M U),

where M is a t x t nonsingular matrix. Then we construct the matrix

_a—1
v= (7M7Y,
In—t
Here I,_¢ is the identity matrix of dimension n—¢. Since AN = 0, the columns of N are
null vectors of A. Further, each of the last n — f rows of N has only one nonzero in it,
and so linear combinations of the columns of N cannot produce the zero vector. Hence

N is a null basis.

We call a basis with an embedded identity submatrix a fundamental null basis. How-
ever, sparsest null bases need not be fundamental. Choosing null bases constrained to have
this structure may cost us dearly in terms of sparsity. We may be constrained to construct

relatively dense fundamental bases where sparse non-fundamental null bases may exist.

But what structure should a sparsest null basis have? Theorems 5.2 and 5.3 attempt
to answer that question. First, we prove Lemma 5.1 which is needed in the proof of
Theorem 5.2. In what follows, by the value of a matrix we mean an assignment of nonzero

numerical values to its nonzero elements.

Lemma 5.1. Let V be a “tall and thin” matrix with n rows and m columns, where
n > m. Distinguish some elements of V as nonzeros and the rest as zeros. If V has at
least two nongzeros in each row, then there exists a vector z, and a value for V such that

Vz=0.

Proof: Let row i have |r;| > 2 nonzeros. We assign to any |ri| — 1 nonzeros the value
+1, and to the remaining element the value 1—|r;]. Choose z = (1...1 ). Multiplication

now shows that Vz=0. §
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Theorem 5.2. Let the matrix V be as in Lemma 5.1. Again, distinguish some of its

elements as zeros and the rest as nonzeros. V has rank m for all values if and only if it

-(2)

where Uy, is an m X m upper triangular matrix.

has the following structure:

Proof: The if part is obvious. We prove the only if part. Suppose that V' has rank m,

but does not have the structure claimed. Permute the rows and columns of V so that it

B C
V'(o R)'

where R is upper triangular and maximal with respect to this property. Since R is

has the structure

maximal, B has at least two nonzeros in each of its rows. By Lemma 5.1, we can now

find a vector z and numeric values for the nonzeros of B so that Bz = 0. Since

v(3)-o

we have constructed a null vector, and V does not have rank m. This contradiction

proves the theorem. §

We could conclude from this theorem that a sparsest null basis should have an em-
bedded upper triangular matrix, if we could assign any value to N. However, we are not
free to do so. We can assign any value to A; then, once the structure of N is chosen, the

values of the columns of N are uniquely determined to within a multiplicative constant.

Theorem 5.3 characterizes the structure of a sparsest null basis. This result is a
matroid generalization of a theorem on cycles in graphs proved by Stepanets (1964).
Unfortunately, Stepanets’s proof is in a Russian journal for which an English translation
is unavailable, and we feel his work is not widely known. His theorem is cited in the survey
paper by Turner and Kautz (1970). Our proof uses his ideas; we show they are valid in a
wider context.

Let A be a t X n matrix of rank r < t. We shall denote the set of columns of the
matrix A also by A. Let n(aj) denote a circuit of minimum cardinality containing the

column a;.
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Theorem 5.3. (Generalized Stepanets Theorem) Let the columns ay, ..., ax be chosen

such that
a1 € A,

az € A\n(a1), ...,
k-1
ar € A\ U n(a;).
=1
There exists a sparsest null basis N among whose columns are the circuits n{ay), ...,

n(ag).

k n—r—k

Figure 5.1.

The sparsest null basis N .

Proof: We prove the theorem by induction. Let ¢ = n—r, and denote the set (P \ p)un
by P—-p+n. l

Let P = (p1...pg) be any sparsest null basis of A. Pick n{ay) to be a circuit of
minimum cardinality containing the column a;. Since P is a basis, we can expand n(a,;)
as

n(ay) =ec1p1+ -+ CmPm-

We assume that all the coefficients c¢ in this expansion are nonzero. Of the circuits in
this equation, there must exist at least one circuit, say ps, which contains a;. Consider
the system

Py=P—pp+ n(al).
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Clearly P; is a null basis. Further, since n(a;) has minimum cardinality over circuits
containing a;, Py is a sparsest null basis.

Recall that for 1 < i < k, the i-th column a; is chosen so that
-1
a; €A\ U n(ag).
=1

For the inductive step, assume that P;_; is a sparsest null basis of A, having among
its columns n(a;), ..., n(aj—1), where each a; is chosen as claimed. We choose n(a;) to

be a circuit of minimum cardinality containing a;. Expand n(a;) in the basis P;_,,
"(ai) =cip1r+ -+ mPm,

where again each of the coefficients are nonzero. There is at least one circuit in this equa-
tion, say pj, which contains a;. The circuit py cannot be any one of n(ay), ..., n(aj-1)

by the choice of a;. Consider now the system
Pj = Pj_; — pn + n(aj).

As before, P; is a sparsest null basis of A.

We take N to be Pg. This completes the proof. §

Since A has only n columns, there is some k < ¢ for which choosing a column ag4y

is not possible, since the set differencing operation yields the empty set.

Corollary 5.4. If k = n—r in Theorem 5.3, then the system of circuits n(ay), ..., n(ag)

is a sparsest null basis N of A. |

A similar theorem can be proven for a null basis of circuits which has a maximum
number of nonzero elements. The proof proceeds as above by considering n(a) to be a

circuit of maximum cardinality containing the column a.

We remark that Theorem 5.3 does not help us to find the maximum value of k possible.

If it is equal to n — r, then N has an upper triangular submatrix with n — r columns.
6. The Complexity of (NSP) and its Variants

In Section 4, we showed that any sparsest null basis can be constructed by the greedy
algorithm. So we consider the following strategy to solve (NSP): design an algorithm that

finds a sparsest circuit linearly independent of the circuits chosen by the greedy algorithm
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in its previous steps. If we could design such an algorithm, then n — r applications of it

to the matrix A will solve (NSP).

Unfortunately, such a happy prospect is unlikely; we now discuss the reason why. The
greedy algorithm chooses a circuit of minimum cardinality in its first step. We call such
a circuit a minimum circuit. The cardinality of a minimum circuit is the girth of A.
(Strictly, we should talk of a circuit and the girth of the matric matroid of A. However,

for the sake of simplicity, we will speak of a circuit and the girth of A.)

Theorem 6.1 shows that the problem of finding a minimum circuit is a hard one;

indeed, it belongs to a class of notoriously hard problems for which no good algorithms

. are known. This is in spite of intense effort to construct such algorithms. Unfortunately,

no one has been able to prove the non-existence of a good algorithm for this class of
problems, either. Theorem 6.1 states that the minimum circuit problem is NP-complete.
Hence, it is as hard as any of the hard problems in the class NP. For the reader unfamiliar
with this terrain, Garey and Johnsop (1979) is an excellent introduction to the theory of

NP-completeness.

Theorems 6.1 and 6.2 were proved also by Larry Stockmeyer; his proofs can be found

in McCormick’s thesis (1983). We obtained our results independently.

Theorem 6.1. (Minimum Circuit Theorem) Given a positive integer k, it is NP-complete

to find a circuit of A of cardinality k or less.

Proof: It is easy to see that this problem is in NP. We will transform CLIQUE to the

minimum circuit problem.

CLIQUE: Given a graph G = (V, E) and a positive integer k,

find a clique of size at least k.

Garey and Johnson (1979) prove that CLIQUE is NP-complete. Let n = (’2‘) , and let_

B(G) be the vertex-edge incidence matrix of G. Construct the matrix with the structure

w@= (3 5e)

where Cy and Cs are fully dense matrices with n — 1 ‘non-vertex’ rows. D is a diagonal

* matrix with |[V| ‘vertex’ rows. We claim that A(G) has girth n + k if and only if G has

a clique of size at least k.
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For a positive integer £, and any set K of ¢ vertex rows, there are at most ¢ columns
of D, and (;) columns of B(G), adjacent to no vertex rows outside of K. Any set of
columns of A(G) is incident to all n — 1 non-vertex rows. So any set of (;) + ¢ columns
of A(G) is adjacent to at least n — 1+ ¢ rows. Since the number of columns of a circuit is
one greater than the number of rows it is incident on, the girth of A(G) is at least n + k.

It is now easy to see that if G has a clique of size k then the girth of A(G) is n + k.

Conversely, if the girth is n + k, A(G) has a set of n + k columns adjacent only to
n+k—1 rows. Since n — 1 of the rows in this set are non-vertex, there are k vertex
rows. D has at most k columns adjacent only to k vertex rows, hence B(G) contributes

. n columns to the minimum circuit. So G has a k-clique. §

Theorem 6.1 leads to an easy proof that (NSP) is NP-hard. We do not claim that
(NSP) is NP-complete since we do not know if (NSP) is in NP. Hence (NSP) is at least
as hard, if not harder than, any of the hard problems in NP.

Theorem 6.2. (Sparsest Null Basis Theorem) Given a positive integer k, it is NP-hard

to find a null basis of A with k or fewer nonzeros.

Proof: By Theorem 4.1, every sparsest null basis contains a minimum circuit. By

Theorem 6.1, it is NP-complete to find a minimum circuit. §

If A is restricted to be the vertex-edge incidence matrix of a graph G = (V,E), a
minimum circuit can be found in O(|V'||E|) time by an algorithm of Itai and Rodeh (1977).
In this situation, a minimum circuit corresponds to a cycle in the graph with the minimum
number of edges. (This correspondence is discussed at greater length later in this section.)
Recall that matroids generated by vertex-edge.incidence matrices of graphs are called
graphic matroids. If the matroid ¢ = (C,I) is graphic, the set C is the set of edges of

the graph G, and independent sets are subsets of edges that do not contain cycles.

Every matroid has a dual defined on the same ground set C. A basis of the dual
matroid is the complement of a basis of the primal matroid. A matroid dual to a graphic
" matroid is cographic. Minimum circuits of cographic matroids can also be found in poly-
nomial time.

A matrix A is totally unimodular if every subdeterminant of A is either +1, —1,
or 0. The matroid generated by such an A is called a totally unimodular matroid.
Seymour (1980) has shown that any totally unimodular matroid can be decomposed into

a matroid sum of graphic matroids, cographic matroids, and copies of a special matroid
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on ten elements. From this result it follows that minimum circuits of totally unimodular

matroids can be determined in polynomial time also.

We now proceed to show that constructing a null basis of a matrix A with the maxi-
mum pumber of nonzeros is also NP-hard when the columns in the basis are circuits of A.
This problem is the Maximum Null Space Problem (MNSP). This result is obtained by
first showing that an associated graph problem is NP-complete. We introduce the graph
theoretical concepts necessary now. A discussion of these concepts may also be found in

Christofides (1975).

Let G = (V,E) be a connected graph, and let M(G) be its vertex-edge incidence
. matrix. For ease of notation let v = |V]|, and ¢ = |E|. The matrix M (G) has a row for
each vertex v € V, and a column for each edge ¢ € E. For an edge ¢ = (u,v), the column
corresponding to e has the element 1 in the rows corresponding to vertices u and v, and
zeros in all other rows.

A cycle in the graph G is a sequence of vertices vy, ..., vg_1, g = v;, Where the
vertices vy, ..., vg_y are distinct, and (vj—j,v;) is an edge in E for i = 2, ..., k. We
denote a cycle and its edge incidence vector by I'. A component 7; of this vector is 1 if

ej is an edge of the cycle, and zero otherwise.

Since each vertex in a cycle is the endpoint of exactly two edges, we have
M(@)rT=o,

where the arithmetic is performed over the binary field. To see this, consider the matrix-
vector product as a linear combination of the co.l.umns of M(G). In this sum, only those
edges in the cfcle I' are included. If v is an endpoint of the edge ¢;, there is exactly one
other edge in the cycle incident on v. So the linear combination yields a zero in the row
corresponding to v. This is true for each vertex in the cycle, so T’ T is a null vector of
M(G) Further, it is not possible to omit any edge of the cycle if ' T is to be a null vector

“of M(G). So this vector is a circuit of the matrix.

Corresponding to a null vector of M (G), there is a dependent set of columns of the
matrix. Let v be the endpoint of one edge in this set of columns. There must be at least
one other edge incident on vertex v, else this would not be a dependent set. Hence the
degree of every such vertex is at least two. This set of edges then contains a cycle. Thus

every circuit of M (G) corresponds to a cycle in G.
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The cycle space of a graph G is the null space of its vertex-edge incidence matrix
M(G). A cycle basis of a graph is a set of cycles that forms a basis for its cycle space. Let
the Maximum Cycle Space Problem (MCSP) be that of determining a set of cycles which
forms a basis of the cycle space of a graph, such that the total number of edges in the
basis is maximum. A maximum cycle in a graph is a cycle with the maximum number of

edges in it. A maximum cycle basis is a cycle basis with the maximum number of edges.

Theorem 6.3. Given a positive integer k, it is NP-complete to find a cycle basis of a

graph G with k or more edges.

Proof: This problem is easily seen to be in NP. Consider a greedy algorithm that chooses
a cycle with the largest number of edges linearly independent of cycles previously chosen.
Let the edge incidence vector of each cycle of G be a column in a matrix, the cycle matrix
of G. The set of columns of this matrix generates a matroid. Each cycle I is given a
weight K — |I'|, where K is a suitably large positive integer, and |T'| is the number of
edges in the cycle. Algorithm 4.2 on this matroid under this weighting scheme is now

equivalent to the greedy algorithm we are considering.

So a cycle basis is maximum if and only if it can be obtained by the greedy algorithm.
Since the algorithm finds a maximum cycle in its first step, every maximum cycle basis
contains a maximum cycle. However, it is NP-complete to find a cycle with k or more

edges in a graph (Garey and Johnson (1979)). @

It is possible to use the above theorem to prc;\}e that (MNSP) is NP-hard. We proceed
by defining a (‘iirected graph D from an undirected graph G, by arbitrarily directing the
edges of the latter. The vertex-edge incidence matrix M (D) of D has v vertices and ¢
edges. Let u be the tail, and v the head of a directed edge {u,v}. The matrix M (D)

has in the column corresponding to this edge, the entry +1 in the row corresponding to

"v, -1 in the row corresponding to u, and zeros in all other rows.

A cycle in D is defined to be a cycle in G. Let I'(D) denote a cycle in D and also
its edge incidence vector. We assign arbitrarily the clockwise orientation to all cycles in
D. If e; is an edge in (D), the component 7v; of its edge incidence vector is +1 if the
directions of the edge and the cycle agree, and —1 if they disagree. If ¢; is not an edge

of the cycle I'(D), the component v, is zero.

We claim that
M(D)r(p)T =o,
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where arithmetic operations are over the reals. Let v be any vertex in the cycle r(D),
and let edges e; and ez be incident on v. Consider the result of the linear combination
of columns e; and ez in the row corresponding to v. If v is the head of both ¢; and ez,
since the edges disagree in orientation, the sum is zero. A similar result holds when v
is the tail of both edges. If v is the head of one edge and the tail of the other, now the
edges agree in orientation, and the sum is zero again. Since this is true of all vertices in
the cycle, the claim is true.

As before, a null vector of M (D) contains the edge set of a cycle in D. Hence circuits

of M (D) correspond to cycles of D.

Theorem 6.4. Given a positive integer k, it is NP-hard to find null basis of A with k

or more nonzeros, if each column in the basis is a circuit.
Proof: Restrict A to vertex-edge incidence matrices of directed graphs. @
The Fundamental Null Space Problem

Since (NSP) is NP-hard, we cannot expect to construct sparsest null bases by a polynomial
time algorithm. We now ask how hard it is to construct sparsest fundamental null bases.

Re:.all that a fundamental null basis has the structure

N=(If_,l)'

We are lowering our sights in terms of sparsity, since sparsest bases need not be funda-

mental.

We formally state the Fundamental Null Space Problem:

(FNSP) Given a t X n matrix A of rank r < ¢, and a positive integer k,

find a fundamental null basis N with & or fewer nonzeros.

Unfortunately, (FNSP) is also NP-hard. We prove this by showing that an associated
graph problem is NP-complete. Hence we now introduce the additional graph theoretic
concepts necessary to prove this result. More details may be found in Christofides (1975).

As before, let G = (V,E) be a connected graph, and let v = V|, and ¢ = |E|. A
spanning tree T of G is a connected subgraph with v vertices and v — 1 edges. Hence
T = (V,E(T)), where E(T) denotes the edges of G in T. The corresponding cotree T
is the subgraph of G induced by the edges not in T. The vertex set of the cotree is the
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set of end points of the edges in E(T). E(T) will be the edge set of T. It is clear that
E =E(T)u E(T). In obvious abuse of notation, we shall say an edge ¢ € T when we

mean e € E(T). Figure 6.1 shows a graph, its spanning tree, and the associated cotree.

et ey
€6 —*
e
e4 2
5
G T .
Figure 6.1.

A spanning tree and cotree of a graph.

Each edge e € T creates a unique cycle in the graph T + e, which we denote by~
C(T,e). We call this a fundamental cycle created by the edge e with respect to T. Since
T has v — 1 edges, T has w(G) = ¢ — v + 1 edges. Hence there are w(G) fundamental
cycles with respect to T. This number is the cyclomatic number of G. (This number is

also referred to in the literature as the nullity or the first Betti number.)

The fundamental cycle matrix is a matrix & = [¢¢;] with w(G) rows and € columns,
where ¢;; = 1 if ¢; is an edge of the cycle ®;, and zero otherwise. If the edges of T are

numbered from 1 to v — 1, and edges in T from v to ¢, then ® has the structure
o= (%n I),

where I is the identity matrix. For the graph G and spanning tree T in Figure 6.1,

€1 €2 €3 €4 €3 ¢€g
o, { 1 1. 1 1 0 0
o= %L 1 1 0 0

&s\0 1 1 0 0 1

M e’
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Let F(T) be the total number of edges in the w(G) fundamental cycles with respect
to T. Hence
F(T) =3 |6(T.e)l

€T

This is also the total number of nonzeros in the fundamental cycle matrix.

Let the Fundamental Cycle Space Problem be the following:

(FCSP) Given a graph H, and a positive integer B,
find a spanning tree U for whick F(U) < B.

. Theorem 6.5. (FCSP) is NP-complete.

A proof of this theorem may be found in Deo, Prabhu, and Krishnamoorthy (1982).
We proved this theorem independently, unaware of their work. However, our reduction
is from the same problem used by these authors, the simple network design problem

(Johnson, Lenstra, and Rinnooy Kan (1978)). Hence we omit the proof.

In the rest of this section, we reap the pay-offs from Theorem 6.5. First we show that

. (FNSP) is NP-hard.

Given a connected graph G = (V,E), let D be the directed graph obtained by
directing the edges of G arbitrarily. The vertex-edge incidence matrix M (D) is defined
as before. A spanning tree of D is defined to be any spanning tree of G. The fundamental
cycle matrix of D, ®(D) has w(D) = e—v+1 rows and € columns. We arbitrarily assign
the clockwise orientation to all cyclesin D. Let ¢; be an edge of a cycle &;. Then ¢;; is
+1 if the direction of e; agrees with the orientation of the cycle ®;, and —1 otherwise.

If e; is not an edge of the cycle ®;, then ¢;; is zero.

Each vertex in a cycle is the endpoint of exactly two edges of D. It is now easy to

see that as before,
M(D)#®(D)T =0,

where the arithmetic is over the real field. So the matrix (’(D)T is in the null space of
M (D). Since it is fundamental, it is also a null basis of M (D). Since a circuit of M (D)
is a cycle of D, a sparsest fundamental null basis for M (D) is a sparsest fundamental

cycle matrix for D.

Theorem 8.8. (FNSP) is NP-hard.

Proof: Restrict A to vertex-edge incidence matrices of directed graphs. 1§
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ny nz

ty body : 0

ts head
Figure 7.1.

The Dulmage-Mendelsohn decomposition of a matrix with full rank.

There is a problem dual to (FNSP), the Fundamental Range Space Problem:

(FRSP) Given a t X n matrix A of rank r, and a positive integer &,

find a fundamental basis A for its row space with k or fewer nonzeros.

It follows that A has the structure
A= (I, B).

Theorem 8.7. (FRSP) is NP-hard.

- ()

be a fundamental null basis of A. (We assume the columns of A are permuted to corre-

Proof: Let

spond to N.) Choose any r linearly independent rows of 4, and call this submatrix A.

Partition the columns of A as

A= (4, 4,)
to conform to the rows of N. Since A and N are orthogonal,

B = A'4,.

Let

AZ = (If B ) .
HAisa sparsest fundamental basis for the row space of A, then N is a sparsest funda-
mental null basis. Since (FNSP) is NP-hard, thé theorem follows. &

7. The Dulmage-Mendelsohn Decomposition

Given a f X n matrix A of rank ¢, suppose we can partition it as shown in Figure 7.1.
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Here t; = n;, t2 < nz, t = ; + t2, n = n; + n2, and all elements of the upper right
submatrix are zero. Then we need consider only the lower right submatrix—the head-—of
A to solve (NSP). This follows, since the dimension of the null space of A is n — ¢, which
is equal to nz — t2. The Dulmage-Mendelsohn decomposition gives a partition of A of

this form.

If A does not have a complete matching (so A does not have rank t), the partition
becomes more general, and has the structure shown in Figure 7.2. The matrix now has a
tail in addition to the body and head. The head has the Strong Hall property, which will
be useful in proving theorems about sparse null bases. So we develop this decomposition
. in this section. We state the theorems and indicate how they are applied in solving (NSP).
Our proofs of these theorems use matching theory, and are new. However, they are not

presented here; the proofs may be found in Pothen (1984).

Let G = (C,R, E) be the bipartite graph of the matrix A. The vertex set C is the
set of columns, and R is the set of rows of A. Let M be a maximum matching in G. In
Figure 7.2, we use thick lines to represent the edges of G that are in M. M induces a
canonical decomposition of G which we shall call the Dulmage-Mendelsohn decomposition.
The reader might find it helpful to recall the matching theory discussed in Section 2.3.
By the notation C M, r, we mean that there is an M -alternating path from ¢ to r, for

some ¢c € C.

We use M to define the following sets:

Cy = {c € C : ¢ M —unsaturated } Ry = {r € R:r M—unsaturated }
Ru(Cy)={reR:cy 5 r} Cm(Ry) = {ceC:Ry 4 ¢}
C'M(Cu)=‘{c€C:Cu-A—‘+c} RM(Ru)={rGR:Ru—A1+r}

Cmm = C\ (Cy U CM(Cy) U Cum(Ry))

Rapar = R\ (Ry U Rp(Cu) U Rm(Ry) ).
~ In words, Ry and Cy are the sets of M -unsaturated nodes in R and C respectively.
" Rp(Cy) is the set of matched rows reachable by M -alternating paths from Cy. Ca(Ry)
is the set of columns reachable by M -alternating paths from Ry. Ca{Cy) and Rp(Cu)
have similar interpretations. Rasas and Cpgas are the remaining rows and columns, re-
spectively.

For ease of notation, let C; = Cap(Ry), C2 = Cumm, Cs = Cy U Cp(Ry). Similarly,

let Ry = Ry U Rp(Ry), R2 = Rypm, and Ry = Ry(Cu).



82 The Sparse Null Space Basis Problem

Theorem 7.1. (Coarse Decomposition Theorem) These sets define a structural decom-

position of G shown in Figure 7.2. The sets C;, R;, for i = 1,2,3, are independent of

the maximum matching M. |

Cy
o
CMM RMM
« Ry
Cl 02 03

R, tail 0

R2 body

Ry head

Figure 7.2.

The Dulmage-Mendelsohn decomposition.
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The structural decomposition has the following features:
(i). adj(Cy) € Rm(Cu).
(ii). adj(Ry) € Cm(Ru).
(iii). Ra(Ru) is not adjacent to Car{Cuy).
(iv). G(Cnnm, Raang) is perfectly matched under M.
(v). Cam(Cyp) is not adjacent to Ragas.
(vi). Ras(Ry) is not adjacent to Caqas.
We call Ag,c, the tail, Ar,c, the body, and AR,c; the head of the matrix 4. Recall

that a ¢ x n matrix has the Strong Hall property if every subset of 0 < k£ < n rows has

nonzeros in at least £ + 1 columns.

Theorem 7.2. The head of A has the Strong Hall property. Also, the transpose of the
tail has the Strong Hall property. §

The head and the tail can be further decomposed into their connected components.
The body has a block lower triangular decomposition, which has been extensively used to

solve large systems of sparse linear equations.

Theorem 7.8. (Fine Decomposition Theorem) A perfect matching induces the block
lower triangular decomposition of the body shown in Figure 7.3. The diagonal blocks (the
Dulmage-Mendelsohn blocks), {As}, for i = 1, ..., k, are square and have the Strong
Hall property. The column set C; and the row set R; associated with each block A are

independent of the matching. 1§

We now study the implications of the coarse and fine decompositions for (NSP).

If the matrix 4 has a non-empty tail, it is easily seen from Figure 7.2 that A does
not have full row rank. Hence if rank(A4) = ¢, then A does not have a tail in its coarse
decomposition. It might still have a body, and in general, has the structure shown in
Figure 7.1. From the discussion immediately following that figure, only the head of A is

relevant in solving (NSP).

Consider the situation when rank(A4) < ¢, but A has the weak Haar property. Let
the tail, head, and body be ¢; X ny, t2 X n2, and {3 X ng submatrices, respectively. Here

ty >ny,lo=no, tg<ng,t=1t; +t+1ts,and n =ny + nz+ ng.
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Ci Cs ... Ci
Ry
R, 0
Ry
Figure 7.3.

The block lower triangular decomposition.

From Figure 7.2, the matching number of A is m(A) = ny+n2+ts. Since A has the

weak Haar property, rank(4) = m(A). Hence the dimension of the null space of A is
n—m(A)= n1+n2+n3—(n1+n2+t3)= ng — is.

Again, we need consider only the head of A to solve (NSP).

In Section 8, we consider an algorithm to construct null bases; there we show that
the head does not need to be explicitly identified or isolated to make use of the above
simplification. The algorithm will correctly pick out the head to construct the null basis.

Thus, we save the work needed to isolate the head.

When A fails to have full row rank, and does not have the weak Haar property,
the tail, body, and the head need to be identified, and the ranks of these submatrices
determined.

We have already used the Strong Hall property of the head in proving Theorem 3.2.
For an unmatched column u, Algorithm 3.1 constructs a dependent set n(u) which has
the Strong Hall property. When n(u) has the weak Haar property, we proved that it is
a circuit of A. In Section 10, we use the Strong Hall property of the head to design a
‘myopic algorithm’ to construct null bases.

The fine decomposition of the body described in Theorem 7.3 is valid for any square

matrix which has a perfect matching. An important use of this decomposition is in
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finding L Q (or LU) factorizations of sparse matrices. It suffices to factor each of the

square diagonal blocks instead of the entire matrix. As an example, consider a matrix A

Au 0 )
A= ( ,
A21 Agg

" where A;; are square for i = 1,2. Also, let the factorizations

partitioned as

A1 Q1 = Ly,

and
A22Q2 = L22

be available. Then since

(Au 0)(Q1 0)=(ILu 0)
Ay A2 0 Q: A L/’

we have an L Q factorization of A. This results in enormous computational savings.

In Section 9, we incorporate the fine decomposition into an algorithm that constructs
null bases. Instead of decomposing the body, however, we decompose a square submatrix of
the head. This submatrix is constructed to have a perfect matching, and so Theorem 7.3
holds. This idea leads to savings in the work needed to compute null bases. Further,
surprisingly, the complexity of the combinatorial algorithm that constructs the structure

of the null basis is also reduced.

The coarse and fine decompositions were discovered by the Canadian graph theorists
Dulmage, Mendelsohn, and Johnson. They proved Theorems 7.1, 7.2, and 7.3 in the series
of papers, Dulmage and Mendelsohn (1958), (1959), (1963), and Johnson, Dulmage, and
Mendelsohn (1962), and summarized their work in Dulmage and Mendelsohn (1967).

The fine decomposition theorem has been used to reduce the computational effort
needed to solve sparse linear systems of equations. Howell (1976) contains a proof of
Theorem 7.3. George and Gustavson (1980) prove Theorem 7.3 using linear algebraic
techniques.

Algorithms that finely decompose a matrix by finding a maximum matching have
been implemented by Gustavson (1976), and Duff and Reid (1978). A discussion of the
factors involved in successful implementation of these algorithms, and an analysis of their

performance may be found in Duff (1977).
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The coarse decomposition is not as widely known. It is valuable in solving sparse linear

least squares problems, as pointed out by Coleman, Edenbrandt, and Gilbert (1983).

The reader is warned that the terminology used here differs from those of Dulmage,

Mendelsohn, and Johnson, and from those of other workers cited.
8. A Fundamental Null Basis

We now show how Algorithm 3.1, which constructs circuits, can be used repeatedly to
find a null basis of A. The basis we construct is a fundamental null basis, one with an

identity submatrix. Hence this is a sparse adaptation of the variable-reduction technique.

We assume that rank(A4) = t. Any matrix with full row rank has a complete matching
from our discussion in Section 7. We also assume that A has the weak Haar property.

The following algorithm constructs a null basis of A.
Algorithm 8.1.

1. [initialize] Let N be the empty set.

2. [match]
Find a complete matching M of A;
partition A = (M U).
3. [construct basis]
for u; € U do
construct n(u;) by step 2 of Algorithm 3.1;
N := (N, n(y;));
od

Theorem 8.1. Algorithm 8.1 constructs a fundamental null basis of A.

Proof: By Theorem 3.2, each dependent set n(u;) is a circuit. This circuit contains
only one unmatched column, namely u;; the others are matched columns that are reach-
able from u;. Hence for 1 < i < n ~ ¢, the column u; is contained only in n(u;). Hence
N bas an (n — t)-dimensional identity submatrix. Further, N is a null basis since linear
combinations of the circuits n(u;) cannot produce zeros in any of the row positions of N

corresponding to the columns u;. J§
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This algorithm constructs a null basis of the form
-M~lU )
N = ( .
In—l
Step 3 of the algorithm predicts the structure of the basis N. This information can be

used to allocate storage for the nonzeros in N. Thus a static data structure for N can

be used when the null vectors are being computed.

Recall that r is the number of nonzeros in A. As discussed in Section 3, step 2 of the
algorithm requires O(r (n + t)l/2) time. Each circuit can be constructed in O(r) time,
so step 3 requires O(r(n — t)) time in the worst case. However, this algorithm can be

modified to reduce its complexity. This modification is described in the next section.

Since A is sparse, the expected behavior of this algorithm will not be as bad as the
above bounds might imply. Duff (1977) reports his numerical experience with computing
the LU decompositions of several square sparse matrices of dimensions 50 and 100. In his
experiments, finding a maximum matching takes about O(r) + O(n) time. He finds that
the combinatorial phase, which includes finding a maximum matching and the Dulmage-
Mendelsohn blocks, typically takes about the time needed to solve a linear system of
equations from the triangular factors of the matrix. Further, the time needed for either
of these steps is insignificant compared to the time needed to compute the L U factors of

the Dulmage-Mendelsohn blocks.

Since we consider only rows and columns that can be reached by M -alternating paths
from U, only the columns of A in the head of A are used in the construction of N. If A
has a non-empty body, Algorithm 8.1 automatically excludes it since columns in the body
cannot be reached from U by M -alternating paths. Thus the head of A does not need to

be identified or isolated in this situation.

To compute N, it might appear that we have to solve n — t systems of equations of

the form

each involving a dependent set of columns of A associated with a null vector in N. Then
we would have to compute LU or Q R factors for each such submatrix C; to compute the
null basis. However, this turns out to be unnecessary; we need only LU or Q R factors
of each of the Dulmage-Mendelsohn blocks of the square submatrix M. We discuss this

feature in the next section.
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9. Computational Issues

In this section we discuss the issues involved in computing the fundamental null basis N
constructed by Algorithm 8.1. In so doing, we will find we can modify the algorithm itself

to reduce its complexity.

Let the complete matching M partition A into the set of matched columns M and
the set of unmatched columns U. Since M is a square matrix with a perfect matching,
by Theorem 7.3 we can find its Dulmage-Mendelsohn blocks Myy,..., Mgg. Let each My

have the column set C; and the row set R;.

Theorem 9.1. Let u be an unmatched column of A. If ¢ and d are columns in C;, and

ifu—)\—l->c, then u—'!» d.

Proof: Since columns ¢ and d are in C;, by Theorem 7.3, there is an M -alternating
tour from ¢ to d. The M -alternating path from u to ¢ concatenated with the tour

contains an M -alternating path from u to d. 1

Theorem 9.2. Let u be an unmatched column of A. Let u M, ¢ for ¢ € C;, and for

some j > i, let d € Cj. If Mj; contains at least one nonzero element, then u —A-‘-v d.

Proof: Since Mj; is nonzero, there is an edge between a column e € C; and a row
r € Rj. Let r be matched in M to column f of C;. From Theorem 9.1, u M, e. This
path can be continued by the edges (e,r),(r,f) to f € C;. Again by Theorem 9.1, since

J and d are in C,-,uilvd. B

By Theorem 9.1, if the circuit n(u) contains one column from C;, then it contains all
columns of C;. By Theorem 9.2, if the circuit n(u) contains the columns in C;, and C;

has nonzeros in a row set R; for j > i, then n(u) contains all the columns in Cj;.

From a bipartite graph G, we define a condensed bipartite graph G* as follows: Each
of the C; becomes a vertex, and similarly each of the R; becomes a vertex. The other
vertices are u € U. The k edges (R;,C;) form the complete matching of G*. There is an
edge (R;,Cj) for j # i, if for some ¢ € Cj, and r € R;, the edge (r,¢) was present in G.
Finally, there are edges of the form (R;,u) if G had an edge (r,u) for some r € R;. An

example is shown in Figure 9.1.
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u
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v
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c 3
c 3
d 4
4 5
e 5 de

Figure 9.1.
The graph G and its condensed graph G*°.

The two theorems we have proved enable us to conclude that we can apply Algo-
rithm 8.1 to the condensed graph G* instead of the original graph G. This reduces the
complexity of the algorithm.

We now discuss how graph condensation also helps in the optimal organization of the
computation of the basis N. The Q R {or LU) factors of the k¥ Dulmage-Mendelsohn
blocks of M are computed. As the orthogonal matrix Q of the block M; is computed
by Givens rotations, we apply each rotation to the nonzero lowerA triangular blocks M,
for § < i, and to the columns in U; then the rotations are discarded. This saves us the
storage of Q. Now the null vectors in the basis can be computed by solving triangular
systems of equations. |

As an illustration, consider the situation when k = 2, and M2, # 0. Partition the
unmatched column u to conform with the row partition of M. Denote by z the null

vector associated with the circuit n(u). We need to solve the system

where C denotes the columns of A in n(u). Now

(Qu 0) (Mu 0 "1)=(£u 0 '71)
0 Q2 My Mz u; M2 Ray 2
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We can set the last component of z to 1, and partition the rest of z as z; and 2 to
conform to the row partition of M. The subvector zy can now be determined by solving
a triangular system. Then z; can be determined by back substituting z; and solving a

second triangular system.

Theorem 9.3. Algorithm 8.1 constructs the same null basis N from any perfect matching

Mof M.

Proof: From Theorems 9.1 and 9.2, the nonzeros in each column of N depends only
on the Dulmage-Mendelsohn blocks of M. From Theorem 7.3, these blocks are unique,

and hence independent of the perfect matching M of M. 1§

The sparsity of a fundamental null basis depends only on the partition of the columns
of A into M and U. There are several strategies that might be used to find a partition
that leads to a sparse N. One would be to minimize the total number of nonzeros in M.
This can be done by assigning a weight to each column, equal to the number of nonzeros
in the column. We now find a maximum cardinality matching of minimum weight.

A different strategy would be based on const.ructing M to have a specific structure. If
M is block diagonal, then M ™! would be block diagonal also. Gilbert and Heath (1984)
have experimented with this idea, finding such a submatrix M from a nested dissection
of the matrix ATA. We will report on the merits of these and other strategies after we

have gained numerical experience with them.

10. A Myoplic Algorithm

Algorithm 8.1, which may be used to approximately solve (NSP) for general matrices,
constructs a fundamental null basis. However, sparsest null bases need not be fundamental.
Restricting ourselves to such bases may cost us dearly in the sparsity of null bases. We

seek to rectify that blemish of Algorithm 8.1 in this section.

We now describe an algorithm that constructs a null basis with an (n —t)-dimensional
upper triangular submatrix. Choosing a null basis with this structure makes it easy to
ensure that N has full colamn rank. We call this a myopic algorithm since it uses a short-
sighted, locally greedy approach in constructing the basis. The following observation made

in proving Theorem 3.2 is the basis for the algorithm.

Let n(v) be a circuit containing an unmatched column v of A, with nonzeros in the

column set C, and the row set R. Let Agrc be the submatrix of A defined by these sets.
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From our discussion in Theorem 3.2, Apc has the Strong Hall property. For any column
w € C, Apc — w has the Hall property, and hence a complete matching. If w = v, then
the matching M remains unchanged. Else, we have the possibility of adding the column
v to the set of matched columns M, in exchange of any column w which is in both the
circuit n(v) and M. We employ the locally greedy strategy of choosing w, the column
deleted, to be the column of highest degree. (Other strategies are possible and will be

discussed elsewhere.)
Algorithm 10.1.

1. [initialize] Let N be the empty set.
2. [match]
Find a complete matching M of A;
partition 4 = (M U ).
3. [augment null basis]
for each u € U do
construct n{u) by step 2 of Algorithm 3.1;

od
Choose a smallest circuit n(v) from those constructed;
N = (N n(v)).

4. |update matching]
Choose a column w of maximum degree from the circuit n(v);
U=U-v; M=M-w+v;
Go to 3.

For i = 1,...,n —t, let w; be the column deleted from A at the i-th step of the

algorithm. It is now easily seen that N has the structure shown in Figure 10.1.

This algorithm requires more work than Algorithm 8.1. The worst case complexity
of step 3 as described in the algorithm is O(r (n - t)?). There are several ways by which

this can be reduced.

Let d(u) denote the number of nonzeros in the unmatched column u. (This is also
the number of edges incident on the column u in the bipartite graph of A.) Since each
row adjacent to u is matched to a distinct column, the number of columns in the circuit
n(u) satisfies the equation |n(u)| > d(u).

We order the unmatched columns such that d(u) is non-decreasing. Consider the

step when Algorithm 10.1 constructs all circuits n(u) for u € U to decide which of them
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n-—t
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Wn-t
n-1t
0
wy
Figure 10.1.

A myopic null basis.

has smallest size. Let n(v) be a smallest circuit obtained at some stage of this step. If
|n(v)] = k, and d(u) > k for all columns for which circuits have not been constructed
yet, then n(v) is the smallest circuit in step 3. In situations when the above strategy still
constructs too many circuits, we can set an upper bound on the the number of circuits
that may be constructed.

Unfortunately, it is now necessary to compute a numeric factorization of a submatrix
of A for each null vector; graph condensation can not be used since the set of matched
columns can change from step to step.

Our observation on the size of the circuit n(u) may be used to derive a lower bound on
the number of nonzeros in a null basis N. By summing the inequality on each unmatched

column, we get

IN| > D In(u)l.

vuelU
This is a novel technique for the construction of a sparse null basis which is prompted
by our combinatorial approach to the (NSP). We classify all methods known to us for

computing null bases in Section 13.
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11. Coping with the Fallure of wHP

In Sections 8 and 10, we presented algorithms to approximately solve (NSP) under the
assumption of the weak Haar property. In this section we study how these algorithms

should be modified when wHP fails. This is necessary since constraint matrices arising in

'l optimization problems need not satisfy wHP. Theorems 3.2 and 3.3 imply that wHP is a

‘benign’ assumption, yet we need to exercise some caution in constructing null bases when
it fails.

The following example makes our concern clear:
a b c d
A= 1 (1 1 0 0).
2\1 1 1 1
Assume that row 1 is matched to column a, and row 2 to column b. Hence M = {a,b},
and U = {c,d}. Since the size of the matching is 2, and the numeric rank of M is
only 1, M does not have wHP. Algorithm 8.1 constructs the sets n(c) = {a,b,c}, and

n(d) = {a,b,d}. These two sets contain the same circuit {a,b} and no other, and the

algorithm has failed to construct a structural null basis!

The remedy for this pathological situation is to make sure that a matching is chosen
so that the set of matched columns M has numeric rank ¢. A close reading of Theorem 7.3
will convince the reader that it is enough to ensure that each Dulmage-Mendelsobn block
of M has full numeric rank. Should a matching fail to do this, columns are exchanged

between M and U to make this possible.

This rank deficiency can be detected at the stage when the LU factors of the Dulmage-
Mendelsohn blocks of M are being computed. Linear dependence of columns in M results
in a diagonal element of U becoming zero, or more likely in finite precision arithmetic,

small. In the above example, column b is dependent on A, and the following situation

(LG D=0

We reject column b at this step, and replace it with column e¢.

results:

Similar considerations arise when we consider numerical stability. If the second com-
ponent of b was equal to 1 + ¢ for some small ¢, U will have a high condition number.
Thus the null basis will be ill-conditioned. This situation is also avoided as above, since

ill-conditioning can be detected by a diagonal element of U becoming small.
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Each dependent set n(u) contains exactly one unmatched column u. The other

' columns in n(u) are from M. Since M has rank ¢, every subset of its columns has full

rank. Hence, a dependent subset of n(u) must contain u. Now, as in the case when wHP
was true, the set of circuits obtained from the dependent sets { n(u) } forms a fundamental
null basis.

In the previous example, we match row 2 to column ¢ (row 1 is matched to column
a as before), and now M has wHP. Algorithm 8.1 now yields the sets n(b) = {a,b,c},
and n(d) = {¢,d}. The former does not have wHP, and it contains a circuit {a,b}; the
latter is a circuit. These two circuits are now linearly independent, and so we do have a

null basis N .

These observations lead us to

Theorem 11.1. Let M be a complete matching of A, and let the set of matched columns
M have numeric rank t. If n(u) does not have wHP for some u € U, at the numeric

stage we obtain a sparser null basis than

N = (n(uy),... ,n(upn—t)).

There might be (rather extreme) situations where it may not be possible to choose

M to have rank ¢. Suppose rank(M) = r < ¢, and that this is the maximum possible.

Choose any r columns from M that yield a matching of cardinality r. We redefine
M to be this set of r columns, and U to be the rest of the n — r columns. For each
u € U, we use Algorithm 8.1 to construct the dependent set n(u). Each n(u) is either a
circuit, or contains a circuit; the discussion preceding Theorem 11.1 now applies, and we

get n — r linearly independent circuits of A.

Again, an example might be helpful.

1{1 1 1 1
()
2\1 1 1 1
In the complete matching M, let row 1 be matched to column a, and row 2 to column b;

hence M = {a,b}, and U = {¢,d}. However, rank(M) = 1, and this is the maximum
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possible. We redefine M = {a}, and U = {b,c,d}. The dependent set n(u) = {a,u}
for u € U, and each one is a circuit linearly independent of the others.

A similar fix works for Algorithm 10.1. We make sure that the initial set of matched
colamns M has rank ¢. (If this is not possible, and M has maximum rank r < ¢, we
choose only r columns to be in M, as before.) Exchange of columns in M is permitted at
each step of the algorithm only if it does not reduce the rank. An analysis similar to the
one for Algorithm 8.1 now shows that we do obtain a null basis of circuits at the numeric

stage.
12. Orthogonal Null Bases

We now address the problem of constructing sparse null bases that have orthogonal

columns. Such a basis N satisfies the equation

NTN = Iy,
where I,_; is the (n — t)-dimensional identity matrix. This problem can be solved by
adapting the algorithms we have developed.

Let A be a £ X n matrix of rank ¢{. Let ny be the first column of a null basis N which

we construct by Algorithm 3.1. Modify A by appending a row:

~ A
A= (%)

Apply Algorithm 3.1 to .2 to find a null vector n2. By construction, n2 is a null vector of
A, and is orthogonal to ny. Clearly this procedure can be continued until an orthogonal
null basis is obtained.

We now indicate how Algorithm 8.1 should be modified to construct the orthogonal
basis. Let M be a complete matching of A, and partition the columns of A into matched
and unmatched columns as

A=(M U).
For an unmatched column u € U, construct the circuit n(u). Add a row nf to A
which has nonzeros in those columns of A contained in n(u). The updated matrix Ais
constructed as discussed before.

In the bipartite graph G(A), we add a row vertex n; with edges to those columns of
A contained in n(u). The matching M is augmented by adding the edge (n;,u) to it.
We also update M=M+ u, and U0=U-u. Algorithm 3.1 can now be applied to the
graph G(A).

The next theorem indicates how the Dulmage-Mendelsohn blocks (D-M blocks) of M

change on augmentation to M.



46 The Sparse Null Space Basis Problem

Theorem 12.1. Let the D-M blocks of M be Myy,...,Myx. Let K = {1,...,k}. Let

C; be the set of columns in Mj;. For a null vector n(u), let
I={i:C;cn(u)}.

M has the D-M blocks {M;;} for each j € K\ I, and U;es M.

Proof: Let the column sets C; C n(z) and C,, C n(u). Then from Theorem 9.1,
u M, C¢ and u M, Cum. By the rules for augmenting G(A), ny becomes a row vertex,
(n1,u) becomes an edge of M, and there are edges joining the row n; to each column in

C¢U Cp. The sequence of edges
u ﬂ’ Cb Cl _Ai’ ny, ("ls u)v u —Ai' Cnn Cm _Ai’ n, (nlsu)

is an M -alternating tour between columns in C¢ and Cyr. From the proof of Theorem 7.3,

C¢ and C,, are in the same D-M block of M. B

In Section 4, we showed that a locally greedy algorithm that chooses a sparsest null
vector at each step linearly independent of those chosen previously solves (NSP). We might

suspect that a similar greedy strategy would construct a sparsest orthogonal null basis.

This suspicion is false. Consider the following counterexample:

a b ¢ d u v w =z

1{@ x 0 0 %X X X 0\

2 0O 0 0 0 O O
A= 2 x ®

310 0 ® 0 %X X X X

4\0 0 0 ® 0 0 0 x

The elements matched under M are circled. The set of matched columns M = {a,b,c,d },
and the set of unmatched columns U = {u,v,w,z}. A greedy strategy would choose at
the first step the circuit n(z) = {¢c,d,z}. After updating the graph, the algorithm could

choose, in order,
n(u) = {a,b,¢,d,z,u}, n(v)=n(u)+v, n(w)=n(v)+w.

Thus [N|=3+6+ 7+ 8 = 24.
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But it is possible to do better. If at the first step, we choose n(u) = {a,b,c,u}, then

the algorithm could pick, in order,
n(v) =n(u) +v, n(w)=n(v)+w, n(z)=n(w)+d+:z.

' Now IN| =445+ 6+ 8 =23, which is a sparser null basis.

The greedy algorithm helped us to characterize sparsest null bases. This example
shows that a greedy strategy may not find sparsest orthogonal null bases. Unfortunately,
we do not know how to identify or construct the latter.

In view of Theorem 12.1, probably sparser orthogonal null bases may be obtained by
" the following strategy: We partition the columns of A4 into groups of 2¢ columns. For each
partition, we construct an orthogonal basis by the algorithm described above. Additional
columns of the null basis may be constructed by merging two partitions; at each such
merger, the number of the columns in the partition of A doubles. So in about logyn

steps, we obtain an orthogonal null basis of A.

18. Conclusions

Before summarizing our work, we classify the different methods we know about for con-
structing null bases. Heath, Plemmons, and Ward (1983) present a different classification

scheme.

1. Variable-reduction.

Wolfe (1962) proposed partitioning the matrix A as
A=(4; A), (1)

and constructing a null basis of the form

N = (—Al—lAz), (@)

In—t

where Ay is chosen to be nonsingular, if necessary by permuting the columns of A.

There are three techniques that may be used to choose the submatrix A;: Gauss-
Jordan elimination, row elimination, and orthogonal row elimination. It might be sur-
prising when we claim that these techniques are equivalent as far as sparsity of N is
concerned. We show the equivalence by displaying the appropriate submatrices A; and

A,.
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In the rest of this section, P will denote a permutation matrix, L a lower triangular
matrix, U and R upper triangular matrices, Q@ an orthogonal matrix, and I an identity
matrix. Each symbol is defined only locally for a particular method. For instance, L does

not stand for the same lower triangular matrix throughout this section.

" a. Gauss-Jordan Elimination.

PyAP,=B (I; C),

rv=(77):

*Let the first ¢ columns of the permuted matrix A be denoted by 11 and the last n — ¢
columns by Zz. Then B is clearly 11, and C is 11'1 /Iz.

b. Row Elimination.

LPLAP;= (U, Uz),

-1
PoN = ( U Uz) ,
In—l

where U3 is not upper triangular in general.
We show that the null basis in (b) can be obtained by choosing an appropriate partition
of A as in equation (1}).
Let
PiAPy= (4, 4,).

Now

U W, = U, 'L U, = (L7'0,) 7" (L7102) = A7 As.

Conversely, let A be partitioned as in equation (1). Let
fAl = Uy, and ZAz =U,.

Now
A Ar= 4T i 4= (E40)7 (£42) =010

Hence, row elimination constructs a null basis obtainable by a partition of A as in equa-

tion (2).
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c. Orthogonal Row Elimination.

QPiAP;=(R, R2),

-1
P2N=( Rl R2)’
In—t

where R3 is not upper triangular in general. As before, we can show this method is

equivalent to a partitioning of A.

The combinatorial method we propose in Section 8 finds the submatrix A, by finding
a complete matching. It then partitions Ay into its Dulmage-Mendelsohn blocks. The LU
_or Q R factorization of these blocks may be used to compute N. We have the freedom
here to choose A; so that N is sparse. Also, the block decomposition reduces the work

needed to compute the bases.

2. Column Elimination.

PLAP,U=(L 0),
U= (Ul Uz),
P; N =U.,

where U, is an n x t matrix and Uz is an n x (n — t) matrix.

3. Orthogonal Column Elimination.

PiAP, Q= (L 0),
Q=(Y Z),
P, N = 2,

where Y is an n x ¢ orthogonal matrix and Z is an n X (n — t) orthogonal matrix.

4. Singular Value Decomposition.

VPLAP,W =(Z 0),
W=(W, W2),
PN =W,
where W, is an n x t orthogonal matrix, and W2 is an n x (n — t) orthogonal matrix.

For most large sparse matrices, this method is prohibitively expensive.
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5. Generalized Variable-reduction.
This is a new method motivated by the myopic algorithm presented in this paper.

PyAP,= (A Az),

(-A;;Azu) ’ (3)

PN

where U is an (n — t)-dimensional upper triangular matrix.

It is possible to modify this null basis to get a sparser basis. The null vectors in
N are not necessarily circuits, unlike the fundamental null basis constructed by variable-
reduction. The nonzeros in a null vector pick out a linear combination of a dependent set
of columns of A. It is now possible to discard some columns of A from this set (thereby
turning nonzeros in a null vector into zeros) to get a circuit. In some situations, it is

possible to obtain sparser null bases than fundamental bases by this method.

The myopic algorithm constructs a null basis of this form. For a matrix 4 with the
weak Haar property, it constructs null vectors that are circuits, so that the modification
of the basis is done combinatorially. Also, the upper triangular matrix U is constructed
as the algorithm proceeds, so that in general we do not know its structure.

We remark that instead of an upper triangular matrix U, we can choose any (n —
t) x (n — t) nonsingular matrix B in the generalized variable-reduction method. But
then modifying the null vectors for sparsity, and yet ensuring that we retain a null basis
becomes tricky. When an upper triangular matrix is used, this is easy: We ensure that

the modified N has the upper triangular submatrix of flimension n—t.

We now consider an example to show how this technique can be used to construct

sparser bases than fundamental null bases.

Let
a b ¢ d e [f g h i g
[x x x x 0 0 0 0 0 0)
x 0 0 0 x x x 0 0 O
A= 10 x 0 0 x 0 0 x x OJ»
0 0 x 0 0 x 0 x 0 x
0 0 0 x 0 0 x 0 x x

and partition it as Ay = {a,b,c,d,e}, and A2 = {[,9,h,i,j}.



18. Conclusions 51

The fundamental null basis in equation (2) has the structure

(x X X X x\
X X X X X
Xx 0 x 0 x
0 x 0 %X X
X X X X X
Mi=1, 00 00
0 x 0 0 O
0 0 x 0 O
\0 0 0 x OJ
0 0 0 0 x

For the same partition of 4A; and A2, and the choice of

(x 0 0 O x\
0 x 0 0 x
U=10 0 x 0 x1,
0 0 0 x x
0 0 0 0 x

a null basis N2 given by the equation (3) has the same structure as N; except for the last
column. This column has nonzeros in all its row positions. But note that the last null
vector in N2 is not a circuit. Since the set of columns { f,g,h,i,j} is a circuit, replace

the last column of N2 with the vector
(00000xxxxx)T

to get a null basis Ng. This basis has the structure of a null basis constructed by the

myopic algorithm; further, it is sparser than Nj.

We have shown that it is possible to find null vectors of a matrix from its structure.
Bipartite matching theory can then be used to compute circuits. Only circuits can be
columns of sparsest null bases, and a sparsest basis can be constructed a column at a time,
in a greedy fashion. Nevertheless, finding a sparsest null basis is NP-hard, as is the problem
of finding a sparsest fundamental null basis. We propose two classes of approximation
algorithms to construct sparse null bases. Algorithm 8.1 constructs fundamental bases,
while Algorithm 10.1 finds a basis with an upper triangular submatrix. When computing
fundamental null bases, it is possible to use the Dulmage-Mendelsohn block structure to
reduce the work required. No such simplification is possible when Algorithm 10.1 is used,

though it can construct potentially sparser null bases.
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We are currently implementing these algorithms to see how they perform in prac-
tice. We hope these ideas will lead to more efficient algorithms for large-scale numerical

optimization problems.

This paper has dealt with the construction of sparse explicit null bases, when the
nonzeros in the basis are stored. A different view point is to construct sparse implicit
null bases. Here the basis is not computed directly, but is stored as a sequence of trans-
formations needed to compute it. For instance, in the L Q decomposition of the matrix
A, .

AQ=(L 0),

the sequence of Givens transformations used to compute @ is stored. A sparse basis in this
situation would compute @ in a small number of rotations. Finding such bases remains
an important open research problem. In these and other directiors, we will continue our

work on (NSP).

Appendix: (NSP) and the Resolution of a Paradox

Hoffman and McCormick (1982) have proposed a polynomial time algorithm to transform a
matrix with the matching property (MP) to an equivalent, optimally sparse matrix. Let A
be a t X n matrix, with £ < n. They construct a nonsingular matrix f‘, such that A =T 4
is a sparsest matrix over all possible nonsingular transformations T'. Furthermore, they

observed that if the columns of A can be permuted so that

-~

AP=(A D)

for some diagonal matrix D, and permutation matrix P, then A is already optimally
sparse. (In practice, MP may not be satisfied; the proposed algorithm can still be applied,
but with no guarantee of optimality.)
This suggests the following strategy to solve (NSP): Determine a permutation matrix
P such that
AP = (4, A2),

where A; is non-singular. A null basis of A is then given by P N, where

- -AI‘Az)
v (A7),
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If NT has MP, it is an optimally sparse null basis. This result is surprising, since the
partition induced by P is arbitrary except for ensuring that A is non-singular. Indeed,

let P be another permutation matrix such that
AP = (4, 4,),

where .Zl is non-singular. Then another null basis of A is given by ﬁﬁ, where

~ ~AT4
N = 1 2) )
( I )

Now, NT is also optimally sparse if it satisfies MP. This leads us to an apparent contradic-
tion since NTPT = T NT PT for some nonsingular transformation T. Yet, the sparsities
of N and N may differ dramatically. How then can both PN and PN be optimally
sparse null bases of 4 ?

The answer is that either N and N have the same number of nonzeros, or MP must
fail to hold for all possible values of the nonzeros of A. In this section, we study the latter
possibility, which is illustrated by the following example. Recall that m(A), the matching
number of A, is the cardinality of a maximum matching of A.

Suppose the matrix A is partitioned as A = (A; A2), and that the structures of the

submatrices are

x 0 0 X X x\
Aj= | x x 0y, and A;=,;0 0 0 ,. (1)
Lo x xJ lo o o)
For any assignment of values to the nonzeros of A, the matrix Al_lAz is dense, and

m (Al_lAg) = 3. The structures are

{x 0 o \ {x x x\
Al_l= x X 0 ), and A;1A2= X X X 3.
\x X X } \ X X X }
But each column of the latter matrix is a multiple of the first column of Al_l, so its rank
is at most 1. Therefore, Al—lAz does not have MP for any assignment of values to the
nonzeros of A.

We now generalize the above example. Consider the matrix product AB = C, where

A has n columns and B has n rows (associate Al_1 with A and A2 with B). We exhibit
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a general class of structures for A and B such that C does not have MP for any values
of A and B.

Let G4p = (VA,VR,VB) be a ‘doubly bipartite’ graph; V A is a set of vertices
corresponding to columns of AT VB is a set of vertices corresponding to columns of B,
and VR is the set of vertices corresponding to the n rows of B and the n rows of AT,
There is an edge between a € VA and r € VR if (r,a) is a nonzero of AT. Similarly,
there is an edge between b€ VB and r € VR if (r,b) is a nonzero of B. For example, if

r rz by b2 bs

rs
aI/x 0 0\ r;{x X x\
A=a2kx x oJ, and B=r2L0 0 oJ,
as \0 x X rs\0 0 O

then G 4.p is as shown in Figure 1.

Figure 1.

The doubly bipartite graph G 4.p

The graph G4.p is called the concatenation graph by Doob (1984). Let the matrix
Cxy denote the submatrix of C induced by the row set X and the column set Y. This
matrix has a nonzero in position (i,5) when a column a;T of AT, and column b; of B
both have nonzeros in the same row position, say rg. Equivalently, the bipartite graph
G(Cxy ) has the edge (a;,bj) if and only if there is a path of length 2 from a; to b; in
the doubly bipartite graph G 4.5. Hence, the structure of Cxy is easily obtained from

Ga.B.
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We denote by N(S) the neighbor set of a vertex set S in G4.p. A set X C VA has
nonzeros only in the row set N(X), and similarly, Y C VB has nonzeros only in N(Y).
Let Z = N(X)n N(Y). Z corresponds to those row positions of VR where the sets X
and Y have nonzero overlap. Nonzero elements in Cxy arise only from the rows in Z of
the column sets X of AT, and Y of B.

The following result leads to a structural condition on A and B under which the

product matrix C has a numerically rank deficient submatrix, Cxy, for all values of A

and B.

Lemma 1. Let X CVA,Y CVB. Then

rank (Cxy) < min {|N(X)nN(Y)|, |X], |Y]}.

Proof: As before, let Z = N(X)n N(Y). If |Z| < |X] £ |Y], then each of the | X]|
rows of Cxy is a linear combination of the same |Z| rows of B. If |Z| < |Y| < |X]|, then
each of the |Y| columns of Cxy is a linear combination of the same |Z| columns of A.

The result follows. §

From Lemma 1, we conclude that if X and Y have fewer common neighbors in
VR than both |X| and |Y|, then Cxy is numerically rank deficient. This deficiency is
independent of the actual values of the nonzeros of A and B, since the condition forces
either the rows or columns of Cxy to be algebraically dependent. In the previous example,
let X=VA,Y =VB. Then |X| =3, |Y| =3, and |Z| =1, and hence C has rank at
most 1.

Of course, even if a submatrix of C is rank deficient for all values of A and B, the
matrix C could have MP—the condition m (Cxy) = rank (Cxy) can still hold. Consider

the same example with 4y replaced by

(x 0 0
Ay = 0 X 0 .
\0 X x}
The matrix El—l A2 consists of zeros except for the first row, which is dense. Hence
m (,Zl-lAz) = rank (;{1'1.42) = 1.
We now state sufficient conditions for the matching number of a submatrix of C to

be greater than its rank. We display a general class of structures (of A and B) for which
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the product matrices C do not possess MP, for any assignment of values to A and B.
For X CVA,and Y CVB, let N?(X) denote N(N(X)) nY (i.e., those vertices in ¥
reachable from X via paths of length 2). Similarly we define the set N2%(Y).

In what follows, we make use of the following result: If |[X| < |Y|, then the matching

number of Cxy, m (Cxy ), satisfies

m(Cxy) = |X] - max g (}X|~IN?(X)|}. (2)

This result is a consequence of

. Theorem 3. (Kénig’s Theorem) Let G(X,Y,E) be a bipartite graph. Its matching

number is
m(G) = |X| - maxwcx {|W| - IN(W)|},

where N(W) is the neighbor set of W in G.
Berge (1973) contains a proof. §

From the relationship of G(Cxy ) to G4.p that we have observed previously, for a
vertex set W C X, the set N(W) in the former graph is NZ(W) in the latter. Equation

(2) now follows from Theorem 2.

Theorem 8. If for some X CVA,Y C VB, either
() |X]<|¥], and |X|-maxg . {IX|-IN*(X)]} > [N(X)nN(Y)],

or
(i) Y] <IX], and |¥|-maxgo, {[¥]- [N} T)]} > IN(X)nN(Y)],

then C does not possess MP for any assignment of values to A and B.

Proof: Together with Lemma 1, and equation (2), conditions (i) or (ii) imply that

m (Cxy ) > rank (Cxy)

, for all values of A and B. §
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The conditions mentioned in the above theorem are not pathological. Indeed, we
expect them to be satisfied usually. Since these remarks apply directly to (NSP) with A
replaced with A;'l, and B replaced with Aj, it follows that one cannot generally expect

the matrix A;'lAz to have MP.

One final observation: If A;'l is dense, and A2 has every subset of its columns incident

to at least as many rows, then P N is an optimally sparse null basis for some values of

A. Here .
-A7 A,
v ().
In-—l

We can assign values to the nonzeros of A such that Al_lAz has MP.

Rank Deficlency and The Hall Property

The condition |Z| > min{]X|,|Y|} can be viewed as a generalized Hall Property. Let
V be the set of rows, and W the columns of a matrix A. Also let [V| < [W]|. A has the
Hall Property if every subset X C V of its rows has nonzeros in at least as many columns.
Hence |[N(X)| 2 |X].

It is easy to see that if A does not have the Hall Property, then A is structurally rank
deficient. Equivalently, a principal submatrix of A AT is numerically rank deficient for all
values of A (the rows (columns) of this principal submatrix are algebraically dependent).
But this is just a special case of Lemma 1, with B = AT where only principal submatrices
are considered. To see this, note that B = AT implies that G(VB,VR) is a copy.of
G(VA,VR); Cxy is a principal submatrix if and only if ¥ is the mirror image of X.
Therefore, the condition |Z| > min {]X]|,|Y|} is equivalent in this situation to |N(X)| >
|Xx1.

Finally, we observe that if two compatible matrices A and B have the generalized

. Hall property,

IN(X)n N(Y)] > min {|X|,|V|}, foral XCVA4, Y CVB, (3)

then the matrix product C is structurally dense. Else, suppose that for some i and j,
Cij = 0, for all values of A, B. Then |N(a;) N N(bj)| = 0, which violates (3), if we let
X = {a;}, and Y = {b;}.
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