
The Sparsity Gap:

Uncertainty Principles Proportional to Dimension

Joel A. Tropp

Computing and Mathematical Sciences

California Institute of Technology

Pasadena, CA 91125–5000

Email: jtropp@acm.caltech.edu

Abstract—In an incoherent dictionary, most signals that admit
a sparse representation admit a unique sparse representation.
In other words, there is no way to express the signal without
using strictly more atoms. This work demonstrates that sparse
signals typically enjoy a higher privilege: each nonoptimal
representation of the signal requires far more atoms than the
sparsest representation—unless it contains many of the same
atoms as the sparsest representation. One impact of this finding
is to confer a certain degree of legitimacy on the particular atoms
that appear in a sparse representation. This result can also be
viewed as an uncertainty principle for random sparse signals
over an incoherent dictionary.

I. INTRODUCTION

The purpose of this paper is to develop a new class of

uncertainty principles for sparse representation that hold even

when the sparsity level approaches the ambient dimension. We

begin with a discussion of the background and related results

before moving on to the new contributions.

A. Sparse Representation in Dictionaries

Let Φ be an m × N matrix with normalized columns:

‖ϕj‖2 = 1, j = 1, 2, . . . , N.

We refer to Φ as a dictionary and to its columns as atoms.

Assume the atoms span the ambient space Cm.

There are two simple geometric quantities associated with

a dictionary. The first is a measure of redundancy:

ρ = ‖Φ‖2
,

where ‖·‖ denotes the spectral, or ℓ2 → ℓ2 operator norm, of a

matrix. We always have ρ ≥ N/m. Equality holds if and only

if Φ is a tight frame. The second quantity is the coherence:

µ = max
j 6=k

|〈ϕj , ϕk〉| .

The coherence is small when the angle between each pair of

atoms is large. Strohmer and Heath [1] have observed that

µ ≥
√

N − m

m(N − 1)
. (1)

In the typical case N ≥ 2m, the inequality (1) indicates that

the coherence cannot be very small: µ & m−1/2.

Let S be a subset of {1, 2, . . . , N}, and define ΦS to be the

column submatrix of Φ whose columns are listed in S. We say

that S is linearly independent if it lists a linearly independent

family of atoms. Note that ΦS is injective if and only if S is

linearly independent. Suppose that a signal u ∈ Cm can be

written as

u = Φx where supp(x) ⊂ S.

We call the vector x a representation of the signal u, and

we say that u can be represented with S. When S is linearly

independent, x is the unique representation of u over S.

In a redundant dictionary (N > m), each signal has an

infinity of representations. The sparse representation problem

asks us to express u with the fewest number of atoms:

min ‖z‖0 subject to u = Φz, (2)

where ‖·‖0 counts the number of nonzero components in its

argument. If x is a minimizer of this mathematical program,

the set S = supp(x) must be linearly independent. Otherwise,

we could remove an atom to obtain a sparser representation.

As a result, when studying sparse representation, we focus on

linearly independent sets of atoms.

B. Uniqueness of Sparse Representations

One might wonder when the problem (2) has a unique

solution. The sparse approximation literature took up this

inquiry about ten years ago, although one can trace some of

the ideas to the late 1980s [2]. The early research led to the

following result for deterministic signals.

Proposition 1: Assume that

|S| <
1

2
(µ−1 + 1). (3)

If a signal u = Φx with supp(x) ⊂ S, then x is the unique

minimizer of (2).

Donoho and Huo established this result for dictionaries con-

sisting of two orthonormal bases [3]; Gribonval and Nielsen

proved that it holds for every dictionary [4]. Subsequently,

Donoho and Elad showed that Proposition 1 follows from a

more general result, phrased in terms of the Kruskal rank,

or spark, of the dictionary [5]. Another line of work [6],

[4] sharpened the condition (3) for dictionaries consisting of

multiple orthonormal bases. See [7] for a detailed discussion

of the spikes and sines dictionary.

The requirement (3) is very stringent: it typically demands

that the sparsity level |S| .
√

m. In spite of this apparent
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shortcoming, the condition (3) cannot be improved in general.

For example, when m is a perfect square, the Dirac comb can

be represented perfectly using
√

m spikes or
√

m sines [2]. To

move past the square-root threshold, we must place additional

restrictions on the sparse signals we are willing to consider.

A natural approach is to introduce some randomness. Let S
be linearly independent, and let x ∈ CS be a random vector

whose distribution is absolutely continuous with respect to

the Lebesgue measure on CS . We say that a random signal of

the form u = ΦSx is generic, and we refer to the (unique)

representation of u over S as the natural representation.

To obtain interesting uniqueness results for generic signals,

we impose some additional hypotheses. We say that the

dictionary Φ is a weakly incoherent tight frame if

‖Φ‖2
=

N

m
and µ ≤ c

log N
, (4)

where c is an absolute constant. Assume the sparsity level

s ≤ cm

log N
. (5)

In this setting, we have the following result.

Proposition 2: Assume the dictionary Φ satisfies (4) and

the sparsity s satisfies (5). Draw a uniformly random set S of

s atoms from the dictionary. Except with probability O(N−1),
the following statement holds.

Let u = ΦSx be a generic signal. With probability one, the

natural representation of u is the unique minimizer of (2).

Roughly speaking, Proposition 2 states that a generic sparse

signal over a random set of atoms is unlikely to have any other

representation that is equally sparse—even when the sparsity

level is nearly proportional to the ambient dimension.

Candès and Romberg established the first theorem of this

type in the specific case of the spikes and sines dictionary [8].

Using different methods, the present author showed that anal-

ogous results hold for any strongly incoherent dictionary [9,

Sec. 7]. The extension to weakly incoherent dictionaries re-

quires additional ideas from [10, Sec. 5].

C. Uncertainty Principles

Historically, the sparse approximation community has

viewed uniqueness through the lens of uncertainty principles.

Suppose that a signal has two (different) representations:

u = ΦSx = ΦT y.

The Donoho–Elad dictionary uncertainty principle [5, Thms. 3

and 5] states1 that

|S| + |T | > µ−1. (6)

In particular, if a signal u can be represented with a set S
that satisfies (3), then every alternative representation requires

strictly more atoms.

Since the coherence usually satisfies µ & m−1/2, the dictio-

nary uncertainty principle only operates in the regime of very

1Donoho and Elad express their uncertainty principle [5, Thm. 3] in terms
of the Kruskal rank of the dictionary, which is notoriously difficult to estimate.
The result quoted here provides the best general bound.

sparse representations: |S| .
√

m. Except for very structured

(or very random) dictionaries, it does not seem possible to

obtain dictionary uncertainty principles for arbitrary signals

that hold at sparsity levels near the ambient dimension.

D. The Sparsity Gap

This paper describes uncertainty principles for generic sig-

nals. It is easy to appreciate why generic signals might behave

better than adversarially chosen signals. If there are small

sets S and T of atoms for which range(ΦS) and range(ΦT )
intersect, there exists a signal that has sparse representations

over both S and T . (Witness the Dirac comb!) On the other

hand, it is hard for a generic signal to have two sparse rep-

resentations because range(ΦT ) rarely contains range(ΦS)!
This fact offers a plausible route to reach uncertainty principles

at sparsity levels far greater than
√

m.

Our first result extends the dictionary uncertainty princi-

ple (6) to generic signals. The proof appears in Section IV.

Theorem A (Sparsity Gap under Strong Incoherence):

Suppose that S is linearly independent, and draw a generic

signal u in range(ΦS). Then, almost surely, we cannot

represent u with a set T disjoint from S unless

|S| + |T | > µ−1
√

|S|.

When |S| = 1, our result coincides with the dictionary

uncertainty principle (6), but it becomes increasingly strict

requirements as the sparsity level |S| increases! Indeed, an

equivalent condition is

|T | >

(

µ−1

√

|S|
− 1

)

· |S| ,

so a generic signal that uses |S| ≪ µ−2 atoms cannot be

represented with any disjoint set T of atoms unless |T | ≫ |S|.
In the extreme case where µ−2 ∼ m, we obtain an uncertainty

principle that operates at sparsity levels proportional to the

ambient dimension!

Our second result is an uncertainty principle that parallels

Proposition 2, just as Theorem A parallels Proposition 1. This

proof appears in Section V.

Theorem B (Sparsity Gap under Weak Incoherence):

Assume that Φ is a weakly incoherent tight frame that

satisfies (4), and assume further that N > 2m. Suppose that

S is a randomly chosen set of s atoms, where s satisfies (5).

Except with probability O(N−1), the following holds.

Draw a generic signal u in range(ΦS). Then, almost surely,

u cannot be represented with a set T disjoint from S unless

|T | >

(

1 +
2

ρ

)

· |S| .

The redundancy ρ = N/m, by hypothesis.

In words, Theorem B considers a generic signal over a

random set of atoms. It is likely that every (disjoint) alternative

representation requires a constant factor more atoms than the

natural representation, where the extra factor decreases as

the dictionary becomes more redundant. We see that there is



typically a sparsity gap between the natural representation and

the the sparsest representation that uses different atoms.

This result provides an interesting guarantee for a huge class

of dictionaries because of the weak bound for the incoherence.

On the other hand, it holds for a smaller class of signals than

Theorem A because we have randomized the set of atoms in

addition to choosing generic coefficients.

II. RANK AND FILE

Although a generic signal has many representations aside

from the natural one, there is a large class of representations

that we can almost surely rule out. As a first step toward our

main results, we develop an algebraic condition that describes

which representations can and cannot occur.

To motivate the discussion, let us recall a standard argument

for establishing dictionary uncertainty principles. Suppose that

both S and T are linearly independent. A few moments of

thought reveals that the following conditions are equivalent:

1) We have range(ΦS) ∩ range(ΦT ) = ∅.

2) The matrix ΦR has full rank, where R = S ∪ T .

For a fixed set S, suppose that Condition 2) holds whenever

|R| < r⋆. We conclude that, if there exists a signal that has

representations over both S and T , then |S|+ |T | ≥ r⋆. Read

the paper [5] to see this argument in action.

We can extend this methodology by quantifying the rank of

the matrix ΦR. These bounds allow us to count how many

extra atoms are needed to represent a generic sparse signal.

Lemma 3: Suppose that both S and T are linearly indepen-

dent. The following conditions are equivalent.

1) We have range(ΦS) ∩ range(ΦT ) ( range(ΦS).
2) We have |T | < rank(ΦR), where R = S ∪ T .

Proof: Define the subspaces S = range(ΦS) and T =
range(ΦT ), which implies that S + T = range(ΦR). Note

that S ∩ T is a proper subspace of S if and only if

dim(S ∩ T ) < dim(S ) (7)

The algebra of subspaces yields

dim(S ∩ T ) = dim(S ) + dim(T ) − dim(S + T ).

Therefore, the condition (7) is equivalent with

dim(T ) < dim(S + T ).

Since T is linearly independent, dim(T ) = |T |. Meanwhile,

dim(S + T ) = dim(range(ΦR)) = rank(ΦR).

This is the required conclusion.

Let us translate the previous result from the language of

subspaces to the language of probability.

Corollary 4: Suppose that both S and T are linearly inde-

pendent. The following conditions are equivalent.

1) A generic signal u = ΦSx almost surely has no

representation of the form u = ΦT y.

2) We have |T | < rank(ΦR), where R = S ∪ T .

Proof: Lemma 3 states that Condition 2) is the same as

range(ΦS) ∩ range(ΦT ) ( range(ΦS), (8)

so we prove that Condition 1) is the same as (8). To that end,

let u = ΦSx be a generic signal, which means that x is

absolutely continuous with respect to the Lebesgue measure

on CS . Let ν denote the Lebesgue measure on range(ΦS).
First, assume (8) holds. A proper subspace has zero

Lebesgue measure, so

ν(range(ΦS) ∩ range(ΦT )) = 0.

The set S is linearly independent, so ΦS is injective. As

a result, the distribution of u is absolutely continuous with

respect to ν. It follows immediately that

P {u ∈ range(ΦS) ∩ range(ΦT )} = 0.

We conclude that

P {u ∈ range(ΦT )} = 0

because the signal u ∈ range(ΦS).
Conversely, suppose (8) is false. Then range(ΦS) ⊂

range(ΦT ), so the signal u can be represented over T .

It is convenient to remove the assumption of linear inde-

pendence from the previous result.

Corollary 5: Suppose that S is linearly independent, and

let T be any other set of atoms. Assume that

|T | < rank(ΦR), where R = S ∪ T .

Draw a generic signal u = ΦSx. Then

P {u ∈ range(ΦT )} = 0.

Proof: When T is linearly independent, the claim follows

directly from Corollary 4. Otherwise, extract a maximal linear

independent subset T ′ from T , and write R′ = S ∪T ′. Apply

the result to T ′ to obtain the statement

|T ′| < rank(ΦR′) =⇒ P {u ∈ range(ΦT ′)} = 0.

Since T ′ is maximal, rank(ΦR′) = rank(ΦR) and also

range(ΦT ′) = range(ΦT ). To complete the proof, note that

the hypothesis |T | < rank(ΦR) implies |T ′| < rank(ΦR)
because T ′ ⊂ T .

III. ANALYTIC RANK ESTIMATES

The main challenge is that we only possess ana-

lytic/geometric information about the dictionary, encapsulated

in the redundancy ρ and the coherence µ. But the rank is

fundamentally an algebraic quantity. Our approach will be to

construct analytic estimates for the rank that we can compute

from the data at hand.

A. Schatten Norms

A primary tool is the Schatten class of matrix norms. Let A

be a matrix, and write σ(A) for the vector of singular values

of A, arranged in weakly decreasing order. The Schatten p-

norm is defined as

‖A‖Sp

= ‖σ(A)‖p ,



where ‖·‖p is the usual ℓp vector norm. In particular, S2 is

the Frobenius norm, and S∞ is the spectral norm. The norm

S1 is often called the trace norm because

‖A‖S1
= trace(A) when A is psd.

The term psd abbreviates positive semidefinite. For general

matrices, the Frobenius norm is the only Schatten-class norm

computable directly from the matrix entries:

‖A‖F =
[

∑

jk
|ajk|2

]1/2

.

B. Rank Bounds via Norm Ratios

A simple but powerful method for estimating rank is to

compare two different Schatten norms of the same matrix.

Lemma 6: Suppose that p < q. For each matrix A,

rank(A) ≥
[

‖A‖Sp

‖A‖Sq

]pq/(q−p)

.

Proof: For each vector x ∈ Cr, we have the inequality

‖x‖p

‖x‖q

≤ r1/p−1/q.

Indeed, one can use Lagrange multipliers to verify that the

left-hand side is maximized when x is a constant vector.

Suppose that rank(A) = r. Then the vector σ of nonzero

singular values of A lies in Cr. By definition of the Schatten

norms,
‖A‖Sp

‖A‖Sq

=
‖σ‖p

‖σ‖q

≤ r1/p−1/q.

Take the (1/p− 1/q) root and simplify the exponent to reach

the conclusion.

The following simple corollary is fantastically useful.

Corollary 7: Let A be a matrix. Then

rank(A) ≥
‖A‖2

S1

‖A‖2
F

and rank(A) ≥ ‖A‖2
F

‖A‖2 .

Alon has applied the first estimate in his work on extremal

combinatorics [11]. The second estimate arises in a paper of

Bourgain and Tzafriri on restricted invertibility [12].

C. A Schur Complement Rank Identity

Suppose that X is a psd matrix, partitioned so that its

diagonal blocks are square:

X =

[

A B

B∗ C

]

.

Provided that the block A is nonsingular, the Schur comple-

ment of A in X is the matrix

X/A = C − BA−1B∗.

For our purposes, the relevant fact is that

rank(X) = rank(A) + rank(X/A). (9)

See [13, Sec. 2] for more Schur complement identities.

IV. SPARSITY GAP UNDER STRONG INCOHERENCE

Corollary 5 indicates that we can obtain uncertainty prin-

ciples for generic signals by developing lower bounds on the

rank of a subdictionary ΦR. This section describes the simplest

approach to this problem, which proceeds via Corollary 7. This

method is most effective when the coherence µ is small.

Let R be a set of atoms. Since

rank(Φ∗
RΦR) = rank(ΦR), (10)

we may as well work with the Gram matrix of ΦR. This

substitution allows us to exploit geometric information about

the dictionary. Indeed, the diagonal entries of Φ
∗
RΦR equal

one because the atoms have unit ℓ2 norm, and the off-diagonal

entries are bounded in magnitude by µ because they contain

the inner products between distinct atoms.

Lemma 8: Let R be a set of r atoms. Then

rank(ΦR) ≥ r

1 + (r − 1)µ2
.

Proof: Relation (10) and Corollary 7 imply that

rank(ΦR) = rank(Φ∗
ΦR) ≥

‖Φ∗
RΦR‖2

S1

‖Φ∗
RΦR‖2

F

. (11)

Owing to the properties of the Gram matrix,

‖Φ∗
RΦR‖2

S1
= (traceΦ

∗
RΦR)2 = r2

and

‖Φ∗
RΦR‖2

F ≤ r + r(r − 1)µ2

Introduce these bounds into (11) to complete the proof.

When the coherence µ is small, Lemma 8 provides excellent

estimates for the rank of ΦR. By combining this bound with

Corollary 5, we obtain our first main result.

Theorem 9: Suppose that S indexes a linearly independent

set of s atoms and that T lists t atoms. Assume that the size

δ of their intersection

δ = |S ∩ T | < s

[

1 − t − 1

s
· tµ2

1 − tµ2

]

. (12)

Let u = ΦSx be a generic signal in range(ΦS). Then

P {u ∈ range(ΦT )} = 0.

A fortiori, there is zero probability that u can be represented

using any set T of t atoms whose overlap with S equals δ.

Proof: Define the set R = S ∪ T . Observe that

r := |R| = |S| + |T | − |S ∩ T | = s + t − δ.

Corollary 5 states that t < rank(ΦR) implies

P {u ∈ range(ΦT )} = 0. (13)

According to Lemma 8,

r

1 + (r − 1)µ2
≤ rank(ΦR).

Therefore, another sufficient condition for (13) is

t <
r

1 + (r − 1)µ2
=

s + t − δ

1 + (s + t − δ − 1)µ2
.



Solving this relation for δ results in the bound

δ < s − (t − 1)tµ2

1 − tµ2
.

If δ satisfies this condition, then (13) is in force.

Since only a finite number of sets T meet the hypotheses

of the theorem, there is zero chance that u is representable

using any such set T of atoms.

In words, Theorem 9 states that a generic signal constructed

using a set of s atoms almost surely has no representation

using another set of t atoms unless there is a substantial

overlap between the two sets.

For example, suppose µ ≤ m−1/2, and let u be a generic

signal in range(ΦS), where |S| ≤ m/3. Take t = s in

the overlap condition (12) to see that, almost surely, every

representation of u with s atoms requires at least s/2 atoms

from S!

To obtain an uncertainty principle, note that the relation (12)

is quadratic in t. By reverting this inequality, we obtain a

sufficient condition on t as a function of s and δ.

Corollary 10: With the notation of Theorem 9, assume

t < (s − δ − 1)

[
√

(

1 +
1

s − δ − 1

)

µ−2

s − δ − 1
+

1

4
− 1

]

.

Then P {u ∈ range(ΦT )} = 0.

After a considerable amount of algebra, Corollary 10 sim-

plifies to a new uncertainty principle.

Corollary 11 (Uncertainty Principle for Generic Signals):

Suppose S is linearly independent. A generic signal u in

range(ΦS) almost surely has no representation over a set T
with overlap δ = |S ∩ T | unless

|S| + |T | > δ + µ−1
√

|S| − δ.

Theorem A follows from Corollary 11 by setting δ = 0.

V. SPARSITY GAP UNDER WEAK INCOHERENCE

In this section, we use a different technique to bound

the rank of ΦR below. This approach relies on the Schur

complement identity (9) and the second part of Corollary 7. We

also require some information about the properties of random

sets of atoms, drawn from [9], [10]. The conclusions are most

interesting for weakly incoherent dictionaries.

Assume S is linearly independent, which implies that the

Gram matrix Φ
∗
SΦS is invertible. Let V be an index set

disjoint from S, and write R = S ∪V . Then the Gram matrix

has the block structure

Φ
∗
RΦR =

[

Φ
∗
SΦS Φ

∗
SΦV

Φ
∗
V ΦS Φ

∗
V ΦV

]

.

The identity (9) shows that we can control the rank of the

Gram matrix by controlling the rank of the northwest block

and its Schur complement. To state the result, we recall that

PS = ΦS(Φ∗
SΦS)−1

Φ
∗
S (14)

is the orthogonal projector onto range(ΦS).

Lemma 12: Suppose that S is linearly independent; let V
be disjoint from S; and define R = S ∪ V . Then

rank(ΦR) = |S| + rank((I − PS)ΦV ).

Proof: The Schur complement identity (9) shows that

rank(Φ∗
RΦR) = rank(Φ∗

SΦS) + rank(Φ∗
RΦR/Φ∗

SΦS).

The set S is linearly independent, so

rank(Φ∗
SΦS) = rank(ΦS) = |S| .

Next, recall the definition of the Schur complement:

Φ
∗
RΦR/Φ∗

SΦS = Φ
∗
V ΦV − Φ

∗
V ΦS(Φ∗

SΦS)−1
Φ

∗
SΦV .

Identify the orthogonal projector onto range(ΦS) to see that

Φ
∗
RΦR/Φ∗

SΦS = Φ
∗
V (I − PS)ΦV .

We conclude that

rank(Φ∗
RΦR/Φ∗

SΦS) = rank((I − PS)ΦV )

because (I − PS)2 = (I − PS).
The next result provides a lower bound on the second term

in Lemma 12. Here and elsewhere, the dagger † denotes the

pseudoinverse of a matrix.

Lemma 13: Suppose that S is linearly independent, and let

V be disjoint from S. Then

rank((I − PS)ΦV ) ≥
ρ−1 |V |

(

1 −
∥

∥Φ
†
S

∥

∥

2
maxv/∈S ‖Φ∗

Sϕv‖2
2

)

.

Proof: Corollary 7 states that

rank((I − PS)ΦV ) ≥ ‖(I − PS)ΦV ‖2
F

‖(I − PS)ΦV ‖2 . (15)

The spectral norm satisfies the bound

‖(I − PS)ΦV ‖2 ≤ ‖ΦV ‖2 ≤ ρ

because ΦV is a column submatrix of Φ. With a little more

work, we can produce a lower bound on the Frobenius norm.

‖(I − PS)ΦV ‖2
F =

∑

v∈V
‖(I − PS)ϕv‖2

2

=
∑

v∈V
(1 − ‖PSϕv‖2

2)

≥
∑

v∈V

(

1 −
∥

∥Φ
†
S

∥

∥

2 ‖Φ∗
Sϕv‖2

2

)

≥ |V |
(

1 −
∥

∥Φ
†
S

∥

∥

2
max
v/∈S

‖Φ∗
Sϕv‖2

2

)

.

The first inequality follows by expanding the projector via (14)

and invoking the usual operator norm bound. Introduce the two

norm estimates into (15) to complete the argument.

Lemma 13 is interesting because a random set S of atoms

from a weakly incoherent dictionary usually leads to small

values for the mysterious quantities in the rank bound.



Proposition 14: Suppose that S is a uniformly random

subset of {1, 2, . . . , s} with cardinality s. For β ≥ 1,

P

{

max
v/∈S

‖Φ∗
Sϕv‖2 > Cβ

[

µ
√

log N + 2

√

ρs

N

]}

≤ 2N−β .

and

P

{

∥

∥Φ
∗
SΦS − I

∥

∥ < Cβ

[

µ log N +

√

ρs log N

N

]}

≤ 2N−β .

The number C is an absolute constant.

Proposition 14 follows from the results in [10, Sec. 5]

after some standard arguments. We use Markov’s inequality to

convert the moment bounds into tail bounds. Then we invoke

a simple decoupling argument (see [7, Lem. 14] for a model)

to transfer the result for a random set with expected cardinality

s to a random set with exact cardinality s.

To take advantage of Proposition 14, we restrict our at-

tention to a specific class of dictionaries. Assume that Φ is

a weakly incoherent tight frame, as defined in (4). Suppose

furthermore that the sparsity s satisfies (5). If we fix a

sufficiently small value for constant c and take β = 1,

Proposition 14 ensures that

maxv/∈S ‖Φ∗
Sϕv‖2 ≤ 1/2 and

∥

∥Φ
†
S

∥

∥ ≤
√

2,

except with probability O(N−1). The upshot of this discussion

is the following bound.

Corollary 15: Assume the hypotheses of Lemma 13 are in

force. Let R = S ∪ V . Then

rank(ΦR) ≥ |S| + 2m |V |
N

.

We reach our final major result by introducing this bound

into Corollary 5.

Theorem 16: Assume that Φ satisfies the weak incoherence

conditions (4), and assume further that N > 2m. Draw a

random set S of s atoms, where s satisfies (5). Except with

probability O(N−1), the following result holds.

Suppose that T lists t atoms. Let δ = |S ∩ T | be the size

of the overlap with S, and assume that

t <

(

s − 2δm

N

)(

1 − 2m

N

)−1

.

Draw a generic signal u = ΦSx. Then

P {u ∈ range(ΦT )} = 0.

A fortiori, there is zero probability that u has a representation

over any such set T of atoms.

Proof: Draw a random set S of s atoms. Corollary 15

guarantees that, with probability O(N−1), the following result

holds. For any given set T of t atoms, define V = T \ S and

select R = S ∪ V . Then

2m |V |
N

≤ rank(ΦR). (16)

Now, suppose that T is a specific set of t atoms. According

to Corollary 5, the condition t < rank(ΦR) implies that a

generic signal in range(ΦS) almost surely has no representa-

tion using the atoms in T . It follows from (16) that

t < s +
2m |V |

N

is a stricter sufficient condition that u almost surely cannot be

represented with T . Introduce the identity |V | = t−δ into the

last relation and rearrange to obtain the equivalent condition

t <

(

s − 2δm

N

)(

1 − 2m

N

)−1

.

As usual, we may take a union bound over the finite number

of admissible T to obtain a uniform result.

The message may be clearer if we make additional sim-

plifications to the sufficient condition in Theorem 16. First,

subtract and add 2sm/N in the first parenthesis to reach

t <

[

s

(

1 − 2m

N

)

+
2(s − δ)m

N

](

1 − 2m

N

)−1

.

Since 1 < (1 − 2m/N)−1, we find that a further sufficient

condition is

t ≤ s +
2(s − δ)m

N
(17)

In words, there is zero probability that a generic signal in

range(ΦS) has a representation using t atoms unless t is

somewhat larger than s or the alternative representation uses

many atoms from S. Take δ = 0 in (17) to reach Theorem B.

REFERENCES

[1] T. Strohmer and R. W. Heath, “Grassmannian frames with applications
to coding and communication,” Appl. Comp. Harmonic Anal., vol. 14,
no. 3, pp. 257–275, May 2003.

[2] D. L. Donoho and P. B. Stark, “Uncertainty principles and signal
recovery,” SIAM J. Appl. Math., vol. 49, no. 3, pp. 906–931, June 1989.

[3] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic
decomposition,” IEEE Trans. Inform. Theory, vol. 47, pp. 2845–2862,
Nov. 2001.

[4] R. Gribonval and M. Nielsen, “Sparse representations in unions of
bases,” IEEE Trans. Inform. Theory, vol. 49, no. 12, pp. 3320–3325,
Dec. 2003.

[5] D. L. Donoho and M. Elad, “Optimally sparse representation in general
(nonorthogonal) dictionaries via ℓ1 minimization,” Proc. Natl. Acad.

Sci., vol. 100, pp. 2197–2202, March 2003.
[6] M. Elad and A. M. Bruckstein, “A generalized uncertainty principle and

sparse representation in pairs of bases,” IEEE Trans. Inform. Theory,
vol. 48, no. 9, pp. 2558–2567, 2002.

[7] J. A. Tropp, “On the linear independence of spikes and sines,” J. Fourier

Anal. Appl., vol. 14, pp. 838–858, 2008.
[8] E. J. Candès and J. Romberg, “Quantitative robust uncertainty principles

and optimally sparse decompositions,” Foundations of Comput. Math,
vol. 6, pp. 227–254, 2006.

[9] J. A. Tropp, “On the conditioning of random subdictionaries,” Appl.

Comp. Harmonic Anal., vol. 25, pp. 1–24, 2008.
[10] ——, “Norms of random submatrices and sparse approximation,” C. R.

Acad. Sci. Paris Ser. I Math., vol. 346, pp. 1271–1274, 2008.
[11] N. Alon, “Problems and results in extremal combinatorics,” Discrete

Math., vol. 273, pp. 31–53, 2003.
[12] J. Bourgain and L. Tzafriri, “Invertibility of “large” submatrices with

applications to the geometry of Banach spaces and harmonic analysis,”
Israel J. Math, vol. 57, no. 2, pp. 137–224, 1987.

[13] C. Page, G. P. H. Styan, B.-Y. Wang, and F. Zhang, “Hua’s matrix
equality and Schur complements,” Intl. J. Info. Sys. Sci., vol. 3, no. 1,
pp. 1–18, 2007.


