
1SCIENTIFIC REPORTS |         (2018) 8:17685  | DOI:10.1038/s41598-018-36077-w

www.nature.com/scientificreports

The spatial epidemiology of sickle-
cell anaemia in India
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Sickle-cell anaemia (SCA) is a neglected chronic disorder of increasing global health importance, with 
India estimated to have the second highest burden of the disease. In the country, SCA is particularly 
prevalent in scheduled populations, which comprise the most socioeconomically disadvantaged 
communities. We compiled a geodatabase of a substantial number of SCA surveys carried out in India 
over the last decade. Using generalised additive models and bootstrapping methods, we generated 
the first India-specific model-based map of sickle-cell allele frequency which accounts for the district-
level distribution of scheduled and non-scheduled populations. Where possible, we derived state- and 
district-level estimates of the number of SCA newborns in 2020 in the two groups. Through the inclusion 
of an additional 158 data points and 1.3 million individuals, we considerably increased the amount 
of data in our mapping evidence-base compared to previous studies. Highest predicted frequencies 
of up to 10% spanned central India, whilst a hotspot of ~12% was observed in Jammu and Kashmir. 
Evidence was heavily biased towards scheduled populations and remained limited for non-scheduled 
populations, which can lead to considerable uncertainties in newborn estimates at national and state 
level. This has important implications for health policy and planning. By taking population composition 
into account, we have generated maps and estimates that better reflect the complex epidemiology of 
SCA in India and in turn provide more reliable estimates of its burden in the vast country. This work was 
supported by European Union’s Seventh Framework Programme (FP7//2007–2013)/European Research 
Council [268904 – DIVERSITY]; and the Newton-Bhabha Fund [227756052 to CH]

Sickle-cell anaemia (SCA), which results from the inheritance of two copies of the sickle β-globin gene variant 
(βS), is the most common form of sickle-cell disease (SCD). SCD refers to a group of inherited disorders affecting 
haemoglobin1. Caused by a single nucleotide substitution at position 6 of the β-globin gene, its pathophysiology 
stems from the polymerisation of the resulting sickle haemoglobin variant (HbS), triggering a cascade of erythro-
cyte alterations2,3. Individuals with SCA experience considerable morbidity from both acute and chronic seque-
lae. Without effective treatment, the most severe cases can be fatal within the first few years of life1.

Due to improved survival and population movements, the global burden of SCA is increasing4, with the 
annual number of SCA newborns expected to increase from ~300,000 to more than 400,000 between 2010 and 
20505. The majority of these births occur in Sub-Saharan Africa. However, some of the highest βS allele frequen-
cies have been reported in Indian populations6–8, and India has been ranked the second worst affected country in 
terms of predicted SCA births, with 42 016 (interquartile range, IQR: 35 347–50 919) babies estimated to be born 
with SCA in 20109.

In India, βS is predominantly found amongst scheduled tribe (ST) and scheduled caste (SC) populations. These 
constitute the most socioeconomically disadvantaged population subgroups in the country10 and, according to 
the latest census conducted in 2011 (www.censusindia.gov.in), account for about a quarter of the Indian popu-
lation. A high βS allele frequency within scheduled groups is likely due to a combination of factors, including, 
but not limited to: (i) a potentially greater selection pressure on these groups from malaria11, (ii) the high rate 
of endogamy that is observed in them12, and (iii) the competitive evolutionary exclusion of βS by β-thalassaemia 
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and/or βE in certain non-scheduled groups13–15. Heterogeneities in βS allele frequency are observed within sched-
uled populations, with carrier frequencies ranging from ~1% to 40%10,16. Carrier frequencies of up to 12% have 
also been reported in non-scheduled groups17,18, although frequencies of <5% are more commonly observed19–21.

Although various maps of βS in India and a global geostatistical map of βS have previously been published9,10,22, 
a model-based national map accounting for the socio-demographic complexity of the Indian population is 
currently lacking. Over the last decade, public and private institutions in India have made a remarkable effort 
to quantify SCA prevalence in different parts of the country, ranging from village-level prevalence surveys to 
state-wide screening programmes (e.g. Patel et al., and Patra et al.23,24).

Improved knowledge of the geographical distribution and burden of SCA is essential for informing public 
health policies. In particular, estimates that distinguish between affected births in scheduled and non-scheduled 
groups may enable better assessment of the requirement for healthcare infrastructures, screening programmes 
and treatments, including penicillin prophylaxis, hydroxyurea and other emerging treatments25, for the preven-
tion and management of SCA. Here we incorporate: (i) large amounts of recent survey data, (ii) a reproducible 
off-the-shelf model-based methodology, and (iii) population composition data (proportion of scheduled and 
non-scheduled groups) at district level, to present the first national evidence-based map of βS allele frequency 
in India, along with sub-national estimates of the number of affected newborns expected in 2020. Coupled with 
ongoing extensive efforts to characterise disease survival and clinical severity in different parts of the country, this 
work will provide an important public health resource for developing appropriate models of care at national and 
sub-national levels.

Methods
Assembling an updated geodatabase of surveys. We conducted a literature search of sickle-cell sur-
veys in India between 2010 and 2017 as well as surveys available only in the local literature, including those older 
than 2010 (Fig. 1). Using procedures outlined in the Supplementary Information S1, identified references were 
reviewed for their suitability to contribute to the evidence-base underpinning our mapping analysis. Surveys for 
which there was stated or suspected selection bias in health status or SCD risk were excluded. In addition, we only 
included surveys that reported sample size and, at a minimum, the number of sickle-cell heterozygotes identified. 
Finally, only surveys that could be georeferenced to at least the district level were included. Our data were then 
supplemented by an earlier database published by Piel et al. (2013), which included studies from 1950 to 2009. 
The final dataset is described in detail in the Supplementary Information S1 and is available on request.

Accounting for population composition. The ethnic composition of the Indian population is complex, 
with the coexistence of more than two thousand ethnic groups26. Under the Indian reservation system, each 
ethnic group is classified into one of four official social designations27. These, in order of decreasing socioeco-
nomic deprivation, are: (i) Scheduled Tribes, (ii) Scheduled Castes, (iii) Other Backward Classes (OBCs), and (iv) 
General Classes (GCs). While specific ethnic information is not consistently reported in published surveys, it is 
usually relatively straightforward to identify whether the studied populations were scheduled or non-scheduled. 
To account for population composition, surveys were included irrespective of the ethnicity of the study sample 
and categorised as “scheduled” or “non-scheduled” (Supplementary Information S2). Surveys for which the eth-
nicity and/or social status of the sample was unknown or mixed were excluded.

Analysis of associations between covariates and βS allele frequency. Univariate linear regression 
was used to examine the association between social group and βS allele frequency to confirm that there was 
indeed a difference in βS allele frequency between scheduled and non-scheduled surveys. The dataset was then 
divided into two data subsets: scheduled and non-scheduled.

We used a generalised additive modelling (GAM) approach to examine associations between the observed 
allelic counts from survey data with a series of predictor variables (or covariates): (i) geographical location, given 
by latitude and longitude in decimal degrees, (ii) historical rates of malaria, taken from two separate sources28,29, 
(iii) contemporary rates of malaria30, and (iv) two urbanisation proxies (Supplementary Information S2).

A description of the model procedures is provided in the Supplementary Information S2. We divided 
each dataset (scheduled and non-scheduled) into a training dataset, comprising 90% of the data points, and a 
semi-random 10% hold-out dataset (Supplementary Information S3). For each training dataset, we used a back-
ward stepwise selection procedure, starting with a full model that included all covariates, to decide upon a final 
GAM. A two-dimensional smoother was used for the geographical effect to account for spatial autocorrelation31. 
The Generalised Cross Validation (GCV) score, mean squared error (MSE) and Akaike Information Criterion 
(AIC) score were used as selection criteria, along with p-values for individual covariates.

The predictive ability of each model was assessed by comparing model predictions with the observed βS allele 
frequencies for the corresponding hold-out dataset (Supplementary Information S3). The mean error (ME) and 
mean absolute error (MAE) were calculated as an indication of the model’s overall bias and accuracy, respectively.

Creating a map of βS allele frequency. For each dataset, the final fitted model was used to predict 
βS allele frequency at unsampled locations and generate a map at 10 km × 10 km resolution (Supplementary 
Information S2). We then adjusted our predictions using census data on the proportion of scheduled and 
non-scheduled populations at the district level (n = 666) (www.censusindia.gov.in) by multiplying them together. 
These adjusted maps were combined to generate a composite map of βS allele frequency in India that incorporated 
information from scheduled and non-scheduled populations.

Bootstrap resampling (with replacement) of the two datasets was performed for 2500 iterations to generate a 
predictive probability distribution for each pixel, from which the median could be calculated along with the 95% 
confidence interval (95% CI). The 95% CI was used as a measure of the variation in the models’ predictions at 
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each 10 km × 10 km location. We would like to make clear that, particularly in areas where data are absent (e.g. 
in Haryana, Uttarakhand, many of the northeastern states and parts of southern India), the 95% CI should not be 
interpreted as the level of uncertainty in our estimation of the true frequency of βS in the population; rather it is a 
reflection of the models’ consistency in predictions as a result of no data.

Estimating number of newborns affected. The number of newborns with SCA in India in 2020 was 
estimated for scheduled and non-scheduled populations separately by pairing our 10 km × 10 km maps of βS 
allele frequency with high-resolution birth count data (described in the Supplementary Information S4). The 
predicted number of newborns with SCA (NSCA) was based on Hardy-Weinberg assumptions, so that NSCA is 
given by Bq2, where B is the number of births in each pixel and q is βS allele frequency32. To calculate areal esti-
mates, estimates in each pixel were generated for each bootstrap repetition of the model and summed across all 
pixels falling within an administrative unit. This generated a predictive probability distribution for the number of 
affected newborns in each unit, which was used to calculate the median and 95% CI for the newborn estimates. 
Uncertainty measures incorporated uncertainty in both the behaviour of the GAM predicting βS allele frequency 
and the birth count data (Supplementary Information S4). Again, these uncertainty measures should be inter-
preted with the caveat that the GAM makes consistently low predictions of βS allele frequency in the absence of 
data. Therefore, narrow 95% CIs in areas where data is absent should not be interpreted as certainty in the absence 
of sickle-cell in those regions, but rather consistency in what this method predicts for them.

All statistical analyses were performed in R using the ‘mgcv’ package (with version R 3.3.2).

Figure 1. Schematic overview of database generation procedures and geostatistical modelling processes. Pink 
diamonds represent input data; green boxes denote methodological steps; blue rods depict model outputs. 
*Historical map of malaria endemicity and contemporary map of malaria. **Two urban accessibility metrics, 
nighttime lights and travel time to the nearest city (Supplementary Information S2).



www.nature.com/scientificreports/

4SCIENTIFIC REPORTS |         (2018) 8:17685  | DOI:10.1038/s41598-018-36077-w

Results
Prevalence survey database. Our final evidence-base consisted of 249 surveys from 75 sources, spanning 
141 spatially unique sites (Fig. 2a). Surveys were conducted in 18 of the 36 Indian states and union territories. 
More than half (60.64%) fell within four states: Gujarat (n = 29), Maharashtra (n = 32), Odisha (n = 37) and 
Chhattisgarh (n = 53) (Fig. S2a). Scheduled populations were the most extensively studied, with 171 surveys car-
ried out amongst STs, 18 amongst SCs and four amongst the two groups combined. Thirty-one surveys targeted 
populations belonging to OBCs, 24 were carried out in GCs and one in OBCs and GCs together. The number of 
individuals sampled was 1 300 719 (compared to 34 382 in Piel et al. - an almost forty-fold increase) and sample 
size ranged from 2 to 150 988. Some of the very small samples (e.g. n = 2) come from surveys that were carried 
out across multiple ethnic groups but the βS allele frequency reported separately for each. Mean sample size was 
5224 and the median 244.

Figure 2. (a) A map of the sickle-cell surveys included in our database (n = 249). Data points are coloured 
according to the βS allele frequency reported in the study sample. The size of the data points relates to their 
sample size. A spatial jitter of up to 0.3° latitude and longitude decimal degrees coordinates was applied to 
improve visualisation of the data. (b) Map of median predicted βS allele frequency estimates at a resolution of 
10 km × 10 km. State boundaries are displayed in dark grey.
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Analysis of associations between covariates and βS allele frequency. A univariate analysis of the 
relationship between βS allele frequency and social group (scheduled or non-scheduled) for the whole dataset 
revealed a p-value < 0.0001. The dataset was separated into scheduled and non-scheduled datasets (n = 193 and 
n = 56, respectively), and divided into training and hold-out datasets. For both, only geographic location was 
included in the final model (Table 1). The p-value for the two-dimensional smooth term was < 0.0001 for both. 
The large effective degrees of freedom (edf) indicate a highly non-linear relationship between geographic coordi-
nates and βS frequency. The R2 value was greater for the non-scheduled dataset (R2 = 0.68) than for the scheduled 
dataset (R2 = 0.52), suggesting that a simple spatial model explains a larger proportion of the variance in the 
former.

βS allele frequency map and prediction uncertainty. Predicted maps for the sub-populations were 
generated separately (Supplementary Figs S5 and S6) and then paired, together with district-level data on the pro-
portion of scheduled and non-scheduled groups, to create a final composite map of βS allele frequency (Fig. 2b). 
A map showing the 95% CI associated with each pixel when bootstrapping is used to explore how consistently the 
GAM performs is provided in Supplementary Fig. S7.

The highest predicted allele frequencies (up to 10%) where consistency in model predictions was high (95% 
CI ≤ 5%) were found in a belt stretching across central India, extending from southeastern Gujarat to south-
western Odisha. Within this belt, lower allele frequencies of 2–6% were predicted in the Nagpur Division of 
Maharashtra and still lower frequencies of 1–2% in the Konkan and Pune Divisions. Similarly heterogeneous 
frequencies were predicted in southeastern Rajasthan, Gujarat and Odisha. Large parts of Madhya Pradesh and 
Chhattisgarh were predicted to have a βS allele frequency ≥4%. For all the aforementioned regions, the model 
performed largely consistently when the data were bootstrapped (95% CI ≤ 5%), with some exceptions (Fig. S7). 
Allele frequencies of ~12% were predicted in northwestern Jammu and Kashmir, although there were large incon-
sistencies in the model predictions for this region (95% CI ~10%). Very low frequencies (<1%) were predicted 
in the whole northeastern region, although with even greater variability in the model’s behaviour in some areas 
(e.g. 95% CIs of ≥80% in parts of Assam). Predictions in southern India were also associated with high variability 
in model behaviour (95% CIs >20%). Finally, in areas where there were no data available, the model consistently 
predicted low frequencies of <1%. Examples include Haryana, Uttarakhand, Uttar Pradesh, Bihar, the central part 
of Karnataka and Andhra Pradesh and some of the northeastern states.

Validation statistics. We compared predictions generated using the training data with known values in the 
hold-out subset. Our comparison revealed a mean error in allele frequency prediction of −4.3% and −0.8% in the 
scheduled and non-scheduled groups, respectively. The relatively high mean error for scheduled populations can 
in part be explained by the large amount of heterogeneity in the observed data. The predicted allele frequencies 
for non-scheduled populations were only slightly overestimated. The mean absolute error was 4.6% and 0.8%, 
respectively. The predicted allele frequencies in the scheduled and non-scheduled maps are therefore slightly 
overestimated (i.e. mean errors were mostly positive).

Estimates of newborns affected in scheduled and non-scheduled populations. The absolute bur-
den of βS depends on both βS allele frequency and population size. We generated state- and district-level estimates 
of the number of newborns with SCA in 2020 for scheduled and non-scheduled groups, by pairing the respective 
adjusted predicted allele frequency maps with birth data (Figs 3 and 4). The 95% CI for these estimates are pro-
vided in Supplementary Figs S8 and S9.

Estimate p-value

Scheduled dataset (n = 174)

Intercept −3.0898  < 0.0001

Smooth term edf p-value

f(lat, long) 22.1800 <0.0001

R2 = 0.5170

GCV = 1.0038

MSE = 0.7555

AIC = 495.9284

Non-scheduled dataset (n = 50)

Intercept −4.0709 <0.0001

Smooth term edf p-value

f(lat, long) 10.0900 <0.0001

R2 = 0.6890

GCV = 1.0728

MSE = 0.6639

AIC = 150.4534

Table 1. Summary results of the selected GAM for the scheduled and non-scheduled training datasets. The 
intercept, smoothing term f and its corresponding p-value, adjusted R2, Generalised Cross Validation (GCV) 
score, mean squared error (MSE) and Akaike Information Criterion (AIC) are given.
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For scheduled groups, the highest number of affected newborns was predicted in Madhya Pradesh (1475 [95% 
CI: 753–3307]). Maharashtra, Gujarat, Odisha and Chhattisgarh were predicted to have 503 (95% CI: 270–870), 
436 (95% CI: 263–711), 257 (95% CI 149–247) and 230 (95% CI 120–493) SCA newborns, respectively. The sec-
ond highest number of affected newborns was predicted in Tamil Nadu (846 [95% CI 30–9268]), although this 
state also had the largest 95% CI associated with that prediction (95% CI ~9000). A burden of <50 newborns was 
predicted in Jammu and Kashmir, Punjab, Telangana, Jharkhand and West Bengal, reflecting the low observed βS 
allele frequencies and/or small population size in these states compared to higher-burden states. In states where 
data were absent (e.g. Uttar Pradesh, northern Karnataka and many of the northeastern states), estimates repre-
sent the minimum estimate for each state (Fig. 3a). This is due to the absence of data preventing higher βS allele 
frequencies from being predicted.

Figure 3. Map of the estimated number of scheduled newborns born with SCA in India, (a) by state and, (b) by 
district, in 2020. The medians of the predictive probability distribution of the areal estimates are displayed. The 
district shaded grey in Tamil Nadu in (b) is that where the 95% CI was very large (>1000). State boundaries are 
displayed in dark grey and district boundaries in light grey.
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Figure 3b shows the number of newborns estimated at district level. For the majority of districts (82%), 10 or 
fewer SCA cases were predicted. Again, for regions where no data were available, these estimates must be inter-
preted as minimum estimates. Districts with the highest estimated number of SCA newborns in scheduled groups 
were found on or close to the border of Gujarat, Maharashtra and Madhya Pradesh and include: Dahod district 
in Gujarat (146 [95% CI: 79–265]), Nandurbar district in Maharashtra (145 [95% CI: 73–266]) and Dhar and 
Barwani districts in Madhya Pradesh (144 [95% CI: 80–245] and 139 [95% CI: 70–250], respectively). A hotspot 
of districts with a predicted burden of 75 or more cases was also predicted at the border of Tamil Nadu, Karnataka 
and Andhra Pradesh although the 95% CI for these states was larger (95% CI > 500; Supplementary Fig. S8b).

For non-scheduled groups, sensible predictions could not be made for a third of Indian states, including 
Kerala, Karnataka, Tamil Nadu, Andhra Pradesh, Telangana, Odisha, Jharkhand, Bihar, West Bengal, Assam and 

Figure 4. Map of the estimated number of non-scheduled newborns born with SCA in India, (a) by state 
and, (b) by district, in 2020. The medians of the predictive probability distribution of the areal estimates are 
displayed. The states and districts shaded grey are those where our estimates were highly variable (95% CI > 10 
000 and > 1000, respectively (Supplementary Figure S9). State boundaries are displayed in dark grey and district 
boundaries in light grey.
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Manipur (Fig. 4a). For all these states, the 95% CI exceeded 10 000 (Supplementary Fig. S9a). For states where the 
data allowed calculation of sensible estimates, Jammu and Kashmir was predicted to have the highest number of 
SCA newborns (461 [95% CI: 127–1542]), followed by Chhattisgarh (249 [95% CI: 129–542]), Uttar Pradesh (153 
[95% CI: 19–5186]) and Maharashtra (91 [95% CI: 43–4051]). The remaining states were all estimated to have 50 
or fewer SCA newborns, which are minimum estimates given the absence or paucity of data.

At the district level, for 172 of the 666 districts, our estimates were deemed to be too variable (95% CI ≥ 1,000) 
to be meaningful (Fig. 4b and Supplementary Fig. 9b). Of the remaining districts, those with the highest predicted 
burden were Kupwara (125 [95% CI: 27–431]) and Baramulla (123 [95% CI: 32–400]) in Jammu and Kashmir and 
Wayanad (124 [95% CI: 0–205]) and Kannur (92 [95% CI: 0–771]) in Kerala. Four hundred and fifty-five districts 
were predicted to have 10 or fewer SCA newborns due to data for non-scheduled groups being absent for many 
of the districts.

Discussion
The patterns in our maps are consistent with previous survey10,22 and continuous maps9, with the lowest allele fre-
quencies predicted in the northeastern part of the country, the highest frequencies across a central belt, an area of 
high allele frequency in southern India, and a heterogeneous distribution of the βS allele across the whole country. 
However, our database and map also suggest a hotspot in northwestern Jammu and Kashmir, which stems from 
a survey carried out by Fareed et al.17 in Rajouri and Poonch districts in which βS allele frequency ranged from 
2.69% to 8.75%. This may warrant further investigation as βS is typically considered to occur at low frequencies 
in the north of the country.

An important difference between our map and previous maps is the inclusion of social status in our analysis. 
Our findings highlight that our current knowledge of the distribution of βS in India is based on an evidence-base 
that is heavily biased towards scheduled groups, with close to 80% of the data coming from scheduled popula-
tions. Whilst it is important to assess the burden amongst the socioeconomically deprived scheduled groups, 
which experience some of the highest βS frequencies in the country, the generation of reliable estimates for the 
whole Indian population requires understanding the epidemiology of SCA amongst non-scheduled groups too, 
for three reasons: (i) current surveys reveal a not insignificant amount of heterogeneity in sickle-cell frequency 
in non-scheduled groups, with observed allele frequencies ranging from 0% to 12%, (ii) non-scheduled groups 
account for 75% of the Indian population (i.e. 991 327 500 individuals in 2020, including 23 943 203 newborns, 
assuming a birth rate of 18.1 per 1000 population), and (iii) together, this means that, without more data for 
non-scheduled groups, any estimate of the number of SCA newborns in this large subset of the population would 
be associated with considerable imprecision and uncertainty.

Since the publication of the global βS allele frequency map in 2013, there has been a surge of prevalence 
surveys, some of considerable size (>1 million individuals), carried out in India. The inclusion of data from 
recent screening programmes and population surveys more than doubled the number of data points in our 
evidence-base (n = 249 compared with n = 112 in Piel et al.). However, we found considerable geographical over-
lap between the surveys identified here and those used in Piel et al. (2013). This added heterogeneity to the exist-
ing evidence-base, which is reflected by the lower precision of our estimates in areas where data were abundant. 
However, we believe that this better reflects the true heterogeneity of βS allele frequency in the worst affected parts 
of the country. For areas where heterogeneity is very high (e.g. Tamil Nadu), it may be necessary to scale future 
geospatial analyses down to the within-state level.

Our analyses also demonstrate that, for a national allele frequency map such as the one presented here, an 
uneven spread of surveys makes it hard to generate predictions in areas where data are absent. Although the 
assumption that frequencies are likely to be low in unsampled areas may seem reasonable, we found evidence that 
this is not always true. The stringent inclusion criteria used in this study, including georeferencing at the district 
level and unambiguous scheduled status of the study sample, meant that many surveys were excluded from the 
analysis. A few of these excluded surveys offer data in areas where no surveys meeting our inclusion criteria 
were conducted. For instance, analyses carried out in the Tharu tribal group of the Terai region of Uttar Pradesh 
revealed a βS allele frequency of 10%33. This survey could not be georeferenced to the district level and was there-
fore excluded from the present study. Without any data indicating the presence of βS in the Terai region, geospatial 
analysis cannot predict it. Developing methods that can combine data of different quality (e.g. presence/absence 
of βS versus βS frequency; georeferencing to different administrative levels; known versus unknown scheduled 
status of the study sample) within a single unified analysis remains an ongoing challenge.

There are some limitations to our map and newborn estimates. First, the precision of a model-based map and 
estimates are determined by the available data, which is non-randomly distributed. Second, the categorisation 
of ethnic groups into two categories is reductionist; even within the groups, there is extensive heterogeneity in 
βS allele frequencies22,34. The inclusion of more specific ethnicities in the analysis would have resulted in a more 
tailored map and estimates; however, detailed data on the distribution of all ethnic groups in India are limited. In 
addition, our estimates do not account for consanguinity, due to there being no fine-scale data on consanguinity 
for the country. It is therefore likely that our estimates are an underestimate of the true burden.

Our analyses highlight some of the complexities and heterogeneities of the populations living in the Indian 
subcontinent. They strongly point towards the need for careful planning by the upcoming National Programme 
for Control and Care of Haemoglobinopathies to generate data that will lend itself to improved precision in 
current estimates. For example, within the high-frequency states, ongoing surveys would be beneficial to assess 
the impact of screening and other interventions. Data in non-scheduled populations is also needed, particularly 
in southern India, where uncertainty in our newborn estimates is high. The reporting of the scheduled status of 
sample individuals in future surveys will also be important in order to avoid a trade-off between the density of 
data points and the inclusion of social status in future mapping analyses, as has occurred in this study.
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Our analyses also reflect some of the challenges in defining optimum public health strategies in such a set-
ting. Focusing on high-frequency hotspots of scheduled populations might be the most cost-effective option but 
would neglect a large number of SCA individuals in low-frequency areas of primarily non-scheduled populations. 
Well-designed epidemiological surveys will be crucial to further assess the prevalence and burden of SCD in India 
and the impact of chosen public health interventions. Recent low-cost point of care testing devices will greatly 
facilitate this.

Data Availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.

References
 1. Piel, F. B., Steinberg, M. H. & Rees, D. C. Sickle Cell Disease. New England Journal of Medicine 376, 1561–1573, https://doi.

org/10.1056/NEJMra1510865 (2017).
 2. Odièvre, M.-H., Verger, E., Silva-Pinto, A. C. & Elion, J. Pathophysiological insights in sickle cell disease. The Indian Journal of 

Medical Research 134, 532–537 (2011).
 3. Ware, R. E., de Montalembert, M., Tshilolo, L. & Abboud, M. R. Sickle cell disease. The Lancet 390, 311–323, https://doi.org/10.1016/

S0140-6736(17)30193-9 (2017).
 4. Weatherall, D. J. The inherited diseases of hemoglobin are an emerging global health burden. Blood 115, 4331 (2010).
 5. Piel, F. B., Hay, S. I., Gupta, S., Weatherall, D. J. & Williams, T. N. Global Burden of Sickle Cell Anaemia in Children under Five, 

2010–2050: Modelling Based on Demographics, Excess Mortality, and Interventions. PLOS Medicine 10, e1001484, https://doi.
org/10.1371/journal.pmed.1001484 (2013).

 6. Research, I. C. o. M. Intervention Programme for Nutritional Anaemia and Haemoglobinopathies against some Primitive Tribal 
Populations of India: A National Multicentric Study of ICMR. (Indian Council of Medical Research, India 2010).

 7. Godbole, S. et al. In Proceedings of National Symposum on Tribal Health (eds N. Singh et al.) (Jabalpur 2006).
 8. Patra, P. K. & al., e. Sickle Cell Screening Project - At A Glance, www.scic.cg.nic.in (2016).
 9. Piel, F. B. et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and 

population estimates. Lancet 381, 142–151, https://doi.org/10.1016/s0140-6736(12)61229-x (2013).
 10. Colah, R., Mukherjee, M. & Ghosh, K. Sickle cell disease in India. Current opinion in hematology 21, 215–223, https://doi.

org/10.1097/moh.0000000000000029 (2014).
 11. Sharma, R. K. et al. Malaria situation in India with special reference to tribal areas. The Indian Journal of Medical Research 141, 

537–545, https://doi.org/10.4103/0971-5916.159510 (2015).
 12. Dixit, S., Sahu, P., Kar, S. K. & Negi, S. Identification of the hot-spot areas for sickle cell disease using cord blood screening at a 

district hospital: an Indian perspective. Journal of Community Genetics 6, 383–387, https://doi.org/10.1007/s12687-015-0223-7 
(2015).

 13. Ghosh, K., Colah, R. B. & Mukherjee, M. B. Haemoglobinopathies in tribal populations of India. The Indian Journal of Medical 
Research 141, 505–508, https://doi.org/10.4103/0971-5916.159488 (2015).

 14. Agarwal, M. B. The burden of haemoglobinopathies in India–time to wake up? The Journal of the Association of Physicians of India 
53, 1017–1018 (2005).

 15. Sinha, S. et al. Profiling β-thalassaemia mutations in India at state and regional levels: implications for genetic education, screening 
and counselling programmes. The HUGO Journal 3, 51–62, https://doi.org/10.1007/s11568-010-9132-3 (2009).

 16. Italia, Y. et al. Feasibility of a Newborn Screening and Follow-up Programme for Sickle Cell Disease among South Gujarat (India) 
Tribal Populations. Journal of medical screening 22, 1–7, https://doi.org/10.1177/0969141314557372 (2015).

 17. Fareed, M., Anwar, M. A., Ahmad, M. K. & Afzal, M. Gene frequency reports of sickle cell trait among six human populations of 
Jammu and Kashmir, India. Gene Rep. 4, 1–5, https://doi.org/10.1016/j.genrep.2016.02.003 (2016).

 18. Feroze, M. in National Conference on Hemoglobinopathies (Bangalore 2013).
 19. Urade, B. P. Haemoglobin S and βThal: Their distribution in Maharashtra, India. Int. J. Biomed. Sci. 9, 75–81 (2013).
 20. Dolai, T. K., Dutta, S., Bhattacharyya, M. & Ghosh, M. K. Prevalence of hemoglobinopathies in rural Bengal, India. Hemoglobin 36, 

57–63, https://doi.org/10.3109/03630269.2011.621007 (2012).
 21. Bhukhanvala, D. S., Sorathiya, S. M., Shah, A. P., Patel, A. G. & Gupte, S. C. Prevalence and hematological profile of beta-thalassemia 

and sickle cell anemia in four communities of Surat city. Indian journal of human genetics 18, 167–171, https://doi.org/10.4103/0971-
6866.100752 (2012).

 22. Colah, R. B., Mukherjee, M. B., Martin, S. & Ghosh, K. Sickle cell disease in tribal populations in India. The Indian Journal of Medical 
Research 141, 509–515, https://doi.org/10.4103/0971-5916.159492 (2015).

 23. Patel, J., Patel, B., Gamit, N. & Serjeant, G. R. Screening for the sickle cell gene in Gujarat, India: A village-based model. Journal of 
Community Genetics 4, 43–47, https://doi.org/10.1007/s12687-012-0116-y (2013).

 24. Patra, P. K., Khodiar, P. K., Hambleton, I. R. & Serjeant, G. R. The Chhattisgarh state screening programme for the sickle cell gene: a 
cost-effective approach to a public health problem. Journal of Community Genetics 6, 361–368, https://doi.org/10.1007/s12687-015-
0222-8 (2015).

 25. Kato, G. J. et al. Sickle cell disease. Nature Reviews Disease Primers 4, 18010, https://doi.org/10.1038/nrdp.2018.10 (2018).
 26. Singh, K. S. People of India: Introduction. (Oxford University Press 2002).
 27. Jangir, S. K. Reservation Policy and Indian Constitution in India. American International Journal of Research in Humanities, Arts and 

Social Sciences 3, 126–128 (2013).
 28. Hehir, P. Malaria in India, https://wellcomecollection.org/works/axv46sh5 (1927).
 29. Lysenko, A. J. & Semashko, I. N. Geography of malaria. A medico-geographic profile of an ancient disease [in Russian]. Itogi Nauki: 

Medicinskaja Geografia, 25–146 (1968).
 30. Gething, P. W. et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria Journal 10, 378–378, https://

doi.org/10.1186/1475-2875-10-378 (2011).
 31. Wood, S. Generalized Additive Models: An Introduction with R. (Chapman and Hall/CRC 2006).
 32. Wigginton, J. E., Cutler, D. J. & Abecasis, G. R. A Note on Exact Tests of Hardy-Weinberg Equilibrium. The American Journal of 

Human Genetics 76, 887–893, https://doi.org/10.1086/429864 (2005).
 33. Penman, B. S., Habib, S., Kanchan, K., Gupta, S. & Read, A. Negative epistasis between α(+) thalassaemia and sickle cell trait can 

explain interpopulation variation in south asia. Evolution; International Journal of Organic Evolution 65, 3625–3632, https://doi.
org/10.1111/j.1558-5646.2011.01408.x (2011).

 34. Shrikhande, A. V. et al. Prevalence of the beta(S) gene among scheduled castes, scheduled tribes and other backward class groups in 
Central India. Hemoglobin 38, 230–235, https://doi.org/10.3109/03630269.2014.931287 (2014).

Acknowledgements
We thank Katherine Battle from the Malaria Atlas Project for providing a digitised version of the map by Hehir.

http://dx.doi.org/10.1056/NEJMra1510865
http://dx.doi.org/10.1056/NEJMra1510865
http://dx.doi.org/10.1016/S0140-6736(17)30193-9
http://dx.doi.org/10.1016/S0140-6736(17)30193-9
http://dx.doi.org/10.1371/journal.pmed.1001484
http://dx.doi.org/10.1371/journal.pmed.1001484
http://www.scic.cg.nic.in
http://dx.doi.org/10.1016/s0140-6736(12)61229-x
http://dx.doi.org/10.1097/moh.0000000000000029
http://dx.doi.org/10.1097/moh.0000000000000029
http://dx.doi.org/10.4103/0971-5916.159510
http://dx.doi.org/10.1007/s12687-015-0223-7
http://dx.doi.org/10.4103/0971-5916.159488
http://dx.doi.org/10.1007/s11568-010-9132-3
http://dx.doi.org/10.1177/0969141314557372
http://dx.doi.org/10.1016/j.genrep.2016.02.003
http://dx.doi.org/10.3109/03630269.2011.621007
http://dx.doi.org/10.4103/0971-6866.100752
http://dx.doi.org/10.4103/0971-6866.100752
http://dx.doi.org/10.4103/0971-5916.159492
http://dx.doi.org/10.1007/s12687-012-0116-y
http://dx.doi.org/10.1007/s12687-015-0222-8
http://dx.doi.org/10.1007/s12687-015-0222-8
http://dx.doi.org/10.1038/nrdp.2018.10
https://wellcomecollection.org/works/axv46sh5
http://dx.doi.org/10.1186/1475-2875-10-378
http://dx.doi.org/10.1186/1475-2875-10-378
http://dx.doi.org/10.1086/429864
http://dx.doi.org/10.1111/j.1558-5646.2011.01408.x
http://dx.doi.org/10.1111/j.1558-5646.2011.01408.x
http://dx.doi.org/10.3109/03630269.2014.931287


www.nature.com/scientificreports/

1 0SCIENTIFIC REPORTS |         (2018) 8:17685  | DOI:10.1038/s41598-018-36077-w

Author Contributions
C.H., R.C., M.M. and F.B.P developed the conceptual approach. C.H., R.C., M.M. and F.B.P. assembled and 
abstracted the data. R.C. and M.M. provided local data and in-country expertise. C.H. and S.B. implemented 
the modelling and computational tasks. C.H., S.B., B.S.P. and F.B.P. analysed the data. C.H. wrote the first draft of 
the report and generated figures. All authors contributed to the study design and data interpretation and to the 
revision of the final report.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-36077-w.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-36077-w
http://creativecommons.org/licenses/by/4.0/

	The spatial epidemiology of sickle-cell anaemia in India
	Methods
	Assembling an updated geodatabase of surveys. 
	Accounting for population composition. 
	Analysis of associations between covariates and βS allele frequency. 
	Creating a map of βS allele frequency. 
	Estimating number of newborns affected. 

	Results
	Prevalence survey database. 
	Analysis of associations between covariates and βS allele frequency. 
	βS allele frequency map and prediction uncertainty. 
	Validation statistics. 
	Estimates of newborns affected in scheduled and non-scheduled populations. 

	Discussion
	Acknowledgements
	Figure 1 Schematic overview of database generation procedures and geostatistical modelling processes.
	Figure 2 (a) A map of the sickle-cell surveys included in our database (n = 249).
	Figure 3 Map of the estimated number of scheduled newborns born with SCA in India, (a) by state and, (b) by district, in 2020.
	Figure 4 Map of the estimated number of non-scheduled newborns born with SCA in India, (a) by state and, (b) by district, in 2020.
	Table 1 Summary results of the selected GAM for the scheduled and non-scheduled training datasets.


