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Abstract

Aim

The factors driving microbial community β‐diversity (variation in 
composition) at different spatial scales yield fundamental insights into the 
mechanisms that maintain ecosystem biodiversity, which as yet are 
uncertain. Here, we explore whether spatial scale‐dependent patterns of β‐
diversity vary between microbial functional groups and bacterial taxa (i.e., 
diazotrophic and bacterial communities) across local to regional scales (from 
metres to hundreds of kilometres).

Location

Eastern China.

Time period

October and November 2015.

Major taxa studied

Diazotrophic and bacterial communities.

Methods

We use two complementary statistical tools to unveil biotic mechanisms (i.e.,
species association) underlying variation in β‐diversity of diazotrophic and 
bacterial communities. We examined distance–decay slopes of both 
communities at the local (1–113 m), meso‐ (3.4–39 km) and regional (103–
668 km) scales. We used an environmentally constrained checkerboard score



and topological features of association networks as indices of species 
association. We then calculated contributions of species association, abiotic 
factors and geographical distance to explain community β‐diversity. The 
scale‐dependent distance–decay relationships were also examined in 
ubiquitous (high occupancy across samples) and endemic communities of 
diazotrophs and bacteria.

Results

Diazotrophs displayed steeper distance–decay slopes than bacteria, 
suggesting that the β‐diversity of diazotrophic communities was more 
variable. The distance–decay slopes were dependent on spatial scales in 
both communities, owing to different contributions of geographical distance, 
abiotic factors and species association at three spatial scales. Intriguingly, 
species association was greater and contributed more to community β‐
diversity than other forces at the local scale, implying that species 
association could greatly alter community structures.

Main conclusions

Drivers of diazotrophic and bacterial community β‐diversity depended on 
spatial scales, resulting in different distance–decay patterns. Moreover, this 
was the first study to use two methods to demonstrate that species 
association played important, but as yet unrecognized, roles in driving 
spatial scale‐dependent β‐diversity.

KEYWORDS: bacterial community, β‐diversity, community assembly, 
diazotrophic community, paddy soil, spatial scale dependence, species 
association

1 INTRODUCTION

The long‐standing paradigm in microbial biogeography, ‘everything is 
everywhere, but the environment selects’, alludes to the remarkable 
potential for dispersal of microorganisms (Fuhrman, 2009). Most 
microorganisms are not cosmopolitans, thus discernible biogeographical 
patterns and the distance–decay rule (i.e., microbial community similarity 
decreases as geographical distance increases) are commonly discovered in 
all branches of microbial life (Green & Bohannan, 2006; Zhang et al., 2016). 
It is likely that there is a steady distance–decay slope across different spatial 
scales when measuring microbial β‐diversity (i.e., variation in community 
composition), because community similarity is a probability rule for spatial 
distribution of taxa abundance (Harte, Kinzig, & Green, 1999). However, it 
has been argued that microbial β‐diversity varies over distance owing to the 
fact that microorganisms are fundamentally different in their longevity, niche
preferences and dispersal abilities (Green & Bohannan, 2006; Meyer et al., 
2018). This argument was supported by recent studies showing that the 
distance–decay slopes of ammonia‐oxidizing bacteria and sulfate‐reducing 
bacteria in salt marsh sediments varied by spatial scales (Angermeyer, 
Crosby, & Huber, 2015; Martiny, Eisen, Penn, Allison, & Horner‐Devine, 



2011). In contrast, distance–decay curves should be flat where dispersal is 
high. This prediction has been verified in the marine environment, because 
ocean currents facilitate microbial dispersal (Hewson, Steele, Capone, & 
Fuhrman, 2006). As a consequence, it still remains elusive whether there 
exists spatial scale dependence of microbial β‐diversity. Moreover, the 
underlying drivers that shape spatial scaling of microbial community 
assembly are largely unexplored.

Microorganisms possess a large number of functional traits and thus play an 
essential role in mediating the Earth's biogeochemical processes. 
Understanding the spatial pattern of microbial functional β‐diversity is crucial
for predicting and elucidating ecosystem functions. Meanwhile, incomplete 
sampling of microbial communities is particularly pronounced for endemic 
taxa, which are defined as microorganisms that have low occupancies across
different samples (Meyer et al., 2018). Given that endemic taxa are 
restricted in ranges (Woodcock, Curtis, Head, Lunn, & Sloan, 2006), they 
could be vital in determining the scale‐dependent biogeographical patterns. 
In contrast, ubiquitous taxa might exhibit similar community composition 
across different spatial scales (Saunders, Albertsen, Vollertsen, & Nielsen, 
2016). However, the spatial scale dependence of microbial β‐diversity has 
seldom been assessed for endemic and ubiquitous taxa.

Investigation of environmental heterogeneity has allowed microbial 
ecologists to describe how abiotic factors affect microbial community 
assembly across a wide range of natural habitats (Barberán & Casamayor, 
2011). In contrast, there have been far fewer studies to explore biotic 
interactions between microbial taxa, which are believed to have a substantial
influence on the functions or niche occupancy of microbial communities 
(Chaffron, Rehrauer, Pernthaler, & Mering, 2010; Freilich et al., 2010). It was 
found that interspecies connection affected habitat affinities or shared 
physiologies of microbial community members (Barberán, Bates, Casamayor,
& Fierer, 2011). Niche specialization of microorganinisms was also highly 
relevant to their ecological relationships (Faust & Raes, 2012). Those studies 
have provided important implications that biotic interaction is important in 
structuring microbial communities.

Species association is regularly used in ecology and biogeography as a proxy
for biotic interaction in the community (Cazelles, Araújo, Mouquet, & Gravel, 
2016; Li, Poisot, Waller, & Baiser, 2018). One way to infer species association
is based on species co‐occurrence. Since Diamond (1975) pioneered the 
analysis of species co‐occurrence in geographical space, null models have 
been used to infer the role of associations/interactions between pairs of 
species in their distributions (Diamond, 1975; Peterson, 2011; Poisot, 
Canard, Mouillot, Mouquet, & Gravel, 2012). Another way to approach similar
questions is through network‐based analysis, which offers insights into 
topological properties of community members (Ma et al., 2016; Newman, 
2003) and is regarded as a valuable tool to identify species associations 
within a community (Berry & Widder, 2014; Ma et al., 2016; Proulx, 



Promislow, & Phillips, 2005; Shi et al., 2016). To date, species co‐occurrence 
patterns and topological features in microbial networks are largely unknown 
at different spatial scales, resulting in highly unexplained variation in 
microbial β‐diversity in previous studies (Fierer, 2017; Shi et al., 2018; Zhou, 
Kang, Schadt, & Garten, 2008).

In the present study, we collected 188 paddy soil samples from 18 long‐term 
rice fields located in Hubei, Anhui, Jiangsu and Zhejiang provinces of Eastern 
China. We compared the slopes of distance–decay curves of bacterial 
communities and diazotrophic communities responsible for biological 
nitrogen (N) fixation. Considering that N limitation is widespread in the 
natural environment (Elser et al., 2007), diazotrophic communities are 
crucial for soil N bioavailability, especially in paddy soil owing to N loss when 
the soil is flooded. However, the biogeographical patterns of diazotrophic 
communities have not yet been examined in paddy soil ecosystems. To 
tackle this problem, we engaged a nested design of soil sampling to achieve 
a balanced distribution of pairwise distance across different spatial scales 
[i.e., local scale (1–113 m), meso‐scale (3.4–39 km) and regional scale (103–
668 km); Supporting Information Appendix S1, Figure S1]. We then examined
diazotrophic communities by sequencing N‐fixing nifH gene amplicons and 
examined bacterial communities by sequencing 16S rRNA gene amplicons.

Given that different driving forces may vary by spatial scales, our first 
hypothesis is that distance–decay slopes of both diazotrophic and bacterial 
communities are spatial scale dependent. Our second hypothesis is that 
distance–decay slopes of the functional gene (nifH) are steeper than those of
16S rRNA genes, because 16S rRNA genes are more phylogenetically 
conserved than nifH (Goberna et al., 2014). Given that ubiquitous taxa are 
the ‘steadfast’ community members across a large number of samples and 
are less impacted by dispersal limitation (Martiny et al., 2006), we test a 
third hypothesis that ubiquitous microbes have shallower distance–decay 
slopes than endemic microbes.

2 METHODS

2.1 Site description

We selected 18 paddy fields in four provinces (Hubei, Anhui, Jiangsu and 
Zhejiang) of Eastern China, which are among the major rice production 
regions of China. All paddy fields are in the subtropical monsoon climate 
type. All fields were > 0.02 km2, and we collected soil samples in the centre 
of each paddy field. Soil samples were collected from late October to early 
November in 2015, immediately after rice harvesting. We collected 11 soil 
samples (biological replicates) in each field. Specifically, six soil samples 
were collected along a 75‐m‐long transect, and another five samples were 
collected along a vertical 75‐m‐long transect (Supporting Information 
Appendix S1, Figure S1). Distances between two adjacent samples along 
both transects were 1, 5, 10, 20 and 40 m (Supporting Information Appendix 
S1, Figure S1). For each sample, three soil cores were taken and fully mixed 



to generate a composite sample. Visible roots and rocks were discarded 
before samples were packed into polyethylene bags and stored in a portable 
4 °C refrigerator. After immediate transportion to the laboratory, each 
composite sample was divided into two parts: one was stored at 4 °C for 
analyses of soil physicochemical factors, and the other one was stored at 
−80 °C for DNA extraction.

2.2 Measurements of soil physicochemical factors

In situ soil temperature (in degrees Celsius) was measured three times by 
thermometer to obtain an average value. In situ soil water content (as a 
percentage) was measured three times by hygrometer to obtain an average 
value. Soil pH was determined by a pH meter (E20‐FiveEasy pH; Mettler 
Toledo, Greifensee, Switzerland) in soil water suspension (1:5, fresh soil/de‐
ionized water) after shaking for 30 min. Ten grams of sieved soil was 
weighed to a 250 mL plastic bottle with 100 mL of 2 M KCl solution. The 
solution in the bottle was then shaken at 250 rpm and kept at room 
temperature for 1 h, after which part of the soil solution was filtered into a 15
mL centrifuge tube for ammonium, nitrate and dissolved total N 
measurements. The other part of the soil solution was filtered again with 
0.45 μm filter membranes for measurement of dissolved organic carbon by a
Skalar autoanalyser using an ultraviolet digestion technique and colorimetric 
detection. Ammonium and nitrate concentrations were also measured 
colorimetrically using a spectrophotometer. Dissolved total N and dissolved 
organic carbon in the soil samples were measured using a Multi N/C 2100 
analyser (Analytik Jena, Thuringia, Germany). The concentrations of 
ammonium, nitrate, dissolved total N and dissolved organic carbon were all 
expressed in the same units (milligrams per kilogram). The validity of the 
analytical data generated by the laboratory was monitored by participation 
in a regular interlaboratory proficiency scheme.

2.3 Soil DNA extraction

Soil DNA was extracted using a PowerMax Soil DNA Isolation Kit (MO BIO 
Laboratories, Inc., Carlsbad, CA, USA) after freeze‐grinding mechanical lysis 
as previously described (Zhou, Bruns, & Tiedje, 1996). The DNA 
concentration was quantified by PicoGreen with a FLUOstar OPTIMA 
fluorescence plate reader (BMG LabTech, Ortenberg, Germany). The DNA 
quality was assessed based on spectrometry absorbance at wavelengths of 
230, 26 and 280 nm by a NanoDrop ND‐1000 Spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA).

2.4 Sequencing of nifH and 16S rRNA genes, amplifications and raw data 
processing

Extracted DNA for PCR amplification was diluted to 5 ng/μL. Primers of 
PolF/PolR (5′‐TGCGAYCCSAARGCBGACTC‐3′/5′‐ATSGCCATCATYTCRCCGGA‐3′) 
were used for amplifying nifH genes (Poly, Monrozier, & Bally, 2001), and 
primers of 515F/806R (5′‐GTGCCAGCMGCCGCGGTAA‐3′/5′‐



GGACTACHVGGGTWTCTAAT‐3′) were used for amplifying 16S rRNA genes 
(Caporaso et al., 2012). Two‐step PCR experiments were used to prepare 
amplicon libraries of both nifH genes and 16S rRNA genes as described 
previously (Wu et al., 2016). Specifically, 10 cycles were used in the first step
and 20 cycles in the second step for 16S rRNA genes; 12 cycles were used in 
the first step and 23 cycles in the second step for nifH genes. To increase the
base diversity in the library, phasing primers were used in the second step. 
The PCR products were separated on a 1.5% agarose gel at 90 V for 45 min. 
The bands were then purified with a QIAquick Gel Extraction Kit (QIAGEN Inc.,
Valencia, CA, USA). Libraries were sequenced on a desktop MiSeq system 
(Illumina, San Diego, CA, USA; 2 × 250 bp paired ends), following the 
manufacturer's protocols, at the Institute for Environmental Genomics 
(University of Oklahoma, Norman, OK, USA).

Sequencing reads of poor quality were removed by Btrim (Kong, 2011). 
Chimeras were removed by Uchime (Edgar, Haas, Clemente, Quince, & 
Knight, 2011). For nifH, frame shifts were screened and corrected by 
Framebot software (Wang et al., 2013). Remaining nifH sequences were then
clustered into operational taxonomic units (OTUs) with complete linkage 
clustering (Loewenstein, Portugaly, Fromer, & Linial, 2008) on a Galaxy 
platform (Afgan et al., 2016) pipeline at 95% amino acid identity (Penton et 
al., 2016). Taxonomic assignment was conducted by tBLASTx against the 
Zehr labortory's nifH gene database (June 2017 version; 
https://wwwzehr.pmc.ucsc.edu/nifH_Database_Public/), with parameters 
maximum target of 10 and E‐value cut‐off of 1 × 10−10. The hits with amino 
acid identity < 95% and alignment coverage < 80% were filtered out. Only 
hits with known taxonomic assignment deeper than Class level were 
retained, and lineages of hits with the highest BLAST score were used as the 
taxonomic assignments of queries.

The 16S rRNA gene sequences were clustered into OTUs with UPARSE 
(Edgar, 2013) on the Galaxy platform at 97% nucleotide identity. Taxonomic 
assignment was conducted through the RDP classifier with a confidence cut‐
off of 0.5 (Wang, Garrity, Tiedje, & Cole, 2007). All sequences were randomly
resampled to the depth of 23,000 sequences per sample for the 16S rRNA 
gene and 10,000 sequences per sample for the nifH gene. Phylogenetic trees
were constructed and analysed using PyNAST alignment (v.1.0.0), FastTree 
(v.1.0.0) and MEGA (v.5.10, BETA2).

2.5 Species association analysis

Our first method to examine species association was based on the null model
to study species co‐occurrence patterns (Li et al., 2018). Within each spatial 
scale, we constructed a species matrix with rows for each sample and 
columns for each species. Values in the matrix reflect the presence or 
absence (1/0) of the species. We then used this species matrix to predict 
species distributions under environmental constraints with a species 
distribution model (SDM) in the R package ‘biomod2’ (Thuiller et al., 2016). 



After this, we calculated an environmentally constrained checkerboard score 
(C‐score) with the function ‘ecospat.cons_Cscore’ in the R package ‘ecospat’ 
(Di Cola et al., 2017). The C‐score was the mean number of checkerboard 
units (CUs) between all possible pairs of species (or OTUs) in a matrix. The 
number of CUs for any pair of species was calculated using the equation:

where CUij is the C‐score for species pair i and j, Ri is the total sites (the 
number of species occurrences) for species i, Rj is the total sites for species j,
and D is the number of shared sites in which both species are present (Di 
Cola et al., 2017). Environmentally constrained C‐scores were expected to 
maximize the chance of distinguishing species interactions that might shape 
species distribution and community assembly, because environment was 
factored out as a possible explanation for the species distribution patterns 
encountered (Di Cola et al., 2017).

The function ‘ecospat.cons_Cscore’ returned the C‐score index for the 
observed community (ObsCscoreTot), the mean of the C‐score for the 
simulated communities by the null model (SimCscoreTot, n = 10,000), the p‐
values to evaluate the significance of the difference between the former two 
indices, and returned the standardized effect size (SES) for the whole 
community (SES.Tot). If p < 0.050, we regarded the co‐occurrence of 
microbial community as a non‐random pattern resulting from biotic 
interactions, because the influence of environmental variables was 
partitioned. Moreover, SESs that were greater than two or less than minus 
two were statistically significant with a probability of < 0.050. The function 
also returned the observed and simulated C‐scores and the SES for each 
species pair. Species pairs with SES < −2 reflected aggregation, because 
they co‐occurred more than expected by chance. Species pairs with SES > 2 
reflected segregation of species, because they co‐occurred less often than 
expected by chance.

Association networks of diazotrophs and bacteria were constructed as 
previously described (Deng et al., 2012; Zhou et al., 2010). Only OTUs 
detected in ≥ 141 of the 188 biological replicates were kept for bacterial 
community network construction, and 138 of 185 biological replicates were 
kept for diazotrophic community network construction, following a random 
matrix theory (RMT) algorithm (Deng et al., 2012). The association network 
examined the pairwise correlation coefficients of species based on OTU 
abundance data. The network construction and network topology 
characterization were processed by the network analysis pipeline at 
http://ieg2.ou.edu/MENA. We also constructed sub‐networks for each sample 
from the global network using the R package ‘igraph’ (Ma et al., 2016). The 
network topological properties, including average degree, average clustering
coefficient and modularity, were calculated for each sample by the R 
functions ‘knn’, ‘transitivity’ and ‘modularity’, respectively, in the ‘igraph’ 
package.



The average degree referred to species connectivity in the community (Zhou
et al., 2010). The average clustering coefficient was used to measure how 
well nodes were connected with their neighbours (Deng et al., 2016). 
Modularity was used to demonstrate a network that could be divided 
naturally into communities or modules (Deng et al., 2012). Higher modularity
indicated a higher number of within‐cluster associations than between‐
cluster associations compared with random expectation (Clauset, Newman, 
& Moore, 2004). These topological properties were regarded as biotic factors 
in examining their contribution to the variation in microbial β‐diversity at 
different spatial scales using multiple regression on matrices (MRM). We 
were not able to include environmentally constrained C‐scores in MRM 
because C‐scores could not be calculated with one sample. A general 
framework of species co‐occurrence analysis and RMT‐based network 
analysis is illustrated in the Supporting Information (Appendix S1, Figure S2).

2.6 Statistical analyses

Variation of environmental factors across sampling sites was determined by 
one‐way ANOVA followed by the least significant difference (LSD) test. We 
calculated the rates of distance decay (i.e., slopes of distance–decay curves) 
of microbial communities at three spatial scales: the local scale (0–113 m), 
the meso‐scale (3.4–39 km) and the regional scale (103–668 km). The slope 
at each spatial scale was calculated based on the following equation:

where S is the microbial community similarity, G is the geographical 
distance, a is an intercept parameter and z is the slope coefficient of the 
distance–decay curve (Martiny et al., 2011). The microbial phylogenetic β‐
diversity (phylogenetic distance) was calculated based on the matrix of 
abundance‐weighted UniFrac distance using the R package ‘GUifrac’, 
because abundance‐weighted microbial phylogenetic distance involves both 
taxonomic and phylogenetic information in communities (Burns et al., 2015).
Microbial community similarity was calculated as one minus the phylogenetic
distance.

To explore whether the sequencing depth accounted for differences in the 
distance–decay slopes of diazotrophic and bacterial communities, we 
resampled the sequence of both communities to obtain communities with 
different sequence depth. Specifically, bacterial communities with 11,500 
and 18,400 sequences were generated by resampling 50 and 80% of overall 
16S rRNA sequences, respectively. Likewise, diazotrophic communities with 
5,000 and 8,000 sequences were generated by resampling 50 and 80% of 
overall nifH sequences, respectively. We performed the resampling steps in 
an in‐house Galaxy pipeline (http://zhoulab5.rccc.ou.edu:8080/) using both 
OTU table and corresponding representative sequences. We then calculated 
the distance–decay slopes for each community at each of the three spatial 
scales.



We tested whether the distance–decay slopes were significantly different 
from zero or whether the distance–decay slopes at three spatial scales 
differed substantially from each other. To this end, we used matrix 
permutations to compare the observed slopes within the three spatial scales 
with the distribution of slopes observed in those ranges over 999 
permutations, following the method in a previous study (Martiny et al., 
2011).

We used the MRM analyses to explore the significance of geographical 
distance, abiotic factors (dissolved organic carbon, dissolved total N, soil 
water content, soil temperature and soil pH) and biotic factors (average 
degree, average clustering coefficient and modularity) in relationship to 
microbial β‐diversity. We applied a ln‐transformation on geographical 
distance because our samples ranged over many orders of magnitude, which
made the data points skewed. Abiotic and biotic factors were ln‐transformed 
to achieve normalization except for soil pH, which is a logarithm format of 
hydrogen ion concentration (Bates, 1964). We then calculated the 
dissimilarity matrix (by the Euclidean method) for each of the geographical 
distance, abiotic and biotic factors. The microbial community dissimilarity 
matrix was calculated based on the abundance‐weighted Unifrac distance. 
We performed modified MRM code based on the R package ‘ecodist’ (Goslee,
2007) to disentangle the potential relationships between microbial β‐
diversity and factors at each spatial scale. The R2 value of the MRM model 
represents the total explanatory power of all factors involved in the model, 
and the partial regression coefficient, b, represents the relative contribution 
of each factor. To remove covariant factors (Harrell, 2001), we performed the
MRM model and removed the non‐significant factors. Then we performed the
MRM model again, following the steps shown previously (Martiny et al., 
2011).

To examine the relative contribution of each factor at the three spatial 
scales, we performed MRM models according to spatial scales. For example, 
at the local scale, we calculated R2 and the partial regression coefficient, b, 
for only those pairwise comparisons between 1 and 113 m.

3 RESULTS

3.1 Soil bacterial and diazotrophic communities

We identified > 15,000 bacterial OTUs in 188 paddy soil samples and > 
6,000 diazotrophic OTUs in 183 samples, discarding five samples with 
extremely low diazotrophic OTU richness. α‐Proteobacteria were the most 
abundant in diazotrophic communities, followed by δ‐Proteobacteria and β‐
Proteobacteria (Supporting Information Appendix S1, Figure S3a). Only 42% 
of diazotrophic sequences were classified, suggesting that our knowledge 
about the taxonomic information on diazotrophic communities in paddy soil 
was limited. In contrast, < 20% of overall bacterial sequences were 
taxonomically unclassified (Supporting Information Appendix S1, Figure S3b).
δ‐Proteobacteria were the most abundant in bacterial communities, followed 



by Acidobacteria, α‐Proteobacteria, β‐Proteobacteria, Chloroflexi and γ‐
Proteobacteria.

Almost all bacterial OTUs (96.1%) and diazotrophic OTUs (91.6%) were 
detected in more than one sample. Abundant OTUs tended to have higher 
occupancy in both diazotrophic and bacterial communities (Supporting 
Information Appendix 1, Figure S4). Therefore, communities were divided 
into sub‐groups according to the occupancy of OTUs [i.e., OTUs detected in 
0–25% (endemic taxa) and in 75–100% (ubiquitous taxa) of all samples; 
Nekola & White, 2004]. α‐Proteobacteria were still the most abundant in 
ubiquitous diazotrophic communities, accounting for 24.3% of total OTUs 
(Supporting Information Appendix S1, Figure S3a). δ‐Proteobacteria were still
the most abundant in ubiquitous bacterial communities, accounting for 
13.2% of total OTUs (Supporting Information Appendix S1, Figure S3b).

3.2 Species co‐occurrence patterns

Overall species co‐occurrence patterns of bacterial and diazotrophic 
communities were non‐random across spatial scales, as indicated by C‐
scores (Supporting Information Appendix S1, Tables S1 and S2). Both 
communities showed the highest C‐scores at the local scale, the medium C‐
scores at the meso‐scale and the lowest C‐scores at the regional scale 
(Figure 1a,b). The result suggested that species interacted more frequently 
at the local scale. Species interactions became weaker as spatial scale 
enlarged.

Figure 1. Mean of observed and simulated environmentally‐constrained C‐scores of (a) bacterial 
community and (b) diazotrophic community at three spatial scales. Only observed C‐scores that are 
significantly (P < .050) different with simulated C‐scores are averaged. Relative proportion of 
aggregated, segregated and random species pairs of (c) bacterial community and (d) diazotrophic 
community at three spatial scales



Across spatial scales, most of the species pairs significantly co‐occurred for 
both bacterial and diazotrophic communities (Figure 1c,d). Among bacterial 
species pairs, more species pairs were shown to be aggregated at the local 
and meso‐scales (Figure 1c), suggesting that species co‐occurred more than 
expected at smaller scales. The proportion of segregated species pairs of the
bacterial community increased with enlarged spatial scales, suggesting that 
species associations of bacterial communities have simplified (Figure 1c).

3.3 Spatial scale dependence of microbial β‐diversity

The distance–decay relationships of diazotrophic and bacterial communities 
were examined at the local (1–113 m), meso‐ (3.4–39 km) and regional (103–
668 km) scales. When distance increased from 1 to 668 km, the dissimilarity 
of diazotrophic communities increased from 0.090 to 0.720, which was 
substantially higher than that of bacterial communities (from 0.060 to 0.520)
(Figure 2). Significant (p < 0.050) distance–decay relationships of 
diazotrophic communities were observed at the local and regional scales but 
not at the meso‐scale (Figure 3a), suggesting that the distance–decay slopes
of diazotrophic communities were scale dependent. Scale‐dependent 
distance–decay slopes were also observed for bacterial communities (Figure 
3b), but a significant distance–decay slope of bacterial communities was 
observed only at the local scale (Figure 3b), suggesting that sampling at the 
meso‐ and regional scales did not increase community dissimilarity.



Figure 2. The distance‐decay relationships for (a) overall diazotrophic and bacterial communities, (b) 
ubiquitous and endemic diazotrophic communities and (c) ubiquitous and endemic bacterial 
communities. The slopes of the distance‐decay relationships are significantly (P < .050) lower than 
zero



Figure 3. The distance‐decay relationships for (a) overall diazotrophic communities, (b) overall 
bacterial communities, (c) ubiquitous diazotrophic communities, (d) ubiquitous bacterial communities, 
(e) endemic diazotrophic communities and (f) endemic bacterial communities at the local (green), 
meso (light blue) and regional (dark blue) scales. The slopes of distance‐decay relationships are 
labeled in figures, and all lines (except the dash lines) are significantly (P < .050) lower than zero. 
Significantly (P < .050) different slopes at three spatial scales are represented by different alphabets in
parentheses

Resampling of communities showed that sequence depth did not alter the 
patterns of distance‐decay for both bacterial and diazotrophic communities 
across spatial scales (Supporting Information Appendix S1, Table S3), 
rejecting the possibility that differences in sampling depth underlie different 
scale‐dependent distance–decay patterns of both communities.

3.4 Discerning drivers of microbial community assembly



To identify abiotic drivers for the distance–decay relationships of microbial 
communities, we measured a number of climatic and soil geochemical 
factors to reveal the extent of environmental heterogeneity across sampling 
sites (Supporting Information Appendix S1, Figure S5). Soil temperature, soil 
water content, soil pH, concentrations of ammonium, nitrate, dissolved 
organic carbon and dissolved total N were significantly (p < 0.050) different 
at the regional scale. For example, Jurong had the highest concentration of 
dissolved total N and nitrate but the lowest soil water content and soil 
temperature. Xiantao had the highest soil pH and ammonium content. 
Similar to the observation of high environmental heterogeneity, we observed
high variation in network topological properties, with Changxing showing the 
highest average degree, average clustering coefficient and modularity 
(Supporting Information Appendix S1, Figure S5). The topological properties 
showed weak correlations with abiotic factors for both bacterial and 
diazotrophic communities (Supporting Information Appendix S1, Figure S6).

The MRM analyses showed that geographical distance explained 27% of 
variation for diazotrophic communities, which was similar to abiotic factors 
(25%; Table 1). Soil pH was the most important abiotic factor, followed by 
soil ammonium content and dissolved organic carbon (Table 2). Biotic factors
explained only 17% of variation for diazotrophic communities, among which 
the average degree was the dominant factor. On the contrary, geographical 
distance explained 17% of variation and biotic factors explained 40% of 
variation for overall bacterial communities (Table 1), with modularity as the 
dominant biotic factor (Table 2). Abiotic factors made similar contribution (c. 
23%) to bacterial and diazotrophic communities (Table 1).



Relative contributions of geographical distance, abiotic and biotic factors to 
microbial communities varied by spatial scales (Table 2). Specifically, 
geographical distance and average degree contributed to diazotrophic 
communities at the local and regional scales but not at the meso‐scale. In 
comparison, geographical distance, average degree and soil pH contributed 
to bacterial communities at the local but not at the meso‐ and regional 
scales.

3.5 Ubiquitous and endemic communities

Spatial scale dependence might differ in ubiquitous and endemic 
communities; therefore, we examined their distance–decay slopes and 
possible drivers across spatial scales. Ubiquitous communities of diazotrophs
and bacteria showed shallower distance–decay slopes than endemic 
communities (Figure 2b,c). Geographical distance made a smaller 
contribution to the variation of ubiquitous communities than endemic 
communities, whereas biotic factors made a higher contribution to the 
variation of ubiquitous communities than endemic communities (Supporting 
Information Appendix S1, Tables S4 and S5).



The distance–decay slopes of ubiquitous diazotrophic communities were 
similar at the local and regional scales, and were much larger than that at 
the meso‐scale (Figure 3c). Consistently, average degree contributed to 
ubiquitous diazotrophic communities at the local and regional scales but not 
at the meso‐scale (Supporting Information Appendix S1, Table S4). In 
contrast, ubiquitous bacterial communities showed no difference in distance–
decay slopes across three spatial scales (Figure 3d), suggesting that there 
was no spatial scale dependence for ubiquitous bacterial communities. This 
might result from similar contributions of dominant drivers, including soil pH 
and average degree, across the three spatial scales (Supporting Information 
Appendix S1, Table S5). Both endemic communities of bacteria and 
diazotrophs had steeper distance–decay slopes at the local scale than that at
the meso‐ and regional scales (Figure 3e,f), corresponding to the finding that
geographical distance contributed to variation of endemic communities at 
the local but not at the meso‐ and regional scales (Supporting Information 
Appendix S1, Tables S4 and S5).

4 DISCUSSION

Few studies have mapped imprints of species associations on changes of 
microbial β‐diversity (Ohlmann et al., 2018). Using C‐scores and topological 
properties of RMT‐based association networks to interpret species 
associations, we were able to examine the biotic effects underpinning spatial
variation in microbial β‐diversity. We found that after controlling species 
responses to environmental changes, species interactions (as indicated by C‐
scores) still persisted (Figure 1). The C‐score was the highest at the local 
scale (Figure 1a,b) and became lower as spatial scales increased, suggesting
that species interacted more frequently at smaller spatial scales. 
Consistently, network topological properties made a higher contribution to 
community β‐diversity at the local scale than at the meso‐ and regional 
scales (Table 2).

Although numerous studies have reported differences in the biogeographical 
patterns of microbial taxa, there have been very few studies to disentangle 
differences between distance–decay patterns of taxonomic and functional 
microbial communities (Angermeyer et al., 2015). For the diazotrophic 
community, the slopes of distance–decay curves were significantly different 
at the three spatial scales, unveiling high heterogeneity of diazotrophic N‐
fixing capabilities in paddy soil. This corresponded to high heterogeneity of 
dissolved total N, nitrate and ammonium concentrations across spatial scales
(Supporting Information Appendix S1, Figure S5). Long‐term cultivation can 
promote higher biological N‐fixing potential of paddy soil, which might be 
attributed to enlarged diazotrophic communities (Bannert et al., 2011). 
Hence, a high variability of diazotrophic β‐diversity might have important 
implications for soil N bioavailability. Notably, we did not observe a 
significant distance–decay slope for diazotrophic communities at the meso‐
scale (Figure 3a), suggesting that different paddy fields might share similar 
functional traits to achieve stable N‐fixing functions. Intriguingly, scale‐



dependent distance decay was also observed for both ubiquitous and 
endemic diazotrophic communities (Figure 3c,e), suggesting that the scale 
dependence of the diazotrophic community was likely to be robust across 
OTUs with different occupancies.

Soil pH was the only factor that contributed to the variation of diazotrophic 
community β‐diversity at three spatial scales (Table 2), suggesting a strong 
impact of soil pH on diversification of diazotrophic communities in paddy soil.
This result was consistent with extensive studies showing soil pH to be an 
important abiotic factor shaping microbial community structure in diverse 
ecosystems (Liu et al., 2016; Shen et al., 2016).

In contrast, a significant distance–decay slope of overall bacterial 
communities was observed only at the local scale (Figure 3b). The result was
consistent with another study of grassland soil microbial communities 
showing that pronounced heterogeneity of microbial β‐diversity was 
significant only at centimetre scales (O'Brien et al., 2016). Such phenomena 
might be attributable to several causes. First, paddy soil may become 
homogenized as a result of cyclic tillage and irrigation within a field. 
Therefore, homogenized abiotic factors driven by those agricultural practices
may contribute more to bacterial community variation compared with spatial
distance, which offsets the distance effect. Second, at the local scale, we 
observed the highest proportion of aggregated species pairs in the bacterial 
communities, compared with the meso‐ and regional scales (Figure 1c). A 
previous study showed that patchy species aggregation in bulk soil might 
lead to divergent composition of communities (Faust & Raes, 2012). Species 
competition–cooperation trade‐offs might also have shifted with changes in 
availale nutrients in the rhizosphere (Yang et al., 2018), leading to variation 
in community composition within the local scale (Chesson & Huntly, 1997; 
Kneitel & Chase, 2004; Tilman, 2000). Third, sampling across the whole 
region might not have contributed to significant increases in bacterial 
diversity above what was already observed at the local scale. This might be 
because the sequencing depth was not yet sufficient to capture fully the 
underlying genomic composition of bacterial communities, which have large 
species pools (Supporting Information Appendix S1, Figure S7).

The spatial scale dependence of bacterial β‐diversity could be contingent on 
habitat types (Lozupone & Knight, 2007; Zinger, Boetius, & Ramette, 2014). 
For example, the sessile lifestyle of sediment bacteria caused spatial 
isolation, and stronger variations in environmental conditions triggered 
different distance–decay slopes (Zinger et al., 2014). A study on the bacterial
distance–decay relationship in different habitats showed that marine bacteria
had much shallower distance–decay slopes than sediment bacteria but had a
similar magnitude of distance–decay slopes to soil bacteria (Ranjard et al., 
2013). Furthermore, given that water flow enables the dispersal of marine 
bacteria, no significant spatial scale dependence was reported for marine 
bacterial β‐diversity (Zinger et al., 2014). Consistently, we detected no 
distance–decay slopes of bacterial communities at the meso‐ and regional 



scales, and a shallower distance–decay slope (≤ 0.010) at the local scale 
than those in sediment (0.003–0.070) (Schauer, Bienhold, Ramette, & 
Harder, 2010), suggesting that paddy soils were generally less limited in 
bacterial species dispersal.

Although the ubiquitous diazotrophic community exhibited spatial scale 
dependence in β‐diversity, this was not observed for the ubiquitous bacterial 
community (Figure 3c,d). As the spatial scale increased to encompass a 
greater environmental gradient, ubiquitous bacteria, with broader niche 
adaptation than ubiquitous diazotrophs, might have been less susceptible to 
changes in spatial scales. Moreover, if the community dynamics (dispersal, 
local adaptation and colonization) were more stochastic, it is plausible that 
the distance–decay would deteriorate as nearby communities became as 
different as distant communities (Bell, 2010). We inferred that ubiquitous 
bacterial community dynamics might be more stochastic than that of 
ubiquitous diazotrophs owing to the much larger species pool.

In comparison, endemic communities of both diazotrophic and bacterial 
communities had steeper distance–decay slopes at the local scale than at 
the meso‐ and regional scales (Figure 3e,f). The result was consistent with a 
modelling framework showing that the relative contribution of endemic 
species to β‐diversity is higher at the local scale because endemic species 
are more aggregated (Morlon et al., 2008).

The biotic mechanisms that accounted for the spatial scaling of microbial β‐
diversity were probably involved with species associations. For example, 
competitive exclusion caused by limited nutrient sources among species has 
been suggested to limit coexistence of species and result in segregation of 
microbes (Leibold, 1998; Macarthur & Levins, 1967). In contrast, metabolic 
interdependence among taxa may favour species coexistence that leads to 
aggregation of microbes (Zelezniak et al., 2015). Those species associations 
might occur simultaneously and jointly, which contributes to the observed 
variation in community composition (Violle, Nemergut, Pu, & Jiang, 2011). 
Based on the null model result, we observed 81–94% non‐random species 
pairs (Figure 1c,d), which was much higher than that observed in plant 
communities (Blois et al., 2014; Li & Waller, 2016). For example, Blois et al. 
(2014) found only 2% of plant species pairs to be significant (Blois et al., 
2014). Li and Waller (2016) found 16–31% of species pairs of plant 
communities to have significant associations, even at a smaller scale (1 m2 
quadrats) than ours (Li & Waller, 2016). Those results suggested that species
interactions could be more important in structuring microbial communities 
than previously appreciated, because microbial species were more likely to 
be aggregated and segregated.

The MRM analysis showed that modularity of networks made the largest 
contribution to β‐diversity of bacterial communities (Table 2). Previous 
studies have shown that the topology‐based modules in microbial networks 
could be perceived as functional units in microbial communities (Luo, Zhong,



Yang, & Zhou, 2006). Another study also interpreted modules as niches for 
microbial communities (Chaffron et al., 2010). Accordingly, the higher impact
of modularity might be linked to a greater extent of segregation among 
bacterial species into niches and functional units (i.e., functional 
differentiation). Null model‐based analysis showed a higher proportion of 
segregated species pairs in the bacterial community than in the diazotrophic 
community across spatial scales (Figure 1c,d), probably owing to more 
diverse niches and functional units of bacterial communities than 
diazotrophic communities.

Despite the potential of species association in structuring microbial 
communities, our results should be interpreted carefully, because complex 
microbial associations and interactions are challenging to measure in natural
environments. Therefore, using multiple methods to interpret and compare 
species association patterns is of great importance to demonstrate the 
reliability of the results. In our study, environmentally constrained species 
co‐occurrence patterns and RMT‐based association networks showed 
consistency in interpreting species association across spatial scales. Our 
study thus offers a new, reliable way to explore the biotic mechanisms 
underlying community spatial assemblies.

In summary, this study demonstrates the spatial scale dependence of 
diazotrophic and bacterial community assemblies in paddy soil and reveals 
the driving mechanisms. This represents the first attempt to compare spatial
assembly processes of microbial functional communities with those for 
bacterial communities. Given the importance of species associations and 
their potential relationships with species composition, future empirical and 
theoretical research that investigates the biotic effect on changes to 
microbial β‐diversity are needed. Moreover, given that ubiquitous species are
potentially important organisms for ecosystem functions (Saunders et al., 
2016; Zhang, Shao, & Ye, 2012), spatial dependence should be taken into 
account when examining the diversity of ubiquitous functional communities 
and associated ecosystem services.

DATA AVAILABILITY STATEMENT

MiSeq data of 16S rRNA gene and nifH gene sequencing are available online 
(https://www.ncbi.nlm.nih.gov/bioproject?
LinkName=sra_bioproject&from_uxml:id=5312558), with the accession 
number PRJNA438873.

REFERENCES

Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Čech, 
M., … Goecks, J. (2016). The Galaxy platform for accessible, reproducible and
collaborative biomedical analyses: 2016 update. Nucleic Acids Research, 
44( W1), W3– W10. https://doi.org/10.1093/nar/gkw343.

Angermeyer, A., Crosby, S. C.., & Huber, J. A. (2015). Decoupled distance–
decay patterns between dsrA and 16S rRNA genes among salt marsh sulfate‐



reducing bacteria. Environmental Microbiology, 18, 75– 86. 
https://doi.org/10.1111/1462-2920.12821

Bannert, A., Kleineidam, K., Wissing, L., Mueller‐Niggemann, C., Vogelsang, 
V., Welzl, G., … Schloter, M. (2011). Changes in diversity and functional gene
abundances of microbial communities involved in nitrogen fixation, 
nitrification, and denitrification in a tidal wetland versus paddy soils 
cultivated for different time periods. Applied and Environmental 
Microbiology, 77, 6109– 6116. https://doi.org/10.1128/AEM.01751-10

Barberán, A., & Casamayor, E. O. (2011). Euxinic freshwater hypolimnia 
promote bacterial endemicity in continental areas. Microbial Ecology, 61, 
465– 472. https://doi.org/10.1007/s00248-010-9775-6

Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2011). Using 
network analysis to explore co‐occurrence patterns in soil microbial 
communities. The ISME Journal, 6, 343– 351. 
https://doi.org/10.1038/ismej.2011.119

Bates, R. G. (1964). Determination of pH: Theory and practice. Retrived from 
http://jes.ecsdl.org/cgi/doi/10.1149/1.2403829

Bell, T. (2010). Experimental tests of the bacterial distance–decay 
relationship. The ISME Journal, 4, 1357– 1365. 
https://doi.org/10.1038/ismej.2010.77

Berry, D., & Widder, S. (2014). Deciphering microbial interactions and 
detecting keystone species with co‐occurrence networks. Frontiers in 
Microbiology, 5, 219. https://doi.org/10.3389/fmicb.2014.00219

Blois, J. L., Gotelli, N. J., Behrensmeyer, A. K., Faith, J. T., Lyons, S. K., 
Williams, J. W., … Wing, S. (2014). A framework for evaluating the influence 
of climate, dispersal limitation, and biotic interactions using fossil pollen 
associations across the late Quaternary. Ecography, 37, 1095– 1108. https://
doi.org/10.1111/ecog.00779

Burns, A. R., Stephens, W. Z., Stagaman, K., Wong, S., Rawls, J. F., Guillemin, 
K., & Bohannan, B. J. M. (2015). Contribution of neutral processes to the 
assembly of gut microbial communities in the zebrafish over host 
development. The ISME Journal, 10, 655– 664. 
https://doi.org/10.1038/ismej.2015.142

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg‐Lyons, D., Huntley, J., 
Fierer, N., … Knight, R. (2012). Ultra‐high‐throughput microbial community 
analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6, 
1621– 1624. https://doi.org/10.1038/ismej.2012.8

Cazelles, K., Araújo, M. B., Mouquet, N., & Gravel, D. (2016). A theory for 
species co‐occurrence in interaction networks. Theoretical Ecology, 9, 39– 
48. https://doi.org/10.1007/s12080-015-0281-9



Chaffron, S., Rehrauer, H., Pernthaler, J., & von Mering, C. (2010). A global 
network of coexisting microbes from environmental and whole‐genome 
sequence data. Genome Research, 20, 947– 959. 
https://doi.org/10.1101/gr.104521.109

Chesson, P., & Huntly, N. (1997). The roles of harsh and fluctuating 
conditions in the dynamics of ecological communities. The American 
Naturalist, 150, 519– 553. https://doi.org/10.1086/286080

Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure
in very large networks. Physical Review E, 70, 066111. 
https://doi.org/10.1103/PhysRevE.70.066111

Deng, Y., Jiang, Y.‐H., Yang, Y., He, Z., Luo, F., & Zhou, J. (2012). Molecular 
ecological network analyses. BMC Bioinformatics, 13, 113. 
https://doi.org/10.1186/1471-2105-13-113

Deng, Y., Zhang, P., Qin, Y., Tu, Q., Yang, Y., He, Z., … Zhou, J. (2016). 
Network succession reveals the importance of competition in response to 
emulsified vegetable oil amendment for uranium bioremediation. 
Environmental Microbiology, 18, 205– 218. https://doi.org/10.1111/1462-
2920.12981

Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D'Amen, M., 
Randin, C., … Guisan, A. (2017). ecospat: An R package to support spatial 
analyses and modeling of species niches and distributions. Ecography, 40, 
774– 787. https://doi.org/10.1111/ecog.02671

Diamond, J. (1975). Assembly of species communities. In M. L. Cody & J. M. 
Diamond (Eds.), Ecology and evolution of communities (pp. 342–444). 
Cambridge, MA: Harvard University Press.

Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial 
amplicon reads. Nature Methods, 10, 996– 998. 
https://doi.org/10.1038/nmeth.2604

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). 
UCHIME improves sensitivity and speed of chimera detection. Bioinformatics,
27, 2194– 2200. https://doi.org/10.1093/bioinformatics/btr381

Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., 
Hillebrand, H., … Smith, J. E. (2007). Global analysis of nitrogen and 
phosphorus limitation of primary producers in freshwater, marine and 
terrestrial ecosystems. Ecology Letters, 10, 1135– 1142. 
https://doi.org/10.1111/j.1461-0248.2007.01113.x

Faust, K., & Raes, J. (2012). Microbial interactions: From networks to models. 
Nature Reviews Microbiology, 10, 538. https://doi.org/10.1038/nrmicro2832

Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of 
the soil microbiome. Nature Reviews Microbiology, 15, 579. 
https://doi.org/10.1038/nrmicro.2017.87



Freilich, S., Kreimer, A., Meilijson, I., Gophna, U., Sharan, R., & Ruppin, E. 
(2010). The large‐scale organization of the bacterial network of ecological co‐
occurrence interactions. Nucleic Acids Research, 38, 3857– 3868. 
https://doi.org/10.1093/nar/gkq118

Fuhrman, J. A. (2009). Microbial community structure and its functional 
implications. Nature, 459, 193– 199. https://doi.org/10.1038/nature08058

Goberna, M., Navarro‐Cano, J. A., Valiente‐Banuet, A., Garcia, C., & Verdú, M. 
(2014). Abiotic stress tolerance and competitionrelated traits underlie 
phylogenetic clustering in soil bacterial communities[J]. Ecology letters, 
17( 10), 1191– 1201. https://doi.org/10.1111/ele.12341.

Goslee, G. C. (2007). The ecodist package for dissimilarity based analysis of 
ecological data. Journal of Statistical Software, 22, 1– 15.

Green, J., & Bohannan, B. J. (2006). Spatial scaling of microbial biodiversity. 
Trends in Ecology and Evolution, 21, 501– 507. 
https://doi.org/10.1016/j.tree.2006.06.012

Harrell, F. E., Jr. (2001). Regression modeling strategies, with applications to 
linear models, survival analysis and logistic regression. Springer. Retrived 
from https://link.springer.com/book/10.1007/978-1-4757-3462-1?page=1

Harte, J., Kinzig, A., & Green, J. (1999). Self‐similarity in the distribution and 
abundance of species. Science, 284, 334– 336. 
https://doi.org/10.1126/science.284.5412.334

Hewson, I., Steele, J. A., Capone, D. G., & Fuhrman, J. A. (2006). Temporal 
and spatial scales of variation in bacterioplankton assemblages of 
oligotrophic surface waters. Marine Ecology Progress Series, 311, 67– 77. 
https://doi.org/10.3354/meps311067

Kneitel, J. M., & Chase, J. M. (2004). Trade‐offs in community ecology: Linking
spatial scales and species coexistence. Ecology Letters, 7, 69– 80. 
https://doi.org/10.1046/j.1461-0248.2003.00551.x

Kong, Y. (2011). Btrim: A fast, lightweight adapter and quality trimming 
program for next‐generation sequencing technologies. Genomics, 98, 152– 
153. https://doi.org/10.1016/j.ygeno.2011.05.009

Leibold, M. A. (1998). Similarity and local co‐existence of species in regional 
biotas. Evolutionary Ecology, 12, 95– 110. 
https://doi.org/10.1023/A:1006511124428

Li, D., & Waller, D. (2016). Long‐term shifts in the patterns and underlying 
processes of plant associations in Wisconsin forests. Global Ecology and 
Biogeography, 25, 516– 526. https://doi.org/10.1111/geb.12432

Li, D., Poisot, T., Waller, D. M., & Baiser, B. (2018). Homogenization of 
species composition and species association networks are decoupled. Global 
Ecology and Biogeography, 27, 1481– 1491. 
https://doi.org/10.1111/geb.12825



Liu, J., Sui, Y., Yu, Z., Yao, Q., Shi, Y., Chu, H., … Wang, G. (2016). Diversity 
and distribution patterns of acidobacterial communities in the black soil zone
of northeast China. Soil Biology and Biochemistry, 95, 212– 222. 
https://doi.org/10.1016/j.soilbio.2015.12.021

Loewenstein, Y., Portugaly, E., Fromer, M., & Linial, M. (2008). Efficient 
algorithms for accurate hierarchical clustering of huge datasets: Tackling the
entire protein space. Bioinformatics, 24, i41– i49. 
https://doi.org/10.1093/bioinformatics/btn174

Lozupone, C. A., & Knight, R. (2007). Global patterns in bacterial diversity. 
Proceedings of the National Academy of Sciences USA, 104, 11436– 11440. 
https://doi.org/10.1073/pnas.0611525104

Luo, F., Zhong, J., Yang, Y., & Zhou, J. (2006). Application of random matrix 
theory to microarray data for discovering functional gene modules. Physical 
Review E, 73, 031924. https://doi.org/10.1103/PhysRevE.73.031924

Ma, B., Wang, H., Dsouza, M., Lou, J., He, Y., Dai, Z., … Gilbert, J. A. (2016). 
Geographic patterns of co‐occurrence network topological features for soil 
microbiota at continental scale in eastern China. The ISME Journal, 10, 1891– 
1901. https://doi.org/10.1038/ismej.2015.261

Macarthur, R., & Levins, R. (1967). The limiting similarity, convergence, and 
divergence of coexisting species. The American Naturalist, 101, 377– 385. 
https://doi.org/10.1086/282505

Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Colwell, R. K., Fuhrman, J. 
A., Green, J. L., … Staley, J. T. (2006). Microbial biogeography: Putting 
microorganisms on the map. Nature Reviews. Microbiology, 4, 102– 112. 
https://doi.org/10.1038/nrmicro1341

Martiny, J. B. H., Eisen, J. A., Penn, K., Allison, S. D., & Horner‐Devine, M. C. 
(2011). Drivers of bacterial β‐diversity depend on spatial scale. Proceedings 
of the National Academy of Sciences USA, 108, 7850– 7854.

Meyer, K. M., Memiaghe, H., Korte, L., Kenfack, D., Alonso, A., & Bohannan, 
B. J. M. (2018). Why do microbes exhibit weak biogeographic patterns? The 
ISME Journal, 12, 1404– 1413.

Morlon, H., Chuyong, G., Condit, R., Hubbell, S., Kenfack, D., Thomas, D., … 
Green, J. L. (2008). A general framework for the distance–decay of similarity 
in ecological communities. Ecology Letters, 11, 904– 917. 
https://doi.org/10.1111/j.1461-0248.2008.01202.x

Nekola, J. C., & White, P. S. (2004). The distance decay of similarity in 
biogeography and ecology. Journal of Biogeography, 26, 867– 878.

Newman, M. E. J. (2003). The structure and function of complex networks. 
SIAM Review, 45, 167– 256. https://doi.org/10.1137/S003614450342480

O'Brien, S. L., Gibbons, S. M., Owens, S. M., Hampton‐Marcell, J., Johnston, E. 
R., Jastrow, J. D., … Antonopoulos, D. A. (2016). Spatial scale drives patterns 



in soil bacterial diversity. Environmental Microbiology, 18, 2039– 2051. 
https://doi.org/10.1111/1462-2920.13231

Ohlmann, M., Mazel, F., Chalmandrier, L., Bec, S., Coissac, E., Gielly, L., … 
Thuiller, W. (2018). Mapping the imprint of biotic interactions on β‐diversity. 
Ecology Letters, 21, 1660– 1669. https://doi.org/10.1111/ele.13143

Penton, C. R., Yang, C., Wu, L., Wang, Q., Zhang, J., Liu, F., Qin, Y., Deng, Y., 
Hemme, C. L., Zheng, T., Schuur, E. A. G., Tiedje, J., & Zhou, J.. (2016). NifH‐
harboring bacterial community composition across an Alaskan permafrost 
thaw gradient. Frontiers in Microbiology, 7, 1894.

Peterson, A. T. (2011). Ecological niche conservatism: a time‐structured 
review of evidence. Journal of Biogeography, 38, 817– 827. 
https://doi.org/10.1111/j.1365-2699.2010.02456.x

Poisot, T., Canard, E., Mouillot, D., Mouquet, N., & Gravel, D.(2012). The 
dissimilarity of species interaction networks. Ecology Letters, 15, 1353– 
1361. https://doi.org/10.1111/ele.12002

Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP 
procedure for studying the diversity of nifH genes in communities of nitrogen
fixers in soil. Research in Microbiology, 152, 95– 103. https://doi.org/10.1016/
S0923-2508(00)01172-4

Proulx, S. R., Promislow, D. E. L., & Phillips, P. C. (2005). Network thinking in 
ecology and evolution. Trends in Ecology and Evolution, 20, 345– 353. 
https://doi.org/10.1016/j.tree.2005.04.004

Ranjard, L., Dequiedt, S., Chemidlin Prévost‐Bouré, N., Thioulouse, J., Saby, 
N., Lelievre, M., … Lemanceau, P. (2013). Turnover of soil bacterial diversity 
driven by wide‐scale environmental heterogeneity. Nature Communications, 
4, ncomms2431. https://doi.org/10.1038/ncomms2431

Saunders, A. M., Albertsen, M., Vollertsen, J., & Nielsen, P. H. (2016). The 
activated sludge ecosystem contains a core community of abundant 
organisms. The ISME Journal, 10, 11– 20. 
https://doi.org/10.1038/ismej.2015.117

Schauer, R., Bienhold, C., Ramette, A., & Harder, J. (2010). Bacterial diversity
and biogeography in deep‐sea surface sediments of the South Atlantic 
Ocean. The ISME Journal, 4, 159– 170. 
https://doi.org/10.1038/ismej.2009.106

Shen, C., Shi, Y., Ni, Y., Deng, Y., Van Nostrand, J. D., He, Z., … Chu, H. 
(2016). Dramatic increases of soil microbial functional gene diversity at the 
treeline ecotone of Changbai Mountain. Frontiers in Microbiology, 7, 1184.

Shi, S., Nuccio, E. E., Shi, Z. J., He, Z., Zhou, J., & Firestone, M. K. (2016). The 
interconnected rhizosphere: High network complexity dominates rhizosphere
assemblages. Ecology Letters, 19, 926– 936. 
https://doi.org/10.1111/ele.12630



Shi, Y., Li, Y., Xiang, X., Sun, R., Yang, T., He, D., … Chu, H. (2018). Spatial 
scale affects the relative role of stochasticity versus determinism in soil 
bacterial communities in wheat fields across the North China Plain. 
Microbiome, 6, 27. https://doi.org/10.1186/s40168-018-0409-4

Thuiller, W., Georges, D., Engler, R., Breiner, F., Georges, M. D., & Thuiller, C.
W. (2016). Package 'biomod2' [J]. Species distribution modeling within an 
ensemble forecasting framework. Retrived from 
ftp://ftp2.de.freebsd.org/pub/misc/cran/web/packages/biomod2/biomod2.pdf

Tilman, D. (2000). Causes, consequences and ethics of biodiversity. Nature, 
405, 208– 211. https://doi.org/10.1038/35012217

Violle, C., Nemergut, D. R., Pu, Z., & Jiang, L. (2011). Phylogenetic limiting 
similarity and competitive exclusion. Ecology Letters, 14, 782– 787. 
https://doi.org/10.1111/j.1461-0248.2011.01644.x

Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian 
classifier for rapid assignment of rRNA sequences into the new bacterial 
taxonomy. Applied and Environmental Microbiology, 73, 5261– 5267. https://
doi.org/10.1128/AEM.00062-07

Wang, Q., Quensen, J. F., 3rd, Fish, J. A., Lee, T. K., Sun, Y., Tiedje, J. M., & 
Cole, J. R. (2013). Ecological patterns of nifH genes in four terrestrial climatic 
zones explored with targeted metagenomics using FrameBot, a new 
informatics tool. Mbio, 4, e00592‐13. https://doi.org/10.1128/mBio.00592-13

Woodcock, S., Curtis, T. P., Head, I. M., Lunn, M., & Sloan, W. T. (2006). Taxa–
area relationships for microbes: The unsampled and the unseen. Ecology 
Letters, 9, 805– 812. https://doi.org/10.1111/j.1461-0248.2006.00929.x

Wu, L., Yang, Y., Chen, S. i., Zhao, M., Zhu, Z., Yang, S., … He, Q. (2016). 
Long‐term successional dynamics of microbial association networks in 
anaerobic digestion processes. Water Research, 104, 1– 10. 
https://doi.org/10.1016/j.watres.2016.07.072

Yang, T., Tedersoo, L., Soltis, P. S., Soltis, D. E., Gilbert, J. A., Sun, M., … Chu, 
H. (2018). Phylogenetic imprint of woody plants on the soil mycobiome in 
natural mountain forests of eastern China. The ISME Journal, 13, 686– 697.

Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D. R., Bork, P., & Patil, K.
R. (2015). Metabolic dependencies drive species co‐occurrence in diverse 
microbial communities. Proceedings of the National Academy of Sciences 
USA, 112, 6449– 6454. https://doi.org/10.1073/pnas.1421834112

Zhang, T., Shao, M.‐F., & Ye, L. (2012). 454 Pyrosequencing reveals bacterial 
diversity of activated sludge from 14 sewage treatment plants. The ISME 
Journal, 6, 1137– 1147. https://doi.org/10.1038/ismej.2011.188

Zhang, Y., Cong, J., Lu, H., Deng, Y., Liu, X., Zhou, J., & Li, D. (2016). Soil 
bacterial endemism and potential functional redundancy in natural broadleaf 



forest along a latitudinal gradient. Scientific Reports, 6, 28819. 
https://doi.org/10.1038/srep28819

Zhou, J., Bruns, M. A., & Tiedje, J. M. (1996). DNA recovery from soils of 
diverse composition. Applied and Environmental Microbiology, 62, 316– 322.

Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., & Zhi, X. (2010). Functional 
molecular ecological networks. MBio, 1, e00169‐10.

Zhou, J., Kang, S., Schadt, C. W., & Garten, C. T. (2008). Spatial scaling of 
functional gene diversity across various microbial taxa. Proceedings of the 
National Academy of Sciences USA, 105, 7768– 7773. 
https://doi.org/10.1073/pnas.0709016105

Zinger, L., Boetius, A., & Ramette, A. (2014). Bacterial taxa–area and 
distance–decay relationships in marine environments. Molecular Ecology, 23,
954– 964. https://doi.org/10.1111/mec.12640


