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The spatial stability of a class of exact similarity solutions of the Navier-Stokes equations whose 
longitudinal velocity is of the form xf'(y), where xis the stream wise coordinate andf'(y) is a 
function of the transverse, cross-stream wise, coordinate y only, is determined. These similarity 
solutions correspond to the flow in an infinitely long channel or tube whose surface is either 
uniformly porous or moves with a velocity linear in x. Small perturbations to the streamwise 
velocity of the form x' g'(y) are assumed, resulting in an eigenvalue problem for A, which is solved 
numerically. For the porous wall problem, it is shown that similarity solutions in whichf'(y) is a 
monotonic function of y are spatially stable, while those that are not monotonic are spatially 
unstable. For the accelerating-wall problem, the interpretation of the stability results is not 
unambiguous and two interpretations are offered. In one interpretation the conclusions are the 
same as for the porous problem-monotonic solutions are stable; the second interpretation is 
more restrictive in that some of the monotonic as well as the nonmonotonic solutions are unstable. 

I. INTRODUCTION 

Similarity solutions to the equations of motion have 
been in use at least since Blasius 1 assumed a self-similar ve­
locity profile for the boundary-layer flow over a flat plate. 
Many of the exact solutions to the Navier-Stokes equations 
are based on the assumption of self-similarity; thus reducing 
the equations of motion to one or more ordinary differential 
equations and greatly simplifying the analysis. Important as 
similarity solutions are in helping us understand the behav­
ior of fluids, there is no assurance that these solutions repre­
sent a physically realizable flow. The flow domains are often 
unbounded, and the similarity solutions possess singularities 
either at infinity or at the origin; thus casting some doubt as 
to their uniform validity. It has generally been accepted, 
however, that similarity solutions can and do provide at least 
a local description of some flow. Several recent studies have 
examined the question of the applicability of similarity solu­
tions and have shown that even a local validity may not be 
possible. 2-6 

In this paper we wish to investigate the validity of a 
particular class of similarity solutions. These solutions cor­
respond to the flow in a uniformly porous channel or tube 
and to the flow in a channel or tube with an accelerating 
surface velocity (cf. Fig. 1 ). The similarity solutions for the 
porous wall problem have been studied by Terrill and oth­
ers,7-12 and those for the accelerating surface problem by 
Brady and AcrivosY We are interested in these problems 
because the similarity solutions possess some rather unusual, 
and perhaps unphysical, features such as the existence of 
multiple solutions for some range of Reynolds number. Even 
more disturbing, however, is the discrepancy which exists 
between the axisymmetric (tube) and two-dimensional 
(channel) flows for positive Reynolds numbers for both the 
porous wall and accelerating surface problems: a range of 
Reynolds number exists within which there is no solution to 
the axisymmetric similarity equation, while solutions to the 
two-dimensional case exist for all values of the Reynolds 

number. This inconsistency and lack of similarity solutions 
for the axisymmetric problems calls into question their va­
lidity. 

Brady and Acrivos5 addressed this paradox of nonexis­
tence in their study of the flow in a channel or tube with an 
accelerating surface velocity. Its cause was traced to the as­
sumption that the tube and channel were infinite in extent. 
By an appropriate, boundary-layer-like, numerical analysis 
of the equations of motion, they showed that above a critical 
value of the Reynolds number Rc, the flow throughout the 
entire domain was influenced by the end condition. Thus, 
the similarity solution no longer represented any real flow. 
Recently, Brady6 has shown that the same phenomenon oc­
curs in the porous wall problem. It should be noted, how­
ever, that although the domain is finite, the actual length of 
the channel or tube can be arbitrarily large. 

The end condition may be viewed as an 0 ( 1 ), mass-con­
serving, numerical perturbation to the similarity velocity 
profile. At low values of R, this perturbation decayed as it 
was convected longitudinally away from the end, and the 
similarity solution was valid over a region far removed from 
the end. At Rc, however, the perturbation was convected all 
the way to the origin, and the region of validity of the similar­
ity solution shrunk to zero. Further, Brady and Acrivos5 

found that this critical value of R was insensitive to the de­
tailed nature of the end condition. For flow in a tube with an 
accelerating surface velocity, Rc coincided exactly with the 
value ofR, 10.25, beyond which no solution to the similarity 
equation existed. A critical R was also shown to exist for 
flow in a channel with an accelerating surface velocity 
(Rc ~57), even though solutions to the similarity equation 
exist for all R. For the porous wall problem (Ref. 5), critical 
Reynolds numbers of 2.3 and 6, respectively, were also 
found. It was shown, however, that the similarity solutions 
for the porous wall problem may regain validity at larger R if 
the end condition is sufficiently "close" to a similarity solu­
tion. Thus, we see that beyond Rc the similarity solutions for 
this class of flows may or may not describe the motion in a 
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finite channel or tube. 
The important influence of the end condition and the 

presence of critical Reynolds numbers suggests that a spatial 
stability analysis of the similarity equations may aid in un­
derstanding how and why these solutions lose validity. In 
particular, it would be of interest to see if these critical Reyn­
olds numbers could be predicted by such an analysis. Be­
cause these similarity equations are very much like the clas­
sical boundary-layer equations, it is instructive to first con­
sider the spatial stability of the Falkner-Skan equation for 
the boundary-layer flow over a wedge. Serrin 14 proved that 
for an arbitrary initial velocity profile, the magnitude of the 
deviation of the actual flow from that predicted by the simi­
larity solution is o[(l + m log x)lxm] for m>O as X---+oo 

downstream. [Here, m is the exponent of the free stream 
velocity U (x) = Cxm, where Cis a constant. His analysis is 
restricted to the case m >0.] Thus, for these flows an 0 ( 1) 
perturbation to the similarity solution, regardless of its form, 
will decay as it is convected downstream; i.e., the similarity 
solution will be valid asymptotically far downstream from 
the leading edge. 

Chen and Libby15 also investigated the validity of solu­
tions to the Falkner-Skan equation by means of a stability 
analysis. They assumed small perturbations to the stream­
wise velocity of the formxt ¢ (77), wherex is the distance from 
the leading edge, 77 is the similarity variable, and¢ (77) is the 
perturbation function. Here A is the unknown eigenvalue: 
A< 0 represents stability in the sense that small perturba­
tions will decay as X---+oo (downstream), and A> 0 would 
therefore indicate spatial instability. 16 For m>O, only nega­
tive eigenvalues were found, in agreement with Serrin's anal­
ysis. Form < 0, the solutions to the Falkner-Skan equation 
are no longer unique, there being at least two different solu­
tions. One branch of solutions has reverse flow adjacent to 
the surface-fluid moving towards the leading edge, and it 
connects with the unidirectional flow branch at the point 
where the shear stress at the surface vanishes, 
m = - 0.0904. For the reverse flow branch, they found 
both positive and negative A 'sand attributed the presence of 
the positive eigenvalues as an indication of instability (see 
Sec. II). The undirectional flow branch gave only negative 
A's. The agreement between the analyses of Chen and Lib­
by15 and Serrin16 for m>O and the conclusions concerning 
the stability of the branches form < 0 indicate the utility of a 
linear stability analysis for determining solution validity. 

Our approach will be quite similar to that of Chen and 
Libby. 15 In Sec. II we consider the spatial stability of the 
two-dimensional porous wall and accelerating surface prob­
lems. We show that the stability results may be interpreted in 
two ways. One interpretation applies to both the porous and 
accelerating surface problems and maintains that the simi­
larity solutions which are monotonic functions of the cross­
streamwise coordinate are stable, while those that are not are 
unstable. The other interpretation applies only to the accel­
erating surface problem and further limits the spatially sta­
ble flows. It implies that all of the nonmonotonic solutions 
are unstable and that the monotonic solutions, which exist 
for - oo < R < oo, are stable only for 0 < R < 11.0. In 
neither case, then, are we able to determine the critical Reyn-
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olds numbers reported in Refs. 5 and 6. Section III is devoted 
to the axisymmetric tube problems. Here, a critical Reyn­
olds number is found, and it agrees precisely with the Reyn­
olds number at which similarity solutions cease to exist. The 
conclusions we reach regarding stability or instability of the 
similarity solutions are with regard to a particular class of 
spatial perturbations. Questions of temporal stability and 
stability to a broader class of spatial perturbations are not 
addressed in this study. 

II. THE TWO-DIMENSIONAL CHANNEL PROBLEMS 

A. Porous channel flow 

Referring to Fig. 1, we denote the channel half-width by 
h, the fluid viscosity by f.l, its density by p, and the normal 
velocity through the porous wall by V. For an infinitely long 
channel, the Navier-Stokes equations admit an exact simi­
larity solution of the form 

u = -xf'(y), 

v =f(y), 

P =PolY)+ !flx
2

, 

where u and v are the x andy components ofvelocity,p is the 
pressure, and fJ is a constant. For flows symmetric about 
y = 0, the similarity function/satisfies 

f"' + fJ = - R[(f')2 -.If"], 

f(O) =f"(O) = 0, /(1) = 1, /'(1) = 0. 

(1) 

(2) 

Here, R = p Vh I J.l is the Reynolds number; R > 0 corre­
sponds to suction, and R < 0 to injection. The unknown pres­
sure coefficient fJ is determined by the fourth boundary con­
dition. 

The solutions to Eqs. (1) and (2) have been studied ex­
tensively,?-11 and we shall comment only briefly on their 
structure. There exists a single continuous solution extend­
ing from - oo to + oo in R. The longitudinal velocity pro­
files are monotonic functions of y, with the fluid coming in 
from infinity for suction (R > 0) and going out towards infin­
ity for injection (R < 0). The suction solutions develop a 
boundary layer near the wall as R---+ oo; the injection solu­
tions do not. There are two additional suction solutions 
which appear atR = 12.165 and extend toR---+ + oo. These 
solutions have velocity profiles in which the longitudinal ve­
locity is no longer a monotonic function of y, and for some 
solutions there is a region of reverse flow at the centerline 
with the fluid there now moving out towards infinity. In Fig. 
2 we show a plot of fJ vs R where we have labeled the different 

c·:r·:'·,·"' -ro 

\£.!! ••• 0 
oy 

FIG. I. Schematic diagram for the two-dimensional channel similarity so­
lutions. Uniformly porous: u = 0, v = V. Accelerating surface: u =Ex, 
v=O. 
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FIG. 2. The pressure coefficient /3 of the similarity solutions for the two­
dimensional flow in a uniformly porous channel as a function of the Reyn­
olds number. The three solution families are labeled I, II, and III. 

solutions I, II, and III. The point X marks the juncture of 
branches II and III and is the point where the centerline 
velocity is zero. 

To determine the spatial stability of these similarity so­
lutions, we write for the velocity and pressure fields 

u = - xf'(y) - .0 g'(y), 

v = f(y) +Ax"- 1 g(y), (3) 

P=PolY)+ !/3x2 +[11(l+A)]/3,tx1 +", 
where g' is the perturbation to the longitudinal velocity and 
13.-t is the perturbation to the pressure. Substituting into the 
x-momentum equation and neglecting terms of second order 
in the small perturbation g, the linearized stability equation 
for g is 

g'" + 13.-t = R[/g"- (1 +A )f'g' + Aj"g], (4) 

with 

g(O) = g"(O) = g(1) = g'(1) = 0, g'(O) = 1, (5) 

where without loss of generality we have set g'(O) equal to 
unity. Both A and 13.-t are unknown eigenvalues. Given a si­
milarity solution/at a particular R, the two-point boundary­
value problem [(4) and (5)] was solved using Newton's meth­
od to determine g, 13.-t, and A. 17 

Whether the eigenvalue A is greater than or less than 
unity will determine the spatial stability of the similarity so­
lutions. Some care is needed, however, when considering in 
which direction, increasing or decreasing x, the perturba­
tions propagate. For the group I solutions, a negative Reyn­
olds number corresponds to injection with the fluid moving 
out towards infinity. Here, we wish to consider a perturba­
tion occurring at some finite value of x and ask whether this 
perturbation decays relative to the similarity solution as it is 
convected with the flow as X---+oo. Thus, A< 1 represents 
stability. For positive Reynolds numbers corresponding to 
suction, the situation is reversed. The flow is now moving 
inward from infinity to the origin x = 0. Here, we imagine a 
perturbation at some finite x and ask whether it decays rela­
tive to the similarity solution as x---+0. 18 Thus, A > 1 repre-
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sents stability. For the group III solutions in which there is 
fluid moving in both the positive and negative x directions, 
the direction of propagation of the perturbation and hence 
the stability criterion with A are no longer as unambiguous. 
This difficulty becomes even more apparent in the accelerat­
ing surface problems because fluid always moves in both 
directions. When we consider the accelerating-surface chan­
nel problem later in this section, we shall offer an interpreta­
tion of A with regard to the direction of flow. For the mo­
ment, we shall simply consider the group I porous channel 
results. 

The minimum magnitude eigenvalues A for the group I 
porous channel solutions are plotted versus the Reynolds 
number in Fig. 3. No negative A's were found for R > 0 (suc­
tion), nor were there positive A 's for R < 0 (injection). For 
R > 0, A asymptotically approaches 1 as R---+oo; thus, suc­
tion flow is always stable, approaching marginal stability as 
R tends to infinity. For R < 0, A asymptotically approaches 
- 3 as R---+ - oo; injection flow is always stable, even as­

ymptotically in R. The asymmetry in the asymptotic forms 
of A vs R is not surprising because the similarity flows are 
themselves quite different at large I R I: a boundary layer ad­
jacent to the wall forms in suction flow, but not for injection. 
The similarity solutions are, however, symmetric about 
R = 0, and this symmetry is present in the stability analysis. 
As R---+0, from above or below, A~AofR with A0 = 18.81. 
There are of course additional eignevalues, and they show 
the same behavior as the minimum magnitude eigenvalues, 
with differentA0's and asymptotic values for large IRI. 

The spatial stability analysis of the group I solutions has 
shown these solutions to be stable for all R. We have not 
found (as was initially hoped) a critical Reynolds number for 
loss of stability. The predictions of the stability analysis for 
R > 0 do seem, however, to agree well with the numerical 
results of Ref. 6. There it was shown that for R ~50, certain 
0 ( 1) numerical perturbations to the inlet condition result in 
velocity and pressure profiles as x---+0 that are superpositions 
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-
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FIG. 3. The minimum magnitude eigenvalues A for the group I porous 
channel solutions. Here A.~ 1 as R---> oo, A.~ - 3 as R---> - oo, and 
A.~ 18.81/R as R---+0. The eigenvalues indicate the group I solutions are 
spatially stable. The dashed lines in this and all subsequent figures of stabil­
ity results correspond to A. = 1. 
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of the similarity solution and perturbations, g'(y) and /3;., 
with A. = 1 in excellent agreement with the stability analysis. 

B. Accelerating channel flow 
The accelerating-wall channel flow is described by the 

same similarity form-u = - xf'(y), etc.-as the porous 
channel flow. The only differences are that the boundary 
conditions at the surface are u = Ex and v = 0 in lieu of 
u = 0, v = V, giving/'( I)= - 1,/(1) = Oin Eq. (2), and the 
Reynolds number is R = pEh 2 /J.L. The solution structure is 
analogous to the porous channel case, resulting in a {3 vs R 
plot of the same form as shown in Fig. 2. There are again 
three different solutions for R > 0, groups I, II, and III, with 
the Reynolds number at which multiple solutions appear 
now being 306. As in the porous channel case, the group I 
solutions are monotonic functions of y and extend from 
- oo to + oo in R, while the groups II and III are not 

monotonic functions of y. For a detailed discussion of these 
similarity solutions for R > 0, see Ref. 13. 

One aspect of the accelerating wall problem that is dif­
ferent from the porous wall problem is the presence of fluid 
moving in both directions. For R < 0, a decelerating surface, 
fluid is carried inward from infinity along the moving sur­
face and returns to infinity on the centerline. For the group I 
solutions with R > 0, the situation is the opposite, with fluid 
moving out towards infinity along the moving surface and 
returning on the centerline. Thus, for all Reynolds numbers 
there is reverse flow, and the direction of propagation of a 
disturbance and the interpretation of stability require some 
care. Proceeding as before with the stability analysis, the 
minimum magnitude eigenvalues A. for the group I solutions 
are shown in Fig. 4. 

In Fig. 4 we see that, unlike the porous channel prob­
lem, there are both positive and negative eigenvalues for 
R > 11.0, only positive eigenvalues for 0 < R < 11.0 and only 
negative eigenvalues for R < 0. A limit point exists at 
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FIG. 4. The minimum magnitude eigenvalues A for the group I accelerating 
channel solutions. Under the second interpretation, the solid curves corre­
spond to fluid moving towards infinity for R < 0, and towards x = 0 for 
R>O. Here, A-1 as R~oo, A- -2 as R~- oo, and A-136/R as 
R~. The dashed curves correspond to the fluid moving towards infinity in 
the boundary layer adjacent to the accelerating wall. Here, A- - 2 and 
- 8.20as R~oo. Thereisalsoalimit pointatR = 1l.OwithA = - 24.7. 

1071 Phys. Fluids, Vol. 27, No.5, May 1984 

R = 11.0 with A. = - 24. 7. (There are of course additional 
branches of negative eigenvalues lying below the dashed 
curves in Fig. 4. These branches have the same form as those 
presented, but the limit points are all at larger R.) As 
R~ + oo, the positive eigenvalues asymptotically ap­
proach 1, as do their porous channel counterparts, and the 
maximum negative eigenvalues approach - 2. The signifi­
cance of the positive and negative eigenvalues is a matter of 
some debate in that there are different ways of interpreting 
these results. We shall offer two interpretations which we 
feel are plausible and point out both their strengths and 
weaknesses. It is hoped that future work in this area will help 
resolve this issue. 

The first interpretation proceeds as follows. Because 
there is always fluid moving towards x = 0, the presence of 
negative eigenvalues for R > 11 implies instability. While 
this interpretation seems quite straightforward and predicts 
the existence of a critical Reynolds number, there are, how­
ever, some disturbing features. If the negative eigenvalues 
imply instability for the fluid moving towards x = 0, then 
the positive eigenvalues should imply instability for the fluid 
moving toward x~ oo . Thus the flow is unstable for all R, 
becoming increasingly so as R~. where A.~ oo. It may be 
argued, however, that x never really reaches oo, and that the 
end of the channel will occur for x- 0 (L ), where L is some 
large (L I h> 1) but finite length. Thus, if the amplitudes of the 
A. > 0 perturbations are sufficiently small, they will be con­
vected out of the channel before they can grow to render the 
similarity solution invalid. 

While it is arguable that the finite length L plays a role 
in interpreting the positive A. 's, it should be realized that 
there are infinitely many positive A. branches all giving A.~ oo 
as R~. and thus the amplitudes for all these branches must 
be small. Furthermore, this interpretation also implies that 
the decelerating channel flow (R < 0) is unstable for all nega­
tive R, becoming "most unstable" as R~-. For the decel­
erating channel there are only negative A. 's, and fluid is al­
ways moving towards x = 0. We have, therefore, the rather 
curious situation where the flow as R~- is unstable while 
that for R~+ is stable; this is surprising because the simi­
larity function/is symmetric about R = 0 and, more impor­
tantly, because one does not normally expect instability as 
IRI~. 

The second interpretation of the eigenvalues shown in 
Fig. 4 arises from a consideration of the flow as R~ oo. At 
large R, the flow consists of two distinct regions moving in 
opposite directions: an 0 (R- 112

) thin boundary layer adja­
cent to the surface moving towards increasing x and an in vis­
cid, uniform, zero-vorticity core of stregnth 0 (R - 112) mov­
ing towards x = 0. This interpretation contends that the 
negative eigenvalues correspond to the flow in the boundary 
layer (fluid moving towards + oo) while the positive eigen­
values correspond to the flow in the core (fluid moving 
towards x = 0). Under this interpretation, the flow is stable 
for all R, with the flow in the core becoming marginally 
stable (A.~ I) as R~oo. Negative eigenvalues do not exist for 
R < 11.0 because, at small R, a well-formed boundary layer 
does not exist and the flow cannot be separated into two 
distinct regions. 
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The contention that the negative eigenvalues apply to 
the boundary layer is consistent with several other results. 
First, we performed a spatial stability analysis of the bound­
ary layer equations resulting from an asymptotic analysis of 
the similarity solution as R-. oo. (This boundary-layer prob­
lem is the moving wall equivalent of the Falkner-Skan equa­
tion with m = 1; that is, it is to the Falkner-Skan equation as 
the Sakiadis 19

•
20 moving wall boundary layer is to the Blasius 

equation.) The maximum eigenvalue for this problem is - 2, 
exactly as is observed for the similarity solution; the next 
lower eigenvalue is - 8.20, in agreement with the asymptote 
of the lower curve in Fig. 4. Therefore, at least as R-+oo, the 
negative eigenvalues do seem to correspond to the boundary 
layer. 

Second, for the decelerating surface case, R < 0, only 
negative eigenvalues exist. Here, the flow does not form a 
boundary layer as R-. - oo; two distinct regions of flow do 
not exist; and, therefore, two branches of eigenvalues are not 
required. Furthermore, the similarity solution is symmetric 
about R = 0 which is reflected in the solid curves in Fig. 4, 
where A. -A.ofR as R--+0 from above and below with 
A.0 = 136. As R passes through zero, the flow changes direc­
tion, and, as the positive eigenvalues represent stability for 
R > 0, the negative eigenvalues represent stability for R < 0. 
Thus, this interpretation also implies that the decelerating 
surface flow is stable, even asymptotically as R-. - oo 
where A-+ - 2. 

Finally, this interpretation is able to explain the differ­
ence in the stability results for the porous and accelerating 
channel flows. In both problems the group I solutions are 
stable for all R, becoming marginally stable as R-..oo. In 
fact, the solid curves in Fig. 4look much like those in Fig. 3. 
It is only the negative eigenvalues for R > 11.0 that differ 
between the two problems, and these negative eigenvalues 
have been attributed to the boundary layer flow which 
moves toward X-+ oo, in the direction opposite to that of the 
core flow. Because such a boundary layer does not exist in 
the group I porous channel flow (the boundary layer moves 
in the same direction as the core, towards x = 0), no negative 
eigenvalues would be expected to exist. 

Although this interpretation is able to consistently ex­
plain the stability results for positive and negative R, it rests 
on the premise that the flow can be separated into two re­
gions-a boundary layer and a core. This allows the negative 
eigenvalues to be associated with the boundary layer and the 
positive eigenvalues with the core. While firmly established 
as R-. oo, it is not certain that this correspondence continues 
to apply as R decreases from infinity. 

C. Porous and accelerating channel flow: Groups II and 
Ill 

We shall now show that the groups II and III solutions 
for both the porous and accelerating channel flows are unsta­
ble. Referring to Fig. 2 for the porous channel flow, we 
should note that the group II solutions asymptotically ap­
proach the group I solutions as R-. oo. As R decreases along 
the group II branch, the longitudinal velocity u is no longer 
monotonic, and the minimum in u moves off the centerline 
until the point X at R = 13.1 is reached where the centerline 
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velocity is zero. As we continue along the group III branch 
(at first decreasing and then increasing in R), the centerline 
velocity becomes positive and increases in magnitude. A 
similar evolution in structure occurs for the accelerating 
channel groups II and III solutions. 

The stability results for the porous and accelerating 
channel solutions are shown in Figs. 5 and 6, respectively, 
with the curves labeled according to the group to which they 
belong. For the porous channel group II solutions only posi­
tive eigenvalues were found. The lowest branch, however, is 
always less than unity, approaching 1 asymptotically from 
below as R-+oo where the groups I and II solutions join. 
Thus, the group II solutions are spatially unstable. The re­
sults are the same for the accelerating channel group II solu­
tions, except that there is a set of negative eigenvalues. This 
negative branch asymptotically approaches A. = - 2 as 
R-.. oo where it joins the group I negative eigenvalues. 
Again, the accelerating channel stability results may be in­
terpreted in two ways, but in this case the two interpretations 
yield the same conclusion. Under the first interpretation the 
flow is unstable due to the existence of eigenvalues A. less 
than unity (both positive and negative A.'s). Under the second 
interpretation, the negative eigenvalues do not imply insta­
bility; they correspond to the boundary layer and indicate 
that it is stable. However, the positive A.'s which are less than 
1 apply to the flow in the core and indicate instability. Thus 
the group II solutions for both problems are spatially unsta­
ble. 

For both group III solutions, there is a small region in 
Reynolds number where there are positive A. 's, with A. pass­
ing through 1 at the minimum Reynolds number. There is a 
branch of negative A. 's which asymptotically approaches 
A.= 0 as R-..oo and either connects with the group II solu­
tions in the accelerating channel problem, or returns to 
R-+oo in the porous channel problem. Under the first inter­
pretation, group III solutions for both flows are unstable 
because negative eigenvalues exist for all possible values of 
R. In the second interpretation, since the group II negative 
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FIG. 5. The minimum magnitude eigenvalues A for the groups II and III 
porous channel solutions. The inset shows that the group III negative A 
curve is multivalued because there are two group III solutions in the range 
12.165<R< 13.119 (cf. Fig. 2). The solutions are unstable. 
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FIG. 6. The minimum magnitude eigenvalues A for the groups II and III 
accelerating channel solutions. The inset of Fig. 5, although present, is not 
shown. The solutions are unstable. 

eigenvalues for the accelerating channel flow are associated 
with the boundary layer, the connecting group III branch 
must also be associated with the boundary layer. The pres­
ence of negative, boundary-layer, A 's for the group III po­
rous channel problem, when there are none for the group II 
is not surprising because the structure of the boundary layers 
for these two groups is different (see Ref. 13). Since the 
boundary-layer flow is moving towards the origin, these neg­
ativeA 's represent an unstable boundary layer. Finally, both 
group III solutions have a branch of very negative eigenval­
ues that starts withA---+oo at the point X where the centerline 
velocity first becomes positive. Chen and Libby15 found the 
same behavior when they investigated the stability of the 
Falkner-Skan equation. When m < 0 they found the stability 
analysis of the reverse flow solution to have negative A's with 
A---+ - oo as m---+ - 0.0904, the point of zero shear stress 
where the velocity at the wall first reverses. Chen and Libby 
concluded that the presence of these negative eigenvalues 
represents spatial instability. We agree with their conclu­
sion, and interpret our group III negative A's as representing 
instability of the reversed flow on the centerline. 

The spatial stability analysis of the porous and acceler­
ating channel flows has led to the following conclusions: ( 1) 
group I porous channel flows are stable; (2) group I acceler­
ating or decelerating channel flows are, depending on which 
interpretation is applied, either (a) stable for 0 < R < 11.0 and 
unstable for all other R or (b) stable for all R( - oo < R < 00 ); 

and, (3) groups II and III solutions for both flows are unsta­
ble. The key feature that seems to distinguish the groups II 
and III solutions is the fact that the longitudinal velocity 
profiles are not monotonic functions of y. Thus, we see that 
the nonmonotonic solutions are unstable, while the mono­
tonic solutions are either stable for all R or stable over a 
limited range of R for the accelerating channel flow if the 
first interpretation is followed. In the next section, we shall 
see that monotonicity also plays a central role in the axisym­
metric tube problems. 

Ill. THE AXISYMMETIC TUBE PROBLEMS 

The analysis of the axisymmetric tube flow follows 
along the same lines as the channel flow considered in Sec. 
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II. Here, the similarity transformation for the axial velocity 
is u = - xf'(r)lr; for the radial velocity, v = f(r)/r, and for 
the pressure p = p0(r) + ! Px2

• The Reynolds number is un­
changed, with R > 0 being suction or accelerating and R < 0 
injection or decelerating. Since the porous and accelerating 
tube problems are quite similar, only the porous problem 
will be discussed in any detail. The solution structure for the 
porous problem is shown in Fig. 7 where P is plotted versus 
the Reynolds number. The various solution families have 
been labeled I, II, IV(i), IV(ii), V(i), and V(ii) to be consistent 
with the classification scheme of Terrill and Thomas9 and 
Skalak and Wang. 11 

The group I axial velocity profiles are monotonic func­
tions of r and evolve continuously from R---+ - oo to 
R = 2.3 at which point the shear stress at the wall,/"(1), 
vanishes. These solutions are analogous to the porous chan­
nel group I solutions. The group II joins with the group I at 
R = 2.3 and evolves continuously as R decreases to zero. 
These axial velocity profiles are not monotonic functions of 
r, having a single inflection point and a region of reverse 
flow-fluid moving out towards infinity-adjacent to the 
wall. The group IV(i) solutions exist in the range 
20.6..:;R < oo and are characterized by a region of reverse 
flow between the tube wall and centerline. Group IV(ii) solu­
tions exist for 23.7 ..:;R < oo, joining with the group IV(i) at 
R = 23.7, the point labeled X in Fig. 6. These solutions do 
not have reverse flow, but their axial velocity profiles are not 
monotonic, having two inflection points. Neither groups II 
nor IV have a corresponding branch in the channel flow. 
Group V(i) solutions exist for 9.99<R < oo and have a region 
of reverse flow on the centerline. They join with the group 
V(ii) solutions at the point X, R = 9.99, where the centerline 
velocity is zero. The group V(ii) solutions do not have a re­
gion of reverse flow, but do have a velocity profile with an 
inflection point. The groups V(ii) and V(i) correspond to the 
porous channel groups II and III, respectively. As R---+ oo, 
the groups IV(ii) and V(ii) asymptotically tend toward the 
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FIG. 7. The pressure coefficient f3 of the porous tube similarity solutions as 
a function of the Reynolds numbers. The solution families are labeled 
groups I, II, IV(i), IV(ii), V(i), and V(ii) to be consistent with the classification 
scheme of Ref. 9. 
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same state, whereas the groups IV(i) and V(i) do not, despite 
their similar {3 vs R behavior. The structure of the accelerat-
ing tube problem is completely analogous. . . 

Finally, Terrill and Thomas reported an addtttOnal 
family of solutions for negative R which they labeled group 
III. We were unable to reproduce these solutions (or to find 
them for the accelerating tube flow) and have determined 
that they are not solutions to the porous tube problem. Injec­
tion solutions for R negative, must have v positive at the tube 
surface, i.e., /(1) = 1. We were able to find the group III 
solutions reported by Terrill and Thomas with, however, 
R < 0 and f( 1) = - 1; thus, they are not legitimate solu­
tions. 

Proceeding as in Sec. II, the mtmmum magnitude 
eigenvalues for the porous tube groups I and II are sho~n i~ 
Fig. 8. For R < 0, only negative eigenvalues were found, md~­
cating the solutions are stable as was found for the two-dt­
mensional case. For R > 0, both interpretations suggest that 
the group I solutions are stable, reaching a point of marginal 
stability when the shear stress at the wall vanishes at 
R = 2.3. The group II solutions have A< 1 and are unstable 
under either interpretation. The R < 0 stability results for 
the accelerating tube flow, which are not shown, resemble 
closely the porous tube results for negative Reynolds 
numbers. As is the case for the two-dimensional negative R 
solutions, the two interpretations yield conflicting conclu­
sions; the first implying instability for - oo < R < 0 and the 
second stability for - oo < R < 0. Group I accelerating tube 
stability results for R > 0 are shown in Fig. 9. They have the 
same form as the porous tube case, with A passing through 
unity at the limiting Reynolds number 10.25. In the acceler­
ating tube flow, the shear stress at the moving surface does 
not vanish at R = 10.25, but the axial velocity profile does 
develop an inflection point,f"(r) =Oat rnear 1, at this Reyn­
olds number. 

The minimum magnitude eigenvalues for the porous 
tube group V solutions and the corresponding acceleratin.g 
tube solutions are shown in Figs. 10 and 11. Brady and Acn­
vos13 labeled the accelerating tube families II and III, the 
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FIG. 8. The minimum magnitude eigenvalues A for the porous tube groups I 
and II. Here..t = 1 at R = 2.3 where the similarity solutions cease. Group II 
solutions are unstable. 
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FIG. 9. The same as Fig. 8 for accelerating tube solutions. Here A = I at 
R = 10.25 where the similarity solutions cease. 

correspondence being V(ii)+-+11 and V(i)+-+111. These eigen­
values should be compared with their two-dimensional 
counterparts in Figs. 5 and 6. As before, these solutions ~ave 
both positive and negative A's and are unstable under etther 
interpretation. 

One aspect of the tube solutions that differs from those 
in the channel is that the group V(ii) solutions are multiva­
lued in the range 9.1 ..;;R.;;;9.99 while it was the group III 
solutions in two-dimensions that were multivalued. Thus in 
order that the small section of the V(ii) solutions between 
A = 1 and the point X (see arrow in Fig. 10) be unstable, the 
strongly negative V(i) branch must cross over the point X 
and pick up the V(ii)'s before proceeding to A---+ - oo. That 
is, the V(i) branch in Fig. 10 must connect with the. V(ii) 
branch which is then multivalued as in the inset of Ftg. 5. 
Attem;ts to complete this curve were hampered by the diffi­
cult numerical problem posed by very negative A 's, but we 
feel certain that the small section of group V(ii) solutions are 
indeed unstable. The same, of course, must be true for the 
accelerating tube solutions of Fig. 11. 
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FIG. 10. The minimum magnitude eigenvalues for the porous ~ube group 
V(i) and V(ii) solutions. Note the resemblence to the two-dimensiOnal coun­
terpart in Fig. 5. The solutions are unstable. 
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FIG. 11. Same as Fig. 10 for the accelerating tube solutions. The two-di­
mensional counterpart is Fig. 6. 

In addition, unlike the channel solutions of Sec. II C, 
the minimum eigenvalues for the groups V(ii) and II tend to 
zero rather than unity asymptotically as R---.oo. This is sig­
nificant because, with A =0, the functiong'(y) is not merely a 
pertubation, but an exact solution to the full equations of 
motion. That is, a similarity transformation of the form 
u = - x[f'(r)lr] - ('g'(r)lr], etc., satisfies the Navier­
Stokes equations, with g an eigensolution, i.e., g satisfies a 
homogeneous equation and homogeneous boundary condi­
tions and can have arbitrary amplitude. The boundary con­
ditions on g of g(O) = g( 1) = 0 ensure that the eigensolution 
produces zero net flux in the tube. Thus, asymptotically as 
R---.oo, the A---+0 eigenvalues do not imply instability in the 
sense that the similarity solution breaks down, but rather 
imply the similarity form u = - xf'(r)lr is incomplete. The 
"full" similarity solution-linear in x plus the eigensolu­
tion- is, however, marginally stable as R---+oo due to the 
next higher eigenvalues approaching unity. Although strict­
ly speaking the eigensolution A =0 occurs only at infinite 
Reynolds number, at a Reynolds number of20 in the porous 
tube flow and 350 in the accelerating tube flow the asympto­
tic state seems to have been reached. In his numerical study 
of the flow in a porous tube, Brady6 found that at Reynolds 
numbers in excess of 50 certain inlet velocity profiles gave 
flows which are superpositions of the eigensolution and the 
normal-linear in x-similarity solution as predicted by the 
present stability analysis. 

Finally, in Fig. 12 we show the minimum magnitude 
eigenvalues A for the group IV porous tube solutions. The 
structure here is quite close to that of the group V in Fig. 10. 
As with the group V solutions, these solutions are unstable. 
We did not determine the stability of the corresponding ac­
celerating tube solutions, but we expect results analogous to 
those shown in Fig. 12. 

IV. CONCLUSIONS 

The spatial stability analysis of the porous wall and ac­
celerating surface problems has led to some very interesting 
and important conclusions. Taken in total, the stability re-
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FIG. 12. The minimum magnitude eigenvalues A. for the porous tube group 
IV solutions. These solutions are unstable. 

suits indicate that the similarity solutions which have veloc­
ity profiles which are not monotonic in the cross-stream wise 
direction are unstable. The first interpretation we offered, 
which considers the entire flow as a whole, implies that only 
some of the monotonic solutions are stable, further limiting 
the range of stable solutions. The second interpretation im­
plies that all monotonic solutions are stable, approaching 
marginal stability as R---. + oo and remaining stable as 
R---. - oo. These conclusions, along with Serrin's proof of 
stability of the Falkner-Skan equation for m >0, where the 
velocity profiles are also monotonic, suggest that it is the 
monotonicity of profiles that plays the key role. It is quite 
possible that these conclusions can be carried over into other 
classes of similarity solutions such as Jeffery-Hamel flow 
and the flow between two rotating disks. It is also possible 
that, based on monotonicity, it may be possible to prove ana­
lytically for arbitrary amplitude the spatial stability of 
boundary-layer-like solutions. 

With this spatial stability analysis we were, however, 
unable to achieve completely our desired goal of predicting 
the critical Reynolds number for loss of validity of the simi­
larity solutions as observed by Brady and Acrivos5 and 
Brady. 6 For the axisymmetric problems, there is a critical 
Reynolds number which coincides precisely with the point 
where the similarity solutions cease to exist. This is really as 
one should expect, for it would be very surprising if A did not 
pass through 1 when solutions appear or disappear. For the 
porous channel problem, no critical Reynolds number was 
found. For the acceleration channel problem, a critical 
Reynolds number of 11 exists if the first interpretation is 
followed, but the second interpretation does not predict a 
critical Reynolds number. 

The stability analysis has given us considerable insight 
into the nature of the similarity flows considered. Showing 
that the similarity solutions become marginally stable as 
R---.oo helps to explain why one can find numerically, as in 
Ref. 6, solutions for the flow in a long but finite porous chan­
nel which are linear in x as x---+0 but not similarity solutions. 
These solutions are simply the similarity solution plus a per­
turbation with A = 1. The agreement between these full nu-
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merical solutions and the stability analysis can also be 
viewed as an indication of the utility and validity of the sta­
bility results. The temporal stability and spatial stability to a 
broader class of perturbations remain, of course, open ques­
tions. 
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