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Resting state functional MRI (rsfMRI) connectivity patterns are not temporally stable, but

fluctuate in time at scales shorter than most common rest scan durations (5–10 min).

Consequently, connectivity patterns for two different portions of the same scan can

differ drastically. To better characterize this temporal variability and understand how

it is spatially distributed across the brain, we scanned subjects continuously for

60 min, at a temporal resolution of 1 s, while they rested inside the scanner. We then

computed connectivity matrices between functionally-defined regions of interest for

non-overlapping 1 min windows, and classified connections according to their strength,

polarity, and variability. We found that the most stable connections correspond primarily to

inter-hemispheric connections between left/right homologous ROIs. However, only 32%

of all within-network connections were classified as most stable. This shows that resting

state networks have some long-term stability, but confirms the flexible configuration

of these networks, particularly those related to higher order cognitive functions. The

most variable connections correspond primarily to inter-hemispheric, across-network

connections between non-homologous regions in occipital and frontal cortex. Finally we

found a series of connections with negative average correlation, but further analyses

revealed that such average negative correlations may be related to the removal of CSF

signals during pre-processing. Using the same dataset, we also evaluated how similarity of

within-subject whole-brain connectivity matrices changes as a function of window duration

(used here as a proxy for scan duration). Our results suggest scanning for a minimum of

10 min to optimize within-subject reproducibility of connectivity patterns across the entire

brain, rather than a few predefined networks.
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INTRODUCTION

In recent years, the functional magnetic resonance imaging

(fMRI) research community has undertaken a slow, yet con-

stant shift in attention from functional localization (where in

the brain a specific function resides) to functional connectivity

(how different brain regions interact with each other). Today,

it is well established that some brain regions are tuned pri-

marily to perform specific tasks (e.g., motor cortex controls the

movement of body parts, visual cortex analyzes incoming visual

stimuli, etc.) Still, this one-to-one relationship soon diffuses as

one moves beyond primary cortices into association cortex to

understand the neuronal correlates of higher cognitive func-

tions such as emotions, speech, or attention. Moreover, it is

increasingly common to discover variations in functional con-

nectivity, rather than in specific functional modules, that seem

to differentiate complex mental conditions (see Greicius, 2008

for a review) such as autism (Just et al., 2007; Gotts et al.,

2012), depression (Sheline et al., 2010), and Alzheimer’s Disease

(Wang et al., 2013a).

One well-known, non-invasive approach to the study of

functional connectivity in the human brain is resting state fMRI

(rsfMRI; Biswal et al., 1995). In this technique, the spatial co-

fluctuation of Blood Oxygenation Level Dependent (BOLD) sig-

nals is recorded while subjects rest quietly in the scanner in the

absence of any specific task demands, and these data are used to

explore patterns of functional connectivity at the system level (see

Lowe, 2010 for a historical review). More importantly, rsfMRI

is not only a powerful research tool, but it has great potential

for clinical applications given its experimental simplicity, short

scanning durations, richness of information, ease of sharing, and

low requirement for subject compliance. Nevertheless, for clini-

cians to be able to rely on rsfMRI-based biomarkers to diagnose

or intervene, several challenges with respect to reproducibility

and interpretation must be resolved (Castellanos et al., 2013).

Although overall patterns of rsfMRI-based functional connectiv-

ity have proven to be reliable across scans, subjects, and even

institutions, quantitative measures with the potential to become

biomarkers (e.g., the strength of a given connection) are not yet
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sufficiently reliable, as they depend on factors such as scan condi-

tion (e.g., eyes closed vs. eyes open Yan et al., 2009; Van Dijk et al.,

2010; McAvoy et al., 2012), scan duration (Birn et al., 2013), and

specific pre-processing steps used during the analysis (Murphy

et al., 2009; Power et al., 2012). Despite these dependences,

some rsfMRI connectivity metrics such as regional homogeneity

(ReHo; Zuo et al., 2013), amplitude of spontaneous low frequency

oscillations (Zuo et al., 2010), and several measures of centrality

(Zuo et al., 2012) have been shown to have encouraging test–

retest reliability. Nevertheless, one additional factor that poses

interesting questions regarding how to best record and quantify

rsfMRI-based metrics is the recently observed dynamic behavior

of rsfMRI connectivity patterns (Chang and Glover, 2010).

Several recent studies have shown how patterns of rsfMRI con-

nectivity vary substantially even over the duration of a single scan

(Chang and Glover, 2010; Handwerker et al., 2012; Tagliazucchi

et al., 2012; Hutchison et al., 2013b), thereby calling into ques-

tion the assumption of temporal stationarity even over short

timescales (see Hutchison et al., 2013a for a review). Similarly,

other studies have explored how scan duration affects the repro-

ducibility of rsfMRI connectivity patterns (Van Dijk et al., 2010;

Birn et al., 2013). However, most of these studies have focused

their analysis on a handful of representative connections and

networks. Given the large variability of functional roles and con-

nection strengths across the human brain connectome, it can be

expected that optimal scan acquisition strategies and reliability

of biomarker measurements will depend greatly on the connec-

tions of interest. For example, Allen et al. (2014) recently reported

a series of rsfMRI networks, labeled the “Zone of Instability,”

that exhibit significantly greater temporal variability in functional

connectivity. These regions with the greatest instability corre-

spond primarily to dorsal attention areas, default mode regions,

and superior occipital areas. Still Allen and colleges’ exploration

of dynamic behavior was constrained by the duration of the rest-

ing scans (5 m and 4 s) and their temporal resolution (2 s), which

limit both the quality of functional connectivity estimates (given

the low number of available data points) and the domain of func-

tional connectivity configurations that occur during such short

scan periods.

The purpose of the current study is to further explore and

characterize rsfMRI connectivity dynamics, and in that manner

extend some of the findings of Allen et al. (2014) and others

(Tagliazucchi et al., 2012; Hutchison et al., 2013b). To over-

come the above-mentioned limitations resulting from short scan

durations, in this study rsfMRI data were collected in 12 partic-

ipants who were scanned continuously for 60 min at a temporal

resolution of 1 s. Using these data, we evaluated pair-wise con-

nections over the scale of minutes, investigating their polarity,

strength, and variability. We evaluated the spatial distribution of

three categories of connections (namely stable positive connec-

tions, variable positive connections, and negative connections)

and whether assignment of connections to these three groups was

consistent across subjects. Using a sliding window approach, we

found that most stable positive connections correspond mainly

to symmetric, inter-hemispheric, within- and across-network

connections; while most variable positive connections corre-

spond primarily to inter- and intra-hemispheric, across-network

connections between occipital and frontal regions. Negative

connections correspond primarily to those between two medial

subcortical regions and fronto-parietal regions. We also evalu-

ated how window length, a proxy for scan duration, affects the

degree of similarity in whole-brain, within-subject connectiv-

ity patterns. We found two regimes in terms of how similarity

changes with scan duration. For short scan durations (approxi-

mately less than 10 min) similarity of whole-brain connectivity

patterns decreases quickly as scan duration shortens. For longer

durations, although similarity increases with scan length, it does

so at a much lower rate.

MATERIALS AND METHODS

DATA ACQUISITION

Twelve healthy volunteers (7 males; age: 30.17 ± 10.22 years)

participated in this study after providing written consent in agree-

ment with a protocol approved by the NIH Protocol Review

Board. Subjects were scanned continuously in a General Electric

3T MRI scanner for 60 min while relaxing with their eyes closed.

A 32-channel receive-only head coil was used. The resting scans

were acquired using a gradient-recalled echo-planar imaging

(EPI) sequence (TR = 1 s, TE = 27 ms, FOV = 24/21 cm, image

matrix = 64 × 64/72 × 72, slice thickness = 4.0 mm, slice spac-

ing = 0.0 mm, flip angle = 60◦, number of slices = 23, number

of acquisitions = 3600, ASSET Acceleration = 2). In addition,

a high-resolution T1 spoiled gradient echo (SPGR) scan was

acquired for alignment and presentation purposes (sagittal pre-

scription, number of slices per slab = 176, slice thickness = 1 mm,

FOV = 256 mm, image matrix = 256 × 256) in each subject.

Respiration and cardiac traces were also collected during the

resting scans using a respiration belt and a pulse oximeter, in all

subjects except one. Both physiological traces were acquired with

a sampling rate of 50 Hz.

In order to achieve a temporal resolution of 1 s, it was neces-

sary to restrict our spatial coverage. In particular, with the current

data, we cannot draw any conclusions regarding connections

involving the cerebellum, temporal poles, or ventral temporal

regions. New technological developments, such as multi-slice

acquisition techniques (Feinberg and Setsompop, 2013), may

soon be able to eliminate this limitation (Smith et al., 2012).

DATA PRE-PROCESSING

Data pre-processing was conducted with the AFNI software pack-

age (Cox, 1996). Pre-processing steps include: discarding of initial

10 volumes to allow for magnetic homogenization; despiking

(with AFNI 3dDespike); physiological noise correction (in all sub-

jects but one) including regressors for the RETROICOR (Glover

et al., 2000), RVT (Birn et al., 2006), and RHR (Chang et al.,

2009) models; slice time correction (AFNI program 3dTshift);

head motion correction (AFNI program 3dvolreg) and transfor-

mation into MNI space (AFNI program @auto_tlrc) in a single

interpolation step; and spatial smoothing (FWHM = 6 mm).

In addition, mean, linear trends, signal from local white matter

(WM), signal from the lateral ventricles (CSF), motion esti-

mates, the first derivative of motion estimates, and a series of

sine and cosine functions to remove all frequencies outside the

range (0.01–0.25 Hz) were regressed out in a single regression

step (AFNI program 3dTproject). This last regression step permits

us to account for potential hardware instabilities and remaining
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physiological noise (ANATICOR; Jo et al., 2010, 2013; Gotts

et al., 2013). During this regression step, time points with motion

greater than 0.4 mm were removed from the data (scrubbing) and

replaced by values obtained via linear interpolation in time. On

average, 1649 degrees of freedom (DOF) remain after the above-

mentioned regression and censoring steps (Table 1 shows motion,

number of interpolated volumes, and remaining DOFs for each

subject).

Spatial transformation matrices to go back and forth between

the original EPI space, T1-anatomical space, and MNI standard

space were also computed for each subject using AFNI programs

3dAllineate and @auto_tlrc. These matrices were subsequently

used for presentation purposes and to bring publicly available

atlases into each subject’s functional data space (see below).

BRAIN PARCELLATION

In order to parcellate the brain into a limited number of spa-

tially contiguous, functionally homogeneous, non-overlapping

regions of interest (ROIs), we used the publicly available tem-

plate of 150 ROIs associated with the Craddock Atlas (Craddock

et al., 2012) (Figure 1A). An ROI-based approach was selected

over a voxel-wise approach to help with interpretation, minimize

the contribution of small errors in alignment to between-subject

comparisons, and ease computational load. Nevertheless, despite

using a functionally-based atlas with relatively small ROIs, some

level of functional inhomogeneity should be expected when com-

bining voxels into a single time-series (Zuo et al., 2013).

For each subject, we first brought this MNI atlas template

into each subject’s EPI space. Subsequently, we removed ROIs (20

ROIs from cerebellum, midbrain, and lower temporal cortex) that

Table 1 | Motion, number of censored time points, and remaining

DOFs after bandpass filtering, regression of nuisance signals, and

censoring in each subject.

Max. absolute Max. relative # Data points Remaining

displacement displacement interpolated DOF

(mm) (mm)

SBJ01 5.07 0.92 13 1694

SBJ02 5.16 1.10 14 1693

SBJ03 4.12 0.65 40 1667

SBJ04 5.73 0.50 2 1705

SBJ05 1.97 0.31 0 1707

SBJ06 1.99 0.30 0 1707

SBJ07 4.52 0.68 2 1705

SBJ08 2.59 0.24 0 1707

SBJ09 2.91 0.47 452 1255

SBJ10 6.62 0.80 82 1625

SBJ11 3.60 0.26 0 1707

SBJ12 3.71 1.05 88 1619

Mean 4.00 0.61 57.75 1,649.25

Participant SBJ09 was excluded from all sliding window analyses due to the

large number of data points that required interpolation due to head movement

according to the criteria set during pre-processing.

did not have at least 10 voxels within the imaged field of view for

all 12 subjects (Figure 1B).

In order to group the remaining 130 non-overlapping ROIs

into functionally relevant networks, we used the functional net-

work taxonomy published by Laird et al. (2011), excluding two

artifactual networks (ICNs 19 and 20 identified as artifactual by

Laird and colleagues) and two networks not covered by our scan-

ning FOV (ICNs 5 and 14). Each ROI was assigned to one of

the 16 remaining networks described by Laird and colleagues

by identifying the network with maximal spatial overlap with

that ROI (Figure 1C). Within each network, ROIs in connectivity

matrices appear sorted according to decreasing degree of overlap

with that network. Table 2 shows detailed information regarding

which Laird et al. (2011) networks were used, the labeling scheme

used in the remainder of this paper, how many ROIs were assigned

to each of these networks, and the color assigned to the nodes of

each network in the result figures.

ROI REPRESENTATIVE TIME SERIES EXTRACTION

For each ROI, the principal singular vector (computed with AFNI

program 3dmaskSVD) across all voxels in the ROI was used as

the representative time series. This resulted in 130 time series

of interest with 3590 time points in each subject. The average

and standard deviation of the Pearson’s correlation between each

ROI’s representative time series and all voxels in the ROI, across

all subjects and all ROIs, was 0.61 ± 0.08.

CONNECTIVITY MATRIX BASED ON WHOLE TIME SERIES: STATIONARY

ANALYSIS

For each subject, we computed an overall correlation matrix

(130 × 130) under the assumption of temporal stationarity, using

all available 3590 time points. In these matrices, connectivity

between two given ROIs is measured in terms of their Pearson’s

correlation (r). These matrices are symmetric, with r = 1 along

the diagonal. All information is therefore contained in the 8385

values that form the upper triangular region. In the remainder of

this manuscript we use the term “connectivity snapshot” to refer

to a vector that contains only these uniquely informative values.

Binarized (connected/not-connected) versions of these con-

nectivity matrices were also obtained using the following criteria:

a cell in the matrix is given a value of 1 (connected) only if the

corresponding correlation value for that cell is statistically signifi-

cant at p < 0.05 corrected for multiple comparisons according to

the Bonferroni criteria, taking into account the number of unique

connections in the matrix (i.e., p < 0.05/8385). Otherwise, the

cell is given a zero (not-connected) in these binary matrices. Even

though the correct DOFs (Table 1) were used when computing

the significance of the correlations prior to the multiple compar-

ison correction, the significance level is approximate due to the

unknown relationship between signal and noise in rsfMRI.

SELECTION OF CONNECTIONS OF INTEREST FOR SLIDING WINDOW

ANALYSIS

For our exploratory analysis of rsfMRI dynamics, we studied

connections that showed significant correlation values in the

stationary analysis for at least seven participants (half of the

sample plus one). This selection step reduced the number of
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FIGURE 1 | (A) Depiction of the 150-ROI Craddock Atlas on top of five sagittal

slices in the MNI stereotaxic space. (B) Depiction of the remaining 130 ROIs

from the atlas considered in this study. ROIs eliminated from the original atlas

correspond mainly to the cerebellum and inferior temporal regions that were

not part of the imaging FOV for all 12 participants. (C) Grouping of the remaining

ROIs according to the Laird et al. (2011) functional network templates.

pairwise connections under study from the original 8385 to 5232

connections (see Figure 3).

WHOLE-BRAIN, WITHIN-SUBJECT CONNECTIVITY MATRIX

SIMILARITY vs. WINDOW DURATION

In order to evaluate how the within-subject similarity of whole-

brain connectivity patterns changes as a function of window

length, we segmented our 60 min of data (minus the first 10 dis-

carded seconds) into temporally non-overlapping windows with

durations ranging from 30 s to 19.5 min in steps of 30 s. The

number of available non-overlapping windows decreases with

increasing window duration. A maximum duration of 19.5 min

was chosen so that at least three different windows were available

for the analysis in each individual.

For each subject and window duration, we first computed con-

nectivity matrices for each non-overlapping window. We then

computed the average correlation between all available matrices

for a given duration and subject. This average number permits us

to describe within-subject similarity between connectivity matri-

ces for a given duration. We finally computed an average value

across all subjects, for each window duration, to obtain an aggre-

gate measure of within-subject similarity for our population of

subjects (Figure 4).

CONNECTION STABILITY ANALYSIS

For each subject, we computed sliding window correlations with

a window length of 60 s and a window step of 60 s (to avoid

overlap). There are two reasons for choosing this 60 s window

duration: (1) to have a sufficiently large number of data points

per window to compute meaningful correlation values; and (2)

because recent studies have shown that functional connectivity is

related to both cognition (Shirer et al., 2012) and electrocortical
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Table 2 | Summary of correspondence between Craddock Atlas ROIs and Laird Network Templates.

Original network ID New network ID Number of ROIs Description Node color

(Laird et al., 2011)

ICN01 EI4 7 Emotion/Interoception network #4 Cyan

ICN02 EI3 10 Emotion/Interoception network #3 Aqua

ICN03 EI2 6 Emotion/Interoception network #2 Light blue

ICN04 EI1 8 Emotion/Interoception network #1 Dark blue

ICN06 MV1 8 Motor/Visuospatial network #1 Dark green

ICN07 MV2 8 Motor/Visuospatial network #2 Light green

ICN08 MV3 5 Motor/Visuospatial network #3 Green

ICN09 MV4 4 Motor/Visuospatial network #4 Olive green

ICN10 VS1 9 Visual network #1 White

ICN11 VS2 5 Visual network #2 Dark yellow

ICN12 VS3 11 Visual network #3 Yellow

ICN13 DMN 12 Default mode network Red

ICN15 FPR 13 Right fronto-parietal network Orange

ICN16 AUD 11 Auditory network Pink

ICN17 SPP 7 Speech production network Gray

ICN18 FPL 6 Left fronto-parietal network Brown

measures (Tagliazucchi et al., 2012) at similar temporal scales.

Nevertheless, to evaluate the extensibility of these results to other

window durations, we also performed the same analysis using

non-overlapping windows of 120 and 180 s durations.

A 20% tapering of the time series was performed prior to com-

putation of the correlation. For 60 s windows, the sliding window

analysis produced for each participant (s) a matrix Cs (connec-

tion, window) with 5032 connections X 59 windows (not 60 due

to the 10 s discarded at the beginning of the scan) that contains

information about the evolution of connectivity strength over

time for all connections under scrutiny (Figure 2A).

Most stable/variable connections

Subsequently, for each row of this matrix, we computed the

coefficient of variation (CVAR) as follows:

CVAR (i,s) = stdev (Cs(i,:))/mean (Cs(i,:)) (1)

where s is a given subject and i is a given connection (Figure 2A).

In order to compute this summary metric we transformed cor-

relation values into Fisher’s Z-scores, computed the summary

statistics, and then transformed these back from Fisher’s Z-scores

into correlation values.

In addition, the median and standard deviation of CVAR

values across all subjects and connections was computed, and

connections whose CVAR was outside one standard deviation

of this median were removed from further analyses (Figure 2B).

This threshold condition eliminated 9 ± 5 (mean ± standard

deviation) connections per subject. After removal of outlier con-

nections, the Cs matrices were sorted according to their CVAR

values (Figure 2C). We then classified all remaining connections

into one of three groups (Figure 2D). First, we divided the pool

of connections into those with positive or negative CVAR. Then,

within the pool of connections with positive CVAR, we further

subdivided these into two subgroups: 50% of the positive CVAR

connections with the highest CVAR values went into one sub-

group (most variable), and the remaining half went into the other

subgroup (most stable). In summary, this process forces every

non-outlier connection to be part of one these three groups:

• Negative Connections (blue): connections with negative CVAR,

which is the result of a negative average Pearson’s correlation

across time.

• Most Stable Positive Connections (green): connections in the

lowest half of positive CVAR values.

• Most Variable Positive Connections (red): connections in the

highest half of positive CVAR values.

To aggregate results across subjects while giving maximum atten-

tion to connections with a similar pattern of correlation across

participants, we generated a new group-level classification matrix

in which a given connection was marked as being of one of the

three types mentioned above, if and only if, that connection was

classified in the same manner in all participants (Figure 2E—

Top). In addition, to examine the effect of this threshold, matrices

were also generated showing the number of subjects in which con-

nections were classified in each group (Figure 7). To evaluate the

presence of patterns of interest in the spatial distribution of these

three types of connections, we used AFNI program SUMA (Saad

and Reynolds, 2012) to visualize each of these three groups in a

3D brain space (Figure 2E—Bottom).

Permutation analysis for group-level connection identification

In order to determine the probability that results of the connec-

tion grouping procedure described above would occur due to

chance, we conducted a permutation test in which the labels of

all connections in each subject were randomly shuffled. Using the

same group sizes for each subject from the real data, the connec-

tions for each group were then selected within that subject. The
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FIGURE 2 | Sliding-Window methods. (A) Example running window

connectivity matrix for one representative subject on the left, and its

associated vector of CVAR values on the right. The thresholds used to

discard connections on the basis of excessive CVAR are depicted as red

dashed lines. Eight connections that were discarded for this particular

subject are marked as red dots. (B) Sliding window connectivity matrix

and CVAR vector after removal of outlier connections. Now there are

5023 connections, instead of 5032, for this representative subject. (C)

Sliding window connectivity matrix and CVAR vector after sorting

connections according to their CVAR. Connections with negative CVAR

are at the bottom of the graph, while connections with positive CVAR are

on the top. The further a connection is from the horizontal axis where

CVAR is the closest to zero (black dashed line), the more variable the

strength of that connection across time. (D) Classification of connections

in three possible groups for three other representative subjects, shown

both as sorted sliding window connectivity matrices (left) and in a single

matrix form (right) where the color of the cell for a connection denotes

its group assignment according to our criteria. The three groups are:

connections with negative CVAR (blue); lowest positive CVAR/most stable

connections (green); largest positive CVAR/least stable connections (red).

(E) Aggregated results across subjects. We do this by only selecting

connections classified the same way across all 11 participants that were

included in the sliding window analysis. Connections of the three types

are shown both in matrix view (top) and in brain space (bottom).

number of connections classified in the same group across all sub-

jects was then counted. This procedure was repeated 5000 times to

obtain a distribution of the number of connections that would be

classified in the same group in all subjects based only on chance.

RESULTS

STATIONARY ANALYSES RESULTS

Figure 3A shows the static connectivity matrices for four rep-

resentative subjects computed using the complete time series

(3590 time points). Although there is some degree of simi-

larity in the overall structure of the matrices across subjects

(e.g., within-network connections are stronger than between-

network connections in all subjects; connectivity between MV2

and VS3 is also stronger in many subjects), there are clear

differences in terms of the strength of many individual con-

nections. From a quantitative point of view, the average cor-

relation between the different subjects’ connectivity snapshots

(upper top triangle of the matrix excluding the diagonal) is

r = 0.53 ± 0.07.

Figure 3B shows binarized (connected/unconnected) versions

of the connectivity matrices presented in Figure 3A. The average

and standard deviation number of statistically significant con-

nections for the current sample was 5198 ± 747 (out of 8385

possible connections). Figure 3C shows another matrix view of

the data where the value in each cell is the number of subjects for

which that particular connection is statistically significant under

the criteria described above. Finally, Figure 3D shows a bina-

rized version of this aggregate view (Figure 3C), by marking with
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FIGURE 3 | (A) Weighted connectivity matrices in terms of Pearson’s

correlation (r ) for four representative subjects when the complete time

series (3950 data points) enter the analysis. (B) Binary connectivity

matrices for the same four representative subjects after statistical

thresholding. (C) Matrix showing the number of subjects for which a

given connection was marked as statistically significant. (D) Matrix

showing connections that were marked as statistically significant in at

least seven subjects.

gray color only the connections that were classified as statistically

significant in at least seven (more than half of the study popula-

tion) subjects. There are a total of 5032 connections that pass this

group-level threshold. All remaining results, with the exception of

the whole-brain within-subject similarity vs. scan duration analy-

sis (section Similarity of Whole-Brain Connectivity as a Function

of Window Duration), were conducted using only this subset of

5032 connections.

SIMILARITY OF WHOLE-BRAIN CONNECTIVITY AS A FUNCTION OF

WINDOW DURATION

Figure 4 shows how within-subject similarity of connectivity pat-

terns across the whole brain decreases as a function of window

duration. For durations larger than 10 min, the rate of decrease

is relatively slow. It is for durations shorter than approximately

6 min that within-subject similarity decreases at a faster rate. This

behavior was consistent across subjects.
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FIGURE 4 | Similarity of whole-brain connectivity vs. window duration.

Data for individual subjects are shown as red dashed lines. Average across all

subjects is shown in black. The similarity of connectivity matrices clearly

decreases as a function of window duration. The decreasing rate is

particularly accentuated for durations below 10 min. As window duration

decreases, a larger number of windows enter the analysis for a given

duration. The number of windows contributing to each duration in each

subject is provided at the bottom of the graph. All window durations within

the same shaded region (white or gray) have the same number of windows

contributing to the computation of similarity.

HISTOGRAMS OF SLIDING-WINDOW CORRELATIONS

Figure 5A shows histograms of correlation values across time (bin

width = 0.25) for all connections in one representative subject

(SBJ01) as black traces. Visual inspection reveals no clear bound-

aries between different connection types, but a continuum of

behavior in which connections span a wide range of mean and

standard deviation values. Peaks can be observed at all centers

of histogram bins. This is not the result of individual histograms

having many peaks (temporal evolution of connectivity strength

following multimodal distributions), but due to the overlap of

approximately 5000 histograms with a wide range of means and

standard deviations. To show how individual histograms do not

present such sharp profiles, but are mostly uni-modal in shape, a

subset of 11 randomly selected histograms are highlighted with

dashed colored lines in Figure 5A. Figure 5B shows the same

histograms as Figure 5A, but this time histograms have been col-

ored according to their membership to one of the three groups

defined in terms of CVAR (blue = negative CVAR; red = most

variable positive CVAR; green = most stable positive CVAR).

Despite the lack of clear boundaries between histograms, the clas-

sification criteria based on the CVAR were able to generate three

compact groups of connections in all subjects (Figure 5C shows

a second representative subject). An additional observation is

that most stable positive connections, as defined with the CVAR

criteria, are connections with high mean connection strength

across time (green histograms peak primarily at the right of the

graphs).

MOST VARIABLE POSITIVE CONNECTIONS

Figures 6A,B show the 23 connections classified as most vari-

able in all participants for a window duration of 60 s. Table 3

summarizes the distribution of such connections across different

networks. All 23 connections correspond to connections between

ROIs from different networks (Table 3). Primarily, most variable

connections correspond to non-symmetric, inter-hemispheric

connections between occipital (visual networks) and frontal

regions (fronto-parietal networks). A similar general pattern

was observed for window durations of 2 (Figure 6C) and 3

(Figure 6D) min. The total number of connections in this pool

was 13 for 2 min windows, and 14 for 3 min windows.

In addition, Figure 7A shows a non-thresholded version of

Figure 6B, where the color of each connection represents the

number of subjects for which that connection was classified as

most variable. Connections marked as most variable for seven

or more subjects are colored with different shades of red. These

connections still correspond primarily to inter-network connec-

tions. Moreover, they tend to correspond primarily to connec-

tions between occipital (visual networks) and fronto-parietal

networks, as well as connections between nodes of EI3 and all

other networks.

MOST STABLE POSITIVE CONNECTIONS

Figures 8A,B show the 364 connections classified as most stable

in all participants for a window duration of 60 s. Table 4 sum-

marizes the distribution of these connections within and across
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FIGURE 5 | (A) Distributions of correlation values across time for all the

connections in a representative subject are depicted in black. To highlight the

mostly uni-modal shape of individual histograms, 11 randomly selected

histograms are highlighted using dashed colored lines. (B) Same histograms

as in (A), but this time each histogram is colored according to the

membership of each connection to one of three groups: blue = negative

CVAR connection; red = most variable positive CVAR connection; green =

most stable positive CVAR connection. Grouping of connections show a

compact profile with all connections from the same group clustering

together. (C) Same as (B) for a second representative subject.

different networks. Roughly 40% of the connections, 148, cor-

respond to within-network connections and the remaining 216

to across-network connections. A large percentage of stable pos-

itive connections are symmetric, inter-hemispheric connections.

This pattern becomes more apparent if we restrict our analysis

only to connections in the bottom 25% and 12.5% of positive

CVAR values (Figure 9). When window duration was increased

to 2 (Figure 8C) and 3 (Figure 8D) min, a similar spatial pattern

arises. The total number of positive stable connections was 344

for 2 min windows, and 334 for 3 min windows.

In addition, Figure 7B shows a non-thresholded version

of Figure 8B, where connections classified as most stable

for seven or more subjects appear with different shades of

green. Most stable connections under these less stringent con-

ditions correspond primarily to within-network connections,

although several clusters of most stable connections can be

observed between the AUD and SPP networks, between the four

MV networks, and between MV3-4 and visual and auditory

regions.

Figure 10 shows a summary view of the matrix in Figure 8B.

For each square, we show the percentage of connections that fall

within the most stable positive pool. Therefore, squares in the

diagonal show the percentage of within-network connections that

were classified as most stable. For example, MV3 and VS2 are

the two most cohesive networks, with 100 and 70% of all pos-

sible within-network connections being consistently stable across

time. Squares outside the diagonal show the percentage of all pos-

sible connections between two given networks that fall within the

pool of most stable connections. We can see how MV1, MV3, and

MV4 (red dashed outlines) have a substantial number of stable

communication pathways among each other. The same is true for

the SPP and the AUD networks (green dashed outlines). All per-

centages in this figure have been corrected to take into account

only the 5032 connections that passed our stationary significant

criteria.

NEGATIVE CONNECTIONS

Figures 11A,B show the 32 connections with negative CVAR in all

participants for a window duration of 60 s. Table 5 summarizes

the distribution of such connections across different networks.

All negative connections correspond to across-network connec-

tions. In particular, 26 connections involve two regions from the

Emotion/Interoception network #2 (EI2). This pattern of nega-

tive CVAR connections primarily involving regions from the EI2

network is also very apparent in Figure 7C, where connections

marked as negative CVAR connections in seven or more subjects

appear marked in different shades of blue. When window dura-

tion was increased to 2 (Figure 11C) and 3 (Figure 11D) min a

similar connectivity map was also produced. The total number of

negative connections was 32 for 2 min windows, and 30 for 3 min

windows.

DISCUSSION

Using 60 min resting scans with a temporal resolution of 1 s

and a sliding window analysis approach, we divided functional

connections in our data into three groups based on similarity

of patterns of temporal variability across our study population.

Sorting and grouping of connections was done according to the

coefficient of variance (CVAR) of connectivity strength across

time. The CVAR is a common measure of spread for Gaussian-

like distributions that accounts for differences in the mean and

has a simple interpretation (i.e., the larger the CVAR, the big-

ger the spread of the distribution of values around the mean).

Connectivity strength histograms (Figure 5) showed distribu-

tions follow mostly uni-modal, bell-like shapes with different

levels of spread, suggesting that the use of CVAR is a valid first

approximation to estimate variability for the temporal evolution

of connection strength. To aggregate results at the group level, we

decided to focus our attention only on connections classified in

the same manner across all participants. A permutation analy-

sis (5000 repetitions) revealed that the number of connections
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FIGURE 6 | (A) Most variable positive connections for window

length = 60 s. Connections classified as most variable in all 11

participants are shown over 3D renderings of a brain surface. (B)

The same information shown as a 2D matrix. Colors corresponding

to networks on the axes of the matrix are used to color nodes

of that network in brain space. (C) Most variable connections for

window length = 120 s. (D) Most variable connections with window

length = 180 s.

Table 3 | Absolute (#) and relative (%) number of connections with positive high CVAR (most variable) for each network.

Most variable Network ID

DMN FPR FPL EI1 EI2 EI3 EI4 MV1 MV2 MV3 MV4 VS1 VS2 VS3 AUD SPP

Within
#

0
%

Across
# 4 9 1 1 1 3 3 2 0 3 0 5 3 7 1 3

% 0.47 1.09 0.21 0.16 0.37 0.49 0.68 0.31 0.00 0.79 0.00 0.77 1.06 0.90 0.12 0.56

Connection counts are divided in two groups: connections between two ROIs that are part of the same network (within) and connections between ROIs that are

part of different networks (across).

randomly found in any of the three groups, when following

the above-mentioned criteria to combine results across subjects,

is less than four connections. Finally, to evaluate the role that

regional differences in signal-to-noise ratios may have played in

our study, we also computed average temporal signal-to-noise

ratio (TSNR) across subjects for all ROIs entering the analysis.

We found no clear relationship between ROI TSNR values and

participation in connections of a given type (most variable, most

stable, or negative CVAR). These results suggest that the simple

criteria used in this study provide reasonable descriptions of the

patterns of temporal variability in resting state connectivity, and

that these results are reproducible across subjects and capture

true structure present in the data (i.e., not found by purely by

chance).
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FIGURE 7 | Number of subjects for which a given connection was

classified as most variable (A), most stable (B), and with negative CVAR

(C). Connections that were consistently classified in the same group for all 11

subjects are marked with a black outline. These are the same connections

shown in Figure 6 (most variable), Figure 8 (most stable), and Figure 11

(negative CVAR). Connections that were classified in the same group for

seven or more subjects appear in different shades of red (most variable),

green (most stable), or blue (negative CVAR) in the corresponding panel.

FIGURE 8 | (A) Most stable positive connections for window length = 60 s.

Connections classified as most stable in all 11 participants are shown over 3D

renderings of a brain surface. (B) The same information shown as a 2D matrix.

Colors corresponding to networks on the axes of the matrix are used to color

nodes of that network in brain space. (C) Most stable connections for window

length = 120 s. (D) Most stable connections with window length = 180 s.
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Table 4 | Absolute (#) and relative (%) number of connections with positive low CVAR (most stable) for each network.

Most stable Network ID

DMN FPR FPL EI1 EI2 EI3 EI4 MV1 MV2 MV3 MV4 VS1 VS2 VS3 AUD SPP

Within
# 23 9 6 9 2 8 3 7 5 5 6 4 7 26 25 3

% 44.23 12.50 40.00 37.50 28.57 22.86 15.00 26.92 17.86 50.00 100.00 11.76 70.00 47.27 50.00 14.29

Across
# 44 15 18 34 3 20 14 38 22 40 25 25 4 28 60 42

% 5.15 1.82 3.79 5.48 1.11 3.24 3.19 5.94 3.53 10.58 8.09 3.86 1.41 3.60 7.13 7.87

Connection counts are divided in two groups: connections between two ROIs in the network of interest (within) and connections between one ROI in the network

of interest and one ROI not in the network of interest (across).

FIGURE 9 | (A) Most stable positive connections when only

connections within the lowest 25% of CVAR values are selected in

each subject. (B) Most stable positive connections when only

connections within the lowest 12.5% of CVAR values are selected in

each subject. As the selection criterion becomes more stringent, a

smaller number of connections make it to the group level maps

presented here. When fewer connections are present, the symmetric

inter-hemispheric pattern becomes clearer.

The connections that reliably fall in each category have very

distinct spatial patterns when plotted in brain space. In partic-

ular, most temporally stable connections (low positive CVAR)

correspond mainly to symmetric, inter-hemispheric connec-

tions both within- and across-networks; most temporally vari-

able connections (high positive CVAR) correspond mainly to

non-symmetric, inter-hemispheric, across-network connections

between occipital and frontal regions; and connections with nega-

tive CVAR correspond mainly to connections between two medial

ventral subcortical regions and bilateral fronto-parietal regions.

These general patterns were observed for non-overlapping win-

dow durations ranging from 1 to 3 min. We discuss the findings

related to each of these categories in detail below.

MOST STABLE POSITIVE CONNECTIONS

Most stable positive connections is the largest of the three connec-

tion pools, with approximately one order of magnitude more con-

nections than the other two groups (364 most stable connections

vs. 23 and 32 in the other two groups). Moreover, most stable

connections are not only more consistent across subjects and fluc-

tuate less, but fluctuate around higher correlation values than

least stable connections (green histograms cluster on the right

hand side, which corresponds to stronger positive correlation

values; see Figures 5B,C). These two observations suggest that

while being classified as most variable or negative may depend

to a larger extent on subject-dependent factors (e.g., on-going

cognition, awareness levels, etc.), most stable connections are so

because of an underlying source largely independent of these fac-

tors. One such source could be anatomical connectivity. Several

studies have shown a good correspondence between BOLD rest-

ing state connectivity patterns and underlying direct anatomical

connections as measured in Diffusion Tensor Imaging (DTI)

(Greicius et al., 2009; Van Den Heuvel et al., 2009) and in primate

electrophysiology and tracer studies (Margulies et al., 2009; Wang

et al., 2013b). Additionally, computational modeling studies have

shown that structural connections provide robust predictions of
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FIGURE 10 | Percentage of within-network (diagonal) and across-network (non-diagonal) most stable positive connections. Two groups of networks with

high percentages of across-network connections being temporally stable are highlighted with red (MV1, MV2, and MV3) and green (AUD, SPP) dashed lines.

functional connectivity, although the reverse is not always true

(Honey et al., 2009; Deco et al., 2011). Relating to the current

study, Honey et al. (2009) observed that ROI pairs with direct

anatomical connectivity—as measured by diffusion spectrum

imaging tractography—had more stable functional connectivity

both within and across rsfMRI sessions. In agreement with their

findings, many of the most stable connections identified here

are symmetric, inter-hemispheric connections between left/right

homologous regions that are known to have direct connections

via the corpus callosum. However, it should also be noted that

stable functional connectivity patterns can also be supported

by indirect anatomical connections as well (Tyszka et al., 2011;

O’Reilly et al., 2013).

Approximately 40% of the most stable connections correspond

to those between two nodes of the same network (within-network

connections). Still, that accounts for only 32% of all within-

network connections, which confirms prior observations suggest-

ing that resting-state networks are not as temporally stable in their

configuration as originally assumed (Chang and Glover, 2010;

Handwerker et al., 2012; Smith et al., 2012; Tagliazucchi et al.,

2012; Hutchison et al., 2013b). Our data also shows that levels of

temporal cohesion vary substantially across networks. The four

most temporally cohesive networks were MV4 (100% of its 6

within-network connections fall in the most stable group), VS2

(70%), MV3 (50%), and AUD (50%) (Figure 10 and Table 4).

The MV4 network, which primarily covers bilateral dorsal pari-

etal cortex (BA5), has been shown to have a preference for motor

execution and learning (Laird et al., 2011). The MV3 network,

which sits laterally to MV4 and covers mainly primary and sup-

plementary motor cortex for upper extremities was found to be

strongly associated with tasks involving hand movement (Laird

et al., 2011). Additionally, networks VS2 (which covers posterior

and inferior portions of occipital cortex) and AUD (which cov-

ers the transverse temporal gyri) correspond to primary visual

and auditory cortices. Taken together, our results suggest that

primary sensory-motor networks are among the most tempo-

rally stable with respect to their internal connectivity patterns.

On the other end of the spectrum, VS1 (11.76%), FPR (12.50%),

SPP (14.20%), and EI4 (15%) were the networks with the lowest

percentage of within-network connections that were consistently

stable across all subjects. These networks span a wide range

of regions involved in complex higher-order functions such as

visual identification of complex visual stimuli (VS1), attention

control and reasoning (FPR), speech production (SPP), and emo-

tion discrimination (EI4). It may be that performance of these

more complex tasks relies on a broader and more dynamic set of

connectivity configurations, and that these tasks and their con-

figurations occur less often during rest. In agreement with these
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FIGURE 11 | (A) Negative CVAR connections for window length =

60 s. Connections with negative CVAR in all 11 participants are

shown over 3D renderings of a brain surface. (B) The same

information shown as a 2D matrix. Colors corresponding to networks

on the axes of the matrix are used to color nodes of that

network in brain space. (C) Negative CVAR connections for window

length = 120 s. (D) Negative CVAR connections with window

length = 180 s.

Table 5 | Absolute (#) and relative (%) number of connections with negative CVAR for each network.

Negative Network ID

DMN FPR FPL EI1 EI2 EI3 EI4 MV1 MV2 MV3 MV4 VS1 VS2 VS3 AUD SPP

Within
#

0
%

Across
# 2 11 4 1 26 1 2 5 1 0 1 0 0 0 3 7

% 0.23 1.34 0.84 0.16 9.63 0.16 0.46 0.78 0.16 0.00 0.32 0.00 0.00 0.00 0.36 1.31

Connection counts are divided in two groups: connections between two ROIs in the network of interest (within) and connections between one ROI in the network

of interest and one ROI not in the network of interest (across).

findings, Mueller et al. (2013) found that inter-subject variability

in stationary patterns of global functional connectivity was lowest

in unimodal cortical areas similar to the sensory-motor systems

found to be most stable here.

Regarding most stable between-network connections, we

found two sets of networks to be the most stably intercon-

nected. The first group consists of networks MV1, MV3, and

MV4 (red outlines in Figure 10). The second group consists of

SPP and AUD (green outlines in Figure 10). These groups of

networks were found to be tightly connected in terms of their

functional role when matched against thousands of activity pat-

terns from task-based studies included in the BrainMap database

(Fox et al., 2005). MV1, MV3, and MV4 were found to consis-

tently participate in a variety of experiments related to motor and
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visuo-spatial integration and coordination (Laird et al., 2011).

Moreover, MV3 and MV4 (the two networks with the largest per-

centage of inter-network stable connections) failed to split into

two separate entities in a prior similar study that used a smaller

subsample of the BrainMap database (Smith et al., 2009). In the

case of the SPP and AUD networks, their functional relation-

ship was not as strong, but both networks heavily contribute to

language-related tasks. These reported agreements between net-

work groupings based on functionality (as measured by paradigm

and behavioral domain) and levels of stable inter-connectivity

suggest that networks that share a common functional space (e.g.,

motor-visual integration, language) also share stable communi-

cation pathways, despite appearing as separate entities in resting

state analyses that do not focus on the dynamic aspects of con-

nectivity. Nonetheless, it is worth noticing that the other two

multi-network functional spaces defined by Laird et al. (2011),

namely emotion/interoception and visual, did not show such a

clear pattern of stable interconnectivity between networks.

MOST VARIABLE POSITIVE CONNECTIONS

Most variable positive connections correspond primarily to inter-

network, inter-hemispheric connections involving nodes from

the fronto-parietal networks (FPR: 9 connections; FPL: 1 con-

nection) and the visual networks (VS3: 7 connections; VS2: 3

connections; VS1: 5 connections). It has been previously shown

that the fronto-parietal network is composed of flexible hub

regions that can reconfigure their functional connectivity rapidly

in order to adapt and participate in a great variety of exter-

nally driven tasks (Cole et al., 2013). Our results suggest that

such flexibility can also be observed during undirected cognition

while resting, and not solely in situations requiring highly adap-

tive task control. Moreover, a recent study showed that subjects

engage and transition between many different mental activities

while resting in the scanner (Delamillieure et al., 2010). The three

most common mental activities reported by this pool of 180

subjects were visual imagery, inner speech, and somatosensory

awareness. All but one across-network connections involving the

fronto-parietal network also involve nodes from the visual and

SPP networks, which are directly related to these mental activities

commonly reported by subjects after rest scans. Lastly, additional

connections belonging to this category outside the fronto-parietal

network correspond primarily to connections between occipital

regions and nodes from the DMN, motor/visuospatial networks,

and the emotion/interoception networks (as described by Laird

et al.). Some of these areas, in particular DMN and hetero-

modal occipital regions, overlap with areas described as part of

the “Zone of Instability” (regions with more temporally variable

connections between them) by Allen et al. (2014).

Although high temporal variability makes these connections

a difficult target for study, the fact that such high volatility was

consistent across all subjects in our pool suggests that these con-

nections may constitute good targets for some technical and

clinical applications. First, the pool of 23 connections identi-

fied as most variable across all subjects may constitute a good

set of “worse-case scenario” targets for reproducibility studies

and/or optimization of parameters such as scan duration. They

could help obtain conservative bound values for such parameters.

Moreover, the ability of certain regions to flexibly reconfigure

their connectivity patterns has been shown to be directly related

to the capacity to learn new motor skills (Bassett et al., 2011).

Finally, Mueller et al. (2013) recently showed that areas with

the largest levels of inter-subject variability in stationary global

connectivity patterns correspond primarily to heteromodal asso-

ciation cortex in lateral pre-frontal cortex, the temporal-parietal

junction, fronto-parietal control regions, and attention network

areas (as defined by Yeo et al., 2011). They also reported a

large degree of overlap between these regions of high functional

connectivity variability and a brain map obtained from a meta-

analysis of areas that predict individual differences in several

cognitive and behavioral domains (e.g., personality traits, intel-

ligence, memory performance, etc.) Many of the connections

classified as most variable in our study are between ROIs located

in the areas and networks of high variability reported by Mueller

and colleagues. This suggests that short-term temporal variabil-

ity in connectivity patterns (as observed here) may be partially

responsible for the inter-subject differences in functional connec-

tivity observed at longer temporal scales, which may in turn be

related to individual differences in cognition and behavior. Given

the consistently high temporal instability of these connections

across all our healthy subjects, it would be interesting to study

if temporal variability is somehow impaired or increased in pop-

ulations with some level of cognitive decline, and in that manner

evaluate the potential diagnostic power of the dynamic behavior

of rsfMRI connectivity.

NEGATIVE CONNECTIONS

Of the 32 connections with negative CVAR in all participants,

26 correspond to connections involving two medial ROIs that

are part of the EI2 network. The first ROI (with 21 negative

connections) spans a large range of small anatomical structures,

including the mammillary bodies, the hypothalamus, medial por-

tions of the caudate, the fornix, and the third ventricle. The

second ROI (with 5 negative connections) is located just poste-

rior to the first and covers large portions of the bilateral thalamus.

Correlation maps between each ROI’s representative time series

and all ROI voxels (Figure 12) show how the highest contribut-

ing voxels to the representative time series fall primarily within or

around the third ventricle. This is particularly true for the ROI

with 21 negative CVAR connections. This pattern suggests that

negative correlations between these ROIs and other brain regions

are not the result of anti-correlation between GM structures

within the ROIs and other brain regions, but a result of the regres-

sion of CSF signals during pre-processing (Saad et al., 2012). In

this study, the CSF signals may have been contaminated by sig-

nals from other neighboring tissues due to the relatively large

voxel size used in this study. In fact, when the removal of CSF sig-

nal is omitted from the analysis pipeline, only three connections

with negative CVAR remain, thereby supporting the potential

artifactual origin of the average negative behavior observed for

these connections. Conversely, the general patterns described for

the other two connection types (most stable and most variable)

remains consistent when CSF is not removed during the analysis.

It is also worth noting that while omitting the step concern-

ing the removal of CSF signals led to the disappearance of the
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FIGURE 12 | Intra-ROI correlation maps to the ROI representative time-series for 2 ROIs of interest. Voxels with the highest correlation to the

representative time series (red color) are those in and around the third ventricle.

majority of connections with an average negative correlation (and

therefore negative CVAR), we nevertheless observed many con-

nections alternating between positive and negative connectivity

for short periods, regardless of CSF signal removal. This is in

agreement with prior observations of this phenomenon in studies

on functional connectivity dynamics (Chang and Glover, 2010;

Hutchison et al., 2013b).

STABILITY OF WITHIN-SUBJECT CONNECTIVITY PATTERNS vs.

WINDOW DURATION

In addition to classifying connections in the three above-

mentioned groups, we also evaluated how window length (used

here as a proxy for scan duration) affects the within-subject simi-

larity of whole-brain connectivity patterns. We found two general

regimes. For durations below approximately 6 min, similarity

of within-subject whole-brain connectivity matrices decreases

quickly as window length decreases. Conversely, for durations

above 10 min, the rate at which similarity increases with scan

duration is much slower. This result suggests that if stability is a

factor of interest (e.g., in longitudinal studies), using longer scans

is desirable, particularly above approximately 10 min. Most previ-

ous studies of rsfMRI reproducibility have used shorter scans and

focused on a handful of connections when evaluating the tem-

poral stability of rsfMRI as a function of scan duration. Van Dijk

et al. (2010) concluded that stable measures of connectivity can be

obtained with scans as short as 5 min. This conclusion was based

on how scan duration affected average within- and between-

network correlations for only three networks (default mode,

dorsal attention, and a reference network consisting of auditory,

motor, and visual regions). Nevertheless, Birn et al. (2013) more

recently concluded that increasing scan length from 5 to 13 min

greatly improved reproducibility. In this case, the authors stud-

ied all potential connections between 17 different ROIs. Using a

completely different approach, Anderson et al. (2011) found that

obtaining functional connectivity “fingerprints” that uniquely

identified each participant required a minimum of approximately

15 min of data. Despite differences in scanning and analytical

procedures, our results are in better agreement with those of

Anderson et al. (2011) and Birn et al. (2013), which are based

on larger samples of connections. This suggests that a minimum

of approximately 10 min is desirable for good reproducibility, and

that reproducibility keeps increasing at a lower rate for yet longer

scan durations. Collectively, these results also highlight how sug-

gested scan duration will depend on the target networks under

analysis.

LIMITATIONS OF THE STUDY

In this study we did not record any measure of vigilance (e.g.,

eye tracking system, concurrent EEG recordings). Given the dura-

tion of the scans and that subjects were instructed to keep their

eyes closed, it is very likely that our subjects went through some

periods of sleep or decreased vigilance during the 60 min scans,

despite being instructed to stay awake. Changes in vigilance or

sleep are known to affect connectivity patterns measured with

fMRI (Horovitz et al., 2009; Tagliazucchi et al., 2012). To par-

tially evaluate the effect of this potential confound, we performed

the analysis again using the first and last halves of the time series

separately, under the assumption that periods of drowsiness will

become more frequent as scanning progresses. When the data

was split in this manner, the spatial patterns of connectivity per

connection category and the bulk differences in number of con-

nections per category remain very similar to those reported for

the whole-run analysis (see Supplementary Figure 1). This sug-

gests that although the classification of specific connections may

be affected by this factor, the overall patterns discussed above

remain present. Nevertheless, a better-controlled experiment with

information about when these changes in vigilance occur may

help better elucidate the origin of the patterns observed here. Also,

restricting the analysis to periods of equal vigilance levels may

help increase the number of patterns found to be common across

subjects.

Another important factor to consider is how ROI and net-

work templates used during the analysis affect interpretation

of the data. We used a functionally-based atlas for the pur-

pose of aggregating voxels into functionally homogenous regions.

Functionally-based atlases have been proven to outperform
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anatomically-based atlases at reproducing functional connectiv-

ity patterns present at the voxel level (Craddock et al., 2012)

and when attempting to decode cognitive states based on mea-

sures of connectivity (Shirer et al., 2012). In particular, the 150

ROI atlas was selected because it provided a good compromise

between ROI size (sufficient functional homogeneity), computa-

tional tractability, and interpretability of the results. Using more

fine-grained ROIs may allow detection of additional patterns of

interest, and additional studies should be conducted to evaluate

the robustness of the results presented here against the use of

different parcellation schemes (Yeo et al., 2011; Shirer et al., 2012).

In a similar manner, the Laird et al. (2011) ICN templates were

chosen to aid with interpretation given their behavioral corre-

lates. Our discussion regarding the temporal stability of within-

and across-network communication pathways heavily relies on

the assignment of ROIs to these networks. Differences in network

definition, and subsequent distribution of ROIs across them, may

affect the conclusions. As of today, the fMRI community still

debates which is the most informative decomposition level, or

levels, to study resting state connectivity, as the configuration of

networks heavily depends on this parameter (Abou-Elseoud et al.,

2010). Moreover, there is an avid debate regarding the actual con-

figuration of the well-studied default mode network (Buckner

et al., 2008; Liu and Duyn, 2013). Comparative analyses between

measures of temporal stability, such as the ones presented here,

and network definitions obtained at different decomposition lev-

els may help determine the most appropriate levels of brain

parcellation.

CONCLUSIONS

We used a sliding window analysis to attempt a basic characteriza-

tion of BOLD resting state connectivity dynamics. We found three

well-differentiated sets of connections, whose temporal variability

patterns were reproducible across all participants and have dis-

tinct spatial patterns. First, most stable connections were found

to correspond primarily to symmetric, inter-hemispheric connec-

tions both within and across networks. We found that primary

sensory-motor networks seem to be more temporally stable in

their connectivity patterns than those more closely related to

higher order cognitive processes. Second, most variable connec-

tions were found to correspond primarily to non-symmetric,

inter-hemispheric, across-network connections between occipi-

tal and frontal regions. The number of connections consistently

among the most variable group across all subjects was much lower

than the number of connections among the most stable, suggest-

ing subject-dependent, ongoing cognitive variables have a strong

effect on the configuration of flexible connections in the brain.

Finally, a small set of connections was found to have negative aver-

age connectivity across time, though a large percentage of these

were identified as potential artifacts. All these general patterns

were present for window lengths ranging from 1 to 3 min.

We also used the current dataset to evaluate how whole-brain,

within-subject similarity of connectivity patterns varies as a func-

tion of window duration. This applies to studies where the focus

is not on the dynamic behavior of connections, but on overall

stable patterns that arise when full scans enter the analysis. Our

results suggest that in order to maximize similarity of overall

whole-brain connectivity, rest scans should last as long as pos-

sible, with clear stability benefits for 10 min rather than 5 min

scans.
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