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Abstract We compare multi-ice core data with �18Omodel output for the early last interglacial Antarctic

sea ice minimum. The spatial pattern of �18O across Antarctica is sensitive to the spatial pattern of sea ice

retreat. Local sea ice retreat increases the proportion of winter precipitation, depleting �18O at ice core sites.

However, retreat also enriches �18O because of the reduced source-to-site distance for atmospheric vapor.

The joint overall effect is for �18O to increase as sea ice is reduced. Our data-model comparison indicates a

winter sea ice retreat of 67, 59, and 43% relative to preindustrial in the Atlantic, Indian, and Pacific sectors

of the Southern Ocean. A compilation of Southern Ocean sea ice proxy data provides weak support for this

reconstruction. However, most published marine core sites are located too far north of the 128,000 years B.P.

sea ice edge, preventing independent corroboration for this sea ice reconstruction.

Plain Language Summary The Antarctic isotope and temperature maximum, which occurred

approximately 128,000 years before present (B.P.) during the warmer than present last interglacial period,

is associated with a major retreat of Antarctic sea ice. Understanding the details of this major sea ice retreat

is crucial in order to understand the sensitivity of the Southern Hemisphere sea ice system and to evaluate

the performance of climate model simulations in response to future warming. This work uses a multi-ice and

ocean core data-model evaluation to assess the magnitude and spatial pattern of this sea ice retreat. Our

results suggest that sea ice retreat was greatest in the Atlantic and Indian sectors of the Southern Ocean

and less in the Pacific sector. These results may have had serious implications for the stability of marine

terminating glaciers around the Antarctic Ice Sheet and their contribution to the last interglacial sea level

rise. These results also support a hypothesized slowdown in northward ocean heat transport during the

early last interglacial.

1. Introduction

Sea ice is an important amplifier in the climate system, affecting the surface energy budget by reflecting

incoming solar radiation and regulating the exchange of heat and CO2 between the atmosphere and ocean.

Compared with the Northern Hemisphere, there is lower confidence in predictions of Southern Hemisphere

sea ice change; but predictions of environmental and climate change across the Southern Hemisphere are

dependenton sea iceparameters (Intergovernmental Panel onClimateChange (IPCC), 2013).Ourunderstand-

ing of the long-term (i.e., beyond the satellite era) interplay between sea ice and the climate system can be

improved by examining how sea ice responded during a range of past climates (de Vernal et al., 2013; Goosse

et al., 2013; Roche et al., 2012).

During the last interglacial (LIG; 130,000 to 115,000 years ago), polar (Capron et al., 2014; Jouzel et al.,

2007; Masson-Delmotte et al., 2011) and perhaps global (Hoffman et al., 2017) temperatures were warmer

than today. The LIG thus allows investigation of the sea ice response to warmer than present conditions.

Additionally, compared to prior warm intervals, the amount of paleoclimate data from the LIG period is larger

(Bakker et al., 2014; Capronet al., 2014). Combining climatemodel simulationswithpaleoclimatedataover this

period thus provides a useful opportunity to gain insight into climate processes and feedbacks during periods

of past warmth.

Ice core stable water isotope (�18O and �D) records from East Antarctica show an isotopic maximum, asso-

ciated with peak Antarctic warmth, around 128,000 years ago (128 ka), that is, early in the LIG. The �18O

RESEARCH LETTER
10.1002/2017GL074594

Key Points:

• Both ice and marine sediment core
data support a major nonuniform
retreat of Antarctic sea ice during the
early last interglacial

• The 128 ka sea ice retreat was largest
in the Atlantic and smallest in the
Pacific sector of the Southern Ocean

• The spatial pattern of �18O across
Antarctica is sensitive to the spatial
pattern of sea ice retreat

Supporting Information:

• Supporting Information S1

Correspondence to:

M. D. Holloway,
maxllo15@bas.ac.uk

Citation:

Holloway, M. D., Sime, L. C.,
Allen, C. S., Hillenbrand, C.-D., Bunch,
P., Wolff, E., & Valdes, P. J. (2017). The
spatial structure of the 128 ka Antarc-
tic sea ice minimum. Geophysical
Research Letters, 44, 11,129–11,139.
https://doi.org/10.1002/2017GL074594

Received 15 JUN 2017

Accepted 12 OCT 2017

Accepted article online 18 OCT 2017

Published online 11 NOV 2017

©2017. American Geophysical Union.
All Rights Reserved.

HOLLOWAY ET AL. SPATIAL STRUCTURE OF LAST INTERGLACIAL SEA ICE 11,129

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://orcid.org/0000-0003-0709-3644
http://orcid.org/0000-0002-9093-7926
http://orcid.org/0000-0002-0938-0551
http://orcid.org/0000-0003-0240-7317
http://orcid.org/0000-0002-5914-8531
http://orcid.org/0000-0002-1902-3283
http://dx.doi.org/10.1002/2017GL074594
http://dx.doi.org/10.1002/2017GL074594
https://doi.org/10.1002/2017GL074594


Geophysical Research Letters 10.1002/2017GL074594

maximum is +2 to +4‰higher than during the last 3 ka, suggesting a significantly warmer Antarctic climate

at 128 ka. Recent work demonstrated that this early LIG Antarctic isotopic maximum may be due to a major

reduction in Antarctic winter sea ice cover (Holloway, Sime, Singarayer, Tindall, Bunch, et al., 2016). This

hypothesis is supported by sea salt flux records from the European Project for Ice Coring in Antarctica (EPICA)

Dome C (EDC) and EPICA Dronning Maud Land (EDML) ice cores, which are interpreted as a proxy of past sea

ice extent (Abram et al., 2013; Fischer et al., 2007; Levine et al., 2014; Wolff et al., 2010). These records display

a minimum in sea salt flux around 128 ka, suggesting major sea ice retreat in both the Atlantic and Indian

sectors of the Southern Ocean at this time (Fischer et al., 2007; Wolff et al., 2010, 2006). However, a sea salt

record from the Talos Dome ice core (TALDICE) suggests little or no LIG sea ice retreat in the Pacific sector of

the Southern Oceanwhen compared to the Holocene (Schüpbach et al., 2013). Additionally, althoughmarine

sediment cores are often located too far north to inform on interglacial sea ice changes (e.g., Capron et al.,

2014), some qualitative sea ice reconstructions are consistent with reduced Antarctic winter sea ice extent

during the peak LIG compared to themodern and Late Holocene (Crosta et al., 2004; Esper &Gersonde, 2014a;

Gersonde & Zielinski, 2000; Schneider-Mor et al., 2012).

A bipolar-seesaw warming of the Southern Ocean after the penultimate glacial termination (Deaney et al.,

2017; Govin et al., 2015; Marino et al., 2015) provides a possible explanation for the sea ice retreat. This inter-

pretation is also consistent with data suggesting an average of +2∘Cwarmer sea surface temperatures during

the early LIG (Capron et al., 2014). Holloway, Sime, Singarayer, Tindall, Bunch, et al. (2016) calculated themost

likelymaximum reduction inwinter sea ice area using LIG Antarctic isotope data from four ice cores. However,

they did not attempt to look at the most likely spatial structure of the sea ice retreat. Information on spatial

structure will help to better understand the retreat and its causes.

It is possible to use ice core data to examine the spatial structure since less extensive sea ice permits greater

transfer of heat and moisture inland and leads to less negative �18O (Holloway, Sime, Singarayer, Tindall,

Bunch, et al., 2016;Noone&Simmonds, 2004). Therefore, amulti-ice core analysis, in conjunctionwith isotope-

enabled general circulation model (GCM) experiments, can provide information about the configuration of

past Antarctic sea ice (Noone & Simmonds, 2004). Because absolute changes in sea ice extent are largest

during the winter (September) sea ice maximum, we focus our examination on changes during this season.

Here we evaluate isotope-enabled GCM experiments against Antarctic ice core records covering the LIG to

(i) examine the mechanisms that link changes in Antarctic sea ice extent and the pattern of �18O across the

Antarctic Ice Sheet and (ii) evaluate the spatial structure of the sea ice retreat. We test simulated sea ice retreat

scenarios against ice core isotopic data and compare the results against sea ice constraints from proxy data

of marine sediment cores spanning the LIG.

2. Methods
2.1. Climate Model Experiments

We carry out a series of isotope-enabled HadCM3 (Holloway, Sime, Singarayer, Tindall & Valdes, 2016; Tindall

et al., 2009) GCM experiments. Various scenarios are investigated by forcing a Southern Ocean sea ice retreat

using a positive heat flux applied to the underside of sea ice. This enables different magnitudes and spatial

patterns of sea ice retreat to be forced, while ensuring as far as possible that the simulation remains physically

consistent. Using thismethod, the sea ice evolveswith the coupledmodel, growing and retreating seasonally,

and the ocean and atmosphere respond to sea ice changes as expected.

We perform an ensemble of experiments using 128 ka boundary conditions, following Holloway, Sime,

Singarayer, Tindall, Bunch, et al. (2016); orbital parameters are taken from Berger and Loutre (1991), atmo-

spheric CO2 is derived from the Vostok ice core (Loulergue et al., 2008; Petit et al., 1999), and CH4 and N2O

are from the EPICA Dome C ice core (Spahni et al., 2005). No change is applied to the Antarctic Ice Sheet

configuration. A control experiment was forced by 128 ka orbital and greenhouse gas forcing alone, with

no additional forcing applied to the sea ice. This experiment was run for 700 years. After this time it had

reachedquasi-equilibriumwith theprescribedboundary conditions (drifts in the surface andmiddepthocean

were negligible). All subsequent sea ice retreat experiments were continued from the end of this 128 ka con-

trol experiment for an additional 50 years—with prescribed sea ice forcing as described below. The sea ice

response reached an equilibrium with the input heat flux within 20 years of each simulation, so the final

30 years was used in the subsequent analyses.
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The first suite of sea ice retreat experiments included a uniform retreat (hereafter referred to as “uniform”)with

sea ice being reduced at all longitudes of the Southern Ocean (following the approach described in Holloway,

Sime, Singarayer, Tindall, Bunch, et al., 2016). The next suite of experiments included an idealized spatially

constrained sea ice retreat. We split the Southern Ocean into two sectors spanning 180∘ longitude each and

then forced sea ice retreat in one sector by applying a heat flux of 80 Wm−2 while applying only 20 Wm−2 to

the other sector.

A final suite of sea ice retreat experiments considered a range of “realistic” scenarios, whereby different mag-

nitudes of sea ice retreat were applied to the Atlantic (defined as longitudes between 70∘Wand 20∘E), Pacific

(150∘E–70∘W), and/or Indian (20∘E–150∘E) sectors of the Southern Ocean.

To aid the comparisonwith Antarctic ice core data, simulated �18Ooutput from90 to 60∘Swas regridded to an

equal area 50 km grid and smoothedwith the surrounding 100 km in order tominimize any grid dependence

near the pole (Sime et al., 2008). Simulated anomalies were calculated relative to a 800 year long preindustrial

experiment, forced by 1,850 years B.P. orbit and greenhouse gas concentrations (CO2 is 280 ppmv; CH4 is

760 ppbv; and N2O is 270 ppbv).

2.2. Ice Core Data

Model output was compared against five published ice core records from East Antarctica (Masson-Delmotte

et al., 2011); Vostok (Petit et al., 1999), Dome F (DF) (Kawamura et al., 2007), EDC (Jouzel et al., 2007), EDML

(EPICA CommunityMembers, 2006), and TALDICE (Stenni et al., 2011). Fractional isotopic content is expressed

for oxygen-18 (in‰) as

�
18O = 1,000 ×

[(

H18
2 O∕H16

2 O
)

∕RVSMOW − 1
]

, (1)

where RVSMOW is the ratio of H18
2
O to H16

2
O for Vienna standard mean ocean water (VSMOW). The ice core iso-

tope records were synchronized to the EDC3 age scale (Parrenin et al., 2007) and interpolated onto a common

100 year time grid. In order to minimize the effect of residual temporal misalignment between the ice cores,

a 1,500 year low-pass filter was applied to each record before taking the LIG peak (Sime et al., 2009). The mis-

alignment and isotopemeasurement error were assumed to be negligible after this averaging. The EDC3 age

scale was chosen because the version of the EDML record corrected for upstream altitude changes and for

the changing �18O ratio of seawater is not available on the more recent AICC2012 age scale. However, as the

two age models are less than 700 years apart at 128 ka and because we were only interested in the LIG �18O

maximum across ice core records, the 128 ka snapshots carried out here remain appropriate. �18O anomalies

are calculated relative to the last 3,000 years.

2.3. Marine Sediment Core Data

We compiled proxy data from published records from the Southern Ocean (Table 1) that include direct proxy

data for winter and summer sea ice presence and summer sea surface temperature (SSST) reconstructions for

the LIG (see supporting information; Becquey & Gersonde, 2002, 2003; Benz et al., 2016; Bianchi & Gersonde,

2002; Bohrmann, 1999; Brathauer & Abelmann, 1999; Brathauer et al., 2001; Crosta et al., 1998, 2004; Esper

& Gersonde, 2014a, 2014b; Frank et al., 1996, 1999, 2000; Gersonde et al., 2003, 2005; Gersonde & Ott, 1997;

Gersonde&Zielinski, 2000; Hodell et al., 2003;Mackensen, 2001;Moore et al., 1999;Mulitza et al., 1999;Niebler,

1995, 2004; Nürnberg et al., 1997; Pichon et al., 1992; Pugh et al., 2009; Schneider-Mor et al., 2005, 2008, 2012;

Waelbroeck et al., 2009; Zielinski et al., 2002, 1998). Although only the southernmost LIG records may provide

direct evidence of sea ice cover suitable for a comparisonwith themodel results, the SSST estimates from loca-

tions fartherNorth still add valuable context to the SouthernOcean conditions during the LIG. For comparison

with model outputs, we assumed that the minimum sea ice extent coincided with peak SSSTs and the peak

oxygen isotope anomaly in the Antarctic ice cores (Holloway, Sime, Singarayer, Tindall, Bunch, et al., 2016).

The marine core sites with the sea ice and SSST data were assigned to seven simplified classes that reflect

prominent oceanographic boundaries and ecological regions that are well defined by/represented in the sea

ice and SSST proxies: 0 = north of the maximumwinter sea ice extent, SSST> 3∘C; 1 = north of the maximum

winter sea ice extent, no information on SSST; 2 = north of the maximumwinter sea ice extent, SSST < 3∘C; 3

= at or south of themaximumwinter sea ice extent; 4 = at or south of the average winter sea ice extent; 5 = at

or south of the maximum summer sea ice extent; and 6 = at or south of the average summer sea ice extent.

The agreement between the modern oceanographic setting and the classification of the sediment core sites

based on the modern proxy classification (supporting information Figure S1) gives confidence that our sea
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Table 1

Marine Sediment Core Records

Core Latitude Longitude Sector LIG classification Modern classification

SO136-111 −56.667 160.223 West Pacific 0 0

MD 84 551 −55.01 73.17 Central Indian 0 2

PS2603-3 −53.986 37.628 SW Indian 0 2

ODP 1094 −53.18 5.13 SE Atlantic 0 2

PS2102-2 −53.073 −4.986 SE Atlantic 0 2

ODP 1093 −49.976 5.865 SE Atlantic 0 0

PS1778-5 −49.012 −12.080 SE Atlantic 0 0

PS2498-1 −44.153 −14.228 Central S Atlantic 0 0

PS58/271-1 −61.243 −116.047 Central S Pacific 0 0

PS1768-8 −52.593 4.475 SE Atlantic 0 2

PS2276-4 −54.635 −23.952 Central S Atlantic 2 2

PS1772-8 −55.458 1.163 SE Atlantic 0 3

PS1649-2 −54.910 3.306 SE Atlantic 1 3

PS1652-2 −53.663 5.098 SE Atlantic 1 3

PS2499-5 −46.512 −15.333 Central S Atlantic 1 0

PS2305-6 −58.720 −33.036 Central S Atlantic 3 4

Note. ID and location (latitude, longitude, and Southern Ocean sector) of marine sediment core sites with the classifica-
tion of sea ice cover and summer sea surface temperature (SSST) for the modern and reconstructed for the peak LIG.
Reconstructed sea ice and SSST conditions are quantified using a scale from 0 (north of the maximum winter sea ice) to
6 (at or south of the average summer sea ice extent). See section 2.3 for full details of the classification and supporting
information Table S1 for full details of the records.

ice and SSST proxy data compilation is reliable. Supporting information Text S1 gives full details of the com-

piled marine core records, including chronological methods and the proxies used to derive quantitative,

semiquantitative, and/or qualitative estimates of sea ice cover and SSST.

3. Results
3.1. Idealized Sea Ice Forcing Experiments

While there is a weak response to 128 ka orbital and greenhouse gas forcing alone (Figure 1a), a uniform

sea ice retreat can increase �18O by around 2–4‰ across Antarctica (Figure 1b) (Holloway, Sime, Singarayer,

Tindall, Bunch, et al., 2016; Noone & Simmonds, 2004). These �18O anomalies are significant beyond internal

model variability (supporting information Text S2 and Figure S2; Schurer et al., 2014). At the ice core sites,

�18O is enriched by 0.5, 0.5, 0.7, 0.8, and 0.8‰per 10% retreat of winter sea ice area at DF, EDC, EDML, Vostok,

and TALDICE, respectively. A Bayesian multivariate linear regression (see Holloway, Sime, Singarayer, Tindall,

Bunch, et al., 2016) to calculate the best fit uniform winter sea ice retreat including the TALDICE ice core data

(not included in the Holloway, Sime, Singarayer, Tindall, Bunch, et al. (2016) calculation) suggests that a spa-

tially uniform reduction in winter sea ice area of 61% (Figure 1b) best explains the 128 ka isotope maximum

(95% credible interval for any one year of [54%, 68%]). This estimate is lower than the 65% estimated by

Holloway, Sime, Singarayer, Tindall, Bunch, et al. (2016) because the TALDICE record shows lower peak �18O

values at 128 ka relative to the other ice cores. This highlights the need for more and more widespread ice

core data covering the LIG to improve the robustness of LIG climate assessments. A uniform 61% retreat of

winter sea ice area produces a root-mean-square error (RMSE) between simulated and observed ice core �18O

anomalies of 0.87‰.

When sea ice retreat is nonuniform, �18O tends to be more enriched closer to the regions of greater sea ice

retreat (Figures 1c and 1d). This significantly influences the spatial pattern of �18Oanomalies across the five ice

core sites but has little effect on the zonal mean �18O response or the total magnitude of winter sea ice reduc-

tion. There are significant differences in the model-data �18O agreement depending on the spatial pattern

of sea ice retreat. Greater sea ice retreat in the Ross Sea sector (Figure 1d) significantlyworsens themodel-data
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Figure 1. Spatial pattern of �18O anomalies. Precipitation weighted �18O anomalies (LIG-PI) for 128 ka simulations
with (a) no sea ice retreat forcing, (b) a uniform 61% retreat of the winter sea ice area, (c) more sea ice retreat between
60∘W and 120∘E (“Weddell Sea sector”), and (d) more sea ice retreat between 120∘E and 60∘W (“Ross Sea sector”).
Filled circles show ice core �18O anomalies at ice core sites for the LIG peak (128 ± 0.75 ka). Grey lines signify the 15%
September sea ice concentration threshold. Insets show the corresponding region where largest heat fluxes
(greatest sea ice retreat) were applied.

agreement, increasing the RMSE to 1.76‰. In contrast, less sea ice in the Weddell Sea sector (Figure 1c)

provides an identical RMSE as the best fit uniform scenario of 0.87‰; even though the Weddell Sea sector

experiment results in 7% less total winter sea ice retreat (54%) compared to the best fit uniform scenario, it

provides an equal match to the ice core data. The data therefore allow equally for a uniform retreat or for

greater retreat in the Weddell Sea region but make it unlikely that there was greater retreat in other regions.

We decomposed simulated �18O changes (supporting information Figures S3a, S3d, and S3g) into those due

to changes in the seasonal cycle of precipitation (supporting information Figures S3b, S3e, and S3h) and those

due to changes in the isotopic composition of monthly precipitation (supporting information Figures S3c,

S3f, and S3i) (Holloway, Sime, Singarayer, Tindall, Bunch, et al., 2016; Liu & Battisti, 2015). These two mech-

anisms have opposing contributions to the total �18O change. First, for all cases of sea ice retreat there

is a shift in the proportion of precipitation toward colder months, which lowers �18O. Intuitively, this is as

expected; the absolute decrease in sea ice extent is mainly a result of less sea ice expansion during winter,

allowing more water vapor to reach central Antarctica and increasing the proportion of winter precipitation.
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Figure 2. Model-data comparison for different magnitudes and spatial patterns of Antarctic sea ice retreat at 128 ka. Color shading of Antarctic mainland
indicates the root-mean-square error (RMSE; rounded to three significant figures) between simulated �18O and observed �18O at five ice core sites (filled black
circles). Panels are organized from (a) largest RMSE (least model-data agreement) to (y) smallest RMSE (best model-data agreement). Black contours signify the
15% September sea ice concentration threshold. Southern Ocean color shading shows the magnitude and spatial pattern of heat flux forcing (W m−2) applied to
sea ice in each experiment.
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Figure 3. Antarctic winter sea ice extent at 128 ka and at present. (a) Spatial pattern of �18O anomalies (LIG-PI) in response to sea ice retreat that provides the
best agreement with the �18O ice core data at 128 ka (filled circles). (b) Winter (September) sea ice fraction (mauve shading) and 15% concentration threshold
(grey contour) from 1978 to 2013 satellite observations. (c) As in Figure 3b but for the simulated winter sea ice fraction from the LIG experiment that best agrees
with the �18O ice core data at 128 ka, corresponding to Figure 3a. Filled circles in Figures 3b and 3c show the reconstructed sea ice extent (sie) and summer sea
surface temperature (SSST) estimates, categorized using sea ice proxy data from marine sediment cores (see section 2), during the modern (Figure 3b) and the
LIG (Figure 3c) sea ice minimum.

Second, the local evaporative input, warmer air temperatures, and shorter source-to-site distance increases

the �18O composition of monthly precipitation. This tends to raise �18O. Since this latter effect dominates, the

total change in �18O is positive.

3.2. Spatial Structure of the 128 ka Sea Ice Retreat

By simulating a range of different sea ice retreat scenarios, with varied magnitudes of retreat in the Atlantic,

Pacific, and Indian sectors of the SouthernOcean,we aim tomaximize themodel-data agreement andprovide

insight into the most likely pattern of the 128 ka sea ice retreat. There is consistently model-data mismatch

when greater sea ice retreat is applied to the Pacific sector (Figure 2). Greatest retreat in the Pacific sector

results in the largest RMSE of this suite of experiments, exceeding 1.4‰ (Figure 2).

Model-data agreement improved with greater sea ice retreat in the Atlantic and Indian sectors. The lowest

RMSE was achieved when equal sea ice retreat forcing was applied to the Atlantic and Indian sectors and

weaker forcing was applied to the Pacific sector (Figure 2). This scenario led to a reduction in winter sea ice

area of 67 and 59% in the Atlantic and Indian sectors, respectively, compared to 43% reduction in the Pacific

sector, and a total reduction in Antarctic winter sea ice area of 54%. This scenario resulted in an improved

spatial pattern of �18O anomalies (Figure 3a) and reduced the RMSE compared to the best fit uniform sea ice

retreat scenario to 0.76‰.

All of the compiled marine LIG records exhibit intervals of peak SSSTs and/or minimum sea ice cover during

the LIG (minimum ice and maximum temperature; MI-MT). The largest concentration of sites with SSST and

sea ice reconstructions is located in the Atlantic sector of the Southern Ocean, where the MI-MT intervals

consistently show that the mean winter sea ice limit was south of its modern position, while SSSTs of >3∘C

occurred close to the position of the modern winter sea ice limit (Figures 3b and 3c).

The two sites from the west and central Indian sector (PS2603-3 and MD 84 511) both record elevated SSSTs

of >3∘C during the MI-MT, while the westernmost and central Pacific sites (SO136-111 and PS58/271-1) are

categorized with SSSTs > 3∘C for both the modern and the MI-MT interval. Comparing the modern and

reconstructed SSSTs revealed modest LIG increases of ∼0.5∘C in the westernmost Pacific and ∼0.2∘C in the

central Pacific.
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The reconstructions of oceanographic conditions during the MI-MT showed that the Atlantic sector experi-

enced thegreatestwarming (likely correspondingwith the largest southern shift in sea ice) relative tomodern,

while the least MI-MT warming (smallest southern shift of the sea ice edge) occurred in the Pacific sector.

This circum-Antarctic pattern of MI-MT oceanographic conditions supports the modeled LIG distribution of

mean winter sea ice cover, with the largest and smallest offsets between modern and modeled sea ice limits

occurring in the Atlantic and Pacific sectors, respectively (Figures 3b and 3c).

4. Discussion

Our results indicate that there was significantly reduced winter sea ice extent in the Weddell Sea sector and

around the East Antarctic coast at 128 ka. This finding agrees well with the interpretation of sea salt flux data

(Schüpbach et al., 2013) and a compilation of LIG (sub-)Antarctic SSST records (Capron et al., 2014). The latter

suggests an averageSouthernOceanwarmingof approximately+2∘C,with significantwarming in theAtlantic

and Indian sectors between 130 and 125 ka.

The bipolar-seesaw mechanism (Stocker & Johnsen, 2003), proposing that meltwater input into the North

Atlantic from surrounding ice sheets leads to Northern Hemisphere cooling and Southern Hemispherewarm-

ing, is considered as the most likely explanation for the early timing of the LIG �18O maximum in Antarctica

(Capron et al., 2014; Marino et al., 2015). Marino et al. (2015) give for the termination of North Atlantic melt-

water input during the penultimate deglaciation an age of 130± 2 ka, which is roughly synchronous with the

Antarctic isotope maximum.

Our results are consistent with this hypothesis, that meltwater input to the North Atlantic during the penul-

timate deglaciation led to prolonged weakening of the Atlantic Meridional Overturning Circulation (AMOC)

and heat accumulation in the Southern Hemisphere. Warming was likely most intense in the South Atlantic

due to the direct link with the AMOC and communicated to the Southern Ocean via the clockwise flowing

Antarctic Circumpolar Current (ACC). The Atlantic warming was advected clockwise within the ACC, and con-

sequently warming was concentrated in the Atlantic and Indian sectors of the Southern Ocean, leading to

significant sea ice retreat in these two sectors, whereas minor warming in the Pacific sector resulted in less

sea ice retreat there.

Marine-based sea ice reconstructions represent an independent line of evidence to support the Holloway,

Sime, Singarayer, Tindall, Bunch, et al. (2016) Antarctic LIG sea ice retreat. LIG reconstructions based onmarine

records from the Southern Ocean are consistent with our model results, suggesting that the largest and

smallest poleward shifts in the winter sea ice edge occurred in the Atlantic and Pacific sectors, respectively.

However, no LIG marine records with published sea ice and/or SSST data are located sufficiently south of the

modern sea ice edge to provide robust evidence of amajorwinter sea ice retreat. Consequently, we are unable

to corroborate the proposed spatial structure of the LIG sea ice minimum, and only the development of sea

ice and SSST reconstructions at sites closer to the continent will allow to sufficiently constrain the magnitude

and geographical pattern of the LIG sea ice retreat.

In this study we isolate the isotopic response due only to changes in sea ice; the impact of Antarctic ice sheet

elevation change is not investigated here. Since surface elevations in central East Antarctica may have varied

within±200m,with increased accumulationpromotingmass gains andmass loss suggesteddue to increased

melt (Bradley et al., 2013; Ritz et al., 2001), some elevation changemay have contributed to the 128 ka isotopic

change, potentially altering the magnitude of sea ice retreat required to explain the isotopic ice core data.

However, the sign of elevation change at a given ice core site is uncertain and the magnitude of the resulting

isotope anomaly is likely to be small relative to the total isotope change. This is because isotopic lapse rate

calculations suggest that an elevation change of 200mwould relate to∼1‰change in �18O (Blisniuk & Stern,

2005; Poage & Chamberlain, 2001). Future work will aim to investigate, and better quantify, the relationship

between ice sheet elevation changes and the Antarctic isotope record.

Our sea ice retreat scenario that shows the best agreement with the �18O anomalies observed in Antarctic

ice cores at 128 ka predicts an annual mean sea ice area of roughly 8 million km2, averaged over the whole

simulation. This is compared to ∼19 million km2 simulated in a preindustrial experiment. The corresponding

best fit sea ice forcing is equal to a globally averaged heat input of 0.68 W m−2 or roughly 10% of the total

radiative forcing of 6.7 W m−2 predicted in the representative concentration pathway 8.5 (RCP8.5) scenario
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between 2000 and 2100 (IPCC, 2013). In this context, our spatially varying sea ice retreat scenario requires less

additional heat input globally compared to that calculated previously by Holloway, Sime, Singarayer, Tindall,

Bunch, et al. (2016), who assumed that the LIG sea ice retreat was uniform.

A dependence between outlet glacier terminus position and sea ice has been shown during the satellite

record in Wilkes Land, East Antarctica (e.g., Miles et al., 2016, 2017, 2013). Reduced Antarctic sea ice and

warmer Southern Ocean temperatures during the early LIGmay have encouraged ice loss frommarine basins

in West and East Antarctica, contributing to the LIG sea level high stand of +6–9 m (Dutton et al., 2015; Kopp

et al., 2009). However, although there is only one record with SSST estimates available from the central Pacific

sector, we point out that the peak LIG proxy-derived warming reconstructed at this site of ∼0.2∘C above

present (supporting information Table S1) is just 7–10% of the oceanic warming believed necessary for trig-

gering aWest Antarctic Ice Sheet (WAIS) collapse (Sutter et al., 2016), suggesting that sea water temperatures

at this site remained below the threshold value for aWAIS collapse during the early LIG (e.g., Hillenbrand et al.,

2002). However, lower SSST and sea ice retreat estimates from this sectormay be equally consistentwith input

of relatively fresh glacial meltwater into the Pacific sector, caused by intensified WAIS melting at 128 ka (e.g.,

Holloway, Sime, Singarayer, Tindall, Bunch, et al., 2016).
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