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The spatial variability of vehicle densities as
determinant of urban network capacity
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Due to the complexity of the traffic flow dynamics in urban road networks, most
quantitative descriptions of city traffic so far have been based on computer simulations.
This contribution pursues a macroscopic (fluid-dynamic) simulation approach, which
facilitates a simple simulation of congestion spreading in cities. First, we show that a
quantization of the macroscopic turning flows into units of single vehicles is necessary to
obtain realistic fluctuations in the traffic variables, and how this can be implemented
in a fluid-dynamic model. Then, we propose a new method to simulate destination
flows without the requirement of individual route assignments. Combining both methods
allows us to study a variety of different simulation scenarios. These reveal fundamental
relationships between the average flow, the average density and the variability of the
vehicle densities. Considering the inhomogeneity of traffic as an independent variable
can eliminate the scattering of congested flow measurements. The variability also turns
out to be a key variable of urban traffic performance. Our results can be explained
through the number of full links of the road network, and approximated by a simple
analytical formula.

Keywords: urban traffic; network dynamic; congestion spreading; macroscopic traffic model;

fundamental diagram; route assignment

1. Introduction

Traffic flow theory has relied for decades on fundamental laws, some of which
were inspired by analogies with fluid flows, electrical currents and the like. These
laws are usually based on fundamental indicators (speed, density and flow) and
describe how they are linked together. The most common relationship is called
the ‘fundamental diagram’, according to which the flow increases with the vehicle
density up to the capacity of the road, and then it decreases down to zero, when
the road is congested. This diagram is used to characterize the ‘regimes’ of traffic
flow (free or congested) in a specific road location or one link, and it was first
studied by Greenshields (1935). Designed primarily for highway traffic flows, such
laws are not sufficient to describe the entire complexity of traffic flows in urban
road networks. Besides, the flows show a significant scattering, especially in the
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congested regime (e.g. Kerner 1998; Tu 2008). Nevertheless, by aggregating the
highly scattered plots of flow versus density from individual fixed detectors, it
was empirically found for the city of Yokohama that a macroscopic fundamental
diagram (MFD) with low scattering exists, which links space–mean flow and
density (Geroliminis & Daganzo 2008).
The first instance of an MFD showing an optimum car density was presented by

Godfrey (1969). Earlier studies looked for macro-scale traffic patterns in data of
lightly congested real-world networks (Godfrey 1969; Ardekani & Herman 1987;
Olszewski et al. 1995) or in data from simulations with artificial routing rules
and static demand (Mahmassani et al. 1987; Williams et al. 1987; Mahmassani &
Peeta 1993). However, the data from all these studies were too sparse or not
investigated deeply enough to demonstrate the existence of an invariant MFD for
real urban networks. Support for its existence has been given only very recently
(Geroliminis & Daganzo 2007, 2008). These references showed that

— the MFD is a property of the network itself (infrastructure and control) and
not of the demand, i.e. the MFD should have a well-defined maximum and
remain invariant when the demand changes both with the time of day
and across days and

— the space–mean flow is maximum for the same value of critical vehicle
density, independent of the origin–destination tables.

To evaluate topological or control-related changes of the network flows (e.g. due
to a re-timing of the traffic signals or a change in infrastructure), Daganzo &
Geroliminis (2008) and Helbing (2009) have derived analytical theories for the
urban fundamental diagram, using a density-based and a use-based approach,
respectively. Curves derived from both theories fit the data obtained from the
Yokohama experiment well (Daganzo & Geroliminis 2008; Helbing 2009).
Despite these and other recent findings supporting the existence of well-

defined MFDs for urban areas, it is not obvious whether the MFDs would be
universal or network-specific. More real-world experiments are needed to identify
the types of networks and demand conditions for which invariant MFDs with low
scatter are found. Daganzo (2007) argued that if the traffic conditions change
slowly with time, an MFD should exist for networks with a homogeneous spatial
distribution of congestion. However, Buisson & Ladier (2009) showed with real
data from a medium-size French city that heterogeneity has a strong impact on
the shape/scatter of an MFD, that may not even remind one of an MFD in some
cases, e.g. for freeway networks under non-recurrent conditions.
Congestion in urban traffic networks is by nature unevenly distributed in space.

This is because of spatial inhomogeneity

— in demand (some parts of the network attract or generate more trips than
others),

— in road infrastructure (some routes in the network have more lane-
miles), and

— in control (different types, among them traffic signals and stop signs, and
different control settings within each type, e.g. offsets or green times of
successive signals).
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Both in empirical data and computer simulations, it has been observed that traffic
conditions may significantly vary for similar travel activities and traffic volumes.
That is, one day’s traffic dynamics can be characterized by widespread and long-
lasting congestion, while traffic flow is barely or not at all affected on other days,
despite similar origin–destination flows. It is likely that this property does not
only follow from the network structure, but is also a consequence of instabilities
of traffic flows (for an overview, see Helbing 2001; Helbing & Moussaid 2009;
Helbing et al. 2009).
To address such questions, it is common to use computer simulations of urban

traffic flows (Axhausen & Gärling 1992; Biham et al. 1992; Nagel & Schreckenberg
1992; Schadschneider & Schrenkenberg 1993; Daganzo 1994; Herrmann 1996;
Klar & Wegener 1998; Charypar & Nagel 2005; Herty et al. 2006; Bretti et al.
2007; Lämmer et al. 2007; Ma & Lebacque 2007; De Martino et al. 2009; Padberg
et al. 2009). However, the frequency and evolution of flow breakdowns and
congestion spreading processes are still poorly understood, probably because of
the interplay between topology and dynamics (Zhao et al. 2005). This applies
both to the local level where congestion originates, as well as to the network level
in terms of how it spreads.
In this paper, we are investigating how the inhomogeneity in the spatial

distribution of car density affects the shape, scatter and even the existence
of a macroscopic relation between the average flow and vehicle density in
urban networks. As data availability from cities is limited, we are following a
simulation-based approach to study a range of scenarios. The main contributions
of this paper are the introduction of innovative modelling techniques, namely a
macroscopic flow quantization, a memoryless traffic flow routing, and a better
understanding of the urban-scale MFD. Our routing method does not require
origin–destination tables and complicated routing decisions or route assignment,
which are necessary in most urban micro-simulation models. In addition, by
applying the flow quantization, we are able to reproduce a realistic variability
of network flows even for the same average car density. Moreover, we discover the
variability as a key variable of urban traffic flows, which reveals clear functional
relationships rather than producing large data clouds for congested traffic.
Our results emphasize that the spatial aggregation of traffic variables cannot

guarantee a well-defined relationship between the average density and flow,
especially when the network is congested. We observe that for the same average
density of vehicles in the network and the same assumptions regarding the origin–
destination flows, there is a wide variation of possible average network flows,
potentially even ranging from free flow to gridlock. A key component in all cases
is the spatial variability of congestion at a specific time, as expressed by the
standard deviation of density among all links. The degree of spatial inhomogeneity
is highly correlated with the number of full links in the network. Each full link
prevents upstream links from discharging vehicles.
After describing the main modelling components of our simulator in §2, we

will start in §3 with the investigation of an MFD for networks with invariant
density over time without trip generation or trip termination. Vehicles are moving
randomly in the network and turn in a memoryless way. We will show that urban
network capacity is not a deterministic quantity and investigate the reasons for
the variability. In §4 we will extend the analysis in networks, where a percentage
of trips is directed towards a centre of attraction and trips are generated at a rate
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that keeps the average vehicle density constant. In §5 we will analyse more general
networks with time-dependent densities and multiple destinations. Finally, §6 will
provide a summary, discussion and outlook.

2. Model

We model the road network of a city centre by a 30× 30 lattice network
(see figure 1). The links of the network represent one-way road sections, and
the nodes represent intersections. To obtain a better control over the number of
vehicles in the network, we assume periodic boundary conditions, i.e. we connect
the intersections at the boundary to the intersections located on the opposite
side. Moreover, all road sections have the same length L of 200m and a two-
phase fixed-cycle traffic signal setting with the same green time period g of 30 s
and an amber plus red time period of 36 s (i.e. a cycle length c of 66 s).
As drivers have different driving characteristics, their response to perfectly

time-coordinated signals is not ideal. Therefore, we added some stochasticity to
traffic light offsets, to imitate adaptive green wave schedules. The offset at each
signal is randomly selected from a uniform distribution with an average that is
equal to the value that creates a ‘green wave’ and minimizes the delays during
light traffic conditions. That is, on average the green phase at a downstream
intersection starts L/V 0 seconds after the one upstream, where V 0 is the free
flow speed.

(a) Underlying dynamics

The dynamics of the traffic flow in the road network is determined by the
section-based traffic model (Helbing 2003; Helbing et al. 2007). The model
exhibits significant features of traffic flows such as the conservation of vehicles,
jam formation and spillovers.
As illustrated in figure 2, the fundamental diagram along individual road

sections is approximated by a triangle with two characteristic speeds: the desired
speed of vehicles or speed limit V 0, and the resolution speed c0 of traffic jams
(Helbing 2003). For any road section, the model calculates the temporal evolution
of the arrival flow A(t), the departure flow O(t), and the location l(t) of the
upstream jam front, considering the ‘permeability’ g(t) (reflecting the traffic
signal) and the turning factors ai(t). More specifically, the turning factor ai(t)
indicates what fraction of the outflow is turning left or right, depending on the
respective intersection (see figure 1). Due to vehicle conservation, 1− ai(t) is the
fraction of vehicles moving straight ahead into the next downstream road section.
The maximum arrival flow of a road section is limited by the maximum flow Q̂,
if the road section is not fully congested. It is given by its departure flow at time
t − L/c, where L denotes the length of the road section:

0≤A(t)≤ Â(t)=

{

Q̂ if l(t)< L,
O(t − L/c) if l(t)= L.

(2.1)

Similarly, the departure flow of a road section is bounded to the maximum flow
Q̂, when there are some delayed vehicles DN > 0. But when no vehicle is delayed
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Figure 1. In our computer simulations, a city centre is represented by a lattice-like unidirectional
road network reminding one of traffic flow in Manhattan or Barcelona. Intersections are controlled
by fixed-cycle traffic signals. Arrows show the flow directions. Vehicles leaving the network at the
boundary enter the network again at the opposite side, i.e. we assume periodic boundary conditions.
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Figure 2. (a) The fundamental diagram defines a flow–density relation for individual road sections.
In the triangular approximation of the fundamental diagram, vehicles move with the free speed V 0

below the critical densityK c . When the densityK is greater thanK c , a vehicle queue forms, and the
speed c of the upstream moving congestion front is given by the arrival flow. The dissolution speed
c0 < 0 of congested traffic, i.e. the speed of the downstream congestion front, is a characteristic
constant. (b) Schematic illustration of vehicle trajectories on a road section of length L. Vehicles
move forward at the free speed V 0 or are stopped in a vehicle queue (horizontal lines), which forms
during the amber and red time periods behind the traffic light (located at x = L).
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by congestion, the departure flow is given by the arrival flow at time t − L/V 0,
where L/V 0 is the free travel time along the road section:

0≤O(t)≤ Ô(t)= g(t)

{

A(t − L/V 0) if DN (t)= 0,
Q̂ if DN (t) �= 0.

(2.2)

The number of delayed vehicles DN (t) in the above equation evolves according to

dDN (t)
dt

=A(t − L/V 0)−O(t). (2.3)

In order to represent a traffic light at an intersection serving two flows, the
permeability g(t) of the served road section is set to 1 during the green phase,
while the permeability of the other one is set to 0 when the traffic light is red.
Apparently, during switching intervals (amber times), both permeabilities are
set to 0.
After computing the maximum arrival and departure flows Â(t) and Ô(t), one

can determine the actual departure flow of a road section (which determines the
actual flows of the two following road sections). This is done by restricting it to
the maximum arrival flows of the two following road sections.
In our computer simulation, we consider a triangular fundamental diagram

with characteristic speeds V 0 = 50 kmh−1 and c0 = −14.28 kmh−1, and a
maximum density k of 140 vehicles km−1.

(b) Flow quantization

In the previous subsection, we explained the dependency of the arrival and
departure flows of road sections on the time-dependent turning factors ai at
intersections. Here, we assess the temporal dynamics of the turning factors. The
first question is: on what time scale do we have to model the change of turning
factors? At first glance, the cycle time of traffic lights seems to be a good choice.
To test this, we have simulated a uniform demand in our network by changing
the turning factors at the beginning of each service cycle. For example, one may
assume equal probabilities of flows to continue straight or turn at all intersections.
Then, the average of the turning factors a1(t) and a2(t) at any intersection would
be 0.5 over a long enough interval of time. We have studied three variants of
turning factors.

— Deterministic. Outflows of all road sections are time-independent and
evenly distributed among the following road sections: ai = 0.5.

— Random with low variability. For any road section, in the beginning of each
traffic cycle, the turning factor ai(t) is chosen uniformly at random in the
interval [0.25, 0.75].

— Random with high variability. The turning factor ai(t) of any road section
is chosen uniformly at random in the interval [0, 1] in the beginning of
each service cycle.

We have simulated 500 realizations for each of the three cases and for a range of
fixed average densities. The results of the simulation are illustrated in figure 3,
which shows the MFDs, i.e. the relationship between the average outflow of

Phil. Trans. R. Soc. A (2010)

 on March 11, 2011rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Density variability and network capacity 4633

0

100

200

300

400

500

600

700(a) (b)

(c) (d)

20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

density (vehicles km–1) density (vehicles km–1)

0

100

200

300

400

500

600

700

av
er

ag
e 

fl
o
w

(v
eh

ic
le

s 
h

–
1
)

av
er

ag
e 

fl
o
w

(v
eh

ic
le

s 
h

–
1
)

Figure 3. (a–c) Changing the turning factors of outflows with a fixed frequency leads to a sharp
transition between the free flow and the gridlock state. However, this large sensitivity to the number
of vehicles in the network is unrealistic. In (a), outflows are evenly and deterministically distributed
among road sections. In (b), the turning factors change with a low variability (ai(t) ∈ [0.25, 0.75]).
In (c), the turning factors change with a high variability (ai(t) ∈ [0, 1]). (d) By quantization of the
outflows, i.e. random determination of the turning decisions of each single vehicle, a realistic MFD
is obtained. If the vehicle density is higher than 30 vehicles km−1, the average network flow drops
as time passes (square, T = 1 h; cross, T = 2 h; circle, T = 3 h).

road sections (the network flow) and the number of vehicles in the network
(the network density). The simulations start with uniform distances among the
vehicles and equal accumulation in every road section. We measure simulation
time after a transient period of half an hour for a time period of 3 h. A large
number of simulation runs are performed for different initial densities. For all
three specifications of time-dependent turning factors, there is a sharp transition
between the free flow and the gridlock state. This, however, does not seem to
be realistic.
To deal with turning factors, we propose a new method based on flow

discretization, as conjectured by Helbing (2005).

— In agreement with microscopic models, it is assumed that the outflow does
not simultaneously take both directions. We rather assume that the outflow
either turns or continues straight ahead, corresponding to binary values
{0, 1} of ai(t).

— The flow direction is decided for each equivalent of one vehicle, i.e. we
quantize the outflow into units of single vehicles.
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— The outflow of any road section may be interrupted because of a red light or
the spillover of the road section in the chosen direction. In both cases, the
decision for the direction of outflow does not change, and the considered
road section is blocked, i.e. vehicles cannot leave the road section anymore
for some time.

To be comparable with the previous analysis of constant average turning
frequencies, vehicles choose their flow direction by tossing a fair coin. As shown
in figure 3d, our method leads to a realistic MFD for uniform travel demand: we
observe that, even if the turning factors are balanced, if the initial distribution of
traffic is homogeneous, and if the traffic signals are controlled in the same way,
congestion does not distribute homogeneously in the network, as is well known
from reality. In §3, we analyse the properties of the resulting MFD in more detail.

(c) Route-choice

Besides developing a new flow quantization technique, we have so far described
how a uniform demand in a network can be simulated. However, a dominant factor
for the formation of urban-scale congestion is the inhomogeneous distribution of
traffic demand throughout the network. For instance, during commuting hours,
there is a higher density of traffic around workplaces. Therefore, we need a
mechanism to direct predefined fractions of flows to destination areas in order
to simulate inhomogeneous demand. This goal is not trivial, as our model does
not include origin–destination tables for vehicles. We will therefore propose now a
simple routing protocol capable of simulating scenarios with multiple destination
areas and inhomogeneous traffic demands. Despite its simplicity, our method
approximates a shortest-path type of route-choice towards destination areas with
a minimum number of turns at intersections.
For illustration let us consider two types of vehicles. The first type represents

vehicles with homogeneous demand throughout the network, while the second
type steer towards specific destination areas. However, since we do not distinguish
individual vehicles from each other, route-choices cannot be assigned to vehicles.
Assuming that vehicles of both types are distributed everywhere in the network,
our problem reads as follows: how can a fraction of outflow of any road section
be routed to a specific destination area? By periodic assignment of routes to the
outflow of road sections proportionally to the demand of the destination areas, the
problem translates into the following one: at each intersection, in which direction
does a vehicle with a certain destination area drive? To be specific, if 20 per cent
of vehicles in the network are routed to a specific destination area, one out of
five vehicles of the outflow of any road section is routed towards the destination
area, while the other four are routed to other destination areas or choose direction
randomly in our simulation.
Consider a destination area D with the shape of a square and let the network

be partitioned into nine regions, as marked by different letters in figure 4a. The
simulation scenario consists of four regions in the corners (marked by A), four
regions adjacent to the boundaries of the destination area (marked by B), and the
destination area itself (marked by D). To reach the destination area D, we can
apply the following rule of thumb: drive straight, unless the Manhattan distance
to the specified destination area increases. Assuming an ordered numbering of
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Figure 4. (a) A destination area divides our network into nine regions. We propose a shortest-path
type of route-choice towards destination areas with a minimum number of turns at intersections.
The underlying rule is to drive straight, unless the Manhattan distance to the specified destination
area increases. With this route-choice, as shown in (b), a vehicle that drives horizontally towards
intersection M continues straight to intersection N. Then, the vehicle has three choices to turn
towards the destination area, namely at intersections N, L and P. At intersection N, the destination
is assumed to be in the two left columns of the destination area with probability 1/3. Hence, the
vehicle chooses the straight direction with probability 2/3 and turns towards the destination area
with probability 1/3. The next intersection at which the vehicle can turn towards the destination
area is L. Reasoning in a similar way, the vehicle chooses to go straight with probability 1/3 and
to turn towards D with probability 2/3. If the vehicle did not turn towards D at intersections N
and L, it certainly turns towards the destination area at intersection P, as driving straight would
prolong its route.

the rows and columns of the network, the Manhattan distance between two
intersections is obtained by summing up the absolute values of their row difference
and column difference. The minimum distance that a vehicle can traverse to reach
the destination area is at least its minimumManhattan distance to the boundaries
of the destination area. This is owing to the fact that vehicles move parallel or
orthogonal to the boundaries. Note that the trip length can be larger by the
length of one road section for vehicles moving in the opposite direction of the
destination area, which requires a turn at the nearest intersection.
There are slight variations of our routing rule in different regions.

— Vehicles that drive in the corner regions (marked by A in figure 4a) only
turn if driving straight increases their Manhattan distance, while turning
decreases their distance to the destination area. By distance we mean the
minimum Manhattan distance to the boundaries of the destination area.
All vehicles in this region drive straight until they reach a neighbouring
region (marked by B in figure 4a).

— Vehicles driving in the neighbouring regions (marked by B in figure 4a)
drive straight if their direction of movement is orthogonal to the
boundaries. Otherwise, if a vehicle is driving parallel to the boundaries,
driving straight decreases its distance to some of the intersections in the
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destination area and increases its distance to those it passes in parallel. In
this case, we set the probability of turning towards the destination area
proportional to the number of nodes in the destination area for which the
distance is decreased by turning (see figure 4 for a concrete example). In
this way, for any vehicle that drives from an A-region to a B-region towards
an n × n destination area, there are n/2 choices to turn towards the
destination area. Therefore, the probability to turn towards the destination
area is 2/n at its first intersection in B, while the probability of turning
is 1 if it reaches the other boundary.

— Vehicles that reach the destination area choose their direction randomly
to simulate a homogeneous demand.

— At the intersections on the boundary of the network, vehicles choose their
direction randomly. A vehicle that leaves the network from one side, enters
it again from the other side.

In figure 4b, 20 per cent of vehicles are routed towards the destination area.
Vehicles with destination D turn towards their destination just in B-regions,
in which the direction towards the destination area is chosen with a higher
probability. Therefore, B-regions are more congested than A-regions.

3. Macroscopic fundamental diagram

Let us denote by qi and ni the flow and the number of vehicles on link i during the
time period of a signal cycle. We are interested in the aggregate patterns produced
by these variables at the network level. To this end, we define the average network
flow by

Q =
∑

i

qi

ML
(3.1)

and the average network density of vehicles by

K =
∑

i

ni

ML
, (3.2)

where M is the total number of links in the network and L is the length of
links (0.2 km in our simulations). To analyse the effect of spatial heterogeneity,
we represent the global standard deviation of the number of vehicles among
all links in the network by S and the number of full links in the network
by F . A full link is related to high levels of congestion, because it blocks
the departures from upstream links and thereby significantly decreases the
upstream vehicle flow. Each full link blocks the outflow of the two upstream
links. Thus, we approximate the number of blocked links by twice the number of
full links, 2F .
Let us now study the aggregate relation between the network flows Q and

the densities K in the different simulation runs. First, we simulate a network
with an invariant number of vehicles moving randomly over the network and
turning at intersections with different probabilities. We are interested to identify
whether the performance of the network as expressed by the average flow Q
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Figure 5. For a wide range of network densities K , we run 500 simulations for each density over
3 h and calculate the average network flow Q in all runs at 0.5, 1, 2, 3 h of simulation time. Note
that there is no invariant MFD for the network, as the flow Q decreases significantly with time for
K ≥ 40 vehicles km−1. The curves for T = 1, 2, 3 h are the same as in figure 3d (inverted triangle,
T = 0.5 h; square, T = 1 h; cross, T = 2 h; circle, T = 3 h).

is a predetermined or a varying quantity over time when the number of vehicles
moving in the network is constant. In other words, we investigate whether there
exists a well-defined macroscopic fundamental diagram Q =Q(K ). To obtain
these measurements, for a wide range of average densities with values between 20
and 120 vehicles km−1, we run a large number of simulations (500 runs for each
density) and calculate the average network flow of all runs for the same average
density after 0.5, 1, 2 and 3 h of simulation. The results are summarized in figure 5.
It turns out that the variability of flows for low or very high densities is negligible.
For low values of the average network density (less than 30 vehicles km−1), the
network flows stabilize at a characteristic value which is invariant over time
and varies little among simulation runs. Note that the stabilization threshold
of 30 vehicles km−1 is slightly smaller than the value of the network density that
maximizes the network flow (35 vehicles km−1). For very high values of density
(greater than 120 vehicles km−1), the network reaches a state of gridlock very
quickly, and congestion cannot be dissolved. However, for intermediate values of
the network density, we observe a high level of variability. For example, for an
average density of 60 vehicles km−1, the flow decreases from 500 vehicles h−1 after
1 h of simulation to 250 vehicles h−1 after 2 h and less than 100 vehicles h−1 after
3 h. It is clearly visible that the network consistently leads to smaller flow as
time passes. Note also that, for densities higher than 70 vehicles h−1, the network
reaches a state of gridlock after 2 h in the great majority of runs.
This high variability of network flows, especially when the network density

is at the critical value that (sometimes) maximizes flow, deserves further
investigation in the following and implies important questions: why does the
traffic situation significantly vary from one day to another even if travel demand is
similar? How often should we expect a traffic collapse and congestion spreading?
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Figure 6. Histograms of the average network flows Q for network densities of (a) 35, (b) 40, (c) 45
and (d) 50 vehicles km−1 after a time period T = 1 and 3 h of simulation time. Each graph is the
result of 500 simulation runs. Variability of Q is negligible for K = 35 vehicles km−1, but significant
for higher K . Flow Q varies between 0 and maximum flow for a wide range of K and T (black bar,
T = 1 h; grey bar, T = 3 h).

What variables would facilitate a better description of the severity of traffic
congestion? Can we obtain any functional relationship between the capacity and
other key variables rather than having a large scattering describing congested
traffic phenomena?
To learn more in this direction, we further analyse the aforementioned

simulation data and plot histograms of the network flows at different times during
the computer simulation for a range of different densities. These histograms shed
more light on the density range for which the variability of flow is crucial. Figure 6
shows flow histograms for network densities of 35, 40, 45 and 50 vehicles km−1

after 1 and 3 h of simulation time. The density values are commonly observed
in congested city centres worldwide. While the probability of network failure
(as reflected by flows much smaller than capacity) is negligible for a network
density of 35 vehicles h−1, this probability is significant for higher densities. For
example, we observe an almost uniform distribution of flows between zero and
600 vehicles h−1 for a density of 45 vehicles km−1 after 3 h of simulation, while for
a network density of 50 vehicles km−1, the histogram is skewed left. Given the fact
that congested periods in city centres last long (e.g. the speed in the city centre of
Yokohama remains less than 8 kmh−1 for about 5 h each weekday; Geroliminis &
Daganzo 2008), an explanation of the empirically observed flow variability would
provide useful insights to develop more efficient control strategies in the future.
These results also suggest that MFDs should be network specific.
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Figure 7. Relationship between the average network flow and the average network density, when
the data are distinguished according to the standard deviation S of vehicles in the different road
sections. The large reduction of the scattering of congested traffic data as compared to figure 5
suggests considering S as a relevant variable of urban traffic flow (filled circle, S = 8± 0.1; filled
square, S = 10± 0.1; filled inverted triangle, S = 12± 0.1).

We now show that, when considering the spatial distribution of congestion,
which is reflected by the standard deviation S of the number of vehicles in all links
in the network, we can obtain functional relationships, even in cases where the
MFDs show a large amount of scattering. To this end, in each simulation run we
select only the signal cycles for which S is within a range of ±0.1 vehicles per link
around some selected values, e.g. 8, 10 and 12 vehicles per link. We then plot Q
versusK for all times during which the standard deviation is within the predefined
range. The results are shown in figure 7. We observe that the variability in Q can
be explained through the standard deviation S . The remaining scattering of the
flow values is less than 50 vehicles h−1 in all cases. While these results are very
encouraging, they cannot be directly utilized to develop control strategies because
(i) S is a time-dependent quantity and (ii) the critical density that maximizes
flow varies with S .
It is intuitively clear that a high standard deviation in the spatial distribution

of vehicles is connected with lower values of network flows for the same average
network density. But, is there a functional relationship between the average
flow Q and the variability S? The answer is ‘yes’, as can be seen in figure 8.
We observe that, for a given value K of the average density, there is a unique
monotonically falling relationship between the average flow Q and the variability
S in all simulation runs, and the remaining scattering of the flow data is low. For
small densities the flow never breaks down, while it may reach gridlock for higher
densities, as the variability S increases.
It is not difficult to estimate the maximum value of S for a given vehicle

density K . It occurs when almost all vehicles are in fully occupied links that
create spillbacks and do not allow any outflow. During gridlock (with almost zero
flow), the number of full links can be approximated as Fmax ≈ (MK )/k, where k

denotes the maximum density and M is the total number of links in the network.
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Figure 8. Average vehicle flow as a function of the variability S of the number of vehicles in the
different road sections for various values of the average density. For the average vehicle density
K = 20 vehicles km−1, the standard deviation S of the number of vehicles in the different road
sections and the network flow is high. For the average densityK = 30 vehicles km−1, which is slightly
smaller than the critical density, the average flow Q is close to 600 vehicles h−1 for small S . The flow
drops below this value only in 5 per cent of the simulation runs. However, for higher values of K ,
the average flow varies significantly and reaches gridlock for high values of S (circle, density= 20
vehicles km−1; square, density= 30 vehicles km−1; inverted triangle, density= 40 vehicles km−1;
diamond, density= 60 vehicles km−1; pentagon, density= 80 vehicles km−1).

The standard deviation of the number of vehicles per link can be approximated as

Smax ≈

√

Fmax[(K − k)L]2 + (M − Fmax)(KL)2. (3.3)

For K = 40, 60 and 80 vehicles km−1, we find Smax = 12.7, 13.9 and 13.9 vehicles
per link, respectively, which is very close to the values obtained in our simulations.
It is easy to show that Smax becomes maximum for K = k/2= 70 vehicles km−1.
So far, we have shown that, for a system with periodic boundary conditions

and homogeneous turning rates, the number of full links is a key variable of
the system. It is therefore interesting to ask whether there is any functional
relationship between Q and F in more general cases.
To answer this question, we determine for each simulation run the number of

full links within the period of one signal cycle. As the flow and the number of
vehicles in each link are continuous variables, we assume that a link is full when
the number of vehicles is greater than 98 per cent of the maximum possible value,
kL. Figure 9 shows (Q,F) pairs from all simulation runs for different densities K .
The results show consistent and almost linear relationships with a low degree of
scattering and similar slopes, which slightly decrease as K increases. The values of
Fmax for different densities K , as estimated before, match the simulated data well.
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Figure 9. The relationship between the network flow and the number of full links in the network
is almost linear, because uncongested parts of the network are not much affected by the congested
parts. At lower densities, vehicles do not necessarily stop at every signal and can travel more than
one link per cycle, which results in a larger decrease of the flow by each full link in the network
(circle, density= 20 vehicles km−1; square, density= 30 vehicles km−1; inverted triangle, density=

40 vehicles km−1; diamond, density= 60 vehicles km−1; pentagon, density= 80 vehicles km−1).

The numerical findings can be understood as follows: for high values of vehicle
density K , most links without constraints by downstream queues operate at
capacity. In contrast, full links create spillbacks and decrease the flow to zero
for the two upstream links connected with them (remember that the simulated
network has only one-way road sections). Thus, the average flow decreases as

dQ
dF

≈ 2
( g

C

) Q̂

M
= 0.8 vehicles h−1 (3.4)

per additional full link, where g is the duration of the green phase during each
cycle C , Q̂ is the maximum flow and M is the total number of links in the
network. This value is approximately equal to the value of the slope for K = 80
vehicles km−1. For smaller densities, the slope is expected to be higher, because
delays at traffic signals are smaller, and vehicles do not necessarily stop at every
signal, i.e. they can travel more than one link per cycle.

4. Simulations with trip generation and termination

So far, our analysis of the MFD has revealed that, for a periodic road network
with constant vehicle density, the average flow is determined by the average
density and the standard deviation of vehicles (variability) or the number of
full links with a high accuracy (see figures 8 and 9). The results of the previous
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section are independent of origin–destination tables. If these results remain valid
in more general traffic scenarios, they could provide a convincing explanation of
the mysterious variability of congestion from one day to another despite identical
travel demands. We have observed that, even when the computer simulation starts
with a homogeneous distribution of vehicles, the same traffic signal setting, and a
uniform demand, many different spatial distributions of congestion occur owing
to the randomized turning of vehicles. However, would this also be true if the
spatial distribution of congestion was more predictable? We will now simulate
such traffic conditions by directing a fraction of vehicles in the network towards
a destination area, so that the vehicles concentrate around the destination area.
Will the standard deviation of the number of vehicles among links still be a
determinant of the average network flow when the demand is non-homogeneous?
We find that gridlock occurs within a short time also when a small fraction of
vehicles are routed to a destination area. This is because of the fast accumulation
of vehicles in the road sections around and inside the destination area. To remove
vehicles from the links in the destination area and free them for vehicles that
want to enter it, we still have to model trip termination. In this section, we will
keep the number of vehicles in the network constant. This is implemented by
adding a vehicle to a random link (trip generation) for each removed vehicle in
the destination area. In the next section, we will finally study scenarios with a
varying number of vehicles in the network.
We model trip termination by setting a fixed probability of removal of vehicles

for the road sections inside the destination area. The removal is made from the
quantized outflow from the road sections. This implies that no vehicle is removed
from a blocked road section, as in reality. If vehicles with different destinations
are well mixed with the same ratio everywhere, there is the following relationship
between the fraction of vehicles which are routed to the destination area and
the trip termination probability: if the fraction r of the vehicles in the network
are routed to the destination area, the fraction 1− r of the total inflow of the
destination area should leave the destination area. This gives us the possibility to
calculate the trip termination probability p as a function of the fraction r and
the size of the destination area. The probability that a vehicle enters and leaves
the destination area after traversing n road sections is (1− p)n . Therefore, the
average of the probability of leaving the destination area is

(1− p)n = 1− r , (4.1)

where the average is performed over many vehicles with different path lengths n.
As the path length n is independent of the travel times along the road sections,
the termination probability p can be numerically calculated by simulating random
walkers which traverse one link per step. To check whether equation (4.1) is
satisfied, we measure the path lengths of many random walkers. More specifically,
each random walker starts a trip from a random intersection on the boundary of
the destination area, chooses random directions at intersections, and traverses
links until it leaves the boundary again. Our results show that, for a 5× 5
destination area, if one vehicle out of u vehicles from the outflow of the road
sections is routed to the destination area (r = 1/u), one vehicle out of 5u − 5
terminates its trip inside the destination area (p= 1/(5u − 5)). For instance,
when 20 per cent of vehicles are routed to a destination area of size 1 km× 1 km,
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Figure 10. Traffic simulation with a 1 km × 1 km destination area located in the centre of a 6 km ×

6 km large network with periodic boundary conditions. The data points correspond to the scenarios
where fractions of 5, 10, 15, 20, 25 and 50 percent of the vehicles are routed to the destination area.
Trips are terminated inside the destination area. There is a uniform trip generation throughout
the network that keeps the vehicle density constant. Besides the vehicle density in the network
(which was kept constant) both (a) the standard deviation of number of vehicles among links and
(b) the number of full links are determinants for the average network flow, even when the demand
is not uniformly distributed in the network (circle, density= 20 vehicles km−1; inverted triangle,
density= 40 vehicles km−1; diamond, density= 60 vehicles km−1).

the trip termination probablity at intersections inside the destination area is
0.05. Figure 10 illustrates the results. For each vehicle density, we simulated 20
realizations with u ∈ {2, 3, 4, 5, 10, 20}. The good match between figures 8, 9 and
10 verifies that both the standard deviation of number of vehicles among links
and the number of full links determine the average network flow together with
the vehicle density in the network, even if the travel demand is not uniformly
distributed in the network.

5. Time-dependent scenarios

In reality, urban road networks are subject to varying network densities. However,
all simulations in the previous sections kept the number of vehicles in the
network constant by a balanced trip generation and termination. Hence, as a
final test we check whether our findings stay the same for time-varying traffic
volumes. To represent an open system, we simulate a fast growing demand
in the network. For this, we simulate scenarios in which trip generation is
independent of trip termination. Our simulation varies from fast trip generation
(5 vehicles per link per hour) to very fast trip generation (10 vehicles per link
per hour), and from small fractions of vehicles being routed to the destination
area (e.g. 5%) to large fractions (e.g. 50%). To compare our results with
those presented in figures 8, 9 and 10, from all the different simulations, we
choose the data points for which the average vehicle density is K = 20± 1,
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Figure 11. Even for varying traffic volumes, the average network flow can be expressed as a
function of the average vehicle density and (a) the standard deviation of number of vehicles or (b)
the number of full links (circle, density= 20± 1 vehicles km−1; inverted triangle, density= 40± 1
vehicles km−1; diamond, density= 60± 1 vehicles km−1).

40± 1 and 60± 1 vehicles km−1. The good agreement with previous results, as
illustrated in figure 11, supports that even under varying traffic volumes, the
average network flow can be expressed as a function of the standard deviation
of the number of vehicles and the average vehicle density, independent of time-
dependent patterns of travel demand. Due to fast growing demand, we observe
that for the average network density of K = 60 vehicles km−1 network flows are
always low.

6. Summary, conclusions and outlook

We have studied how the spatial variability of vehicle density can affect the
traffic performance at the network level. Most studies until now have looked at
macroscopic relationships between the average flow and density, but not at the
relevance of their variability. The results of this paper show that the standard
deviation of density is a key variable which is required (i) for the existence of
an invariant urban MFD, (ii) to explain the wide variation of average network
flows (potentially ranging from high values up to gridlock even in the case of
the same average density and demand), and (iii) to provide a robust and well-
defined macroscopic functional relationship even in cases where origin–destination
flows significantly vary. A simple explanation of these dependencies is that an
inhomogeneity in the spatial distribution of car density increases the probability
of a spillover, which substantially decreases the network flow.
To reach the above conclusions, we have introduced new modelling techniques,

namely a flow quantization and a memoryless traffic flow routing. Flow
quantization is natural in micro-simulation (car-following or cellular automata
models), but non-standard in macro-simulation models. It was not known before
that this consideration of a micro-feature would make such a big difference in
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macro-models. This allowed us to reproduce a realistic variability of network flows
in fluid-dynamic computer simulations even for the same average car density, and
without the need of detailed origin–destination tables and complicated routing
assignment models.
While the results of this paper provide a clearer understanding of traffic in

cities, further investigations are needed to identify (i) whether these functional
relationships also hold for more complex road networks and turning relations,
(ii) how traffic congestion spreads with time as a function of topological and
demand characteristics, and (iii) how these outcomes can be applied to real cities
in order to avoid high levels of congestion. For freeways, one needs to investigate
the existence of an invariant MFD, as the flow–density relationship and traffic
dynamics are different (e.g. Kerner 1998; Orosz et al. 2009).
To enhance traffic performance, we are interested in strategies that can

reduce the variability of the vehicle densities. For this, one has to decrease the
number of fully occupied links in a network, e.g. by prioritizing critical vehicle
queues (Helbing & Lämmer 2007; Lämmer & Helbing 2008) or restricting access
to neighbourhoods which exceed certain density thresholds (Daganzo 2007).
Recently, Helbing & Mazloumian (2009) proposed a signal control, which explains
the slower-is-faster effect when the use of a road section is so small that it requires
extra time to collect enough vehicles for an efficient service during the green
phase. Similarly, the slower-is-faster strategy would suggest restricting the inflow
to congested areas to keep the service capacity high (Geroliminis & Daganzo
2007; Johansson et al. 2008).
Another future direction is the simulation of more complex traffic networks.

This could include irregular networks with varying number of lanes, link lengths
and counterflows, allowing vehicles to turn left and right at each intersection,
and finally multi-centric cities with multiple attraction centres. Interesting
phenomena/questions arise (i) when pockets for left turn movements spill over and
block through movements on the same link or (ii) previously separated congestion
areas reach each other, thereby causing a serious large-scale collapse of traffic
flow. Also, additional studies are needed to further understand the impact of
network topology and its interplay with the network dynamics and congestion
spreading. Finally, as simulations invariably involve untested assumptions, these
should be tested by extensive real-life experiments. Such empirical studies will
reveal whether the functional dependence of the average network flow on the
average density and the number of full links are independent of different demand
profiles, as suggested, which would be very useful for theoretical and practical
considerations.
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