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     A new framework for equilibrium selection is presented. Playing games recurrently in
space and time may render one of the equilibria “spatially dominant”. Prevailing initially on
a large enough finite part of the space, it will take over on the whole space in the long run.
In particular it will drive out the other equilibria along travelling waves. This new dominance
concept is compared with the Harsanyi–Selten risk-dominance concept.

0. Introduction

The notion of dominance appears in many different fields. In game theory, dif-
ferent Nash equilibria have been compared by dominance. As shown by Harsanyi and
Selten [10], the notion of risk-dominance is often more significant and meaningful
than what may seem the more natural concept of Pareto (or payoff)-dominance.

Similarly, in dynamical systems, there is a notion of dominance, suggested by
Fife [5], which compares the strength of different (stable) equilibrium states in the
context of reaction diffusion equations. Here, the direction of travelling wave solutions
connecting two equilibria plays a decisive role.

It is the purpose of this paper to point out a fundamental connection between
these two notions of dominance. This observation leads to a new approach to the
problem of equilibrium selection in normal form games, as initiated in Hofbauer [12].1)

The outline of this paper is as follows. In the first four sections, we briefly review
these two notions of dominance, and link them in the simplest case, namely symmetric
2 × 2 games, played in space and time. In sections 5–7, we extend this idea to 2 × 2
bimatrix games and two classes of n-person coordination games, relating the dynamic
concept of spatial dominance with the game theoretic concepts of risk-dominance and
Nash products. Throughout these sections, we implicitly use only the best reply struc-
ture of the game. The last section (8) points to some of the difficulties which arise
when information beyond the best reply structure enters the game.

1) Other recent approaches to equilibrium selection, based on stochastic dynamics, are due to Kandori et
al. [16] and Young [32]. Somewhat closer to the present approach are the spatial models of Ellison [4],
Blume [1] and Kosfeld [18]. See also Sugden [27] and Yegorov [31] for spatial models in economics.
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1. Games and risk-dominance

Consider an n-person binary choice game. Each of the n players has two pure
strategies: Ai and Bi. The frequency of the Bi strategy will be denoted by pi, hence that
of Ai is  1 – pi . With this notation, the pure strategy B = (Bi) corresponds to p = 1 =
(1,…,1) and A = (Ai) to 0 = (0, …,0). The state space, i.e., the set of all mixed strategy
profiles, is the n-dimensional cube [0, 1]n. Let π i( p1,…, pn) = π i( pi; p–i) denote the
payoff for player i. For a normal form game, this is a linear expression in each pj , for
each i. The essential information about the game is contained in the payoff differences
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often called the incentive function for player i. A is a Nash equilibrium if d i(0) ≤ 0 for
all i, while B is a Nash equilibrium if d i(1) ≥ 0 for all i. For strict equilibria, all these
inequalities are strict. Binary games with both A and B being strict equilibria were
called bipolar games by Selten [26]. A further property of many bipolar games is the
monotonicity of the incentive functions,

∂d i

∂ pj
≥ 0 for all i ≠ j , (1.2)

which is equivalent to the monotonicity of the best reply correspondence,

p ≤ q ⇒ BR(p) ≤ BR(q).

A two-person binary choice game is usually described by a pair of 2 × 2 payoff
matrices

a1, a2 b1 , b2

c1, c2 d1 , d2

 

  
 

  , (1.3)

which leads to the incentive functions

d1( p) = (c1 − a1)(1 − p2 ) + (d1 − b1)p2 ,

d2( p) = (b2 − a2 )(1 − p1) + (d2 − c2 )p1.
(1.4)

A is a strict equilibrium if d1(0) = c1 – a1 < 0 and d2(0) = b2 – a2 < 0, and B is a strict
equilibrium if d1(1) = d1 – b1 > 0 and d2(1) = d2 – c2 > 0. B is said to risk-dominate A
if the Nash products satisfy the inequality

d1(1)d2(1) > d1(0)d 2(0). (1.5)

Harsanyi and Selten [10, p. 87, theorem 3.9.1] show that the concept of the risk-
dominant equilibrium is characterized by the following set of three axioms:

(1) Invariance with respect to isomorphisms.

d i ( p)=π i (Bi ;p− i )−π i ( Ai ;p− i ), (1.1)



(2) Best reply invariance.

(3) Monotonicity.

The first simply means that the concept is immune against renamings of strate-
gies and players. The third means that if A risk-dominates B, then also A′ risk-
dominates B whenever ai′ ≥ ai for i = 1, 2. The second axiom requires that the result is
the same for two games that have the same best reply structure among mixed strategies.
This is a consequence of the rationality postulate underlying classical game theory.
In particular, the result depends only on the incentive functions and, moreover, is
invariant under multiplications of these by (possibly different) positive constants.

Hence, for 2 × 2 games, the risk-dominance concept depends only on the
fractions (a1 – c1) (d1 – b1) and (a2 – b2) (d2 – c2). Now it is easy to see that together
with the other two axioms, this implies (1.5).

In contrast, equilibrium B is said to be Pareto dominant (or payoff dominant) if
d1 > a1 and d2 > a2. However, this simpler concept of dominance does not satisfy
axiom 2. We will return to this point in section 8.

For n ≥ 3 players, there seems to be no generally convincing and natural exten-
sion of the concept of risk-dominance. The obvious generalization of the products of
incentives (1.5) has been considered by Güth [8]; more sophisticated extensions can
be found in Harsanyi and Selten [10], Güth and Kalkofen [9], Selten [26], etc. The
trouble with different equilibrium selection criteria has been illuminated in the simple
class of symmetric bipolar n-person games by Carlsson and van Damme [2] and Kim
[17]. There are two special classes of bipolar games where the situation looks better:
Unanimity games, and games with linear incentives. These classes will be discussed
in more detail in sections 6 and 7.

2. Spatio–temporal games

Let us now consider n player populations distributed in space (which is assumed
to be the one-dimensional continuum R for simplicity). Let ρAi(x, t) and ρBi(x, t) denote
the densities of Ai and Bi players, i.e., sa

bρAi(x, t)dx  denotes the number of Ai players
in the interval [a, b] at time t. We assume that these densities will change in time, due
to local interaction and migration of players, and satisfy a system of reaction–diffusion
equations

∂ρAi

∂t
= − Fi(ρ) + d

∂2ρAi

∂x2 ,
∂ρBi

∂t
= Fi(ρ) + d

∂2ρBi

∂x2 . (2.1)

The second term on the right-hand side of (2.1) models random migration of players
at a uniform, strategy- and player-independent rate d > 0, see Fife [5, chap. 1]. Then
the density of the total i population, ρ i(x, t) = ρAi(x, t) + ρBi(x, t), satisfies a diffusion
equation
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and hence converges under mild assumptions to a spatially constant: ρ i(x, t) → ρ i , as
t → `, i.e., each player population will be equally spread over the line R. Let us assume
that this equilibrium is reached, i.e., ρ i(x, 0) = ρi(x, t) = ρi  is independent of x. Then
the frequencies pi(x, t) = ρBi(x, t) ρi  satisfy a reaction diffusion system

∂ρi

∂t
= d

∂2ρi

∂x2 , (2.2)

The first term, the reaction term Fi( ρ), models the local interaction of players and the
resulting adaptations of their strategy according to their local experience. There are at
least two sensible choices for this reaction term,2) arising from two different mechan-
isms of adaptation: (1) best response, and (2) imitation. In (1), we assume that a certain
proportion of (randomly chosen) players at each spot x switches to the locally best
reply at any time t (see Gilboa and Matsui [7] and  Hofbauer [11]). For binary games,
for (2.1) this means

∂ pi

∂t
= fi(p) + d

∂2pi

∂ x2 . (2.3)

2) Note that both of these reaction terms leave the local density ρi(x, t) fixed (at ρi) since they both
involve switching. This may not be the case if the reaction term is to model natural selection, as shown
in Cressman and Vickers [3].

Fi (ρ) =
− ρBi

, if di( p) < 0,

ρAi
, if di (p) > 0.

 
 
 

  
(2.4)

For frequencies, this leads to

fi(p) =
− pi , if d i(p) < 0,

1 − pi , if d i( p) > 0

 
 
 

  
(2.5)

in (2.3). In (2), we assume that players change their strategies by imitation, according
to the proportional imitation rule, see Schlag [25]. In (2.1), this leads to

Fi (ρ) = ρAi ρBi d
i(p) ρi

fi(p) = pi(1 − pi )di(p). (2.6)

and in (2.3) to the replicator dynamics, i.e.,

More general selection, imitation, or myopic adjustment dynamics, satisfying

would also be sensible for the reaction term.

f i ( p ) < 0 ⇔ d i ( p ) < 0, (2 .7 )
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In the case of a symmetric binary game, if we assume a single player population,
the system (2.1) reduces to a single reaction–diffusion equation. For such, there is a
well-developed theory (see e.g., Fife [5]), whose relevant aspects are summarized in
the next section.

3. Dominance for bistable reaction–diffusion equations

Consider a single reaction–diffusion equation of the form (2.3), with the dif-
fusion rate normalized to d = 1 (which can always be achieved by a scaling of the x
axis),

pt = pxx + f (p). (3.1)

We assume that the reaction dynamics is bistable: There are two stable equilibria at,
say, p = 0 and p = 1, separated by an unstable equilibrium at ˆ p ∈ (0,1):

f (p) < 0 for 0 < p < ˆ p ,

f ( p) > 0 for ˆ p < p < 1.
(3.2)

We restrict our attention to solutions p(x, t) of the reaction–diffusion equation (3.1)
with initial conditions p(x, 0) ∈[0, 1]. The maximum principle for parabolic PDEs
then implies that a solution of (3.1) exists for all t ≥ 0 and again satisfies p(x, t) ∈
[0, 1]. Some solutions also exist for all negative times; among them are the stationary
solutions p(x, t) = P(x), satisfying

′ ′ P + f (P) = 0, (3.3)

and, more generally, the travelling wave solutions p(x, t) = P(x – ct), where c is called
the wave speed and the function P determines the shape of the wave. There are infi-
nitely many such travelling wave solutions, but there is a unique one (up to translation),
which satisfies the “boundary conditions”

  P( − ` ) = 0, P(`) = 1. (3.4)

This particular travelling wave which connects the two stable equilibria is called a
bistable wave. The sign of c determines the direction of this wave. If c < 0, i.e., the
wave moves to the left, then p(x, t) → 1 for t → ` along the wave, i.e., the equilib-
rium 1 takes over in the long run along this special solution. The stable equilibrium 1
(i.e., strategy B) dominates the stable equilibrium 0 (i.e., strategy A) in this sense.
In the critical case c = 0, there is a stationary solution (a standing wave) satisfying
(3.3)–(3.4).

It is of utmost interest to determine the sign of c, i.e., which of the two equilibria
0, 1 dominates the other. For scalar reaction–diffusion equations on the line, this is
done by the following simple criterion.

J. Hofbauer y The spatially dominant equilibrium of a game 237



Theorem 1.  For a bistable equation of the form (3.1)–(3.2), the following conditions
are equivalent.

(i) There exists a unique travelling wave satisfying (3.4) and its speed is c < 0.

(ii) For any initial condition satisfying p(x, 0) = 0 for x < a and p(x, 0) = 1 for
x > b, one has p(x, t) → 1 as t → `, for each x ∈R.

(iii) 1 is asymptotically stable in the compact-open topology, i.e., there exist L > 0
and ε > 0 such that for each initial function satisfying p(x, 0) > 1 – ε for
x ∈[– L, L], p(x, t) → 1 as t → `, uniformly for x ∈C, for each compact set
C , R.

(iv) There exists a “standing pulse” solution, i.e., a stationary solution P(x) > 0,
satisfying (3.3) and limx → ±` P(x) = 0.

(v) s0
1 f ( p)dp > 0.

(vi) V(1) > V(0), where V is a potential function for the reaction term: V ′( p) =
f ( p).

For a proof of these and related statements, see Fife [5, chap. 4], or Volpert et al.
[29].

The first three conditions describe various strengths of the spatial dominance
concept. (i) and (ii) can be visualized as 1 drives out 0, along the travelling wave, or
along more general solutions. (ii) is a stability property of the wave. Actually, it can
be shown that the bistable wave is asymptotically stable with respect to the uniform
topology on R.

(iii) is an even stronger form. It is sufficient that initially in a large enough, but
finite part of the space, 1 is predominant. Then it will be able to invade and take over
the whole space in the long run. This usually happens in the form of a two-sided wave
front. (iii) also assesses that 1 has an infinitely larger basin of attraction than 0. (Note
that both 0 and 1 are asymptotically stable in the uniform topology; for example, if
0 ≤ p(x, 0) < ˆ p  for all x, then p(x, t) → 0.) Starting from a “randomly chosen” initial
function, p(x, 0) ∈[0, 1] will lead to 1, since some translate p(x – c, 0) will satisfy the
assumption in (iii).

(iv) may be informally expressed as follows: The existence of a finite part of the
solution close to one (more precisely: p > ˆ p ) is as good as an infinite piece close to
zero (more precisely: p < ˆ p ).

Finally, (v) and (vi) are explicit conditions for determining the dominant of the
two equilibria. The larger of the two areas enclosed by the graph of f below and above
the p-axis determines the dominant state. For (vi), note that both 0 and 1 are local
maxima of V. It is the global  maximum of V that corresponds to the dominant equilib-
rium.

In the marginal case, when there is equality in (v) and in (vi), there still exists a
unique bistable wave, but with zero speed, c = 0, so that it is in fact a stationary
solution, a so-called “standing wave”. In this case, the two equilibria 0 and 1 may be
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considered equally strong: All initial conditions of the form described in (ii) converge
uniformly to (a shift of) this standing wave. None is spatially dominant in the sense of
(iii). However, except for this marginal case, theorem 1 applies either to f ( p) or to
– f (1 – p), and hence either 0 or 1 is spatially dominant.

It is straightforward to apply theorem 1 to some simple spatio–temporal games.
For a symmetric 2 × 2 game with payoff matrix ( 0

a
b
0 ), and with the replicator dy-

namics (2.6) as reaction term, f ( p) = p(1 – p)( p – ˆ p ), it follows easily from (v) or (vi)
that c > 0 iff ˆ p  > 1 2 iff a > b. The same result holds if we take the BR dynamics
as reaction dynamics. Hence, for this simplest class of bipolar games, the spatial
dominance concept described by theorem 1 agrees with the risk-dominance concept
described in section 1.

It is instructive to compare the behaviour described by theorem 1 with that of the
stochastic spatio–temporal model of Kosfeld [18]. In his cellular automaton with a
local updating rule related to the proportional imitation rule of Schlag [25], the asymp-
totic speed of propagation is (1 4)(a – b) (a + b) (in dimension 1, conditional on the
convergence to B). In the present reaction–diffusion model, taking the replicator
dynamics (2.6) as reaction dynamics, the wave speed c is

c = (a − b)
d

2(a + b)

 
  

 
  

1 2

,

while for the best response dynamics, it is

c = (a − b)
d

ab

 
  

 
  

1 2

.

Theorem 1 will be exploited further in section 8.
An analog of theorem 1 is not known for several space dimensions, nor for

systems of reaction diffusion equations. It is conjectured that the first four conditions
are still equivalent for bistable systems, if the reaction term enjoys some monotonicity
properties. The proof of theorem 1 exploits the explicit condition (v), which  makes
no sense for systems. Condition (vi) applies to gradient systems, where partial results
are known (see Reineck [23]). In general, the computation of the direction of the wave
is extremely difficult  for systems of reaction–diffusion equations. For some estimates
in mutualistic systems, see Mischaikow and Hutson [21]. A technique using singular
perturbation theory is developed in Hutson and Mischaikow [15] for systems with
very different diffusion rates. For our case of equal diffusion rates in (2.1), these
techniques do not apply.

Fortunately, if we take the best response dynamics as reaction term – keeping in
mind that most equilibrium selection theories assume rationality on the part of the
players – the system (2.1) remains tractable and to a sufficient extent explicitly
solvable. This enables us to extend much of theorem 1 to determine the spatially
dominant equilibrium for more general classes of games.
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Definition.  A Nash equilibrium is said to be spatially dominant if the corresponding
spatially constant stationary solution of the system (2.3) satisfies the analog of property
(iii) of theorem 1, i.e., if it is asymptotically stable in the topology of uniform conver-
gence on compact intervals.

Obviously, at most one equilibrium can be spatially dominant; hence, if existence
can be shown, this is a property that provides a way of equilibrium selection. The
spatially dominant equilibrium may depend on the reaction dynamics, as is obvious
from condition (v) of theorem 1. Concrete examples will be treated in section 8. If it
is not otherwise specified, we agree to use the best response dynamics (2.5).

4. Spatial dominance for the BR dynamics

In this section, we sketch the proof of theorem 1 for the best response dynamics,
as this will be the key for the new results in this paper, derived in the following
sections. As the assertions (i) and (ii) related to travelling waves have been treated in
detail in Hofbauer [12], we focus here on the part (iii) and its relation to (iv).

Let ψ(x) denote a stationary solution of (3.1) such that ψ(x) < 1 for all x and
ψ(x) < 0 for all x with large absolute value. Then ψ+(x) = max(0, ψ(x)) is a sub-
solution with compact support of (3.1). We will show that the existence of such
a subsolution of compact support implies the spatial dominance of 1 (see Fife [5,
theorem 4.8]). Consider the solution υ(x, t) of (3.1) with initial value υ(x, 0) = ψ+(x).
Then by the maximum principle, υ(x, t) is monotonically increasing in t for each fixed
x ∈R. Hence, limt→+` υ(x, t) =: w(x) exists, satisfies ψ+(x) < w(x) ≤ 1 and is a station-
ary solution of (3.1). By the strict maximum principle, we even have υ(x, t) > ψ(x)
for each t > 0. Denoting the shifted subsolution by ψα (x) = ψ+(x – α), we obtain for
fixed t > 0: υ(x, t) > ψα (x) for all x ∈R and all small enough α. In the limit t → `,
this leads to w(x) ≥ w(x – α) for α small enough, which can only hold if w is a constant
function. Hence, w is the smallest spatially constant equilibrium larger than ψ(x),
which in our case is w(x) ≡ 1. Monotonicity of the flow again shows that for all initial
functions ψ+(x) ≤ u(x, 0) ≤ 1, the corresponding  solution u(x, t) → 1 as t → `, as
claimed. That the convergence is uniform on bounded intervals follows from Dini’s
theorem.

This proof extends to systems provided that the reaction term generates a mono-
tone flow (see Fife [5, section 5]). For (2.3) with reaction term (2.5) or (2.6), this is
the case if (1.2) holds. Furthermore, one may have to impose some conditions to ensure
w = 1.

For constructing such a subsolution ψ of compact support, it is useful to start
with a standing pulse. Consider the function

  
ψ r ( x) =

e −jxj (e r − e − r ) 2, if j xj > r ,

1 − e − r (e x + e − x ) 2, if j xj < r

 
 
 

  
(4.1)
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for any r > 0. It satisfies3)

3) 1I denotes the characteristic function of the set I.

′ ′ ψ r + 1[ − r, r] − ψ r = 0, (4.2)

and is the unique C1 solution of this differential equation which obeys the boundary
conditions ψr(± `) = 0. Note that

Hence, the unique (up to translation) standing pulse solution of the scalar equation
(3.1) with f (p) = 1[ ˆ p ,1] (p) − p  is given by ψr(x) with ψr(r) = ˆ p . By (4.3), this exists
if and only if ˆ p  < 1 2 in accordance with theorem 1(iv), (v).

From this standing pulse, we can easily obtain a subsolution of compact support,
which implies the spatial dominance of the equilibrium 1 as shown above. We simply
consider the perturbation

ψ r,ε (x) = ψ r (x) − ε (ex + e− x ). (4.4)

This function again satisfies (4.2). Hence, with r, ε > 0 chosen such that

ψr, ε(x) yields a subsolution of compact support as required above. Equation (4.5) has
a solution (choose r large enough, and then ε) whenever ˆ p  < 1 2. This shows the
implication (v) ⇒ (iii) in theorem 1, i.e., the spatial dominance of the risk-dominant
equilibrium for symmetric 2 × 2 games.

5. 2 × 2 coordination games

Any 2 × 2 game with two strict equilibria (A and B) is equivalent (in the sense of
having the same incentives) to a coordination game or unanimity game

a1, a2 0, 0

0, 0 b1 , b2

 

  
 

  (ai , bi > 0). (5.1)

The incentive functions (1.4) then simplify to

d1( p) = − a1(1 − p2) + b1p2 ,

d2 ( p) = − a2(1 − p1) + b2 p1 ,

and obviously satisfy the monotonicity conditions (1.2). The incentives vanish at the
interior equilibrium

E = ( ˆ p 1, ˆ p 2 ) = a2

a2 + b2
,

a1

a1 + b1

 
  

 
  . (5.2)

ψ r , ε (r ) = 1
2 (1 − e − 2 r ) − ε (e r + e− r ) = ˆ p , (4 .5)

ψ r ( r ) = 1
2 (1 − e − 2 r ) < 1

2 . ( 4 .3 )
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B is risk-dominant over A if B has the higher Nash product,

a1a2 < b1b2 , (5.3)
or equivalently

ˆ p 1 + ˆ p 2 < 1. (5.4)

Theorem 2 .  When B risk-dominates A, then B is spatially dominant.4) Furthermore,
there exists a unique monotone travelling wave for (2.3) that connects the two strict
equilibria. Its wave speed c is negative, i.e., B drives out A.

Proof.  The statements concerning travelling waves have been shown in Hofbauer [12].
Hence, we are left to show that risk dominance implies spatial dominance.

Recalling (4.4), we make an Ansatz P(x) = (P1(x), P2(x)), with

4) Theorems 2, 3 and 4 refer to spatial dominance with reaction term given as the best response dynamics.

Pi (x ) = ψ ri ,ε i ( x) (5.5)

for a subsolution of compact support. To make (4.2) consistent with a stationary solu-
tion of (2.3) for the game (5.1), conditions

P1(r2) = ˆ p 1, P2(r1) = ˆ p 2 (5.6)

have to be satisfied. For r1 ≤ r2, more explicitly this becomes

1
2 (er1 − e− r1 )e− r2 − ε1(er2 + e− r2 ) = ˆ p 1,

1 − 1
2 (e r1 + e− r1 )e− r2 − ε2(er1 + e− r1 ) = ˆ p 2 .

(5.7)

Adding these two equations shows that ˆ p 1 + ˆ p 2 < ψr1
(r2) + ψr2

(r1) = 1 – e–r1– r2 < 1,
hence a solution of (5.7) exists only if the equilibrium B = 1 is risk-dominant, which
we assume in the following. Furthermore, (5.7) implies the estimates

1
2 er1 − r2 > ˆ p 1, 1 − 1

2 er1 − r2 > ˆ p 2 . (5.8)

Assuming, without loss of generality, ˆ p 1 ≤ ˆ p 2  (and hence ˆ p 1 < 1 2) (otherwise inter--
change the two players), we can choose r1 – r2 < 0 in such a way that inequalities
(5.8) are satisfied. Then choose r1 + r2 large enough and suitable ε1, ε2 > 0 to satisfy
(5.7). This yields a subsolution of compact support (under assumption (5.4)). Since
ψ ri ,εi (0) > ψ ri ,ε i (rj ) = ˆ p i , the only constant stationary solution w = (w1, w2) ≥ P(x)
is w = 1. Hence, 1 is spatially dominant by the argument in section 4. u

In a similar way, one can show that if B is risk-dominant, then there exists a
standing pulse solution: one has to set εi = 0 in (5.5) and (5.6). The two equations
(5.7) have a unique solution r1 – r2 > 0 if and only if (5.4) holds.
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6 n-person unanimity games

A special class of bipolar games are n-person unanimity games (also called pure
coordination games), which are the natural generalization of the 2-person game (5.1):
If all players unanimously choose A (respectively, B), then player i gets payoff a i > 0
(respectively, bi > 0); otherwise, if there is no such coordination, the payoff is 0 to
everyone. The incentive functions for these games are given by

d i( p) = bi pj − ai (1 − pj ).
j ≠ i
∏

j ≠ i
∏ (6.1)

The classical equilibrium selection principle for this class of games is based on
Nash’s bargaining theory, see Harsanyi and Selten [10]. If B has the higher “Nash
product”, i.e., if
  b1 L bn > a1 Lan , (6.2)

then strategy B is the preferred outcome over A. Although this criterion is not as well-
founded as in the 2-person case (there seems to be no similarly convincing axiomatic
characterization), it is generally accepted, see e.g., Güth [8], Güth and Kalkofen [9].
The first dynamic model that justifies this criterion was given in Hofbauer [12], where
it was shown that along a bistable travelling wave, the equilibrium with the higher
Nash product drives out the other equilibrium. More precisely, the equivalence of
theorem 1(i) and (ii) with (6.2) was established there. In the following, we will com-
plete this by showing spatial dominance, i.e., part (iii) of theorem 1.

Theorem 3.  In an n-person unanimity game, the strict equilibrium with the higher
Nash product is the spatially dominant equilibrium of the game.

We first prove a general result.

Lemma 1.  For a binary n-person game whose incentive functions (1.1) satisfy the
monotonicity condition (1.2), B = 1 is spatially dominant if there exist ri > 0 such that
for all i = 1,…, n

d i(Φ(r1 − ri ), … , Φ(rn − ri)) > 0. (6.3)

Here, Φ denotes the function

which satisfies the symmetry condition

Φ(z) + Φ(− z) = 1. (6.5)

Φ(z ) =
1
2 e z , for z ≤ 0 ,

1 − 1
2 e − z , for z > 0 ,

 
 
 

  
(6 .4)
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Proof.  As in (4.4) and (5.5), we again make an Ansatz Pi(x) = ψri,εi(x) for a subsolution
of compact support. If we choose ri > 0 such that

d i( P1(ri ), … , Pn(ri )) = 0, (6.6)
then

    d i( P1(x), … , Pn( x)) v 0 ⇔ jxjb ri , (6.7)

since Pi are unimodal (symmetric, strictly decreasing for x > 0) and ∂d i ∂pj ≥ 0, and
hence d i(P(x)) strictly decreases as x increases from 0 to `.

Now (4.1) implies an upper estimate for ψr(x),

  ψ r( x) < Φ(r − j xj), (6.8)

from which we obtain Pi(x) < Φ(ri – jxj).
Inserting these into (6.6), we obtain (6.3) as a necessary condition for (6.6). Since

the estimate (6.8) becomes sharp as jxj → `, Φ(ri – rj) – ψri(rj) becomes arbitrarily
small if rj becomes very large. Hence, (6.3) implies the existence of a solution of (6.6)
after replacing ri → ri + C (C large enough) and then choosing suitable ε i > 0.

Since d i(P(0)) > 0 for all i by (6.7), the smallest equilibrium w with wi > Pi(x)
for all x is wi = 1. By the general argument in section 4, B = 1 is spatially dominant.

u

Note that for 2 × 2 games (5.1), inequality (6.3) boils down to (5.8).
Φ is the shape of the standing (increasing) bistable wave in (3.1), with f ( p) =

1[ 1
2 ,1] ( p) . If there exist ri > 0 such that the inequalities in (6.3) become equations, then

we have found a standing wave solution P(x) = (Φ(ri – x)) connecting in a decreasing
way the two equilibria 0 and 1. Then neither equilibrium is spatially dominant. If all
inequalities in (6.3) are reversed, then 0 is spatially dominant.

Proof of theorem 3.  For (6.1), (6.3) can be rewritten as

1 − Φ(rj − ri)

Φ(rj − ri )
< bi

ai
,

j ≠ i
∏ (6.9)

or

f(ri − rj ) < ci,
j

∑ (6.10)

with the notations

f (x) = log
1 − 1

2 e− x

1
2 e− x = log(2e x − 1), for x ≥ 0,

− f (− x), for x < 0,

 
 
 

  
(6.11)

and ci = log(bi ai). If B has the higher Nash product, i.e., (6.2) holds, then ∑ici > 0.
f is strictly monotonically increasing and f (x) … x as x → `.
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We show that for each sequence c1 ≤ c2 … ≤ cn, with ∑ici = 0, there exists a
sequence r1 ≤ r2 ≤ … ≤ rn such that

fi(r) = f (ri − rj ) = ci .
j

∑ (6.12)

By changing coordinates, si = ri +1 − ri , gi = fi +1 − fi ,  we see that the map s a g(s)
from R+

n–1 to itself, which is conjugate to the map r a f (r), has the following monoton-
icity properties: gi increases strictly monotonically in si from 0 to `, and gi(s) … ns i,
whenever si → `. Hence, modulo a coordinate transformation z = s (1 + s), this map
is conjugate to a map z a h(z) of the cube [0, 1]n–1 into itself, which maps each face
into itself. Such a continuous map is surjective, by standard theorems from topology.
This proves the claim (6.12) (thereby implying the existence of a standing wave in the
case of equality of the Nash products in (6.2)) and hence the existence of a solution to
(6.10) for each sequence ci, with ∑ci > 0. u

7. Potential games with linear incentives

Another important extension of 2-person unanimity games to n-person games
are bipolar games with linear incentives, as considered by Selten [26].

The incentive functions take the form

di ( p) = α ij pj − si
j = 1

n

∑ (7.1)

with αii  = 0. We further assume that

αij = α ji > 0. (7.2)

Denote αi = ∑n
j=1 αij . Note that the special case n = 2, α12 = α21 = 1 and s1 = ˆ p 2 , s2 = ˆ p 1

covers the 2 × 2 coordination games.
The positivity of the coefficients in (7.2) implies the monotonicity (1.2) of the

best reply structure, as required in section 4. The symmetry of the “interaction matrix”
αij  implies that the game is a “potential game” in the sense of Monderer and Shapley
[22]. For binary choice games, this means that there exists a potential function V( p)
such that ∂V ∂pi = d i( p). A specific potential function for (7.1) is given by

V ( p) = 1
2

αij pip j − si pi .
i

∑
i, j
∑ (7.3)

Note that V(A) = V(0) = 0 and V(B) = V(1) = 1
2 ∑i,j α ij – ∑i si , and if these are (strict)

equilibria, then they are (strict) local maxima of V. For a potential game, each Nash
equilibrium is a critical (extremal) point of V and each local maximum is a Nash
equilibrium. A natural way of equilibrium selection for potential games (see  Monderer
and Shapley [22, p. 134]) is to choose the (usually unique) global maximum of V.
Applying this criterion to (7.1), B is selected over A iff
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Relating this criterion to the present spatial approach, it was shown in Hofbauer [12]
that along a bistable travelling wave connecting A and B, B drives out A iff (7.4)
holds. (Such a wave exists if there are no other strict equilibria besides A and B,
but not necessarily in general.) In the following theorem, we show that if A is the
global maximizer of V, then B is actually spatially dominant (even if there are other
equilibria). Note that V(1) > V( p) for all p ∈[0,1] n in particular implies – by choosing
the corners of the hypercube for p – the inequalities

V (B) > V(A), i.e. ,
1
2

α ij > si .
i

∑
i, j
∑ (7.4)

  

si < αi − 1
2

αij = 1
2

αij +
i ∈I, j ∉ I
∑ αij , ∀I , {1, 2, … , n}.

i, j ∈ I
∑

i, j ∈I
∑

i ∈I
∑

i∈ I
∑ (7.5)

Note that (7.5) implies (7.4) for I = {1, 2,…, n}, and sk < αk for I = {k}, i.e., that B is
a strict equilibrium. Whether si > 0, i.e., A is an equilibrium, is irrelevant in the follow-
ing result. Also, conversely, (7.5) implies that 1 is the strict global maxmum of V,
since V is affine linear in each pi.

Theorem 4.  If a binary n-person game satisfies (7.1), (7.2) and (7.5), then B is
spatially dominant.

Proof.  To apply lemma 1, we have to find ri > 0 such that 5)

5) That (7.5) is necessary for (7.6) follows immediately by summing (7.6) for i ∈I and applying (6.5).

α ij Φ(rj − ri ) > si.
j

∑ (7.6)

By suitably increasing the si, it is enough to show that, for fixed α ij , the corresponding
system of equations

α ij Φ(rj − ri ) = si
j

∑ (7.7)

has a solution ri for all choices of s from the polyhedron

    

S = s ∈ R
n : si = 1

2
αij and si ≤ 1

2
αij +

i ∈I, j ∉I
∑ αij , ∀I , {1, 2,… , n}

i, j ∈I
∑

i∈I
∑

i, j
∑

i
∑

 
 
 

 
 
 

= s ∈ Rn : si = 1
2

αij and si ≥ 1
2

α ij , ∀I , {1, 2,… , n}
i, j ∈I
∑

i∈I
∑

i, j
∑

i
∑ 

 
 

 
 
 

. (7.8)

This is done by induction on n, i.e., the size of the matrix (α). Suppose this
claim holds for all smaller sized symmetric nonnegative (α). Consider a partition of
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{1,…, n} = I < J into two nonempty disjoint subsets and choose ri such that ri À rj

whenever i ∈I and j ∈J. Then Φ(ri – rj) → 1 and Φ(rj – ri) → 0 so that (7.7) becomes

α ikΦ(rk − ri) = si
k ∈I
∑ (i ∈ I ),

α jl Φ(rl − rj ) = s j − α jk
k ∈I
∑

l ∈J
∑ ( j ∈ J).

(7.9)

Applying the induction hypothesis to the subsets I and J, it is easy to check that a
solution ri exists for all s ∈S, with si = 1

2 αij ,i, j ∈ I∑i∈ I∑  i.e., in the corresponding
boundary face of the polyhedron S.

Hence, each s in the boundary of S can be obtained by (7.7). Refining this argu-
ment by considering partitions into k subsets yields boundary faces of dimension n – k.
In particular, the n! corners of S can be reached by letting ri – rj → ` for all i ≠ j, after
choosing a certain ordering of the ri, say   rσ1 < L < rσ n  for a certain permutation σ,
thus giving si = α ij .j :σ j > σi

∑  A standard argument from topology again implies that
all interior points s of S can be reached by a suitable choice of r as well. u

7.1. 2-person unanimity games with incomplete information

This is a special class of games considered by Selten [26] which can be reduced
to the above class. In addition to (7.2), we now normalize the entries ∑i, j α ij  = 2. The
game runs as follows: Out of n given players, two are chosen with probabilities α ij .
(This is the incomplete information part). The two selected players i, j play a 2 × 2
unanimity game, with payoffs ai, bi , and aj , bj  as in (5.1). Then the expected payoffs
are given by

π(Ai , p− i ) = ai α ij (1 − pj ), π (Bi , p− i) = bi α ij pj ,
j

∑
j

∑ (7.10)

which leads to linear incentive functions

d i( p) = π( Bi) − π (Ai ) = (bi + ai ) α ij pj − ai αij .
j

∑
j

∑

Dividing without loss of generality by bi + ai, this conforms with (7.1), with si =
(αi a i) (ai + bi). Obviously, any bipolar potential game with linear incentives (7.1),
(7.2) can be interpreted in this way by suitably choosing ai , bi > 0. Theorem 4 leads to
criteria for the spatial dominance of the strict equilibria B, respectively, A. In particular,
for spatial dominance of B, the condition V(A) < V(B) is necessary, which now reads

α i
ai

ai + bi
< αi

bi

ai + bi
.

i =1

n

∑
i = 1

n

∑ (7.11)
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As discussed in more detail in Hofbauer [12], this criterion differs from  Selten’s
[26] dominance relation based on generalized Nash products. He selects B over A iff

bi
α i > ai

α i
i∏i∏ . It would be interesting to compare these criteria in experiments (Kuon

[19]).

8. Difficulties with equilibrium selection beyond best responses

The concept of risk-dominance is intimately connected with the best reply struc-
ture of the game. This is best seen from the axiomatic description in 2 × 2 games.
However, in some situations, there is more to a game than its best reply structure. For
example, in biological applications of evolutionary game theory, payoffs are fitnesses
and they have an absolute meaning beyond von Neumann–Morgenstern utilities. In
such situations, risk-dominance may not be the relevant equilibrium selection crite-
rion. In fact, there is an increasing number of dynamic models that – already in the
simplest case of symmetric 2 × 2 games – do not necessarily select the risk-dominant
equilibrium, but maybe the payoff-dominant one, e.g., see Samuelson [24]. In the
following, we show that the same phenomena and difficulties can arise also within the
present framework of spatio–temporal models with reaction–diffusion equations, if
we allow other reaction dynamics than the best reply dynamics.

8.1. Pareto versus risk dominance

Consider a symmetric 2 × 2 game with payoff matrix now taken in the general
form

a b

c d
 
  

 
  . (8.1)

Here, we take as the reaction term an imitation model from Weibull [30] and Hofbauer
and Weibull [14], with a nonlinear increasing transformation g of payoff into fitness
(recall that p denotes the frequency of strategy B):

˙ p = f ( p) = p(g(π(B, p)) − g ) (8.2)

with g = pg(π(B, p)) + (1 − p)g(π( A, p)).  Hence,

f (p) = p(1 − p) [g(d p + c(1 − p)) − g(b p + a(1 − p))]. (8.3)

Note that unlike the best response dynamics and the replicator dynamics, (8.3) is not
invariant under linear payoff transformations.

We assume a > c and d > b so that both pure strategies A and B are strict
equilibria. Let ˆ p = (a − c) (a + d − b − c)  denote the frequency of B at the unstable
mixed equilibrium. a – c > d – b or ˆ p  > 1 2 means that A is risk-dominant, a > d
means that A is payoff-dominant.
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Theorem .  (1)  If g is a convex function, then the spatially dominant equilibrium of
the bistable equation (3.1) with reaction term (8.3) is either the risk-dominant or the
Pareto dominant equilibrium of the game.
(2)  If g is strictly convex and ˆ p  is sufficiently close to 1 2, i.e., both strict equilibria
are nearly equally risky, then the payoff-dominant equilibrium is spatially dominant
for (3.1) with (8.3).
(3)  If the function g is not convex, then there are games (8.1) for which A is payoff-
and risk-dominant, while B is the spatially dominant equilibrium.

Proof.  (1)  We have to show that if for a game the payoff-dominant and the risk-
dominant equilibrium coincide, then this equilibrium is also spatially dominant. Let A
be this equilibrium, i.e., a > c, a > d > b and a – c > d – b. Convexity of g implies

εg(b p + a(1 − p)) + (1 − ε )g(a p + b(1 − p))

≥ g((εb + (1 − ε )a)p + (εa + (1 − ε )b(1 − p)). (8.4)

Choosing ε = (a – d) (a – b) (which is in (0, 1) by assumption) makes the right-hand
side

g(d p + (a + b − d) (1 − p)) > g(d p + c(1 − p)). (8.5)

Multiplying this estimate by p(1 – p), integrating over the interval [0, 1] and using
the symmetry p ↔  1 – p yields for (8.3)

f (p)d p < 0.

0

1

⌠ 
⌡  (8.6)

By theorem 1(v), this shows the spatial dominance of A.
(2)  If A and B are equally risky, then a + b = c + d, which turns the inequality in

(8.5) into an equality. For compensation, the strict convexity of g implies that there is
strict inequality in (8.4). Hence, the conclusion (8.6) remains valid, even after a small
perturbation of the payoffs that make B risk-dominant.

(3) is left to the reader. u

Remark.  The statements (1) and (2) of the theorem hold more generally for dynamics
that satisfy the convex monotonicity axiom introduced in Hofbauer and Weibull [14].

8.2. Best reply versus replicator dynamics

Replicator and best reply dynamics, the two most important forms of game
dynamics, depend – in contrast to (8.2) – only on the incentive functions d i of the
game.

As seen in section 3 for symmetric 2 × 2 games, the risk-dominant equilibrium
is spatially dominant when either dynamics is taken as the reaction term in (3.1).
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Nevertheless, for more general games this is no longer true. We illustrate this in two
cases.

(1)  For symmetric bipolar n-person games, with n ≥ 3, the (single) incentive
function d( p) is a polynomial of degree n – 1 in p. The BR dynamics leads to a similar
criterion as for n = 2, namely, A is spatially dominant iff ˆ p  > 1 2 (where ˆ p  is the
frequency of B at the unstable symmetric mixed equilibrium, which we assume to be
unique). It is comforting that the long-run equilibrium of Kandori et al. [16] leads to
the same criterion.

On the other hand, the integral condition (v) leads to a different criterion for
spatial dominance for the replicator dynamics f ( p) = p(1 – p)d( p), which seems to
coincide with the criterion of Foster and Young [6], see also Kim [17].

Adding further to this troublesome ambiguity, many other approaches to equi-
librium selection, in particular the Harsanyi–Selten [10] definition of risk-dominance
based on the tracing procedure, the global games approach of Carlsson and van Damme
[2] and the forward looking dynamic approach of Matsui and Matsuyama [20], lead to
even more different selection criteria for this class of games, see Carlsson and van
Damme [2], Kim [17] and van Damme [28].

This divergence of different equilibrium selection methods for this relatively
simple class of symmetric bipolar games suggests that a complete, generally accepted
theory of equilibrium selection will remain a dream.

(2)  For asymmetric 2 × 2 coordination games, it was shown in Hofbauer et al.
[13] that with the replicator dynamic as the reaction term, the notion of spatial domi-
nance is not in agreement with risk-dominance like in theorem 2. The reason is that
the replicator dynamics does not depend solely on the best reply structure of the game.
It is not invariant under rescaling the payoffs of the two players by different factors.
The two-player populations may adjust with different speeds, in contrast to the BR
dynamics.
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