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THE SPATIALLY HOMOGENEOUS RELATIVISTIC BOLTZMANN

EQUATION WITH A HARD POTENTIAL

HO LEE AND ALAN D. RENDALL

Abstract. In this paper, we study spatially homogeneous solutions of the
Boltzmann equation in special relativity and in Robertson-Walker spacetimes.
We obtain an analogue of the Povzner inequality in the relativistic case and use
it to prove global existence theorems. We show that global solutions exist for a
certain class of collision cross sections of the hard potential type in Minkowski
space and in spatially flat Robertson-Walker spacetimes.

1. Introduction

Under the assumption of homogeneity the non-relativistic Boltzmann equation
has been extensively studied for many years. Homogeneity means that the unknown
in the equation, which in general depends on time, spatial variables and velocity
variables, is restricted to depend only on time and velocity variables. Since Carle-
man gave the first proof of global existence [5] in the 1930s, many mathematicians
have obtained results on the homogeneous non-relativistic Boltzmann equation, and
by now a rather complete mathematical theory is available. In the present paper we
are interested in generalizations of this to special and general relativity. Compared
to the non-relativistic case, the relativistic equations have not been studied much.
Noutchegueme and his colleagues obtained results on the homogeneous Boltzmann
equation in [18, 19, 20, 21] in several different relativistic situations, but the scat-
tering kernels they used are not physically well-motivated. The purpose of this
paper is to obtain analogues of their results in more physically relevant cases.

The scattering kernel is a quantity that determines the nature of collisions be-
tween particles, and in the non-relativistic case several different types of scattering
kernel have been found to be of interest. For instance, the inverse power law gives
the best-known types of scattering kernel, and they are further classified into hard
and soft potential cases. In the relativistic setting it is not so clear which types of
scattering kernel should be of interest, but a classification of (special) relativistic
hard and soft potentials has been proposed in [9, 28] by applying arguments sim-
ilar to those used in the non-relativistic case. As in the non-relativistic case, the
scattering kernels depend only on the relative momentum and scattering angle of
two colliding particles. Consider a collision of two particles, and let pα and qα be
their momenta before the collision, and p′α and q′α the momenta after the collision.
Then the scattering kernel is given by a function of pα − qα and p′α − q′α. To be
precise, the scattering kernel depends only on the following two quantities:

(pα − qα)(p
α − qα) and (pα − qα)(p

′α − q′α),

where the indices are lowered by the Minkowski metric. The above two quantities
are related to the relative momentum and the scattering angle respectively, and the
relativistic hard and soft potentials are defined in terms of the above quantities.
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Their precise definitions will be given in Sections 1.1 and 1.2. On the other hand,
the general relativistic Boltzmann equation does not seem to have been studied
enough concerning specific types of scattering kernel. For instance, in [3, 4] the au-
thors introduced a quantity S which is a function of x, p, q, p′, and q′. The quantity
S was used to play the role of the kernel of the collision operator of the Boltzmann
equation, and strong assumptions on S were made to obtain local well-posedness
of the Einstein-Boltzmann system. However, instead of introducing the abstract
quantity, we may use the principle of general covariance to deal with the collision
operator. If we write down the collision operator with an arbitrary Lorentzian met-
ric replacing the Minkowski metric, then the special relativistic collision operator
is extended to general relativity in a natural way. This argument is consistent with
the following fact. There exists an alternative way to write the general relativistic
Boltzmann equation. One can introduce an orthonormal frame eαµ on spacetime
and parametrize the mass shell as pα = eαµv

µ. Then, the collision operator no
longer contains any explicit dependence on the metric and reduces to the special
relativistic collision operator. We refer to [16] for a more detailed discussion of this
approach.

In this paper, we follow the procedure just mentioned. The general relativistic
collision operator has the same form as in the special relativistic case, but a certain
type of Lorentzian metric will replace the Minkowski metric. The definitions of hard
and soft potentials will be understood by using the principle of general covariance,
and eventually we will show that the Boltzmann equation has a global solution
in the case of a certain type of hard potential in spatially flat Robertson-Walker
spacetimes. We refer to [25, 31] for basic information about general relativity and
to [1, 8, 10, 27] and Chapter X of [7] for relativistic kinetic theory. For classical
theories of the non-relativistic Boltzmann equation we refer to [6, 12] and their
references.

1.1. Remarks on the relativistic Boltzmann equation. Since the Boltzmann
equation is an equation describing the dynamics of collisional matter, it is necessary
to understand the collision processes between particles in order to investigate the
equation. The main difference between the non-relativistic and relativistic collision
processes is that energy and momentum conservation in the non-relativistic case
are replaced by an energy-momentum conservation, and this causes a difficulty
in parametrizing post-collisional momenta in the relativistic case. Let pα and qα

be two four-vectors describing momenta of two colliding particles in a relativistic
situation, and suppose that the two particles produce momenta p′α and q′α after
the collision. Then, energy-momentum conservation is written as

pα + qα = p′α + q′α.

Moreover, if all the particles are assumed to have the same mass, then the mass
shell conditions

pαp
α = qαq

α = p′αp
′α = q′αq

′α = −1

are additionally imposed. Since the Greek index α runs from 0 to 3, we have six
constraints and two free parameters for the post-collisional momenta, and for the
free parameters we use ω ∈ S

2 as usual. Consequently, the post-collisional momenta
p′α and q′α can be parametrized in terms of the pre-collisional momenta pα and qα

with an additional parameter ω ∈ S
2. There are several different ways known to

parametrize post-collisional momenta in the special relativistic case, see for instance
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[13, 29]. However, the parametrization suggested in [16] will be used in this paper
because it can be applied effectively to the general relativistic case. Suppose that
pα and qα are given, and define

nα := pα + qα and tα := (niω
i,−n0ω)

for ω ∈ S
2. Note that tα is a general form of vectors orthogonal to nα, i.e. nαt

α = 0
for any ω ∈ S

2. The post-collisional momenta are represented as

(1.1) p′α =
pα + qα

2
+

g

2

tα
√

tβtβ
and q′α =

pα + qα

2
− g

2

tα
√

tβtβ
.

It can easily be checked that they satisfy the mass shell condition and energy-
momentum conservation. The scalar quantity g is called the relative momentum
and is defined by (1.3) below.

In this paper we are mainly interested in the Robertson-Walker spacetimes but
first we consider the related case of Minkowski space. The spatially homogeneous
Boltzmann equation in Minkowski space is written as follows:

(1.2) ∂tf = Q(f, f) :=

∫

R3

∫

S2

vφσ(g, θ)(f
′f ′

∗ − ff∗)
√

|η| dω dq, vφ :=
g
√
s

p0q0
,

where f ′ = f(t, p′), f ′
∗ = f(t, q′), f = f(t, p), and f∗ = f(t, q). Here, f is called

the distribution function, Q the collision operator, vφ the Møller velocity, σ the
scattering kernel, θ the scattering angle, and η the determinant of the Minkowski
metric. The first component p0 can be solved for in terms of the other components
pi due to the mass shell condition as

p0 =
√

1 + |p|2,
where p = (p1, p2, p3) denotes the spatial projection of pα, and the scalar quantities
s and g are given by

(1.3) s := −(pα + qα)(p
α + qα), g :=

√

(pα − qα)(pα − qα).

They are called the total energy and the relative momentum respectively. Note
that they are conserved quantities in the collision process, i.e.

s = −(p′α + q′α)(p
′α + q′α), g =

√

(p′α − q′α)(p
′α − q′α).

The scattering angle θ is finally defined as the angle between pα− qα and p′α− q′α.
It can be expressed in terms of Lorentz invariant quantities as follows:

(1.4) cos θ :=
(pα − qα)(p

′α − q′α)

g2
= 1− 2

(pα − p′α)(p
α − p′α)

s− 4
,

where s and (pα − p′α)(p
α − p′α) are two of the Mandelstam variables. Note that

the scattering angle does not depend on how the post-collisional momenta are
parametrized.

In the second part of the paper we will consider the case of the spatially flat
Robertson-Walker spacetimes. For a given scale factor R(t), the Boltzmann equa-
tion is written as

∂tf − 2
Ṙ

R

3
∑

i=1

pi∂pif = Q(f, f),

where Ṙ denotes the time derivative of R. The collision operator Q is the same as
in (1.2), but all the quantities in it such as (1.3) and (1.4) are calculated through
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the Robertson-Walker metric. For instance,
√

|η| is replaced by R3(t), and indices
are lowered by the Robertson-Walker metric, so we have

p0 =
√

1 +R2(t)|p|2

by the mass shell condition. However, in this paper we will take a different ap-
proach. It is well-known that in the Robertson-Walker case the Vlasov equation
can be explicitly solved for any given initial data. If the distribution function is
expressed in terms of covariant variables, then it is independent of time, hence we
have f(t, pi) = f0(pi) in the Vlasov case. Similarly, we can use covariant variables
for the Boltzmann equation. Let us consider again the collision process by using
covariant variables. To make the difference between contravariant and covariant
variables clear, we will use vα for covariant variables, i.e.

vα := pα and v = (v1, v2, v3).

Then, the energy-momentum conservation is written as

vα + uα = v′α + u′
α,

and the post-collisional momenta v′α and u′
α are given by

v′α =
vα + uα

2
+

g

2

tα
√

tβtβ
and u′

α =
vα + uα

2
− g

2

tα
√

tβtβ
,

where g and tα are basically the same as in the contravariant case, but they should
be understood as quantities which are constructed from vα and uα. Consequently,
if the distribution function is regarded as a function of t and v, instead of p, then
the Boltzmann equation is written as

(1.5) ∂tf = Q(f, f) = R−3

∫

R3

∫

S2

vφσ(g, θ)(f
′f ′

∗ − ff∗) dω du, vφ =
g
√
s

v0u0
,

where f ′ = f(t, v′), f ′
∗ = f(t, u′), f = f(t, v), and f∗ = f(t, u). The first component

v0 is solved for in terms of the other components using the mass shell condition as

v0 = −
√

1 +R−2(t)|v|2,

and the scalar quantities s and g and the scattering angle θ are the same as (1.3)
and (1.4) respectively. The factor R−3 comes from the relation

R3(t) dq = R−3(t) du.

In the present paper the Minkowski case and the Robertson-Walker case will be
studied separately. In the former case the Boltzmann equation will refer to (1.2),
while in the latter case the equation will refer to (1.5). Comparing the two forms
(1.2) and (1.5), we might expect that results in the Minkowski case could be easily
extended to the Robertson-Walker case, and this will be done in Section 3.

1.2. Assumptions of the paper. The scattering kernel σ is a function of the
relative momentum g and the scattering angle θ. According to the way that the
scattering kernel depends on its variables, it is classified into hard and soft po-
tentials. The classification of hard and soft potentials in the relativistic case was
originally introduced by Dudyński and Ekiel-Jeżewska [9] and recently reformulated
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by Strain [28] as follows: for soft potentials we assume that there exist γ > −2 and
0 < b < min{4, γ + 4} satisfying

(

g√
s

)

g−bσ0(ω) . σ(g, ω) . g−bσ0(ω),

σ0(ω) . sinγ θ,

while for hard potentials we assume that there exist γ > −2, 0 ≤ a ≤ γ + 2, and
0 ≤ b < min{4, γ + 4} satisfying

(

g√
s

)

gaσ0(ω) . σ(g, ω) .
(

ga + g−b
)

σ0(ω),

σ0(ω) . sinγ θ.

Here for any two quantities A, B the relation A . B mens that there exists a
constant C such that A ≤ CB.
The scattering kernel. In this paper we assume that the scattering kernel has
the form

(1.6) σ(g, ω) = ga sinγ θ, −2 < γ ≤ −1, 0 ≤ a ≤ γ + 2.

Since
(

g√
s

)

is a bounded quantity (note that s = 4+ g2), a scattering kernel of this

form falls into the hard potential case.

Throughout the paper we use weighted L1 spaces in momentum variables. Let
L1(R3) be the usual Lebesgue space of integrable functions on R

3. L1
r(R

3) denotes
the weighted L1 space with norm

(1.7) ‖f‖1,r :=
∫

R3

f(y)〈y〉r dy, 〈y〉 :=
√

1 + |y|2.

The notations which will be used in this paper are as follows: the Minkowski metric
is given by diag(−1, 1, 1, 1), and the Robertson-Walker metric is

ds2 = −dt2 +R2(t)((dx1)2 + (dx2)2 + (dx3)2),

where the scale factor R is a function of time t satisfying

Ṙ(t) ≥ 0.

For simplicity we assume

R(0) = 1.

Greek indices run from 0 to 3, and Latin indices from 1 to 3. pα denotes a four
dimensional vector, while p denotes a three dimensional (contravariant) vector.
Similarly, vα denotes a four dimensional vector, while v denotes a three dimensional
covariant vector. To be precise,

p = (p1, p2, p3), v = (v1, v2, v3),

while

p0 =
√

1 +R2(t)|p|2, v0 = −v0 =
√

1 +R−2(t)|v|2

Note that

p0 = v0.
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The Einstein summation convention is used as pαp
α =

∑3
α=0 pαp

α, where the

indices are lowered by pα = gαβp
β for a metric gαβ . In some places we use pip

i =
∑3

i=1 pip
i. The usual inner product · will only be used for three-dimensional vectors:

p · q =
3

∑

i=1

piqi, v · u =
3

∑

i=1

viui,

and | · | is such that |p|2 = p · p and |v|2 = v · v as usual.

2. Existence results in the cases of bounded kernels

In this part we briefly review the results of [18, 19, 20, 21], where the kernels of
the collision operators are assumed to be bounded. For instance, the homogeneous
Boltzmann equation in Minkowski space is written in [21] as

(2.1) ∂tf =
1

p0

∫∫

S(p, q, p′, q′)(f ′f ′
∗ − ff∗) dω

dq

q0
.

An unknown quantity S is introduced to play a role of a kernel of the collision
operator. The collision kernel S is assumed to be bounded uniformly on pre- and
post-collisional momenta with an additional symmetry assumption:

0 ≤ S ≤ C,(2.2)

S(p, q, p′, q′) = S(p′, q′, p, q),(2.3)

where C is a fixed constant. The solution obtained in [21] should be understood as
a mild solution. By integrating the equation (2.1) with respect to the time variable
from 0 to t, we obtain the following integral equation:

(2.4) f(t, p) = f0(p) +

∫ t

0

1

p0

∫∫

S(p, q, p′, q′)(f ′f ′
∗ − ff∗) dω

dq

q0
ds.

By saying that f is a solution to the Boltzmann equation (2.1), we mean f satisfies
the integral equation (2.4) in L1-sense for each t. The main theorem can be stated
as follows.

Theorem 2.1 (Noutchegueme and Tetsadjio, [21]). Suppose that the collision ker-

nel S satisfies (2.2)–(2.3) for a given positive constant C. Let r ∈ (0, 1
56πC ] and

f0 ∈ Xr be given for

Xr := L1(R3) ∩ {f ≥ 0, a.e.} ∩ {‖f‖L1 ≤ r}.
Then, the Cauchy problem for the homogeneous Boltzmann equation (2.4) in Minkowski

space has a unique global solution f ∈ C([0,∞);Xr) satisfying

sup
t∈[0,∞)

‖f(t)‖L1 ≤ ‖f0‖L1 .

The above result is extended to the cases of curved spacetimes in [19, 20], and the
initial condition is improved to any arbitrary large initial data (note that the initial
condition in the above theorem depends on the constant C, which is the upper
bound of the collision kernel). The equation considered in [20] can be written as

(2.5) ∂tf − 2
Ṙ

R

3
∑

i=1

pi∂pif =
1

p0

∫∫

A(t, p, q, p′, q′)(f ′f ′
∗ − ff∗) dω

R3dq

q0
,
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where the scale factor R = R(t) is assumed to be given such that it is differentiable
and bounded from below, and the collision kernel A is similarly assumed to be
bounded with a symmetry assumption:

R(t) ≥ C,(2.6)

0 ≤ A ≤ C,(2.7)

A(t, p, q, p′, q′) = A(t, p′, q′, p, q).(2.8)

The solution of the equation (2.5) obtained in [20] should also be understood as a
mild solution. We define a characteristic curve of (2.5) by

(2.9)
dp

dt
= −2

Ṙ

R
p with p(0) = y, hence p(t) = R−2(t)y.

Then, the equation (2.5) can be written as

d

dt
f(t, p(t)) = (collision term),

and by integrating the above equation in a similar way, we obtain

f(t, p(t)) = f0(y) +

∫ t

0

(collision term) ds.

However, if we regard f as a function of t and y, where y and p = p(t) are related
to each other by (2.9), i.e.

d

dt
f(t, y) = (collision term),

then we obtain a different mild form,

f(t, y) = f0(y) +

∫ t

0

(collision term) ds,

and this was the argument of [20]. To be precise, we express the above integral
equation in terms of y and z := R2(s)q, and obtain the following mild form of the
Boltzmann equation in the Robertson-Walker spacetime:

(2.10) f(t, y) = f0(y) +

∫ t

0

1

y0

∫∫

A(s, y, z, y′, z′)(f ′f ′
∗ − ff∗) dω

dz

R3(s)z0
ds.

The solutions obtained in [20] are functions which satisfy the integral equation
(2.10) in L1-sense for each t. If we recall that in this paper the Boltzmann equation
in the Robertson-Walker spacetime refers to (1.5) and that to derive this form
of the equation we considered covariant variables v instead of p, then we can see
that considering the characteristic curve corresponds to considering the covariant
variables and that the new variable y of (2.10) corresponds to the covariant variable
v of (1.5). The main theorem of [20] can be stated as follows.

Theorem 2.2 (Noutchegueme and Takou, [20]). Suppose that the collision kernel

A satisfies (2.6)–(2.8), and let f0 ∈ L1(R3) with f0 ≥ 0 be given. Then, the Cauchy

problem for the relativistic Boltzmann equation in the Robertson-Walker spacetime

(2.10) has a unique global solution f ∈ C([0,∞);L1(R3)) with f(t) ≥ 0 satisfying

sup
t∈[0,∞)

‖f(t)‖L1 ≤ ‖f0‖L1 .
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In the above result the scale factor R(t) is only assumed to be bounded from
below, hence Theorem 2.2 includes Theorem 2.1. A similar result has been obtained
in [19] in a little more general spacetime, which is a Bianchi Type I spacetime, and
finally the Einstein-Boltzmann system has been studied in [18]. The solution space
used in [18] is a weighted L1 space, which corresponds to L1

1(R
3) in the notation

of the present paper. If we combine the arguments and proofs of [18, 19, 20], the
following theorem is obtained.

Proposition 2.1. Consider the Boltzmann equation (2.10) in the Robertson-Walker

spacetime. Suppose that the collision kernel A satisfies (2.6)–(2.8), and let f0 ∈
L1
1(R

3) with f0 ≥ 0 be given. Then, the Boltzmann equation has a unique global

solution f ∈ C([0,∞);L1
1(R

3)) with f(t) ≥ 0 satisfying

sup
t∈[0,∞)

‖f(t)‖L1
1
≤ ‖f0‖L1

1
.

3. Existence results for the hard potential cases

In this section the existence result of Proposition 2.1 will be extended to the
hard potential case. Proposition 2.1 shows that the Boltzmann equation (2.10) has
a solution in the weighted function space L1

1(R
3) with the weight function 〈y〉. By

assuming that the collision kernel A is independent of t and the scale factor satisfies
R(t) ≡ 1, we obtain the existence result in L1

1(R
3) for the equation (2.4). This will

be extended to the hard potential case in Section 3.2. The existence result for the
Robertson-Walker case will be studied in Section 3.3.

3.1. Preliminaries. In this section we collect several lemmas.

Lemma 3.1. The following inequalities hold in the Robertson-Walker spacetime:

g ≤
√
s,(3.1)

g ≤ 2
√

p0q0,(3.2)
√
s ≤ 2

√

p0q0,(3.3)

g ≤ R(t)|p− q|.(3.4)

Proof. Since s = g2 + 4, we obtain the first inequality. The second inequality is
given by the first and the third ones. For the third inequality we notice that

s = 2 + 2p0q0 − 2R2(t)(p · q)
= 2p0q0 + 2

√

1− 2R2(t)(p · q) +R4(t)(p · q)2

≤ 2p0q0 + 2
√

1 +R2(t)(|p|2 + |q|2) +R4(t)|p|2|q|2

= 4p0q0,

and this proves the third inequality. The last inequality is also clear because

g2 = −(p0 − q0)2 +R2(t)|p− q|2 ≤ R2(t)|p− q|2,
and this completes the proof. �

Lemma 3.2. For any ω ∈ S
2, we have tαt

α ≥ R2(t)s in the Robertson-Walker

spacetime.
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Proof. In the Robertson-Walker spacetime we have

tα = (niω
i,−n0ω) = (R2(t)(n · ω), n0ω),

and the proof is a direct calculation:

tαt
α = −R4(t)(n · ω)2 +R2(t)(n0)2 ≥ −R4(t)|n|2 +R2(t)(n0)2

= R2(t)((n0)2 −R2(t)|n|2) = R2(t)s.

This completes the proof. �

The following lemma is a well-known fact in the special relativistic case [13], and
we show that the lemma holds in general relativistic cases also. The lemma is proved
by the same argument as in [13], but we present it for the reader’s convenience.

Lemma 3.3. Let (p′α, q′α) and (pα, qα) be pre- and post-collisional momenta re-

spectively, and consider the collision map (pα, qα) → (p′α, q′α). Then, the Jacobian

is given by

∂(p′, q′)

∂(p, q)
= −p′0q

′
0

p0q0
.

Proof. To prove the lemma, we use a different parametrization from (1.1).

p′α = pα + 2
tβq

β

tγtγ
tα, q′α = qα − 2

tβq
β

tγtγ
tα,

where tα is the same as in (1.1). For convenience we write

p′k = pk +Aωk, q′k = qk −Aωk, A = −2
tβq

β

tγtγ
n0.

By the same calculations as in [13] we obtain

∂(p′, q′)

∂(p, q)
= det

(

δij + (∂pjA)ωi (∂qjA)ω
i

−(∂pjA)ωi δij − (∂qjA)ω
i

)

= det
(

δij + (∂pjA− ∂qjA)ω
i
)

= 1 + (∂piA− ∂qiA)ω
i.(3.5)

We differentiate the conserved energy

p′0 + q′0 = p0 + q0

with respect to pj, and multiply ωj to obtain
(

−p′k
p′0

∂p′k

∂pj
− q′k

q′0

∂q′k

∂pj

)

ωj = −pj
p0

ωj

⇐⇒
(

pj
p0

−
p′j
p′0

)

ωj =

(

p′k
p′0

− q′k
q′0

)

ωk(∂pjA)ωj .

Similarly we obtain
(

qj
q0

−
q′j
q′0

)

ωj =

(

p′k
p′0

− q′k
q′0

)

ωk(∂qjA)ω
j .

Hence, (3.5) is given by

(3.6)
∂(p′, q′)

∂(p, q)
=

(

p′k
p′0

ωk − q′k
q′0

ωk

)−1 (
pj
p0

ωj − qj
q0

ωj

)

.
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Recall that nα = pα + qα and tα = (njω
j ,−n0ω) for ω ∈ S

2, and then the above
quantities are written as follows:

pj
p0

ωj − qj
q0

ωj =
1

p0q0
(q0nj − n0qj)ω

j =
1

p0q0
qαt

α.(3.7)

Similarly we obtain

p′k
p′0

ωk − q′k
q′0

ωk =
1

p′0q
′
0

(q′0p
′
k + q′0q

′
k − q′0q

′
k − p′0q

′
k)ω

k

=
1

p′0q
′
0

(q′0nk − n0q
′
k)ω

k =
1

p′0q
′
0

q′αt
α = − 1

p′0q
′
0

qαt
α,(3.8)

where we used the energy-momentum conservation and the following:

tαq
′α = tαq

α − 2
tβq

β

tγtγ
tαt

α = −tαq
α.

We plug (3.7) and (3.8) into (3.6), and this completes the proof. �

Lemma 3.4. For the collision operator the following property holds in the Robertson-

Walker spacetime: for any measurable function k depending only on g, s, and ω,
we have

∫∫∫

k(g, s, ω)

p0q0
(f ′f ′

∗ − ff∗)(p
0)r dω dq dp

=
1

2

∫∫∫

k(g, s, ω)

p0q0
ff∗((p

′0)r + (q′0)r − (p0)r − (q0)r) dω dq dp.

Proof. We use Lemma 3.3 to make the change of variables between pre- and post-
collisional momenta as follows:

(3.9)
1

p0q0
dp dq =

1

p′0q′0
dp′dq′,

and note that g and s are invariant quantities under the collision process and
symmetric for p and q. Hence, the gain term can be written as

∫∫∫

k(g, s, ω)

p0q0
f ′f ′

∗(p
0)r dω dq dp =

∫∫∫

k(g, s, ω)

p′0q′0
f ′f ′

∗(p
0)r dω dq′dp′

=

∫∫∫

k(g, s, ω)

p0q0
ff∗(p

′0)r dω dq dp.

By interchanging p and q, it can also be rewritten as
∫∫∫

k(g, s, ω)

p0q0
f ′f ′

∗(p
0)r dω dq dp =

∫∫∫

k(g, s, ω)

p0q0
ff∗(q

′0)r dω dq dp.

Hence, we obtain the following representation for the gain term:
∫∫∫

k(g, s, ω)

p0q0
f ′f ′

∗(p
0)r dω dq dp =

1

2

∫∫∫

k(g, s, ω)

p0q0
ff∗((p

′0)r + (q′0)r) dω dq dp.

After applying the same argument to the loss term, we obtain the desired result. �

Lemma 3.5. Consider the collision process in the Robertson-Walker spacetime. Let

(p′α, q′α) and (pα, qα) be pre- and post-collisional momenta respectively. Consider

the following quantity for r > 1:

G = (p′0)r + (q′0)r − (p0)r − (q0)r.
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Then, G satisfies

(3.10) G ≤ Cr((p
0)r−1q0 + p0(q0)r−1).

If ω is restricted to a subset {ω ∈ S
2 : |n · ω| ≤ 1√

2
|n|}, then G satisfies

(3.11) G ≤ Cr((p
0)r−

1
2 (q0)

1
2 + (p0)

1
2 (q0)r−

1
2 )− cr((p

0)r + (q0)r),

where Cr and cr are two different positive constants depending on r.

Proof. Note that p′0 + q′0 = p0 + q0 is a conserved quantity for each p0 and q0. Let
pα and qα be given. Then, G reduces to a function of ω and can be written as

G(ω) = (p′0)r + (q′0)r − (p0)r − (q0)r

= (p′0)r + (p0 + q0 − p′0)r − (p0)r − (q0)r.

Note that G has minimum at p′0 = (p0 + q0)/2, i.e., when p′0 = q′0, and is mono-
tonically increasing as p′0 tends to 0 or p0 + q0. Hence, G attains its maximum
when p′0 − q′0 is extremal. Without loss of generality we may assume p′0 ≥ q′0.
From (1.1) we obtain

p′0 − q′0 = g
t0√
tαtα

= g
R2(n · ω)

√

R2(n0)2 −R4(n · ω)2
.

This quantity attains its maximum when ω is parallel to n, which means that p′0 is
largest and q′0 is smallest when n · ω = |n|, in particular q′0 ≤ min{p0, q0}, which
implies again (q′0)r ≤ min{(p0)r, (q0)r}. Consequently, G attains its maximum
when n · ω = |n| and is estimated as

G(ω) ≤ G(n/|n|) ≤ (p′0)r
∣

∣

ω=n/|n| −max{(p0)r, (q0)r}

=

(

p0 + q0

2
+

g

2

R2|n|√
tαtα

)r∣
∣

∣

∣

ω=n/|n|
−max{(p0)r, (q0)r}.

By applying Lemma 3.1, Lemma 3.2, and the inequality

(3.12) (a+ b)r ≤ ar + br + Cr(a
r−1b+ abr−1) for r > 1,

we obtain

G(ω) ≤
(

p0 + q0

2
+

R|p+ q|
2

)r

−max{(p0)r, (q0)r}

≤ (p0 + q0)r −max{(p0)r, (q0)r}
≤ min{(p0)r, (q0)r}+ Cr((p

0)r−1q0 + p0(q0)r−1)

≤ Cr((p
0)r−1q0 + p0(q0)r−1),

and this proves the first result.
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To prove the second result, we take the assumption |n · ω| ≤ 1√
2
|n| and suppose

p′0 ≥ q′0. Then, p′0 is estimated as

p′0 ≤ p0 + q0

2
+

g

2

R2|n · ω|
√

R2(n0)2 −R4(n · ω)2

≤ p0 + q0

2
+

g

2
√
2

R2|p+ q|
√

R2(p0 + q0)2 − 1
2R

4|p+ q|2
≤ p0 + q0

2
+

g

2

≤ (
√

p0 +
√

q0)2

2
,

where we used Lemma 3.1. Then, G is estimated as

G ≤ 2(p′0)r − (p0)r − (q0)r

≤ (
√

p0 +
√

q0)2r

2r−1
− (p0)r − (q0)r

≤ (p0)r

2r−1
+

(q0)r

2r−1
+ Cr((p

0)r−
1
2 (q0)

1
2 + (p0)

1
2 (q0)r−

1
2 )− (p0)r − (q0)r

≤ Cr((p
0)r−

1
2 (q0)

1
2 + (p0)

1
2 (q0)r−

1
2 )− cr((p

0)r + (q0)r),

where we used (3.12). The constants Cr and cr are two different positive constants
depending on r, and this completes the proof. �

Remark 3.1. Those types of inequalities given in Lemma 3.5 are called the Povzner

inequality, which was originally proved by Povzner in [23]. This inequality has

been crucially used to prove existence theorems for the non-relativistic spatially

homogeneous Boltzmann equation by Elmroth [11] and Mischler and Wennberg [17].
The sharpest form of the Povzner inequality is given by Mischler and Wennberg,

but Lemma 3.5 corresponds to a relativistic extension of Elmroth’s result.

3.2. Hard potential case in Minkowski space. Comparing the two forms (1.2)
and (2.1) for the Boltzmann equation, we can see that the collision kernel S of (2.1)
corresponds to g

√
sσ(g, θ) of (1.2). Hence, if the quantity g

√
sσ(g, θ) is suitably

truncated, then the truncated equation has a global solution by Proposition 2.1.
For simplicity the following notations will be used:

vφ,m :=
min{g√s,m}

p0q0
, gm := min{g,m}, σ0,m(ω) := min{σ0(ω),m}.

For each integer m, let fm be a solution of the following truncated equation with
initial data fm(0) = f0:

(3.13) ∂tfm = Qm(fm, fm),

where Qm is defined as

Qm(h, h) :=

∫∫

vφ,m(gm)aσ0,m(ω)(h′h′
∗ − hh∗) dω dq.

Then, the truncated equation has a unique global solution fm ∈ C([0,∞);L1
1(R

3))
by Proposition 2.1. Consequently, a sequence {fm} is obtained, and existence of
solutions for the original equation (1.2) is proved by showing that the sequence {fm}
is a Cauchy sequence in L1

1(R
3). This argument was used for the non-relativistic

case by Mischler and Wennberg in [17], and below we will show that their argument
is applicable to the relativistic case.
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Lemma 3.6. For any r ≥ 0 and T > 0, there exists a constant Cr which does not

depend on m such that if ‖f0‖1,r is bounded, then

sup
m

sup
t∈[0,T ]

‖fm(t)‖1,r ≤ Cr.

Proof. We first note that by Proposition 2.1

sup
t∈[0,∞)

‖fm(t)‖1,r ≤ C for 0 ≤ r ≤ 1,

where C does not depend on m, and for r ≤ s,

‖fm(t)‖1,r ≤ ‖fm(t)‖1,s.
We now assume r > 1. By direct calculations we have

d

dt
‖fm(t)‖1,r

=

∫∫∫

vφ,m(gm)aσ0,m(ω)(f ′
mf ′

m∗ − fmfm∗)(p
0)r dω dq dp

=
1

2

∫∫∫

vφ,m(gm)aσ0,m(ω)fmfm∗((p
′0)r + (q′0)r − (p0)r − (q0)r) dω dq dp,

where we used Lemma 3.4. We apply Lemma 3.5 to obtain

d

dt
‖fm(t)‖1,r ≤ I1 + I2 − I3,

where

I1 = Cr

∫∫∫

|n·ω|≥ 1
√

2
|n|

vφ,m(gm)aσ0,m(ω)fmfm∗((p
0)r−1q0 + p0(q0)r−1) dω dq dp,

I2 = Cr

∫∫∫

|n·ω|≤ 1
√

2
|n|

vφ,m(gm)aσ0,m(ω)fmfm∗((p
0)r−

1
2 (q0)

1
2 + (p0)

1
2 (q0)r−

1
2 ) dω dq dp,

I3 = cr

∫∫∫

|n·ω|≤ 1
√

2
|n|

vφ,m(gm)aσ0,m(ω)fmfm∗((p
0)r + (q0)r) dω dq dp.

The second term I2 is easily estimated by using Lemma 3.1 as

I2 ≤ Cr

∫∫

fmfm∗(p
0)r−

1
2
+ a

2 (q0)
1
2
+a

2 dq dp ≤ Cr‖fm(t)‖1,r− 1
2
+ a

2
‖fm(t)‖1, 1

2
+ a

2
.

Consider now σ0,m(ω), which is defined by

σ0,m(ω) := min{sinγ θ,m} for − 2 < γ ≤ −1.

Note that σ0,m(ω) is integrable on S
2 for γ > −2, and there exists a constant Cγ

satisfying
∫

S2
σ0,m(ω) dω ≤ Cγ , where the constant Cγ does not depend on m. On

the other hand, since γ is negative, we have σ0,m(ω) ≥ 1 for any m. Moreover, the
integration domain of I3 is a set with Lebesgue measure

µ{|n · ω| ≤ |n|/
√
2} = 2

√
2π,

which does not depend on m. Hence, I1 and I3 can be estimated as

I1 ≤ Dr

∫∫

R6

vφ,m(gm)afmfm∗(p
0)r−1q0 dq dp,

I3 ≥ dr

∫∫

R6

vφ,m(gm)afmfm∗(q
0)r dq dp,
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for some constants Dr and dr. We now fix the constants Dr and dr to split the
domain by {Dr(p

0)r−1 ≤ dr(q
0)r−1} and {Dr(p

0)r−1 ≥ dr(q
0)r−1}, and then obtain

I1 ≤ I11 + I12, where

I11 = Dr

∫∫

Dr(p0)r−1≤dr(q0)r−1

vφ,m(gm)afmfm∗(p
0)r−1q0 dq dp,

I12 = Dr

∫∫

Dr(p0)r−1≥dr(q0)r−1

vφ,m(gm)afmfm∗(p
0)r−1q0 dq dp.

We now obtain

I11 ≤ I3.

In the case of I12, we may simply use (gm)a ≤ C(p0q0)
a
2 ≤ Cr(p

0)a. Then, I12 is
easily estimated as

I12 ≤ Cr‖fm(t)‖1,r−1+a.

Combining the above estimates, we obtain

d

dt
‖fm(t)‖1,r

≤ Cr

(

‖fm(t)‖1,r− 1
2
+ a

2
‖fm(t)‖1, 1

2
+ a

2
+ ‖fm(t)‖1,r−1+a

)

≤ Cr‖fm(t)‖1,r,

where we used the fact that 0 ≤ a ≤ γ + 2 and −2 < γ ≤ −1. Then, the lemma is
proved by applying Grönwall’s inequality. �

Lemma 3.7. Consider the sequence {fm} on any finite time interval [0, T ]. For

any small number δ > 0, there exists a positive integer M such that if k,m ≥ M ,

then

sup
t∈[0,T ]

‖fk(t)− fm(t)‖1,1 ≤ δ.

Proof. Let k ≤ m be two positive integers. By direct calculations,

d

dt
‖fk(t)− fm(t)‖1,1 = I + J,

where

I =

∫

sgn(fk − fm)(Qk(fk, fk)−Qk(fm, fm))p0 dp,

J =

∫

sgn(fk − fm)(Qk(fm, fm)−Qm(fm, fm))p0 dp,

and I and J will be estimated separately. The first term I is split again as

I =
1

2

∫∫∫

sgn(fk − fm)vφ,k(gk)
aσ0,k(ω)

× ((f ′
k − f ′

m)(f ′
k∗ + f ′

m∗) + (f ′
k + f ′

m)(f ′
k∗ − f ′

m∗)

− (fk − fm)(fk∗ + fm∗)− (fk + fm)(fk∗ − fm∗))p
0 dω dq dp

=: I1 + I2 + I3 + I4.

Each Ii is estimated as follows:

I1 ≤ 1

2

∫∫∫

vφ,k(gk)
aσ0,k(ω)|f ′

k − f ′
m|(f ′

k∗ + f ′
m∗)p

0 dω dq dp

=
1

2

∫∫∫

vφ,k(gk)
aσ0,k(ω)|fk − fm|(fk∗ + fm∗)p

′0 dω dq dp,
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I2 ≤ 1

2

∫∫∫

vφ,k(gk)
aσ0,k(ω)(f

′
k + f ′

m)|f ′
k∗ − f ′

m∗|p0 dω dq dp

=
1

2

∫∫∫

vφ,k(gk)
aσ0,k(ω)(fk∗ + fm∗)|fk − fm|q′0 dω dq dp,

I3 = −1

2

∫∫∫

sgn(fk − fm)vφ,k(gk)
aσ0,k(ω)(fk − fm)(fk∗ + fm∗)p

0 dω dq dp

= −1

2

∫∫∫

vφ,k(gk)
aσ0,k(ω)|fk − fm|(fk∗ + fm∗)p

0 dω dq dp,

and finally

I4 ≤ 1

2

∫∫∫

vφ,k(gk)
aσ0,k(ω)(fk + fm)|fk∗ − fm∗|p0 dω dq dp

≤ 1

2

∫∫∫

vφ,k(gk)
aσ0,k(ω)(fk∗ + fm∗)|fk − fm|q0 dω dq dp.

Therefore, I is estimated as

I ≤ 1

2

∫∫∫

vφ,k(gk)
aσ0,k(ω)|fk − fm|(fk∗ + fm∗)(p

′0 + q′0 − p0 + q0) dω dq dp

≤ C

∫∫

(gk)
a|fk − fm|(fk∗ + fm∗)q

0 dq dp,

where we used
p′0 + q′0 = p0 + q0.

By using gk ≤ 2
√

p0q0, we obtain for I

I ≤ C

∫∫

|fk − fm|(fk∗ + fm∗)(p
0)

a
2 (q0)1+

a
2 dq dp

≤ C sup
n

‖fn(t)‖1,1+a
2
‖fk(t)− fm(t)‖1, a

2
.(3.14)

To estimate the second term J , we note that

|vφ,k − vφ,m| = 1

p0q0
|min{g

√
s, k} −min{g

√
s,m}|

≤ 1{g√s≥k}
min{g√s,m}

p0q0
= 1{g√s≥k}vφ,m,

and similarly

|(gk)a − (gm)a| ≤ 1{g≥k}(gm)a,

|σ0,k(ω)− σ0,m(ω)| ≤ 1{sinγ θ≥k}σ0,m(ω).

Hence, J can be estimated as

J ≤
∫∫∫

|vφ,k(gk)aσ0,k(ω)− vφ,m(gm)aσ0,m(ω)||f ′
mf ′

m∗ − fmfm∗|p0 dω dq dp

≤
∫∫∫

1{g√s≥k}vφ,m(gk)
aσ0,k(ω)(f

′
mf ′

m∗ + fmfm∗)p
0 dω dq dp

+

∫∫∫

1{g≥k}vφ,m(gm)aσ0,k(ω)(f
′
mf ′

m∗ + fmfm∗)p
0 dω dq dp

+

∫∫∫

1{sinγ θ≥k}vφ,m(gm)aσ0,m(ω)(f ′
mf ′

m∗ + fmfm∗)p
0 dω dq dp

=: J1 + J2 + J3.
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Note that each Ji can be separated into two terms: a gain term containing f ′
mf ′

m∗
and a loss term containing fmfm∗. The gain and loss terms are estimated in the
same way after making the change of variables (p, q) ↔ (p′, q′), hence we only
present the estimates for the loss terms. To estimate J1, we take a small number
ε > 0 and use g

√
s ≤ 4p0q0 from Lemma 3.1:

J1 ≤ C

∫∫

1{4p0q0≥k}(gk)
afmfm∗p

0 dq dp

≤ C

∫∫

1{4p0q0≥k}fm(p0)1+
a
2 fm∗(q

0)
a
2 dq dp

≤ C

kε

∫∫

1{4p0q0≥k}fm(p0)1+
a
2
+εfm∗(q

0)
a
2
+ε dq dp

≤ C

kε
‖fm(t)‖1,1+ a

2
+ε‖fm(t)‖1, a

2
+ε.(3.15)

To estimate J2, we use g ≤ |p− q| to obtain

J2 ≤ C

∫∫

1{|p−q|≥k}fm(p0)1+
a
2 fm∗(q

0)
a
2 dq dp

≤ C

∫∫

1{|p|≥k
2
}∪{|q|≥ k

2
}fm(p0)1+

a
2 fm∗(q

0)
a
2 dq dp

≤ C‖fm(t)‖1,1+ a
2

∫

1{|q|≥k
2
}fm∗(q

0)
a
2 dq

≤ C

k
‖fm(t)‖21,1+ a

2
.(3.16)

For J3 term, we use sin θ ≈ θ for 0 ≤ θ ≤ π
2 . Hence, the condition sinγ θ ≥ k is

equivalent to θ ≤ Ck
1
γ since γ is negative. We first estimate J3 as

J3 ≤ C

∫∫∫

1
{θ≤Ck

1
γ }

σ0,m(ω)fm(p0)1+
a
2 fm∗(q

0)
a
2 dω dq dp

≤ C‖fm(t)‖1,1+a
2
‖fm(t)‖1, a

2

∫

1
{θ≤Ck

1
γ }

σ0,m(ω) dω.

The integration on S
2 above is estimated as

∫

1
{θ≤Ck

1
γ }

σ0,m(ω) dω ≤ 2π

∫ Ck
1
γ

0

sinγ+1 θ dθ ≤ Ck
γ+2

γ ,

where the constant depends on γ. Note that −1 ≤ (γ + 2)/γ < 0, and the third
term J3 is estimated as

(3.17) J3 ≤ Ck
γ+2

γ ‖fm(t)‖1,1+ a
2
‖fm(t)‖1, a

2
.

We combine (3.14), (3.15), (3.16), and (3.17), and apply Lemma 3.6 on any finite
time interval [0, T ] to obtain

d

dt
‖fk(t)− fm(t)‖1,1 ≤ C(k−ε + k−1 + k

γ+2

γ ) + C‖fk(t)− fm(t)‖1, a
2

≤ C(k−ε + k
γ+2

γ ) + C‖fk(t)− fm(t)‖1,1.
Since fk(0) = fm(0) and (γ + 2)/γ is negative, we obtain the desired result by
applying Grönwall’s inequality. �

We now obtain the following theorem.
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Theorem 3.1. Suppose that the scattering kernel has the form (1.6) and initial

data satisfies f0 ∈ L1
r(R

3) for r > 1+ a
2 with f0 ≥ 0. Then, the Boltzmann equation

(1.2) in Minkowski space has a unique global solution f ∈ C([0,∞);L1
1(R

3)) with

f(t) ≥ 0.

Proof. Lemma 3.7 shows that the sequence {fm} is a Cauchy sequence in L1
1(R

3).
Hence, there exists a solution f to the Boltzmann equation (1.2). The initial
condition f0 ∈ L1

r(R
3) with r > 1 + a

2 comes from (3.15), and nonnegativity of the
solution is guaranteed by Proposition 2.1. Uniqueness of solutions can be easily
proved by following the calculations given in the proof of Lemma 3.7. The initial
condition of the theorem is rather strong in the sense that L1

1 solutions are obtained
from L1

r initial data for r > 1 + a
2 , hence the proof of uniqueness is much easier

than that of [17]. This completes the proof of the theorem. �

3.3. Hard potential case in the Robertson-Walker spacetime. In this part
we extend the existence result of Theorem 3.1 to the Robertson-Walker case. The
argument is basically the same as in the Minkowski case. We first truncate a certain
part of the collision kernel, then existence for the truncated equation is guaranteed
by Proposition 2.1. We obtain a sequence of solutions to the truncated equations,
and by showing that the sequence is a Cauchy sequence we obtain a solution.

To deal with the Boltzmann equation (1.5) in the Robertson-Walker spacetime,
we use the covariant variable v. In the Minkowski case we have p0 = 〈p〉, so there
is no difference between the following quantities:

∫

f(t, p)(p0)r dp =

∫

f(t, p)〈p〉r dp.

However, in the Robertson-Walker case we have

v0 =
√

1 +R−2(t)|v|2 and 〈v〉 =
√

1 + |v|2.

If we introduce a new quantity:

|f(t)|1,r :=

∫

f(t, v)(v0)r dv,

then we have the following relation:

(3.18) |f(t)|1,r ≤ ‖f(t)‖1,r ≤ Rr(t)|f(t)|1,r ,

where we used

(3.19) v0 ≤ 〈v〉 ≤ R(t)v0.

Note that

|f(0)|1,r = ‖f(0)‖1,r,
since we assume R(0) = 1.

The main goal of this section is to extend Theorem 3.1 to the Robertson-Walker
case. We will show that the lemmas in the previous section can be applied to the
Robertson-Walker case. To do this we first use v0 as a weight function, i.e. we
estimate |f(t)|1,r, because all the calculations in the Minkowski case are naturally
extended to the Robertson-Walker case when using v0 instead of 〈v〉, for instance we
can use the energy-momentum conservation. Then, by the relation (3.18) we obtain
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estimates for ‖f(t)‖1,r. Similarly to the Minkowski case we modify the Boltzmann
equation (1.5) as

∂tfm = Qm(fm, fm) := R−3

∫∫

vφ,m(gm)aσ0,m(ω)(f ′
mf ′

m∗ − fmfm∗) dω du,

where

vφ,m =
min{g√s,m}

v0u0
, gm = min{g,m}, σ0,m = min{σ0(ω),m}.

Then, the truncated equation has a unique global solution by Proposition 2.1. The
following lemmas show that Lemma 3.6 and 3.7 can be extended to the Robertson-
Walker case.

Lemma 3.8. For any r ≥ 0 and T > 0, there exists a constant Cr which does not

depend on m such that if ‖f0‖1,r is bounded, then

sup
m

sup
t∈[0,T ]

|fm(t)|1,r + ‖fm(t)‖1,r ≤ Cr .

Proof. We first estimate |fm(t)|1,r , and then obtain the desired result by using the
relation (3.18). By Proposition 2.1 and the relation (3.18) we have

sup
t∈[0,∞)

|fm(t)|1,r ≤ C for 0 ≤ r ≤ 1,

and now assume r > 1. In the Robertson-Walker case, v0 depends on time and
decreases as time evolves for each v. To be precise,

v0 =
√

1 +R−2(t)|v|2 and ∂tv
0 = − Ṙ(t)

R3(t)

|v|2
v0

≤ 0,

since we assume R(t) ≥ 1 and Ṙ(t) ≥ 0. If we follow the calculation of the proof of
Lemma 3.6, then we obtain

d

dt
|fm(t)|1,r

=
R−3(t)

2

∫∫∫

vφ,m(gm)aσ0,m(ω)fmfm∗((v
′0)r + (u′0)r − (v0)r − (u0)r) dω du dv

+

∫

fm(t, v)
∂

∂t

[

(v0)r
]

dv,

and the second integral is negative. Hence, we may only consider

d

dt
|fm(t)|1,r

≤ R−3(t)

2

∫∫∫

vφ,m(gm)aσ0,m(ω)fmfm∗((v
′0)r + (u′0)r − (v0)r − (u0)r) dω du dv,

and follow the same calculations of Lemma 3.6 to obtain

sup
m

sup
t∈[0,T ]

|fm(t)|1,r ≤ Cr.

Consequently, the relation (3.18) gives the desired result. �
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Lemma 3.9. Consider the sequence {fm} on any finite time interval [0, T ]. For

any small number δ > 0, there exists a positive number M such that if k,m ≥ M ,

then

sup
t∈[0,T ]

‖fk(t)− fm(t)‖1,1 ≤ δ.

Proof. Similarly to the previous lemma, we first estimate |fk − fm|1,1 and then
obtain the desired result by using (3.18). By direct calculation, we have

d

dt
|fk(t)− fm(t)|1,1 =

d

dt

∫

|fk(t, v)− fm(t, v)|v0 dv

=

∫

∂t

[

|fk(t, v)− fm(t, v)|
]

v0 + |fk(t, v)− fm(t, v)|∂tv0 dv

=

∫

sgn(fk − fm)(Qk(fk, fk)−Qm(fm, fm))v0 dv

− Ṙ(t)

R3(t)

∫

|fk(t, v)− fm(t, v)| |v|
2

v0
dv

≤
∫

sgn(fk − fm)(Qk(fk, fk)−Qm(fm, fm))v0 dv.

Hence, we can follow the proof of Lemma 3.7 and obtain a positive number M such
that if k,m ≥ M , then

sup
t∈[0,T ]

|fk(t)− fm(t)|1,1 ≤ δ.

Consequently, we obtain the desired result by applying (3.18), and this completes
the proof. �

By the same argument as in Theorem 3.1, we obtain the following theorem.

Theorem 3.2. Suppose that the scattering kernel has the form of (1.6) and initial

data satisfies f0 ∈ L1
r(R

3) for r > 1 + a
2 with f0 ≥ 0. Then, the Boltzmann

equation (1.5) in the Robertson-Walker spacetime has a unique global solution f ∈
C([0,∞);L1

1(R
3)) with f(t) ≥ 0.

4. Summary and outlook

In this paper global existence theorems have been proved for spatially homo-
geneous solutions of the Boltzmann equation in Minkowski space and in spatially
flat Robertson-Walker spacetimes. This was done for a class of collision kernels of
hard potential type and these theorems extend existing results for smooth collision
kernels with compact support to cases which are closer to those which naturally
arise in physical problems.

There are many directions in which this work might be generalized. Do the
special relativistic solutions constructed here converge to equilibrium as t → ∞?
If so, can a useful analogue be proved for the Robertson-Walker spacetimes? Note
that in the latter case equilibrium is impossible since the existence of an equilibrium
solution of the Boltzmann equation in a spacetime implies the existence of a timelike
Killing vector field ([15], p. 1167) and vector fields of this kind do not exist in most
Robertson-Walker spacetimes. It is nevertheless the case that in practise ideas
related to equilibrium matter distributions are used in cosmology and so it should
be possible to formulate some mathematical analogue of equilibrium solutions in
an expanding cosmological model.
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Now that a global existence result has been obtained in a class of homogeneous
and isotropic cosmological models it is natural to ask whether a similar result can
be proved in general homogeneous cosmological models which expand for ever. In
this paper the device of writing the equation in terms of the covariant components
of the momentum is used to simplify the equation. In fact this trivializes the kinetic
part of the equation. The same trick would work in more general models of Bianchi
type I but not in general homogeneous models. It is nevertheless the case that
this transformation does produce some simplification in general and this has been
exploited in the study of the late-time behaviour of the Einstein-Vlasov system in
[22].

Another generalization is to look at the global existence question for homoge-
neous solutions of the Einstein-Boltzmann system. A template for this could be
provided by the results of this type for the Einstein equations coupled to other
matter models proved in [24]. For the class of collision kernels considered here
there are no local existence theorems available for inhomogeneous solutions of the
Einstein-Boltzmann system. There are global existence theorems available for the
Boltzmann equation with this type of kernel in special relativity with small or close
to homogeneous initial data. The small data problem for the Einstein-Boltzmann
system is out of reach at present since even the corresponding problem for the
Einstein-Vlasov system has not been solved. On the other hand in the presence
of a positive cosmological constant there are global existence results for solutions
of the Einstein-Vlasov system evolving from data which are close to homogeneous
[26].

It is well-known that the Boltzmann equation is not well-posed in the past time
direction. In cosmology this equation is of interest for the very early universe and
so it is natural to enquire if solutions of the Einstein-Boltzmann system can be
constructed which extend all the way back to the big bang. It is not reasonable
to construct these by evolving backwards in time and a possible alternative is to
pose data at the singularity. A formal study of this type of procedure has been
carried out in [30] but corresponding existence proofs have not yet been developed.
In conclusion, the study of the Boltzmann equation in curved spacetimes and its
coupling to the Einstein equations gives rise to a variety of challenging mathematical
problems.
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