PACIFIC JOURNAL OF MATHEMATICS
Vol 111, No 2, 1984

THE SPECIES OF BORDERED KLEIN SURFACES
WITH MAXIMAL SYMMETRY OF LOW GENUS

Coy L. MAY

A compact bordered Klein surface of genus g = 2 is said to have
maximal symmetry if its automorphism group is of order 12(g — 1), the
largest possible. For each value of the positive integer g there are, of
course, several different topological types of bordered surfaces of genus
g; each distinct topological type is called a species of the genus g. Here
we classify the species of bordered Klein surfaces with maximal symme-
try of genus g < 40; there are 32 species in 18 different genera. We also
classify the species with maximal symmetry that have no more than 5
boundary components. To aid in the classification two group-theoretic
constructions that give new surfaces with maximal symmetry and a
family of M*-groups are introduced. We also establish several general
results about the species of a surface with maximal symmetry. In
particular we show that if X is a non-orientable bordered surface with
maximal symmetry and solvable automorphism group, then the genus of
X is odd.

0. Introduction. Let X be a compact Klein surface [1] of (alge-
braic) genus g = 2. Then the group of automorphisms of X is finite, and it
is well-known just how large this group can be. The size of the best
possible upper bound depends, however, on the topological type of the
surface X.

If X is orientable and without boundary, then X is a classical
Riemann surface and has at most 168(g — 1) automorphisms (including
the orientation-reversing ones). This of course is just twice the bound
Hurwitz obtained in his fundamental paper [7]. Recent research has
studied the values of g for which these bounds are attained and the
structure of the associated automorphism groups. Most work has con-
centrated on the groups of orientation-preserving automorphisms (for
example, see [2] and {13]), but the full groups were considered in [16].
These groups cannot be solvable [13, p. 19]. Hurwitz’s bound 84(g — 1) is
attained for infinitely many values of g, but these values have not been
classified. The first four values are 3, 7, 14, and 17, and these are the only
ones that are not greater than 40 (13, p. 38].

If the surface X is non-orientable but still without boundary, then the
order of the automorphism group is at most 84(g — 1). This case has
received a good deal less attention but has been studied in [15] and [5].
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Again the bound is attained for infinitely many values of the genus g, the
first two being 7 and 14 [5].

Finally, if X is a bordered Klein surface, then the bound for the size
of the automorphism group of X is the much smaller 12(g — 1) [8].
Intuitively, the requirement that an automorphism a: X — X map each
boundary component to another boundary component limits the size of
the group. A bordered surface for which the bound 12(g — 1) is attained
is said to have maximal symmetry. Bordered surfaces with maximal
symmetry have been studied in [8], [9], [4], and [10], and numerous
examples are presented there. For instance there are surfaces with maxi-
mal symmetry of genera 2, 3, 4, 5, 6, and 9, and it is interesting that the
bound is attained for both orientable and non-orientable surfaces. In this
case as well the bound is attained for infinitely many values of the genus
g. The associated automorphism groups may be solvable as well as
non-solvable.

For each value of the positive integer g there are, of course, several
different topological types of bordered surfaces of genus g. This is in
marked contrast to the two cases in which the surfaces are without
boundary. We shall say that each distinct topological type is a species of
the genus g. We know the species of a bordered surface when we know its
genus, its orientability, and the number of its boundary components. The
larger the genus is, the greater the number of species that it contains.

The problem of classifying the bordered Klein surfaces with maximal
symmetry was first raised in [4, §3], and one general approach to this
problem was given there. The presence of different species within a genus
gives the problem a good deal of additional interest and complexity. Also
in [4] are several constructions that give many species with maximal
symmetry of low genus. As the work on [4] was being concluded, we
began to wonder about the completeness of these constructions for
surfaces of low genus.

Here we classify the species of bordered Klein surfaces with maximal
symmetry of genus g < 40. The number of species with maximal symme-
try in this range is somewhat surprising; there are 32 species in 18
different genera. To exhibit these species we need only the constructions
of [4] and some easy group-theoretic constructions. To demonstrate that
these are the only species with maximal symmetry in the range, we utilize
the basic ideas about coverings of Klein surfaces from [4] and [10]. The
structure of the automorphism group of a surface with maximal symmetry
also proves helpful. Along the way we establish some general results about
the species of a surface with maximal symmetry.
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1. Preliminaries. For any Klein surface X, let A( X) denote the
group of automorphisms of X. We assume all surfaces are compact and of
genus g = 2. By a species X we will always mean a species of bordered
Klein surface, that is, a surface X together with a fixed dianalytic structure
on X. Of course the topological surface may carry many different diana-
lytic structures.

A finite group G is called an M*-group [9] if it is generated by three
distinct non-trivial elements ¢, ¥, and v which satisfy the relations

(1.1) 2=u?=0= () = () = 1.

The order of uv is called an index of G. The fundamental result about
M*-groups is the following.

THEOREM A ([9], [4]). A finite group G is an M*-group with index q if
and only if G is the automorphism group of a bordered Klein surface X with
maximal symmetry and k boundary components, where

o(G) = 2¢4k.

In this situation we will frequently say that G acts on X with index q.
Note that the index of an M*-group G determines the number of boundary
components but not the orientability of the surface on which G acts.

Theorem A was established using the representation of a Klein
surface as a quotient of the upper half-plane H by a non-euclidean
crystallographic (NEC) group. In particular, the finite group G is the
automorphism group of a bordered surface X with maximal symmetry if
and only if there exist a proper NEC group A with signature (2, 2,2, 3)
and a homomorphism ¢: A - G onto G such that X = H/T', where
I' = kernel ¢ is a bordered surface group [9, pp. 4-6].

Let G be an M*-group with generators ¢, u, and v satisfying the
relations (1.1) with ¢ = o(uwv). Set x = tu and z = wv. Then G is generated
by u, x, and z which satisfy the relations

(1.2) u?=x>=29=(ux)’ = (uz)’* = (xz)’ = 1.

Sometimes it 1S more convenient to work with these generators; for
example, see [10].

Let X and X’ be bordered Klein surfaces, and let ¢: X - X’ be an
unramified normal covering (without folding) of the surface X’. If every
automorphism of X’ lifts to an automorphism of X, then ¢ is a full
covering. The basic results about full coverings of surfaces with maximal
symmetry are the following.
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THEOREM B [4]. Let ¢: X — X’ be a full covering of the bordered Klein
surface X'. If X' has maximal symmetry, then so does X. In this case,
A(X") = A(X)/N, where N is the group of covering transformations.

THEOREM C [4]. Let X be a bordered Klein surface with maximal
symmetry, and let N be a normal subgroup of G = A(X) with [G: N]> 6.
Let X’ = X/N, G' = G/N, and let ¢ X - X' be the quotient map. Then X’
has maximal symmetry with automorphism group G’ and ¢ is a full covering.

An M*-group is said to be M*-simple [4] if it has no proper M*-quo-
tient groups. If X has maximal symmetry and A( X) is M*-simple, then we
say X has primitive maximal symmetry. The following is an immediate
consequence of Theorem C.

THEOREM D [4]. If X has maximal symmetry, then it is a full covering of
a surface with primitive maximal symmetry.

Thus the surfaces with primitive maximal symmetry are of fundamen-
tal importance in the classification of surfaces with maximal symmetry.

Let ¢: X = X’ be a full covering of degree d, and let C, be the ith
component of 0 X. The local boundary degree b, is the number of times C,
wraps around its image in 9.X". If all of the b, are equal, then the common
value b is called the boundary degree of ¢. In general, of course, a covering
will not have a global boundary degree. However, it is important to note
that if the surface X has maximal symmetry, then the full covering ¢ has
a well-defined boundary degree [4, §3].

Now suppose the full covering ¢ has boundary degree b. If k and k'
are the numbers of components of 3 X and 9 X’ respectively, then

(1.3) kb = k'd,

and clearly the boundary degree b divides d. If b = d, then we say ¢ is a
fully wound covering [10], since ¢ is a full covering with maximal winding.
Some basic results about fully wound coverings of surfaces with maximal
symmetry were established in [10]. We shall need the one that relates this
geometric concept to the structure of the automorphism group.

Let X be a bordered Klein surface with maximal symmetry, and let
G = A(X) have index ¢ and generators u, x, and z satisfying the relations
(1.2).
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THEOREM E [10]. Let ¢: X = X’ be a full covering of a surface X' with
maximal symmetry, and let A(X") have index m. Then the covering ¢ is fully
wound if and only if in the group G = A(X), xz2™ = z"x, and X' = X/M,
where M = (z™).

Let X be a bordered Klein surface with maximal symmetry, and let
G = A(X) have generators ¢, u, and v satisfying the relations (1.1). We fix
the following notation.

g = genus of X;

p = topological genus of X;

k = number of boundary components of X
g = o(uv), the index of G.

We mention one important relation involving these integers.

(14) £=|

2p + k— 1 if Xisorientable,
ptk—1 if X is non-orientable.

Also, to indicate the orientability (“o” for short) of a surface in a table,
we shall use a “ +” if the surface is orientable and a “ —" if it is not.

2. Full coverings. Here we establish some facts about full coverings
that will be useful later.

PROPOSITION 1. Let ¢: X — X’ be a full covering. If X' is orientable,
then so is X. If X' is non-orientable, and the degree of ¢ is odd, then X is
also non-orientable.

Proof. First let X’ be orientable. Then since d.X is not folded along
d.X’, we can lift the orientation of X’ to define an orientation of X.

Now suppose X' is non-orientable, and let Z be the orienting double
of X’ [1, pp. 40-42]. If X were orientable, there would exist a covering
f: X = Z such that the following diagram commutes.

x L 2z

2.1
2.1) oN
XI

But then the degree of ¢ would be twice the degree of f, which would not
be possible if the degree of ¢ were odd. Therefore in this case X is
non-orientable.
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If the covering is fully wound, then we can improve this resuit.

PROPOSITION 2. Let ¢: X — X' be a fully wound covering. Then X and
X' are both orientable or both non-orientable.

Proof. If X’ is orientable, then so is X by Proposition 1.

Let X’ be non-orientable, and let Z be the orienting double of X”. If X
were orientable, then as in the previous proof there would exist a covering
f: X — Z such that the diagram (2.1) commutes. But the orienting double
Z has 2k’ boundary components, while X has only k = k’ since ¢ is fully
wound. Hence there is no such covering f, and X is non-orientable.

The next result concerns surfaces with maximal symmetry.

PROPOSITION 3. Let X and X' be surfaces with maximal symmetry, and
let ¢: X = X' be a full covering. Then k' divides k and q’ divides q.

Proof. The covering ¢ has a well-defined boundary degree » which
divides the degree d of the covering. Then k’ divides k& immediately from
(1.3). Further, o(G) = o(G’) - d so that 2qk = 2q’k’d. Then using (1.3)
we have gk = q’kb. Thus

(2.2) q=bq’
and ¢’ divides gq.

We shall see later that these three easy propositions have a surprising
range of applications.

3. M*-groups. The M*-groups are closely related to two well-known
families of groups. The relationships are hardly surprising in view of the
correspondence between surfaces with maximal symmetry and regular
maps [4, §6].

First let [n, g] denote the group with generators ¢, u, and v and
defining relations

2=y =0v*=(10)" = (w)’ = ()’ = 1.
These groups have been investigated extensively [3]. If G is an M*-group
with index ¢, then G is a quotient of the group [3, g]. Further, any finite
group [3, q] is an M*-group; however, [3, ¢] is finite only for ¢ =5 [3, p.
37]. At any rate it is an easy matter to classify the M*-groups with small
index.
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M*-groups with index ¢ < 5

G qr g G 9 1 g
C,X8;=[32 262 | CXS,~[34 4 6 5
L =~[3,3] 3 4 3 | A 5 5 6
S, 4 3 3 | C,XAs=[3,5] 5 10 11

Now let G™%" be the group with generators 4, B, and C and defining
relations

(3.1) A"=B7=C"=(AB)" = (BC) = (C4)* = (4BC)’ = 1.

If weset T = BC, U= CA, and V = BCA, then we obtain the presenta-
tion

T=Ur=V2=(TU) = (TV)" = (UV)? = (TUV) = 1.

Thus if G is an M*-group with ¢ = o(uv) and r = o(tuv), then G is a
quotient group of G*9". If g and r are not large, this severely limits the
possibilities for G. Of course any finite group G>%" is an M*-group. For
the complete table of known finite groups G™%’, see [3, pp. 139, 140].

Next we introduce a family of M*-groups that is closely related to the
concept of a fully wound covering. These groups are extensions of ones
studied by Newman [11, p. 269].

LeMMA 1. Suppose 1 =<n <5, and let H, be the group with generators
u, x, and z and defining relations

ur=x>=(ux)" = (uz)’ = (xz)’ =1, xz"=z"x.
Then z" has order a, and H, is an M*-group with index na,, where a, and
o( H)) are given by the following table.

n 1 2 3 4 5
a 6 3 4 6 12

n

o(H,) 12 36 96 288 1440

Proof. Let F, be the group generated by x and z with defining
relations

(3.2) x2=(xz)’=1, xz"=2z"x.

Then both o(z") and o( F,) are known [11, p. 269], and we derive the
larger group H, from F,.
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Let §: F, - F, be the automorphism of F, defined by
0(x)=x, 6(z)=:z7".

Now adjoin to F, a new element u of order two which transforms the
elements of F, according to the automorphism 6. The order of the larger
group is twice that of F,, and it is defined by the relations (3.2) together
with

uxu = X, uzu = z7%, ur=1.

The new group is H,, of course, and the entries in the table follow from

the corresponding facts about F, [11, p. 269]. Clearly H, is an M*-group
with index o(z) = na,,.

LEMMA 2. Suppose 1 <n <5 and m divides a,. Let H, ,, be the group
with generators u, x, and z and defining relations

(33) w=x*=(ux)'=(uz)’=(xz)’=2z""=1, =xz"=z"x.

Then o(H, ,)=m-o(H,)/a,.

Proof. Fix the integer m. Let D be the subgroup of H, generated
by z"™. Then it is easy to see that D is normal in H,, and clearly H, , =
H,/D. But o(D) = o(z")/m = a,/m. Thus o(H, ,) = o(H,)/o(D) =
m-o(H,)/a,.

If n=1 and m < 3, then H, , is not an M*-group, but in general
H, , is an M*-group with index nm.

Note that for each value of n =2 we have a family of fully wound
coverings. For example, each surface with maximal symmetry on which a
group H, ,, acts is, by Theorem E, a fully wound covering of a surface of
genus 5 on which the smallest group H,, acts. These families of surfaces
with maximal symmetry were obtained in an entirely different way in [4,
§4].

The importance of the groups H, ,, in the classification of the species
with maximal symmetry is indicated by the following result from [10, p.
27). Let X be a bordered Klein surface with maximal symmetry, topologi-
cally different from the projective plane with three holes (a very special
species). Let G = A( X) have index ¢q and generators u, x, and z satisfying
the relations (1.2).

THEOREM F [10]. There is a positive integer n < k such that n divides q
and xz" = z"x. Further, the subgroup N = {z") is normal in G.
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If it happens that n < 5, then the generators u, x, and z satisfy the
relations (3.3). This means G is a quotient of the group H, , where
nm = g. Since this will always be the case when k <5, the groups H, ,,
can be used to classify the species with maximal symmetry with no more
than 5 boundary components. These groups and Theorem F easily yield
the following.

PROPOSITION 4. If k <5, then k divides v, for some n < k, where vy, is
given by the following table.

n 1 2
3

4 5
y, 1 6

3
4 12

Proof. We know that for some n < k, G is a quotient of the group
H, , where nm = q. Then o(H, ,) =t - o(G) for some integer ¢. Now
o(G) = 2qk = 2mnk, and using Lemma 2, we have 2nmkt = m -
o(H))/a,, or kt =0o(H,)/(2na,). Set v, = o(H,)/(2na,). Then k di-
vides v,, and the values of y, follow from Lemma 1.

COROLLARY. There are no bordered Klein surfaces with maximal sym-
metry with k = 2 or k = 5.

It is not hard to finish the classification, and we have our first main
result,

THEOREM 1. The species of bordered Klein surfaces with maximal
symmetry with kK <5 are the following.

HOW N N0
= ]
+ I+ +]e
W W W o= X
O L W0
w— Ol
+ 4+ +|o
E o S

Proof. There exists a Klein surface of each species in the table that
has maximal symmetry {4, §§2 and 4]. Further, the species with k = 1 is
unique [4, §2].
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Let X have maximal symmetry with £ =<5 and let G = A(X). We
know that k # 2 and k % 5. Assume that topologically X is not the
projective plane with 3 holes. Then there is an integer n < k such that &
divides v, and G is a quotient group of H, ,, where nm = q.

Suppose k& = 4. Then immediately # = 3 by Proposition 4. Note that
o(H; ,) = 24m. But o(G) = 2gk =2 - 3m - 4 = 24m as well. Thus G =
H,, where 3m = ¢, and G acts on X with the presentation (3.3). The
possibilities for m are 1, 2, and 4. If m = 1, then ¢ = 3 and g = 3. Then
by (1.4) X is orientable and p = 0. If m = 2, theng = 6,g = 5,and Xisa
fully wound covering of a surface with genus 3 and & = 4. Hence X is
orientable by Proposition 2 and p = 1 by (1.4). Finally, if m = 4, then
qg = 12, g = 9, X is orientable (as with m = 2), and p = 3.

The proof for k = 3 is similar and is omitted.

4. Constructions. In this section we give the constructions we need
to exhibit the species with maximal symmetry of genus g < 40. The first
four constructions were obtained in [4, Theorems 9, 10, 12, and 13] using
the theory of covering spaces and the fundamental group. Here we
introduce notation for each construction. Let X be a bordered Klein
surface.

Construction 1. Let X be orientable, and let m and » be positive
integers such that m divides n. Then there is a full cover S,"( X) of X with
degree d = n?? - m*~! and boundary degree

p= {m ifk>1,
1 ifk=1.

Further, the surface S,"( X) is orientable.

Construction 2. Let X be orientable, and let m and n be positive
integers such that m divides (k, n). Then there is a full cover R'( X) of X
with degree d = n?? - m and boundary degree b = m. Further, the surface
R7'(X) 1s orientable.

Construction 3. Let X be non-orientable with £ > 1, and let m and n
be positive integers such that m divides n. Then there is a full cover
S™(X) of X with degree d = n?~' - m*~' - (2m, n) and boundary degree
b = m. The surface S"( X) is orientable if and only if » is even.



BORDERED KLEIN SURFACES WITH MAXIMAL SYMMETRY 381

Construction 4. Let X be non-orientable, and let » be an even positive
integer. Then there is a full cover R ,( X) with boundary degree

b= {(4, n)/2 ifkisodd,
2 if k is even

and degree d = 2bn?~ . Further, the surface R,( X) is orientable.

Now let X have maximal symmetry, and suppose a full cover Z of X
has been obtained by one of these constructions. Then Z has maximal
symmetry by Theorem B, and it is easy to determine the species of Z.
First, if y is the genus of Z, then y — 1 = d(g — 1). Then we can calculate
the number of components of 3Z using (1.3) and the topological genus of
Z from (1.4).

The following result from [10, p. 24] gives a useful method for finding
a second index for an M*-group.

PROPOSITION 5. Let G be an M*-group with generators t, u, and v
satisfying the relations (1.1) and index q = o(uv). If r = o(tuv), then G also
has index r.

Proposition 5 was established by noting that ¢, ¥’ = tu, and v are
another set of generators that satisfy the relations (1.1). Of course de-
termining o( fuv) might be troublesome without a full presentation for the
M*-group G.

Suppose X has maximal symmetry and the M*-group G acts on X
with index g. If r = o(tuv) # ¢q, then there is another species Y of the
same genus that has maximal symmetry and of course G = A(Y). To
construct the Klein surface Y, just introduce the generators ¢, u’, and v
and then apply Theorem A. We shall denote the new surface Y by Op( X).
The notation was suggested by a construction of Wilson [17, p. 562} on
regular maps. We emphasize that the notation does not imply that Op( X)
is a cover of X, which it cannot be. The number # of components of dY
can be found from o(G) = 2rh, but the orientability of Y remains to be
determined.

ExamMPLE. Let W be a torus with three holes that has maximal
symmetry, and let X = S}(W). X is a surface with g = 28, p = 1, k = 27,
and G = A(X) has order 324 and index ¢ = 6. Further, G has a normal
subgroup N of order 9 such that X/N = W. Let r = o(tuv) so that G is a
quotient of the group G*®*’. Since the order of G*®% is 108 [3, p. 139], we



382 COY L. MAY

know r > 6. Hence Y = Op(X) is a different species of genus 28 with
maximal symmetry. Since the subgroup N is normal in G = A(Y), Z =
Y/N is a surface with maximal symmetry of genus 4 and the quotient
map ¢: Y — Z is a full covering. But there is only one species of genus 4
with maximal symmetry, by (1.4) and Theorem 1. Topologically Z is a
torus with three holes. Now Y is orientable by Proposition 1. We still need
to determine r, the index of A(Y). Since A(Z) has index 6, we have r = 6b
from (2.2), where b is the boundary degree of the covering ¢. Further, b
divides 9, the degree of ¢. Thus r = 18 or r = 54. If r = 54, then Y would
have 3 boundary components, contradicting Theorem 1. Hence r = 18,
and Y = Op( X) is an orientable surface with 9 boundary components and
topological genus 10. It is interesting that this surface cannot be explained
by the constructions of [4, §4].

The remaining two constructions are group-theoretic in nature. We
shall only need the notions of direct and semi-direct products and the
following general idea. Let X have maximal symmetry, and let G = A( X)
have generators ¢, u, and v satisfying the usual relations (1.1). Suppose
that from G we construct a larger M*-group G* with generators ¢*, u*,
and v* satisfying the relations (1.1) and that there is a homomorphism
7. G* - G defined by 7(t*) = ¢, m(u*) = u, and #(v*) =v. Let K=
kernel 7 so that G* /K = G, and represent X in the form X = H/I', where
I' is a bordered surface group. Then there exist a proper NEC group A
with signature (2,2, 2, 3) and a homomorphism ¢: A - G onto G such that
kernel ¢ = I'. By considering the action of ¢ on the generators of A (the
image of each generator is either ¢, u, v, or 1) [9, p. 6], it is easy to see that
¢ will factor through 7, that is, there is a homomorphism a: A — G* onto
G* such that 7 o a« = ¢. Further, A = kernel « is a bordered surface
group. Then the M*-group G* acts on the surface Z = H/A. Clearly
A C I'and I' /A = K. Finally we have

Z/K=(H/A)/(T/A)=H/T = X.
Thus Z is a full covering of X.

THEOREM 2. Let X have maximal symmetry. If G = A(X) has odd
index q, then C, X G is an M*-group with index 2q and there is a surface
O(X) with maximal symmetry that is a fully wound double covering of X.
Further, Q( X) is orientable if and only if X is.

Proof. Let C, = (a), and choose t* = (a, t), u* = (1, u), and v* =
(a, v). Then r*, u*, and v* generate C, X G and satisfy the relations (1.1)
with o(u*v*) = 24. Let 7 be the obvious homomorphism 7: C, X G - G,
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and note that #(¢*) = ¢, m(u*) = u, and 7m(v*) = v. Then, as above,
obtain the surface Z on which C, X G acts. Since the index of C, X G is
2q, Z and X have the same number of boundary components. Thus Z is a
fully wound covering of X. Finally, Z is orientable if and only if X is, by
Proposition 2. Henceforth we denote this double covering Z by Q( X).

The construction will not work if the index ¢ is even. If X is
non-orientable, then Q( X) is not the orienting double of X and X has two
double covers with maximal symmetry. Each has automorphism group
G, XG.

EXAMPLE. Let X be a non-orientable surface of genus 6 with primitive
maximal symmetry, so that A(X) ~ A4, ¢g=35, p=1, and k = 6. Then
Q( X) is a non-orientable surface of genus 11 with maximal symmetry that
has topological genus 6 and 6 boundary components. This is another
species that cannot be explained by the constructions of [4, §4] (but see [4,

§6)).

Now consider the subgroup H = (tu, uv) of the M*-group G. The
index of H in G is at most two. Suppose [G : H] = 2. This will always be
the case when X is orientable, since u is a reflection. Then let 6 be the
quotient map

6: G- G/H = C, = Aut(G,)

and construct the semi-direct product C; X, G (using the notation of [12]).

THEOREM 3. Let X have maximal symmetry. If [G: H] = 2 and (3, q)
=1, then C; X4G is an M*-group with index 3q and there is a surface
T(X) with maximal symmetry that is a fully wound triple covering of X.
Further T( X) is orientable if and only if X is.

Proof. Let C; = (b), and choose ¢’ = (b, t), u’ = (b, u), and v’ =
(1, v). Then ¢', ', and v’ generate C; X, G and satisfy the relations (1.1)
with o(u’'v") = 3q and o(t’u’v’) = r = o(tuv). Let 7 be the obvious homo-
morphism 7: C; X, G - G, and note that #(¢') = ¢, w(u") = u, and 7(v")
= v. As before obtain the surface W on which the new M*-group C; X, G
acts. Then W is a fully wound triple covering of X. Now denote W by
(X).

Theorem 3 and Proposition 5 can sometimes be combined to yield an
additional species with maximal symmetry.
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ExaMPpLE. Let X be a sphere with 12 holes that has maximal symme-
try, so that g =11 and G = A(X) = C, X A5 has index ¢ =5 and r =
o(tuv) = 10. Then G* = C, X4G is an M*-group of order 360 with
q = 15 and r = 10. G* acts on two species of genus 31 with maximal
symmetry. W = T(X) is an orientable surface with p = 10 and k& = 12,
while Op(W) is non-orientable and has p = 14 and k£ = 18.

5. Results used in the search. In this section we collect the results
we need to classify the species of bordered Klein surfaces with maximal
symmetry of genus g < 40. We begin by finding all M*-simple groups of
order at most 468 = 12(40 — 1). The solvable M*-simple groups have
already been classified; the only ones are C, X Sy and S, [4, §5].

We look first at the simple groups (of composite order). The ones in
the range are A5 of order 60, PSL,(7) of order 168, and A, of order 360.
These three groups are well-known. A consideration of the possible orders
for elements in these groups, together with a check of the finite groups
G*7’ yields the following.

LEMMA 3. The only simple M*-group of order less than 480 is A, which
has index 5.

A simple M*-group is, of course, M*-simple. If G is a simple
M*-group, then G acts only on non-orientable surfaces with maximal
symmetry, since otherwise the orientation-preserving automorphisms
would form a subgroup of index two in G [8, p. 206].

Next we search for M*-simple groups among the non-solvable groups
of order less than 480. We look first at the groups involving 4.

LEMMA 4. There are no M*-simple groups of order 60n for 2 <=n <1.

Proof. For n # 4 this follows easily from the list of non-solvable
groups of these orders in [6, pp. 417, 418].

Let G be a non-solvable group of order 240 = 16 - 3 - 5, and let S be
a Sylow 5-subgroup of G. Since G is non-solvable, S is not normal in G.
Let n5 be the number of Sylow 5-subgroups of G, and let N and C be the
normalizer and centralizer of S in G. Then immediately n; = 6 or n5 = 16.
If ny =16, then o(N) =15 and N would be cyclic. This would force
N = C, and S would have a normal complement in G [14, p. 137]. But
then G would be solvable. Therefore ns = 6.

Now [G: N] = 6, and there is a homomorphism p: G — S, such that
K = kernel p C N [12, p. 48]. If K = N, then G would be solvable. Since
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S, does not have a subgroup of index 3, K # {1}. Thus K is a non-trivial
normal subgroup of index larger than 6, and G is not an M*-simple group.

We still need to examine the groups in the range involving PSL.(7).

LEMMA 5. The only non-solvable M*-group of order 336 is PGL(7),
which has indices 7 and 8.

Proof. Let G = PGL (7). Then G = G*>"® =~ G>*7 [3, p. 139], so that
G is an M*-group with indices 7 and 8. An easy consideration of the
orders of elements of G and the groups G*%" shows that no other index is
possible.

The other two non-solvable groups of order 336 have a normal
subgroup of order two and quotient PSL (7). Therefore these two groups
are not M*-groups, since PSL,(7) is not.

PGL(7) is clearly M*-simple. We need to determine the species on
which G = PGL,(7) acts. First let G act on X with index g = 8, so that
k = 21. Since g = 29, X is non-orientable of topological genus p = 9 just
from (1.4).

Next let G act on a surface Y with index g = 7, so that k = 24.
Suppose for the moment that Y is non-orientable, and let Y, be the
orienting double of Y. Then Y, is of genus 2g — 1 = 57, topological genus
5, and has 2k = 48 boundary components. Further, G acts as a group of
orientation-preserving automorphisms of Y, [1, pp. 40—43]. Now embed Y,
in a surface M without boundary of the same topological genus so that
every automorphism of Y, extends to an automorphism of M [4, Th.D].
Thus G acts as a group of orientation-preserving automorphisms of M, a
Riemann surface of genus 5. But o(G) = 336 = 84(5 — 1), and the bound
of Hurwitz is not attained for surfaces of genus 5 [16, p. 26]. Therefore the
bordered Klein surface Y is orientable and of topological genus p = 3.

In summary we state our next main result.

THEOREM 4. The seven species of bordered Klein surfaces with primitive
maximal symmetry of genus g < 40 are the following.

g p o k G |g p o k G
20 + 3 X8| 61 — 6 A
21 + 1 G XS8[29 3 + 24 PGLL(7)
30 + 4 S, |29 9 — 21 PGLy)
31 — 3 8,
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Let X be any bordered surface with maximal symmetry of genus g. If
g = 40, then by Theorem D X is a full cover of one of these seven species.
Also, if A(X) is solvable (with no restriction on the size of g), then X is a
full cover of one of the four species of genus 2 or 3. These two observa-
tions and the results of §2 place effective restrictions on the species of X.
For example, we easily obtain the following surprising result.

THEOREM 5. If X is a non-orientable bordered surface with maximal
symmetry such that G = A( X) is solvable, then

(1) the genus g of X is odd,

(2) 3 divides k, and

(3) 4 divides q.

Proof. By Proposition 1, X must be a full cover of a projective plane
with three holes, the only non-orientable species with primitive maximal
symmetry and solvable automorphism group. Then 3 divides k£ and 4
divides g by Proposition 3, and 24 divides o(G) = 12(g — 1) by Theorem
C so that g is odd.

Of course, for many (even) values of g, all groups of order 12(g — 1)
are solvable. Non-orientable surfaces with maximal symmetry of even
genus do exist; there is one of genus 6 for instance.

Next we establish three general results that are useful in classifying
species with maximal symmetry. The first concerns those with k£ < g.

PROPOSITION 6. Let X be a bordered Klein surface with maximal
symmetry and k > 3. If k < q, then X is a fully wound covering of a surface
X’ with maximal symmetry of lower genus.

Proof. Let G = A(X) have generators u, x, and z satisfying (1.2) and
apply Theorem F. There is a positive integer n < k such that » divides ¢
and xz" = z"x. The subgroup N = (z") is normal in G, and [G: N] =
2nk > 6 since k > 3. Let X’ = X/N and G’ = G/N. Then by Theorem C,
X’ has maximal symmetry, and the covering X — X’ is fully wound by
Theorem E. Since o(G") = 2nk < 2gk = 0o(G), we have g’ < g.

Thus if there is a species X with maximal symmetry and k < g, there
must be another species X’ of lower genus with the same number of
boundary components. Further, X’ is orientable if and only if X is, by
Proposition 2.

The second result is similar but deals with a different type of surface.
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PROPOSITION 7. Let X be a non-orientable surface with maximal
symmetry of genus g > 3, and let G = A( X)) be solvable of order 24n. If n is
not a power of a prime, then X is a full covering of a non-orientable surface
X' with maximal symmetry of genus g’, where 3 < g’ < g.

Proof. As in the proof of Theorem 5, X is a full cover of a projective
plane ® with 3 holes. Let N be a normal subgroup of G such that
X/N = ®, and G/N = A(®) =~ §,. Let M be a minimal normal subgroup
of G such that M C N. Since G is solvable, the order of M must be a
power of a prime [12, p. 112], so M # N. Now let X' = X/M. Then
X /(N/M)=(X/M)/(N/M)=X/N = ®, and the following diagram
of quotient maps commutes.

X
4

X’ \
N

®

The surface X’ is non-orientable by Proposition 1 and clearly 3 < g’ < g.

Like Theorem 5 the next result says that in some genera none of the
non-orientable species have maximal symmetry.

THEOREM 6. There are no non-orientable bordered surfaces with maxi-
mal symmetry of genus g = 2™ + 1 for any integer m = 2.

Proof. Suppose, to the contrary, such surfaces do exist, and let X be
one such surface of the lowest genus, that is, the genus of X is 2/ + 1 for
some integer / and there are no non-orientable surfaces with maximal
symmetry of genus 2” + 1 for any integer m such that 2 < m < /. Since
0o(G) =12 -2 =13 .22 G is solvable by a theorem of Burnside [14, p.
334). Then 3 divides k and 4 divides ¢ by Theorem 5.

First we show that / is not 2 or 3. Suppose g = 5, so p + k=6 by
(1.4). Then k=3 is the only possibility, but this would contradict
Theorem 1. Therefore g # 5 and / # 2. Next suppose g = 9, s0 o(G) = 96
and gk = 48. Then kK = 6 and g = 8, since k # 3 by Theorem 1. By
Proposition 6 X is a fully wound covering of a surface X’ with k&’ = 6 and
g’ < g. Moreover, X’ is non-orientable and o(G’) divides o(G). Thus
0(G") =48 and g’ < 5. But there is no such surface X’ just by (1.4). Hence
g+ 9and/ #3.
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Now we know that / = 4. As in the preceding proof, let N be a normal
subgroup of G such that G/N = S,. Then N is a 2-group of order at least
8, and clearly N must be a minimal normal subgroup of G, for otherwise
X would be a full cover of another non-orientable surface of lower genus
of the form 2™ + 1. Therefore N is an elementary abelian 2-group [12, p.
112]. Let ¢: G — §, be the quotient map, and let f € G. Since ¢(f) € S,
and N is elementary abelian, f has order 1, 2, 3, 4, 6, or 8. Hence the
M*-group G must be a quotient of a group G*’, where g and r are
elements of the set {1,2, 3,4, 6,8}. Since o(G) = 192 and G is solvable, an
examination of the table of groups G™%" [3, p. 139] shows that G =~ G335,
a group of order 192. But it is clear from the presentation (3.1) that G*%¢
has G**% as a quotient group. Since G**® =~ C, X S, [3, p. 139], G has a
normal subgroup H such that o(G/H) = 12 and X/H is a surface of
genus 2 with maximal symmetry. Therefore X/H is orientable. But then X
would also be orientable, by Theorem C and Proposition 1. This con-
tradicts the assumption that X is non-orientable. Thus there are no
non-orientable surfaces with maximal symmetry of genus 2”7 + 1 for
m=2.

Finally we establish a result that proves very helpful in eliminating
possible orders for M*-groups.

THEOREM 7. Let G be a finite group. Let p be a prime larger than 3 such
that p divides o(G), and let S be a Sylow p-subgroup of G. If S is cyclic and
normal in G, then G is not an M*-group.

Proof. Let Aut(S) denote the group of automorphisms of S. Since S is
cyclic, Aut(S) is abelian [14, p. 120]. Now let C be the centralizer of S in
G. Since S is normal in G, G/C is isomorphic to a subgroup of Aut(.S)
[14, p. 50]. Hence the commutator subgroup G’ C C.

Now suppose G is an M*-group. Then [G: G'] divides 4 and [G': G”']
divides 9 [4, §5]. Now S is the Sylow p-subgroup of G’, and S is central
in G’. By a theorem of Burnside [14, p. 137], S has a normal complement
in G'. Hence S is a factor group of G’ and p divides [G': G"], a
contradiction. Therefore G is not an M*-group.

The proofs of the following applications of the theorem are quite
similar, and we provide only one.

COROLLARY 1 [10]. There are no M*-groups of order 12 p for any prime
p>S5.
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COROLLARY 2. There are no solvable M*-groups of order 24p, 43p, or
72 p for any prime p > 3.

COROLLARY 3. There are no solvable M*-groups of order 12 pr for any
primes p and r such that 3 <p <r.

Proof. Suppose G is a solvable M*-group of order 12 pr. Then G has a
normal subgroup H of order pr such that G/H = C, X §,. The Sylow
r-subgroup of H is characteristic in H and hence normal in G. But this
contradicts the theorem. Thus there are no solvable M*-groups of order
12 pr.

6. General outline of the search. We began by applying the con-
structions of §4 to the species with primitive maximal symmetry of genus
g =40. In some cases the constructions could be iterated to produce
additional species with maximal symmetry in the range. We were also able
to discover 3 species with maximal symmetry by using Proposition 5.
Altogether we found 32 species in 18 different genera.

The next step was to eliminate all other possible values in the range
for the genus of a surface with maximal symmetry. Here the corollaries to
Theorem 7 and the results of §5 were surprisingly effective; all possibili-
ties for g except g = 7 and g = 19 were quickly eliminated. These two
values were easily ruled out by examining groups of orders 72 and 216
and using the results of [4, §5] on the commutator subgroups of M*-groups.
At this stage we knew that the bound 12(g — 1) was attained for exactly
18 values of g between 2 and 40.

To classify the species with maximal symmetry we began at g = 2 and
worked upward through these values. Thus at any point all species with
maximal symmetry of lower genus were known. In addition, the species
with primitive maximal symmetry had already been classified. It proved
convenient to consider the species with solvable automorphism group
separately.

Suppose the bound 12(g — 1) is attained for some particular value of
g > 3 in the range, and assume the associated automorphism group is
solvable. Then either Theorem 5, Theorem 6, or Proposition 7 im-
mediately eliminates all non-orientable species. The next step is to list the
arithmetic possibilities for g, k, and p satisfying 2gk = 12(g — 1) and
(1.4) for orientable surfaces. Then we note the species with maximal
symmetry that appeared in the constructions of §4 and eliminate the
others. (The general procedure is illustrated for genus 25 in the first
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example of §7.) Some species are quickly ruled out, as the species with
k =<5 (Theorem 1) and the ones of low topological genus [4, §2] are
known. The species with k£ < g are not hard to handle, by using Proposi-
tion 6 or Theorem F and Lemma 1 or 2. In some genera at this point there
still remain one or two species to be eliminated. None could have
primitive maximal symmetry, of course. The general strategy is to assume
the species has maximal symmetry and then use the facts about full
coverings from §2 and the completed classification in lower genera to
arrive at a contradiction. Here the structure of the automorphism group is
often quite important. Example 2 of §7 is a typical case.

The classification of the species with non-solvable automorphism
group was somewhat easier, for in the range the bound is attained only for
g =6, 11, 21, 29, and 31. For g = 6 and g = 29 the group is M*-simple
and the species are determined by Theorem 4.

Now suppose X is a species with maximal symmetry of genus g = 11,
21, or 31 and the automorphism group G = A( X) is non-solvable. Then G
is not M*-simple, and G has a normal subgroup N such that G/N ~ A4,
and X/N = ¥, a real projective plane with 6 holes. By Proposition 3, 5
divides g and 6 divides k. If further X is orientable, then the covering
X — ¥ factors through the orienting double ¥,:

X - VY
N !
¥

But ¥, has 12 boundary components, so that in this case 12 must divide &.
These restrictions are enough to rule out most species in genera 11, 21,
and 31 that do not appear in the constructions of §4. The few remaining
species are eliminated using the approach described for the troublesome
species with solvable automorphism group. Example 3 treats a fairly
routine case.

7. Examples. To indicate the nature of the search we present a few
applications of the general theory.

EXAMPLE 1. g = 25. First o(G) = 12 - 24 = 2° - 32, 50 G is solvable.
At this stage in the classification we know there are no non-orientable
species with maximal symmetry and solvable automorphism group with
genus between 3 and 25. Hence, by Proposition 7, there are none of genus
25. Next the arithmetic possibilities for g, k and p for orientable surfaces
with k = 6 are the following.
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q k p q k p
1. 24 6 10 4. 9 16 5
2. 18 8 9 5. 8 18 4
3. 12 12 7 6. 6 24 1

Species 1 and 3 do have maximal symmetry. Species 6 has topological
genus p = 1 and is eliminated by [4, Th. 3]. Species 2 is ruled out by
Proposition 6 since there are no surfaces with maximal symmetry with
k = 8 of lower genus. The remaining two species require special treat-
ment. An easy application of Theorem F and Lemma 1 rules out species 4,
while species 5 is eliminated by considering possibilities for the orders of
normal 2-subgroups and 3-subgroups of G.

ExXAMPLE 2. g = 37, ¢ = 9, kK = 24. Suppose X has maximal symme-
try. Since o(G) = 12 - 36 = 2* - 3, G is solvable and X is a full cover of
one of the four species with maximal symmetry of genus 2 or 3. By
Proposition 3 the only possibility is that X is a full cover of a sphere X
with 4 holes. Then G has a normal subgroup N of order 18 such that
G/N = A(Z) =~ S,. Let M be a minimal normal subgroup of G contained
in N. Since G is solvable, o( M) is a power of a prime, so o( M) is 2, 3, or
9. Then X’ = X/M is a surface with maximal symmetry of lower genus,
and further k&’ divides 24 and ¢’ divides 9. By considering the three
possibilities for o(M) and using the completed classification in lower
genera, we see that there is no such surface X’. Thus the species X does
not have maximal symmetry.

EXAMPLE 3. g = 31, ¢ = 15, k = 12. Suppose X has maximal symme-
try. Since o(G) = 12-30 =72 -5, G is not solvable by Corollary 2 to
Theorem 7. By Proposition 6, X is a fully wound covering of a surface X’
with maximal symmetry of lower genus. Since &k’ = 12, the only possibil-
ity is that X’ is orientable of genus g’ = 11. But then X must be orientable
by Proposition 2. Indeed the last example of §4 contains a surface with
maximal symmetry of the orientable species. However, the non-orientable
species cannot have maximal symmetry.

8. The species with maximal symmetry. We conclude by listing the
species in the range that have maximal symmetry. For each species that
does not have primitive maximal symmetry, we also give one method of
exhibiting the species as a surface with maximal symmetry. We use the
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constructions of §4 and the following notational convention. The species
will be numbered, and by X, we mean a Klein surface of species i with
maximal symmetry.

THEOREM 8. The species of bordered Klein surfaces with maximal
symmetry of genus g < 40 are the following.

g p o k g p o k g p o k
. 20 + 3 1211 0 4+ 12 S)Xy) |23 28 1 + 27 Si(Xs)
22 1 + 1 13. 11 6 — 6 Q(Xy) (24 28 10 + 9 Op(Xyy)
.30 + 4 4. 13 1 + 12 Sy(Xs) (25 29 3 + 24
4 31 - 3 15. 13 4 + 6 R¥X,) [26 29 9 — 21
5.4 1 4+ 3 RY(X){16. 17 1 + 16 SX,) |27. 31 10 + 12 T(X;,)
6. 50 + 6 SHX)|17. 17 3 + 12 SXX)) |28 31 14 — 18 Op(X,)
7.5 1 + 4 SHX)|18 21 5 4+ 12 Ry(Xy) |29 33 5 + 24 SHX)
8. 6 1 — 6 19. 25 7 + 12 Op(Xy)[30. 33 9 + 16 RH(Xy)
9.9 2 + 6 Ry(X,){20. 2510 + 6 T(X,) (3L 37 1 + 36 SHX»)
10. 9 3 + 4 Ri(X;)|21l. 26 1 + 25 S{(X,) |32 37 10 + 18 S&X)
110 1 + 9 S}(Xx) 1220 26 6 + 15 S$3(X)

It should be possible to use our approach to extend the classification
to a higher value of g. However, the growing number of species per genus
indicates the need for new general results.

The data in Theorem 8 for g < 40 do suggest that the bound 12(g — 1)
is attained rather frequently in the sequence of values of g. This is in
marked contrast to the situation for Riemann surfaces [13, p. 38]. We also
see that species with a wide diversity of values of p and k£ have maximal
symmetry. The number and diversity of these species suggest that classify-
ing all species of bordered Klein surfaces with maximal symmetry may be
an enormous problem.

Nevertheless certain pieces of the big problem seem interesting and
more approachable. We would like to call attention to the following
unsolved problems; also see [4, §3].

Few of the surfaces in Theorem 8 are non-orientable, and we already
have Theorems 4 and 5.

Problem 1. Classify the non-orientable species with maximal symme-
try and solvable automorphism group.

Some M*-groups are supersolvable, e.g. C, X §; and S, X S;, and
these groups are especially tractable.

Problem 2. Find all supersolvable M*-groups.
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Problem 3. Classify the species with maximal symmetry and super-
solvable automorphism group.

Problem 4 {4, §3]. Given a surface X with primitive maximal symme-
try, find all full coverings of X, or even all abelian full coverings. In
particular, use the theory of covering spaces and the fundamental group as
in [4] to explain the coverings Q( X) and T( X).

Problem 5. Determine all possible values for the number &k of boundary
components of a surface with maximal symmetry. Of course, many
sequences of possible values of k are known [4), and k cannot be a prime
larger than 3 [10, p. 30]. Still it is not known whether a surface exists for
many interesting values of k, in particular for kK = 8.

In Theorem 8 there are several genera in which there are 2 species
with maximal symmetry but none with 3.

Problem 6. Determine whether there is a bound (independent of g) for
the number of species within a single genus that can have maximal
symmetry. We conjecture that there is not.
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