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The specific DNA barcodes based 
on chloroplast genes for species 
identification of Orchidaceae plants
Huili Li1,2, Wenjun Xiao1,2, Tie Tong1, Yongliang Li1, Meng Zhang1, Xiaoxia Lin1, Xiaoxiao Zou1, 
Qun Wu1 & Xinhong Guo1*

DNA barcoding is currently an effective and widely used tool that enables rapid and accurate 
identification of plant species. The Orchidaceae is the second largest family of flowering plants, with 
more than 700 genera and 20,000 species distributed nearly worldwide. The accurate identification 
of Orchids not only contributes to the safe utilization of these plants, but also it is essential to the 
protection and utilization of germplasm resources. In this study, the DNA barcoding of 4 chloroplast 
genes (matK, rbcL, ndhF and ycf1) were used to provide theoretical basis for species identification, 
germplasm conservation and innovative utilization of orchids. By comparing the nucleotide 
replacement saturation of the single or combined sequences among the 4 genes, we found that 
these sequences reached a saturation state and were suitable for phylogenetic relationship analysis. 
The phylogenetic analyses based on genetic distance indicated that ndhF and ycf1 sequences were 
competent to identification at genus and species level of orchids in a single gene. In the combined 
sequences, matK + ycf1 and ndhF + ycf1 were qualified for identification at the genera and species 
levels, suggesting the potential roles of ndhF, ycf1, matK + ycf1 and ndhF + ycf1 as candidate barcodes 
for orchids. Based on the SNP sites, candidate genes were used to obtain the specific barcode of 
orchid plant species and generated the corresponding DNA QR code ID card that could be immediately 
recognized by electronic devices. This study provides innovative research methods for efficient species 
identification of orchids. The standardized and accurate barcode information of Orchids is provided 
for researchers. It lays the foundation for the conservation, evaluation, innovative utilization and 
protection of Orchidaceae germplasm resources.

Orchidaceae is the second largest family a�er Composite, and the largest family of monocotyledonous  plants1–3. 
More than 700 genera and more than 20,000 species were identi�ed in the family Orchidaceae, which account 
for 8 percent of all �owering  plants1,2,4–7. Orchids mainly distribute in the tropical and subtropical regions of the 
world, and a few species grow in the temperate  regions2–4,8,9.

�e Orchidaceae plants exhibit important ornamental, medicinal, research and ecological  value2,10–12. Many 
Orchidaceae plants with beautiful �owers and rich fragrance are ornamental plants, such as Cymbidium, Phal-
aenopsis, Cypripedium2,12–14. Numerous species containing active ingredients, like polysaccharides, alkaloids, 
phenanthrene and dibenzyl also are served as traditional herbal medicines for treatment of the  diseases2,7,10,12,15. 
�ese traits that is able to bring great economic bene�ts make Orchidaceae plants on raising market demand. In 
the past decades, over-exploitation and habitat destruction by humans caused serious extinction threats to a large 
number of Orchidaceae  plants2,10,15. Additionally, more and more counterfeit and shoddy Orchidaceae-related 
products emerge. �is is not only likely to threaten drug safety, but also caused damage to  biodiversity2,7,11,12.

Given that, the accurate identi�cation of Orchidaceae plants is of great signi�cance for their safe utilization, 
biodiversity and the protection of genetic  resources2,7,12,16,17. It is known that traditional identi�cation methods 
are based on morphological features. Some Orchidaceae plants, however, alomst exhibit no morphological di�er-
ences before �owering, and the orphological features are susceptible to environmental  factors2,7, 16,18. In addition, 
there are fewer and fewer experienced experts in morphological  identi�cation2,7,12,16,18–20. Totally, this makes the 
accurate identi�cation to be a time consuming and labor intensive job. �erefore, we are badly in need of a rapid, 
accessible and accurate identi�cation method.

�e DNA barcode technology is a novel molecular recognition technology that uses short and stand-
ard DNA fragments for species  identi�cation7,16,17,19,21,22. DNA barcodes were originally utilized to identify 
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 microorganisms23, but now it is able to quickly and accurately identify species at the level of species with unlim-
ited reasons for development stage, internal morphological diversity, environmental factors and user’s profes-
sional  level2,7,16,18,22,23. �us, the DNA barcoding technology has been rapidly applied in species identi�cation, 
biosystematics, biodiversity, ecological community evolution, species protection, archaeological sample identi-
�cation and other  aspects1,7,18,24–27. Mitochondrial cytochrome oxidase I gene proposed by Hebert et al. in 2003 
had been widely used in animal species identi�cation and phylogenetic  development28,29. However, due to the 
low mutation rate of mitochondrial DNA, mitochondrial cytochrome oxidase I can not be used in  plants21,23,30,31. 
In the past decades, many researchers have made great contributions to the search and application of barcode in 
plants. Subsequently, many scientists performed a great deal of phylogenetic analyses among numerous families 
or subfamilies of the orchid family based on two plastid genes matK or rbcL24,30,32–34. Many e�orts have been 
made to discover the core barcodes for di�erent land plant taxa, whereas a consensus has not been  reached35,36. 
A�er that, CBOL Plant Working Group compared the performance of seven leading candidate plasome DNA 
regions (atpF-atpH interval, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI interval and trnH-psbA 
interval) and recommended the 2-site combination of rbcL + matK as a plant barcode based on the evaluation 
of recoverability, sequence quality and species identi�cation  level23. �e generality of medicinal plants species 
identi�cation were assessed according to matK and rbcL  genes16,27,37–40. �e molecular taxonomic identi�cation 
of the Canarian oceanic hotspot was studied based on matK + rbcL41. Chen et al. found that ycf1 showed high 
identi�cation ability at the species level of rare and protected medicinal plants. �e chloroplast gene ndhF was 
found to be able to identify 100% solanum species by Zhang et al.42,43. Although DNA barcoding has been widely 
studied in phylogeny and species identi�cation of Orchids, it has not been reported that DNA barcoding genes 
can be used to develop speci�c identi�cation segments of di�erent  species2,7,9,16,17,44–48.

Here, we used four chloroplast gene sequences (matK, rbcL, ndhF and ycf1) and three combined sequences 
including matK + rbcL, matK + ycf1, ndhF + ycf1 of Orchidaceae species to develop unique identi�cation fragments 
of a certain species of Orchidaceae based on phylogenetic analyses and SNP site analyses. Furthermore, the bar-
code genes were comprehensively analyzed to obtain standard DNA marker fragments of Orchidaceae. �erefore, 
this study provided a novel approach, based on the SNP barcode, to accurately and rapidly identify Orchidaceae 
plants. �is technology replenishes traditional methods of identi�cation in Orchidaceae plants. �is is the �rst 
study to report a strategy for developing speci�c DNA barcodes of Orchidaceae plants, laying the foundation 
for the conservation, evaluation, innovative utilization and protection of Orchidaceae germplasm resources.

Results
DNA sequences analysis. In this study, the sequences including 3040 matK sequences (307 genera, 1900 
species), 641 rbcL sequences (55 genera, 192 species), 225 ndhF sequences (102 species, 29 genera), and 384 ycf1 
sequences (48 genera, 173 species) of Orchids were obtained from the NCBI Nucleotide database (https ://www.
ncbi.nlm.nih.gov/) for further analyses.

A�er blasting and editing, the consensus length of matK, rbcL, ndhF and ycf1 were 2169 bp, 1524 bp, 2953 bp, 
8145 bp respectively, and that of combined sequence including matK + rbcL, matK + ycf1, ndhF + ycf1 were 
3348 bp, 9731 bp, 9701 bp, respectively.

�e overall mean nucleotide base frequencies observed for candidate nucleotide sequences and the distribu-
tion of the four bases of candidate nucleotide sequences at di�erent coding positions of codons were showed in 
Table 1. �e average number of identical pairs (ii) for candidate nucleotide sequences was showed in Table 2. �e 
account of transitional pairs (si) and transversional pairs (sv) of nucleotide sequences was showed in Table 2. �e 
transitional and transversional of bases in the sequences may be related to the species di�erence.

Polymorphism site analysis of the candidate nucleotide sequences revealed in Table 3. Among the single 
sequence and the combination sequence rbcL sequence had the least proportion of mutation sites, accounting 
for 34.8%, while the conservative sites in the corresponding rbcL sequence accounted for 64.7%. �e sequence 
matK had the highest proportion of mutation sites (70.2%), and the corresponding matK sequence had the lowest 
proportion of conservative sites (18.9%).

Genetic diversity. �ere must be some genetic variation based on their species di�erences since the data 
used to analyze were obtained from di�erent species. �e basic indicators of genetic diversity, displayed in 
Table 4, worked out in accordance with pairwise nucleotide di�erences and nucleotide diversity, and the validity 
of these indexes were veri�ed by two neutrality tests, like Fu’s Fs49 and Tajima’s D50. �e matK + ycf1 sequences 
had revealed maximum genetic diversity cumulatively on the base of Eta value, revealed 2314 mutations within 
all sequences. While the rbcL sequences only had 322 mutations variations in all sequences. �e signi�cance of 
genetic diversity was veri�ed by both neutrality tests, which con�rmed that all sequences had signi�cant di�er-

Table 1.  �e nucleotide base frequencies analysis of candidate nucleotide sequences in Orchidaceae plants.

Sequences

Base content

A T C G GC AT-1 GC-1 AT-2 GC-2 AT-3 GC-3

matK 30.8 37.8 16.4 15.0 31.4 68.5 31.5 68.9 31.2 68.3 31.7

rbcL 28.0 29.2 18.4 24.5 42.9 62.7 37.3 53.2 46.7 55.4 44.6

ndhF 27.3 39.4 16.1 17.2 33.3 66.9 33.1 64.9 35.1 68.4 31.6

ycf1 40.4 30.0 13.9 15.7 29.6 69.3 30.8 71.8 28.2 60.2 29.8

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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ence but no very signi�cant di�erence based on the probability value (p-value) of Fu’s Fs test and Tajima’s D test 
(Table 4).

Like the neutrality testes of the Tajima test statistic (D value) in the sequences, the genetic variation for 
ndhF sequences was negatively little higher (− 2.37565) with respect to rbcL sequence, consisting value up to 
− 0.51015. And for combined sequences, the genetic variation for ndhF + ycf1 sequences was negatively little 
higher (− 2.13392) with respect to matK + rbcL sequence, consisting value up to − 1.75132. With respect to Fu’s Fs 
value for sequences variation, the ndhF sequences was higher sequences variation (− 2.96843), shown in Table 4, 
in comparison with rbcL sequence (− 0.51015). In order to observe nucleotide mismatch distribution among 
di�erent sequences of Orchidaceae species, DNA sequences were analyzed for population size changes which 
was enriched the results of genetic diversity among species. All results showed signi�cant genetic variation in 
Orchidaceae species for candidate nucleotide sequences (Fig. 1).

Phylogenetic analysis. In this study, we used the MEGA7.0 so�ware based on the Neighbor Joining 
method and Kimura 2-parameter model to identify rbcL, ndhF and ycf1 sequence of the evolutionary tree, and 
we compressed the same genera or the same subtribes of Orchid with the MEGA 7.0 own Compress Subtree. In 

Table 2.  �e analysis of nucleotide pair frequencies of candidate nucleotide sequences of Orchidaceae plants. ii 
Identical Pairs, si Transitionsal Pairs, sv Transversional Pairs, R si/sv.

Sequence

ii si sv R

Avg 1st 2nd 3rd Avg 1st 2nd 3rd Avg 1st 2nd 3rd Avg 1st 2nd 3rd

matK 1268 431 423 414 49 16 15 18 43 13 15 15 1.1 1.3 1.0 1.2

rbcL 1378 462 458 458 29 10 10 9 14 4 5 5 2.1 2.6 1.9 1.0

ndhF 1234 410 419 404 38 14 12 12 34 11 10 12 1.1 1.3 1.1 0.9

ycf1 4521 1514 1509 1498 205 61 72 72 200 68 62 70 1.0 0.9 1.2 1.0

matK + rbcL 2835 953 936 946 73 19 32 22 56 15 21 21 1.3 1.3 1.6 1.1

matK + ycf1 6015 1990 2008 2017 247 94 76 77 239 82 81 75 1.0 1.2 0.9 1.0

ndhF + ycf1 5718 1905 1914 1899 189 63 61 65 187 61 61 65 1.0 1.0 1.0 1.0

Table 3.  �e analysis of variation of candidate barcode sequences in Orchidaceae plants.

Sequence Conserved site Variable site Parsimony-informative site Sigon site

matK 411 (18.9%) 1523 (70.2%) 1275 222

rbcL 986 (64.7%) 530 (34.8%) 504 26

ndhF 1031 (34.9%) 1790 (60.6%) 1492 297

ycf1 3291 (40.4%) 4732 (58.1%) 4578 154

matK + rbcL 1856 (55.4%) 1455 (43.5%) 1369 86

matK + ndhF 2017 (44.5%) 2377 (52.4%) 2027 348

matK + ycf1 3996 (41.1%) 5506 (56.6%) 5247 259

ndhF + ycf1 4217 (43.5%) 5299 (54.6%) 4696 592

Table 4.  Genetic diversity caculation of Orchidaceae plants based on candidate barcode sequences by the 
DnaSP v5 so�ware. Eta Total number of mutations, n number of sequences, k Average number of nucleotide 
di�erence, S Number of segregating sites, θ nucleotide substitution rate, π nucleotide diversity, Hd haplotype 
diversity, Fu’s Fs is variation among di�erent haplotypes in the population, D is the Tajima test statistic.

Sequences n

Nucleotide diversity

π

Neutrality tests

S k Eta Hd θ Fu’s Fs p-value D p-value

matK 3050 1288 3.12596 1523 0.9050 0.24339 0.07270 − 2.57476 < 0.05 − 1.84286 < 0.05

rbcL 643 259 15.997 322 0.9779 0.07155 0.02503 − 0.51015 > 0.10 − 1.92689 < 0.05

ndhF 234 233 13.952 340 0.9660 0.18546 0.04589 − 2.96843 < 0.05 − 2.37565 < 0.01

ycf1 384 906 95.110 1470 0.9921 0.17379 0.07339 0.25100 > 0.10 − 1.78584 < 0.05

matK + rbcL 372 559 54.729 821 0.9924 0.12616 0.05462 − 0.11121 > 0.10 − 1.75132 < 0.05

matK + ndhF 216 687 59.444 943 0.9853 0.12276 0.04604 − 1.32301 > 0.10 − 2.00131 < 0.05

matK + ycf1 378 1495 150.984 2314 0.9932 0.15463 0.06542 0.08057 > 0.10 − 1.79023 < 0.05

ndhF + ycf1 228 494 39.916 712 0.9740 0.15585 0.05191 − 1.47948 > 0.10 − 2.13392 < 0.01
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Figure 1.  Pairwise mismatch distributions, based on matK, rbcL, ndhF, ycf1 and the combined sequences by 
DnaSP v5. Note: �e X-axis shows the observed distribution of pairwise genetic variation, and the Y-axis shows 
the frequency. R2 Ramos-Onsins and Rozas statistics, r Raggedness statistic, Tau Date of the Growth or Decline 
measured of mutational time, C.V. Coe�cient of variation.
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Figure 2.  �e NJ tree of Orchidaceae coming from analysis of the cp DNA matK sequence based on the K2P 
model. Names tagged in red indicates the genus, tagged in green showed the subtribe and tagged in blue showed 
the subfamily; �e Numbers on the branches represent more than or equal to 50 percent support a�er the 1000 
bootstrap replications test; Numbers following taxon names showed the number of species.
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the light of the topological structure of the evolutionary tree, species in several subfamilies are not be well identi-
�ed based on matK, rbcL and the combined sequence matK + rbcL. In contrast, the ndhF, ycf1 sequences and the 
combined sequences matK + ycf1 and ndhF + ycf1 of chloroplast genes exhibit better identi�cation ability at the 
generic level (Figs. 2, 3, 4, 5, 6, 7, 8).

Analysis of barcoding gap. An ideal DNA barcoding sequence for species identi�cation should satisfy 
that inter-speci�c genetic variation is signi�cantly greater than intra-speci�c genetic variation. In order to more 
accurately assess individual chloroplast genes and combined sequences in the Orchid genus species, and to verify 
the applicability of candidate sequences, the barcoding gap was analyzed according to frequency distribution 
showed in Fig. 9. �e results revealed that the ndhF gene showed better performance in a single gene, while the 
combined sequences of ndhF + ycf1 showed the best performance. �e results of the Best Close Match of several 
candidate barcodes based on genetic distance are showed in Table 5. Among the single genes, the accuracy rate 
of ycf1 gene for orchid plant identi�cation is 89.32%, with 3.38% fuzzy identi�cation rate and 6.25% error identi-
�cation rate. �e ndhF gene exhibits the highest identi�cation rate and lower error rate of matK + ycf1, followed 
by ndhF + ycf1 sequence. �e accuracy of matK + ycf1 sequence was 89.6%, with 2.8% fuzzy identi�cation rate 
and 1.12% error identi�cation rate. �e accuracy rate of ndhF + ycf1 sequence was 88.78%, with 2.33% fuzzy 
identi�cation rate and 2.8% error identi�cation rate. �e data indicated that ndhF and ycf1 were suitable for 
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the identi�cation of Orchids at the level of genus and species, while the combined sequences of matK + ycf1 and 
ndhF + ycf1 were quali�ed at the genera and species levels.

Specific barcodes based on SNP sites. Based on SNP sites, species-speci�c barcodes were developed 
and the appropriate fragments were blasted into the NCBI database. Based on the ndhF sequence, the speci�c 
barcode of species Dendrobium scoriarum was obtained. Knowledge about speci�c barcodes of species Neuwie-
dia thelymitra, Spiranthes sinensis and Epiblema coc�orum based on ycf1 sequence was obtained. Based on the 
combined sequence ndhF + ycf1, the speci�c barcodes of Liparis loeselii, Cremastraa ppendiculata, Spiranthes 
siensis and Anathallis obovata were obtained, whereas Liparis loeselii and Cremastra appendiculata had two spe-
ci�c barcodes. Two-Dimensional code can be scanned by electronic equipment from DNA fragments that can 
be used for species identi�cation. It can provide theoretical support for subsequent researchers. Using the Two-
Dimensional code coding method, the species-speci�c barcode obtained was converted into two-dimensional 
barcode image, which was conducive to the conversion of barcode information (Figs. 10, 11).

Discussion
DNA barcode is able to be utilized for species identi�cation by means of a DNA fragment that is common to all 
species. �e fragment must simultaneously contain adequate variability to allow for species identi�cation and 
enough conservative area for the design of universal  primers21,23. So far, DNA barcoding have been widely used 
in many genera of Orchidaceae1,2,7,16. As far as we know, it is the �rst time that multi-aspect analysis in species 
identi�cation of Orchidaceae with such a well-rounded species size, based on matK and rbcL regions.

�e results of sequences analyses on average GC content showed that the GC content of candidate sequences 
of Orchids was far less than AT content, while signi�cantly less than the GC content of about 50% in common 
angiosperms. Of sequence variation situation analysis, the candidate gene mutations exist base insert and missing 
phenomenon. We performed the analysis of the genetic diversity by the DnasP 5.0 so�ware. �e higher haploid 
type diversity and relatively low haploid type diversity of nucleotide diversity demonstrated that the candidate 
sequences had certain polymorphisms.

�e CBOL recommends matK and rbcL as universal barcodes in plant  kingdom23. With the development 
of science and technology, many subsequent scientists have evaluated the discriminability of di�erent DNA 
barcoding genes in di�erent families or genera, but the discriminability of a candidate gene in di�erent plants 
was di�erent.

On the basis of phylogenetic relationship, the Barcoding Gap and the Best Close Match with the genetic 
distance in evaluating candidate barcode identi�cation capability in Orchid, the phylogenetic analyses showed 
that the identi�cation ability of matK and rbcL was low on the genus level. �e possible reason was that there 
were more species in this study, which made the species in the related genus unable to form branches alone. �e 
sequences of ndhF and ycf1 were suitable for identi�cation of genus and species of Orchids, and the combined 
sequences matK + ycf1 and ndhF + ycf1 were quali�ed at the genera and species levels. �e Barcoding Gap test 
indicated that these candidate genes all contained Barcoding Gap, and the variation between species and within 

Table 5.  Best Close Match test results based on genetic distance.

Sequences Correct Fuzzy Error Did not identify

ndhF 88.65% 3.45% 2.50% 5.48%

ycf1 89.32% 3.38% 6.25% 1.05%

matK + ycf1 89.60% 2.80% 1.12% 6.48%

ndhF + ycf1 88.78% 2.33% 2.80% 6.09%

Figure 10.  DNA barcodes and two-dimensional DNA barcodes of Orchidaceae species based on ndhF and ycf1 
genes. Base A in green, base T in red, base C in blue, and base G in black.
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species had clear boundaries. �e test results of Best Close Match revealed that the all combined sequences 
exhibited high genus identi�cation rate, which was suitable for the identi�cation of orchids at the level of genus 
and species.

Based on the SNP sites, the species level speci�c DNA barcodes of Orchid were successfully developed. 
Combinatorial sequences were able to develop more species-speci�c barcodes than chloroplast genes, which 
might be the result of combination sequences could provide more mutation sites and SNP sites. �ere were some 
di�erences in the speci�cities of di�erent combination genes in Orchidaceae plants. Compared with ndhF + ycf1, 
the combined sequences of matK + ycf1 could be developed more speci�c barcodes, which might be related to 
the species identi�cation accuracy of matK + ycf1 in Orchids.

Conclusion
In summary, ndhF, ycf1, matK + ycf1 and ndhF + ycf1 sequences are competent to develop species-speci�c bar-
codes to identify Orchidaceae plants at the molecular level. Cluster analysis using the ndhF, ycf1, matK + ycf1 and 
ndhF + ycf1 sequences in Orchid are nearly consistent with traditional plant morphology. Additionally, this study 
not only broadens the application of the matK and rbcL sequences in the barcode �eld, but also provides a novel 
thought to expand species identi�cation method in a wide range of plant at the species level.

Figure 11.  DNA barcodes and two-dimensional DNA barcodes of Orchidaceae species based on matK + ycf1 
and ndhF + ycf1 genes. Base A in green, base T in red, base C in blue, and base G in black.
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Methods
Nucleotide sequences. For species identi�cation, we retrieved the chloroplast DNA reference sequences 
including matK, rbcL, ndhF and ycf1 from the NCBI Gene database (https ://www.ncbi.nlm.nih.gov/). We 
obtained the combined sequence including matK + rbcL, matK + ycf1, ndhF + ycf1 by supermat’s function in R 
Phylotools package. A�er manual screening, the short nucleotide sequences were deleted, and the sequences 
with di�erent directions were modi�ed manually.

Data analysis. We performed the sequences alignment by the Muscle in the MEGA 7.0  so�ware51 (https ://
www.megas o�wa re.net/) with the default alignment parameters for multiple sequences alignment parameters. 
In the pairwise distances analyses, the positions containing gaps and missing were eliminated from the data set 
(complete deletion option). Phylogenetic trees constructed with the Neighbor-joining (NJ) method according to 
Kimura 2-Parameter (K2P) model was assessed by the MEGA 7.09,46,52. �e clade reliability in these trees using 
the NJ methods was tested by bootstrapping, in which 1000 repeated sampling tests were performed to obtain 
the support values of the clade nodes. Polymorphic site, genetic diversity indices and neutrality tests [Fu’s Fs49 
and Tajima’s D50] were performed by the DnaSP  v553 (http://www.ub.edu/dnasp /index _v5.html).
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