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T h e  Specification  of  Oscillator  Characteristics  from 
Measurements  Made in the Frequency  Domain 

R. VESSOT, L.  MUELLER, AND J. VANIER 

Abstract-A cross-correlation technique  for  measuring  the very 
short-term (milliseconds to  seconds)  properties of stable oscillators 
is  described.  Time-dependent  functions  representing  signals from 
two separate oscillators are  led  to  a  function multiplier where  the 
instantaneous product of the  functions  is  made.  The oscillators are 
either  set  to  a given phase  relation or allowed a  small  relative  drift 
so that  a slow beat  frequency is observed.  Short-term  fluctuations 
superimposed upon the slow beat signal from  the multiplier  output 
will represent  the  instantaneous  phase difference between  the oscil- 
lators  when  the  inputs  are in quadrature.  When  the  inputs  are  in 
and  out of phase,  the  fluctuations  represent  amplitude  fluctuations. 
The  time  averaging function is  determined by a filter  having arec- 
tangular  pass  band from nearly zero  frequency  to a cutoff fre- 
quency vC. 

The  mean  square  frequency deviation measured in a  bandwidth 
wC is  obtained by differentiating, filtering, squaring,  and averaging the 
signal  from  the function  multiplier data  being  taken  when  the  input 
signals are  in  quadrature.  Mean  square  averages of amplitude  and 
phase  averaged over various  bandwidths wC may  be  obtained by 
bypassing the  differentiator.  Sample  data  from  measurements on 
hydrogen  masers  are  presented,  and  the effect of thermal  noise  is 
seen  to  be  the  major  factor limiting the  short-term  frequency 
stability of the signals. 

I .  THE EFFECT OF THE MEASURING SYSTEM 

of OSCILLATOR PERFORMANCE 
BANDWIDTH ON THE CHARACTERIZATION 

0 KE OF THE  IJTPORTANT problems  in  mea- 
suring  and  describing  the  properties of oscilla- 
tors in the  time  domain is that  data  are  obtained 

from apparatus  that  has  a  bounded  frequency  range. 
The  representation of the  properties of an oscillator  over 
a  given  averaging  time T implies the use of a  Fourier 
transform of a  sharply  rectangular  time  response  func- 
tion  or  "window,"  giving  a  result in the  frequency  do- 
main  that  has  unbounded  frequency  limits [ I ] .  The 
effect of the  bandwidth  limitations of the  measuring 
equipment  depends on the  nature of the  instabilities 
present  in  the  oscillator.  In  certain  types of oscillators, 
as  will be  shown  later,  the  observed  instabilities  depend 
very  strongly on the  added noise due  to  the first  stages of 
the  measuring  apparatus.  In  general,  the  signal  from  an 
oscillator, which will be  considered  here to  be  a  given 
device  with  a  pair of output  terminals, is accom- 
panied  by  thermal noise u-ithin  a  bandwidth defined by 
the  circuitry of the device. If there is no a  priori  knowl- 
edge  about  the  bandwidth  and  the noise temperature of 
the  appropriate  circuit  elements,  the  question of the 
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width of the  measuring  system  bandwidth is important. 
Too  narrow  a  bandwidth will remove noise contribu- 

tions  from  the  oscillator  and  give  optimistic  data of its 
frequency  stability;  conversely,  too  large  a  bandwidth 
will introduce excessive  noise in the first  stages of the 
measuring  apparatus which may  corrupt  the oscillator 
signal. The  latter  case is important when low power  sig- 
nals,  such a s  those  from  maser  oscillations,  are  con- 
sidered.  Since the  measurement of the  bandwidth of the 
output noise is an  important  aspect of the  measurement, 
the  measuring  equipment  should  have  some of the  prop- 
erties of a  spectrum  analyzer. 

In  general,  frequency  stability  data is usually  obtained 
in two  ways:  by  measuring  the  time  periods of zero  cross- 
ings using a  reference  clock [ 2 ] - [ 6 ] ,  or  by  observing  the 
instantaneous  phase difference  between an oscillator 
and  a  reference  source.  Both  methods  have  limitations 
imposed by  apparatus  bandwidth  that  compromise  the 
rigor of the  description of oscillator  performance. 

I t  is  worth  noting  that  in  the  zero  crossing  method, 
one  has  really  a  measurement of elapsed  time for a given 
phase  and  not  the  measurement of elapsed  phase  for  a 
given  time  interval.  This  reversal of the role of the  in- 
dependent  and  dependent  variable is contraq-  to  the 
definition of frequency  stability.  In  practice,  the  prob- 
lem is not  severe  for  stable  oscillators  since  the  elapsed 
time (or  period)  measurements  are  made  to  have  a 
small  spread  compared to   the elapsed  time  between the 
measurements. 

The  bandwidth  limitations become apparent if one 
considers the rigorous  definition of frequency  stability 
over  a  given  time  interval T given by  Cutler,  Searle, 
Baghdady,  and  others [7]-[9]. 

I 

I =  
i 

1 

27r 
- 

27r J -* I I 

where ( A f / f )  I is the  fractional  frequency  stability  over  a 
time  interval T obtained  by  making a large  number  of 
independent  measurements 'of frequency,  each  over  a 
time  interval T, and  taking  the  root  mean  square  devia- 
tion of the frequencies  obtained  and  dividing  by  the 
average  frequency. Srj is the two-sided  power  spectral 
density of the  frequency  difference  between  the oscil- 
lator being  measured  and  the  reference,  and is related  to 
.9(0) by Sd(w) = w 2 . 9 ( w ) .  If the oscillator and  its  ref- 
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erence  are  identical,  then  the  performance  for  each oscil- 
lator will be  described  by  the  foregoing  expression 
divided  by 4 2 .  

The  quantity  u2(r)  is defined as  

I 
07 ' 2  

sin - 
1 "  2 

u"r) = - S$(U) - 
2a s-, dw 

OT 

I sin - I 

T J o  I I 

The  integral  ranges  from  zero  frequency  to  infinite  fre- 
quency,  and u2(r) does  not  depend  on  bandwidth cutoff 
a t  either  the  high-  or  the  low-frequency  limits. 

If the  bandwidth of the  measuring  systems  is  limited 
at  the  upper  or lower frequencies,  the  quantity u2 de- 
pends  on  three  parameters r ,  we, and wo, where wc and 
wo are  the  high-  and  low-frequency  cutoff.  The  problems 
of low-frequency  cutoff  have been described  elsewhere 
by  Barnes  and Allen [ lo]  in  the  case of nonstationary 
effects  described as  flicker frequency noise given  by 

In  the  case  where  the  bandwidth  is  limited a t  high 
frequency,  the  quantity u2 depends  on  two  parameters 
and  is  given  by 

S$(w) = A / l w l .  

The  behavior of an oscillator  depends  on  the  function 
S$(w) and i t  is convenient  to  describe S$(w) in some 
region of interest  in  the  frequency  domain.  Both  an 
upper  limit  encompassing  the  important  high-frequency 
power  contributions  and a lower  limit  related in some 
way to  the  available  observing  time  are  needed. 

In  the following  illustration,  the  effects of a  sharply 
rectangular  high-frequency cutoff are  shown,  calculated 
for S$(o) described as  a series of terms  related  to noise 
processes that,  to  date,  have  some significance. 

A B C 
Sf#&) = - + - +-+D. 1 4 )  b I 2  I 4  

The  terms  can  separately  be  related  to  the following 
processes : 

A 
S$a(w) = - 

I w I  
"flicker" frequency noise 

S$s(w) = B "white"  frequency noise 
S$C(U) = Cw "flicker" phase noise 
S$D(U) = Dw2 "white"  phase noise. 

There  is  no  reason  to  ignore  higher  and  lower  powers 
of w ;  however,  for  the  purposes of the  illustration  only 
these will be  considered. The  output from an oscillator 
can  be  described  by  such  a  series  provided  care  is  taken 
t o  avoid  divergences  near  zero  frequency.  This  problem 
has  been  discussed  by  Barnes  elsewhere  in  this  issue 

If the  terms of S$(w) are  applied  separately  to  the 
defining  equation  for (Aflf) 1 T ,  i t  is seen that  only  in  the 
case of white  frequency noise does  convergence  result 
without  some  consideration of high-  and  low-frequency 
limits. The  question of what  the  limits  are  due  to  must 
now  be  faced. 

If the  limits  are  due  to  a  filter-like  behavior of the  out- 
put  circuit of the  oscillator,  then  the  integral of s $ ( ~ )  
must  be modified by a filter  function I I L p ( j w )  due  to  the 
oscillator.  This will result  in  convergence of the  integral 
to  a  value  characterizing  the  oscillator, 

P11. 

C' (T )  = - S$(U) I a L p ( j U )  l 2  ~ 

T So" I; sin% l 2  dw, I f :  
and  this is the  desired  result.  In  describing S$(w) for an 
oscillator,  one  could  equally well write 

Sd(w) = I H L P O ' W )  I2S$(U) 

where So$(w) is  the  bounded  spectral  output of the 
oscillator. 

In  measuring  the  output  from  an  oscillator,  one  must 
be  careful to  account  for  this  bandwidth  in  the  measur- 
ing  apparatus.  However, if the  measuring  apparatus  has 
an excessively  large  bandwidth,  then  the  additive noise 
from  sources  outside  the  oscillator  can  corrupt  the  signal 
and  the  term S$D(W) will predominate. 

In  Fig. 1, the  function 

f UT 
I sin - 

2 wr 
UB2(T, w,) = - - d-  

a r  "s,"'" 7 1  - . 2  

, 2 J  

is  shown  plotted and, as expected,  is  seen to  converge  to 
a  value u2(r) = B/r  when wc becomes  infinitely  large. 

Fig. 2 describes  the  effect of flicker phase noise and i t  
is seen that  no  convergence  occurs  when wC+ a, and 
that  the dependence  on  the  upper  frequency  limit is 
serious.  Here,  the  function 
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(57 frequency  bandwidth RT on the  signal,  prior  to  its use or 

ucy7, w,) = - d- tive noise  is  a  source of contamination of signals in 

2 in the  case  of  quantum  mechanical  oscillators  the effect 

sin2 - 
2 wr analysis  by a particular  system, is not included.  Addi- 

4c s,""' (J7 TT' 2 other  oscillators  such  as  crystal  oscillators;  however, 
- 

is  plotted.  This  is seen to  diverge  as wc+ ; however, 
the slope of uc2 vs. 7 on a  log-log plot  converges to - 2 .  

Figure 3, where the effect of white  phase noise  is 
considered,  shows  a  more  strongly  divergent  result  than 
the  previous  one  as wc is increased. 

is very  serious,  due  to  the low power output levels  of the 
desired  signals. In  the  case of hydrogen  masers  the  effect 
is the  dominant source  of the  observed  instabilities  for 
observation  times  up  to  about  one  minute,  depending 
on the  measuring  apparatus noise  figure and  the  system 
bandwidth.  For  observation  time 7 greater  than  about 

uJ?(r, w,) = - 
7rr " " s , u c 7 ' 2  3 

sin2 - d - 1 

2 2  

This is seen to  converge to  a  slope of - 2 as  uc+ co . 

u c + m  given by 
The  behavior of the  asymptotic  values of u(r,  w,) for 

u = .(w) 1 7 19 

lim me + CQ 

may  be  plotted  against  the  value of a, where 

S+(w) = h I w IQ.  
For a 2  - 1 the  value of u diverges at  the  upper fre- 
quency  limit;  however,  its  slope  remains  finite  and  con- 
stant  at   the  value p = - 2 .  For a 5  - 3, the  value of u 
diverges at the lower  frequency  limit.  In  the  range 
- 3 <a < 1, u converges to  a  finite  value  for wc+ m. 

A mapping of p on a is presented  in  Fig. 4 and  shows 
essentially the  same  characteristics  as  described  by 
Allen [2]. 

11. THE APPLICATION OF THE CROSS-CORRELATION 
TECHNIQUE FOR MEASURING THE SHORT-TERM 

PROPERTIES OF ATOMIC HYDROGEN MASERS 
In describing the  frequency  stability of oscillators, 

several authors  have  made use of a  model  where the  rate 
of phase  change of a carrier  signal  amplitude  phasor  is 
calculated  by  considering  the effect of adding  random 
doise  signals in quadrature  with it. These  expressions 
have  the general  form [ l ] ,  [11]-[15]. 

where Af is the  standard  deviation of a set of frequency 
measurements,  each  made  over  an  interval of time r.  
QI is the  quality  factor of the  resonant  circuit  determin- 
ing  the  frequency,  and  in  the  case of masers is related  to 
the  linewidth of the  transition involved in generating 
the  energy.  The  above expression  describes the fre- 
quency  stability of a  signal that  is  considered to exist  in 
the  absence of added  noise; the  only influence of noise 
that  has been  included in the expression  is that   due  to 
the response of the signal vector  due  to noise energy 
that  lies within  the  bandwidth  determined  by  the oscil- 
lator Q. 

The effect of the  inevitable  added noise  power per  unit 

- 
one  minute,  the  maser  stability  thus  far  has  been  limited 
by  systematic processes, and  the  value of (Af/f) 1 ,  levels 
off to  about 8X1O-l4 as 7 increases. For  time  intervals 
greater  than  one  minute,  the effect of the  thermal noise 
as  given by (1) leading  to  a  law is obscured by  the 
cavity pulling  effect [16], [17] given by 

where f o &  1.42 X lo9 is the  resonance  hyperfine  frequency 
of the  hydrogen  atom, f is the  output  frequency of the 
maser,  and f t  is the  resonance  frequency of the  cavity. 
Since the  ratio QJQl is of the  order of 10-5, a few cycles 
change  in f t d l  cause  the  systematicvariation  previously 
mentioned.  Improvements in the  stability of masers 
will result  from  increasing Q l  by  extending  the  interac- 
tion  time of the  atoms  with  the RF magnetic field [18] .  
The  result will be that  for a given output power  level, 
the effects due  to (1) and (2) will diminish  in  the  same 
ratio  and, while the  stability of the  masers will be  im- 
proved,  the r-l/* behavior Will probably  continue  to  be 
obscured. 

I t  must be remembered,  however, that   the noise 
power  bandwidth of systems  connected  to  an oscillator 
will be  finite. This  limitation  occurs,  in  the  case of a 
maser,  due  to  the  bandwidth of the RE' cavity,  typically 
some tens of kilocycles. The  total signal plus noise 
power spectrum of the  maser  can  be  described  as  thermal 
noise over  the  frequency  response of the  cavity  plus  a 
signal  spectrum at  its  center. If the receiver  bandwidth 
is  opened further  than  that of the  cavity,  the  cavity will 
be the overall  limiting  factor  and  no  further  significant 
degradation of the  frequency  stability will result  to 
additive noise in the oscillator. The receiver,  however, 
will continue  to  degrade  the signal as  its  bandwidth is 
extended. I t  is possible, as  pointed  out  by  Edson [12], 
to  improve  the  apparent  stability of an oscillator by 
using an  external  filter before  going to  the receiver  or 
measuring  system;  however,  in  defining  the  boundary 
between the oscillator and  the  measuring  system,  one 
should  be  careful  to state  whether  or  not  this filter  is 
included. 

The  spectrum of each of the masers,  nominally a t  1.4  
k&lc/s, is  transformed  to  a low frequency  by  a  pair of 
double  heterodyne  receivers  employing  common local 
oscillators as  shown in Fig. 5 .  The signals,  each  rep- 
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Fig. 5 .  Short-term noise measurement. 
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resenting  a  maser  plus  thermal noise and receiver  noise, 
may  be described in the following manner: 

Vi( t )  = [xi(f) + A ]  cos w i t  - y l ( t )  sin w,l 

i = l , 2  

w1 - w: = Q usually 1 radian/minute or less. 

y i ( t )  and x , ( t )  are  instantaneous  variations of noise 
amplitude  and  are defined as  consisting of two  com- 
ponents, 

xi@) = W i ( t )  + Z i ( t )  

yi(Q = U i ( t )  + V i ( f )  

where 

w,(t) is the  in-phase  component of oscillator  noise 
z i ( t )  is the  in-phase  component of thermal  and re- 

ui(t) is the  quadrature  component of oscillator  noise, 

v, ( t )  is the  quadrature  component of thermal  and re- 

ceiver  noise 

and 

ceiver  noise. 
( w i o i ) a v g = o  i =  1 ,  2 
( u a z i ) a v g = o  i =  1 ,  2 .  

(w1uz)avp = 0 
(wzu1)avg = 0 

( ~ 1 ~ 2 ) a v g  = O 
(z2o1)avg = O 

Correlations  may  exist  between ui and wi for i = 1 or 2,  
as  well as  between zi and ai for i = 1 or 2. In the  present 
work the  latter  are  assumed  to  be zero.  Also 

(Zrl2)*vg = (Zl2).*g 

and 

( ~ 2 ~ ) a v g  = (z22)avp. 

Putting 

Y = [(x + A )  + y 2 I 1 / ?  

and 

then 

Vi@) = Y i ( t )  cos [w,t + &)I.  
Let  the  two  voltages Vl and V, be led to a  function 

multiplier  and  let E( t )  be  the  output from the  multipler. 

E( t )  = KVl(t)V2(t) 

= K Y ~ Y ~  COS (wl  + $,I) COS (ut + 4~ + Qt)  

= K - [cos Qt + (41 - 4.J sin Qt] 

when x<<A, y<<A, and when the  terms  involving  cos 
2 wt are  averaged  to zero. 

The signal is thus  observed  to  involve  a slow beat 
component cos Rt that  is not necessarily constant in 
frequency. I t  is recorded on one  channel of the  recorder 
in  order to  determine  the  reative  phase of the  two oscil- 
lators.  Short-term  vqiqtions,  due  to  the  terms x ( t )  or 
y ( t ) ,  can  be  determined  by  observing  the  short-term 
variations at times when Rt = 0 or ~ / 2 ,  respectively. 

7172 

2 

At Qt =o,  

K A 2  K A  
2 2 

=- + - ( x 1  + x21 

where A I  =A2 and x,<<A. The first  term is the  amplitude 
of the slow beat signal. The  second term  involves  short- 
term  amplitude  variations. 

A t  at=-, 
n- 

2 
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##q=-. . y1 
A 

The filtered  signal  from  the  multiplier  is  given  by 

K A 2  

2 
e, = - 

. [cos Qt + (z - 2) sin .] 
where  the  signal  within  the  bandwidth 0 to  ye is  rep- 
resented  by  the  tilde. 

Differeptiating  this  signal,  squaring,  and  averaging 
over  a  time  long  compared  to wC-l, one  obtains,  since  the 
beat  frequency q / 2 r  can  be  made  arbitrarily  small  for 
the  period of measurement, 

. .  
(iljl - z292).vg 

+ 2A2 
sin 2M . 1 

The  terms i,, $, and &, $2 are  due  to  correlation of am- 
plitude  and  phase. If these  exist in  oscillator number 1, 
and oscillator  number 2 has  a  known  or  zero  value, it  
is  possible to  estimate  the  magnitude of this effect. 
Normally, if the -oscillators are  statistically  similar, 
these  terms  are  equal  and  the  expression  becomes 

+ (i12 + i 2 2  - $22 - $12).vg cos 2i-4 

where &jl  = i & ,  

By  observing  the  output  signal  for  variations  that 
have  a  periodicity of 21r/2Q, an  estimate of the  mag- 
nitude of the  amplitude  and  the  phase  fluctuations  can 
be  found. 

Assuming that  there  are  no  correlations  between  the 
two  quadrature  components of noise, we then  can  write 

e& 

The  terms J I 2  and &z2 are  statistically  similar  and  un- 
correlated so that 

The  value of J ( t ) 2  consists of two  components:  one, 
due  to signals  from the  maser  oscillator;  the  other,  due 
to  signals  added  to  the  maser  because of thermal  noise 
in the  cavity,  the  isolator,  and  the  receiver  system.  The 
thermal  noise  within  atomic  resonance  results  in  a one- 
s ided  spectral density of the  frequency  given  by 

where y is the  relaxation  rate of the  atoms in the  bulb 
and is  related  by Qr =00 /2y ,  where wo is the  angular 
frequency of the  hydrogen  hyperfine  transition. If this is 
used,  along  with  the  proper  spectral  density of the  fre- 
quency  for  the  additive  noise  outside  the  atomic  re- 
sanance, we have 

( 4 2 )  = (s," [- + -1) 4kTy2 F k T J  

, Pbam  Po 

where 

S$(o) = B + Dw2 

4kT-1~  B = -  
Pb 

FkT 

P o u t  
D = -  

and 

Q L  Po = Pi.- 
Q a t  

where Qc is the  loaded  cavity  quality  factor, QeXt is  the 
external  cavity Q. 

4kT.y20, FkToca 
( 8 2 )  = - 

Pb- 3 Po 
+-. 

The  quantity  to  be  determined is 

1 
u2(oc) = - ($2, 

2* 

( 1 / 2 ~  instead of l/?r since we are  dealing  with  one-sided 
spectra) 

4 kTy2w,  FkT 
u2(oc) = - - + -oca. 

2 r  Pb  &PO 

Putting 

1 r  
7 = - = -  

2fc wc 

U2(W,)  = - +---. 2kTy2 FkT r2 Qext 

Par 6Pb 7' Qc 
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The first term,  describing  the effect of the noise within 
the  linewidth of the  oscillator,  gives  the  correct  value of 
u ~ ( T ) ,  as  given by  Cutler  and  Searle [ l  1. This  term is 
equal  to  the second term when 

In a typical  case, 

Qc -- - 0.18 F = 10 y = 0.7 second-‘ 
Q& 

fc = 0.052 CIS. 
For  bandwidths of the  order of cycles  per  second i t  is 
obvious  that  the  first  term  should  be small  compared to 
the second term  and  that u2 will vary  as l / ~ ~ .  

111. CALIBRATION AND MEASUREMENTS 

An  important  parameter of the  system is the noise 
factor F, and  this  was  measured  by  substituting  an 
argon  discharge  tube a t  one of the  inputs as shown in 
Fig.  6. The  argon  discharge  tube when  operating  pro- 
duces a matched  termination a t  1050C; when turned off, 
the  termination is a t  room temperature.  The filter  was 
set  to a constant  value fc =20  c/s  and  the  square-law 
voltmeter  deflection D was  noted  for  the ON and OFF 
conditions of the  discharge. 

DON = Rk(ToF1+  T - To)B‘ 

DOFF = RkFlToB 

($ - 1 ) H  
R .  = 
- 1  

(5- Do FF l ) ,  

and 

Do FF R = - .  
kFlToB 

The  value of F for each  channel  was  measured  before 
each  run of data.  Sormally, F depended  somewhat  on 
the  adjustment of the  system  and  had  values  ranging 
from 7.3 to  11 .2 .  

A second  method of calibration  employs  a  known  ap- 
plied frequency  modulation  on  one of the masers. The  
frequency of the  maser  depends  on  the  magnetic field 
squared  averaged  over  the  volume of the  bulb [16]. The 
relation  is  given by 

f l  = fo + 2750H02 

where f, is the  output  frequency, f o  is the  zero field 
frequency,  and Ho is the  magnetic field in  oersteds. 

If a  small  sinusoidal  perturbation  is  applieti  to Ho in 
the  form H=Ho+H,,, sin wt we have 

f l  = fo + 2750[Ho2 + 2H,,,Ho sin ut + Hni2 sin2 wl]. 

The  frequency difference  between  two  masers  in  radians 
per  second  is  given by 

$2 - $1 = KHo2 sin2 ut]. 
Ho2 

The  output  from the  square-law  voltmeter D where 
k = 2 a X 2 7 5 0 ,  is  given by:  

and  the  value of R can  be  determined.  The  system is 
shown  schematically  in  Fig. 7 .  

Samples of data  are  shown in  Fig. 8. Each is a  four- 
minute  section of data  giving D in arbitrary  units  and 
the  phase of the  beat signal. In  the section  marked 
“calibration  run,”  the “C” field of both  masers  was 
raised  from its  usual  setting of Ho= 1 millioersted to  
Ho = 19.12 millioersteds and  the  perturbing field ratio 
Hm/Ho was  set  to  2X10F2. A modulation  frequency of 
one  c/s  was used and  the low-pass cutoff filter se t   a t  
w,/2n = 5 c/s  or T =O.  1  second. The  maxima of D are 
seen to coincide  with  the  values  of wt = a/2 and 3 a / 2 ,  
etc.  The gain  setting  has  been  reduced  by  a  factor of 10 
from the  unperturbed  run  shown  above  it. 

As the  bandwidth w,/2a is  increased  and  approaches 
60 c/s  or ~ = 8 . 3 3 X l O - ~ ,  i t  is  observed that  amplitude 
fluctuations exceed phase  fluctuations  and D has 
maxima a t  Qt = O  and a. I t  was  extremely difficult to  
eliminate  all  the  60-cycle  amplitude  modulation,  and 
in the region at which the  data  was  taken  the fit = ~ / 2  
points. 

Several  runs of data  were taken at different  power 
levels and noise  figures. The  data  are  shown  plotted in 
Fig. 9 ,  and  the  experiment is  shown to be  in  good  agree- 
ment  with  the  relationship  predicting  the  effect of ad- 
ditive  white noise on  the signal  of an  atomic  hydrogen 
maser as shown by  the lines  with  slope r 3 I 2 .  

The use of a  filter  in the  maser  system  obviously  has  a 
large effect on  the  short-term  stability  observed.  In 
most  applications,  the  filter will be  located  after  con- 
version to a  lower  frequency  and  the noise due  to  the 
converter will be  an  important source of frequency 
instability. 

The  effect of the  thermal noise within  the  atomic res- 
onance  given  by  the  expression 

has not been  observed  in  these  runs.  Other data  have 
been taken  by  making period  measurements of beats 
between  masers  over  long  periods of time  and  have 
shown  that  the  stability  seems  to  reach a  value Af/f 
= 8 X  lo-“ for time  intervals of 10 seconds  or  longer. 
Systematic  variations  due  to  cavity pulling  effects 
limit  the  measurements  to  this  vahe for  longer  averag- 
ing  times. 
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Atomic  Timekeeping  and  the  Statistics of 
Precision  Signal  Generators 

JAMES A. BARNES 

AbstroctCince most  systems that generate atomic time employ 
quartz  crystal oscillators  to improve reliability, it is  essential to de- 
termine  the  effect on the precision of time  measurements that these 
oscillators introduce. A detailed analysis of the calibration  procedure 
shows that the third finite  difference of the phase is closely  related  to 
the clock  errors. It was  also  found, in agreement with others, that 
quartz crystal oscillators  exhibit a  ‘flicker” or i w 1 -l type of noise 
modulating  the  frequency of the  oscillator. 

The  method of finite  differences of the  phase is shown  to  be a 
powerful means of classifying  the  statistical  fluctuations of the  phase 
and frequency for signal generators in general. By employing finite 
difierences it is possible  to avoid divergences normally associated 
with  flicker  noise spectra. Analysis of several  cesium  beam  frequency 
standards  have shown a complete lack of the 1 W !  -l type of noise 
modulation. 

INTRODUCTION 

N  ORDINARY clock consists of two  basic  systems: 
a periodic  phenomenon  (pendulum),  and  a 
counter  (gears, clock  face, etc.)  to  count  the 
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periodic  events. An atomic clock  differs frorr. this  only 
in that  the  frequency of the periodic  phenomenon is, in 
some  sense,  controlled  by an  atomic  transition  (atomic 
frequency  standard).  Since  microwave  spectroscopic 
techniques  allow  frequencies to be  measured  with  a 
relative precision far  better  than  any  other  quantity, 
the  desirability of extending  this precision to  the  domain 
of time  measurement  has  long  been recognized [l]. 

From  the  standpoint of precision, it would be  desira- 
ble to  run  the clock (counter)  directly  from  the  atomic 
frequency  standard.  However,  atomic  frequency  stan- 
dards in  general are sufficiently  complex that  reliable 
operation  over  very  extended  periods  becomes  some- 
what  doubtful  (to  say  nothing of the  cost  involved). 
For  this  reason, a quartz  crystal oscillator  is  often used 
as  the source of the  “periodic”  events  to  run  a  synchro- 
nous clock  (or its  electronic  equivalent).  The  frequency 
of this  oscillator is then  regularly  checked  by  the 
atomic  frequency  standard  and  corrections  are  made. 

These  corrections  can  usually  take on any of three 
forms: 1) correction of the oscillator  frequency, 2)  cor- 
rection of the  indicated  time,  or 3) an  accumulating 
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