THE SPECTRA OF DISCRETE RADIO SOURCES
 AT DECAMETRIC WAVELENGTHS—I

S. Ya. Braude, O. M. Lebedeva, A. V. Megn, B. P. Ryabov and I. N. Zhouck

(Received r968 August 19)

Abstract

SUMMARY The present paper describes the methods used and the results of measurements made on 80 discrete radio source spectra in the decametric wavelength range. Flux densities are given for frequencies $12.6 \mathrm{MHz}, 14.7 \mathrm{MHz}, 16.7$ $\mathrm{MHz}, 20 \mathrm{MHz}$ and 25 MHz .

INTRODUCTION

The basic data on flux densities and spectra of discrete radio sources observed in the northern hemisphere have mostly been obtained at frequencies above 30 MHz . At longer wavelengths, radio source spectra have been studied previously only in a comparatively small number of cases (\mathbf{r})-($\mathbf{9}$) because of the influence of the ionosphere, the high cosmic background level and also because of various kinds of radio interference which are especially important for low resolving power instruments.

The present paper gives the results of measurements of the spectra of 80 discrete radio sources at frequencies from 12.5 to 25 MHz , obtained with a radio telescope UTR-I in the Institute of Radiophysics and Electronics of the Ukrainian Academy of Science in Grakovo during the period 1966-68.*

EQUIPMENT AND METHOD OF OBSERVATION

The radio telescope UTR-r comprises two arrays consisting of wideband horizontal dipoles positioned in the form of a letter T. One of the arrays is 600 m in length, and comprises 80 dipoles in a single row. This array is oriented along the N-S direction. The second array is 576 m in length, and comprises 128 dipoles in two rows along the $\mathrm{E}-\mathrm{W}$ direction.

The radio telescope operates over the frequency range $10-25 \mathrm{MHz}$ and the maximum effective area of each of the arrays is near $14000 \mathrm{~m}^{2}$. Antenna beam control of the radio telescope in declination and right ascension is made electrically by the use of three phasing systems, two being used for array signal phasing and the third for reciprocal signal phasing between the arrays. Signals are detected by a switched radiometer system, providing in a zenith direction a resulting half-power beam width which varies from $40^{\prime} \times I^{\circ} 30^{\prime}$ to $\mathrm{I}^{\circ} 40^{\prime} \times 3^{\circ} 45^{\prime}$ at maximum and minimum frequency respectively. The radio telescope block-diagram is given in Fig. I. The output signal of each array is fed to preliminary radio frequency amplifiers (RFPA) designed to provide an optimum noise-factor simultaneously with the complete absence of cross-modulation interference. In multi-channel

[^0]reception, the use of these amplifiers allows a number of channels to be used independently; it also removes the effects of feeder loss and of noise in the radiometer input circuits. From the RFPA output, the signals are fed via cables and the reciprocal antenna phasing system to the wideband phase modulator ($0-\pi$) which

Fig. r. Block diagram of radio telescope UTR-1.
switches a signal phase of one of the antennae at a frequency between 10 and 100 Hz by diode switches. In the phase modulator, the elimination of spurious amplitude modulation and the precision of the 180° phase shift over the whole of the frequency range is achieved by a multicascade symmetrizing circuit with wideband ferrite transformers. This circuit, with careful selection of diodes, ensures an amplitude
asymmetry less than 0.2 per cent, and a phase error not larger than one or two degrees. After the phase modulator, the signals from both antennae are added in a hybrid circuit. To eliminate any spurious modulation of background noise, the cross-modulation between channels is kept below -40 db . throughout. From the hybrid output, the signals are fed via branching hybrids to six radiometers operating at various frequencies. Each radiometer includes an R-250 M-type receiver and a highly stable detector of the modulated output, used for filtering, amplification and recording of signals at the phase modulation frequency.

The wideband phase modulator generates harmonics and sidebands of strong interfering signals, due to the pulse modulation at the time of switching. The effects of this were completely removed by switching the gain of the intermediate frequency amplifiers to zero by a pulse derived from the drive of the phase modulator. The pulse width conforms with the bandwidth of the intermediate frequency amplifier (IFA), which was set between 3 and 14 kHz depending on the interference level. When strong interference was present, the lowest bandwidth and the lowest switch frequency were used.

To make the amplification of modulated signals independent of the background level, the radiometers have precise linear power characteristics. The calibration has been found to be independent of an artificially added background level over a range of 28 db . The signal reception was made at five various frequencies simultaneously: $12.6 \mathrm{MHz}, 14.7 \mathrm{MHz}, 16.7 \mathrm{MHz}, 20 \mathrm{MHz}, 25 \mathrm{MHz}$ and in some cases at io MHz as well. Because of the high level of interfering signals and the presence of ionospheric absorption during the day, measurements were made mainly at night. To achieve a high stability and precision of measurement, the radio telescope equipment was operated continuously and a radiometer calibration was made twice during each night. Furthermore, all radiometers were equipped with automatic gain control for the R-250 M-type receivers which included a reference high temperature diode noise generator, a high frequency diode switch and AGC amplifiers. Noise diode signals were from time to time connected to six radiometer inputs via a high frequency switch and a hybrid branch. In this case, the radiometer outputs are connected with individual AGC amplifiers thereby ensuring a proper gain control. The high frequency switch system cuts off the receiver inputs from the radio telescope antennae simultaneously, and at the same time the switching pulse which sets the amplifier gain to zero is removed. The reference signals are synchronized with the moment of switching of the phase modulator diodes, so that the switching occurs at twice the frequency of the phase modulation. Such a synchronization proved to be quite useful for the elimination of interference arising when a phase modulator is in operation.

Such equipment together with fast radiometer retuning provided reliable protection from interference during measurements at night. During each night of observation, one could usually record about io radio sources each of $40^{m} I^{\mathrm{h}} 30^{\mathrm{m}}$ duration. The integration time constant was adjusted from 120 to 225 s , depending on the frequency, to obtain the best output signal-to-noise ratio.

The equipment calibration was made by the phase switching method using a standard noise generator (SNG). The signals from SNG were fed via a hybrid circuit and additional cables to the amplifier inputs at the antennae (Fig. r). Random variations of the output from these calibration signals due to radiometer gain instability and random SNG errors, together with other calibration errors were usually of the order of 0.4 to 0.6 db .

As the preliminary data in the dacametric wavelength range show, there are, probably, variations in intensity of radiation from some intense sources used for comparison with those being measured. Furthermore, the parameters for an antenna with electrical beam control are functions of beam orientation. The flux density S of discrete sources of radiation was therefore found by an absolute method by the standardization of all the parameters of the radio telescope.

The recorded signal power P from a discrete source with flux density S is given by

$$
S=\frac{2 P}{A \eta k}
$$

In this expression A and η are the effective area and the efficiency of the radio telescope antenna and k is a coefficient due to reduction of the signal in the integrating circuit of the detector.

In order to determine an effective area and the efficiency of the array, the results of antenna measurements given in (10), (II) were used. In determining the value of A, the antenna array directivity was included together with real ground parameters. Factors reducing A, such as random phase and amplitude deviations of different antenna elements, exponential current amplitude distribution along the antennae and phase current errors because of discrete control of beam position, were also allowed for. In calculating the efficiency, due account was taken of losses in the antenna and phase systems. In the process of evaluation of the antenna efficiency (on the basis of Ref. ($\mathbf{I} \mathbf{2}$)), there were taken into account two types of surface parameters corresponding to dry ($\left.\epsilon^{\prime}=4-\mathrm{j} 2\right)$ and wet ground conditions ($\epsilon^{\prime}=10-\mathrm{j} 10$). The observed decrease of record amplitude due to integration was found both theoretically and experimentally, leading to values of k given by the empirical expression:

$$
k=\mathrm{I} /\left(\mathrm{I}+0 \cdot 66(\psi \tau)^{2}-0.06(\psi \tau)^{3}\right)^{1 / 2} \quad \cdot \psi=(\pi n d \Omega / \lambda) \cos \delta
$$

where τ is integration time constant, δ is the declination of the source, Ω is angular rotational velocity of the Earth, n and d are the number of dipoles and the distance between two successive dipoles in the W-E direction and λ is the wavelength.

The precision of the observations described was limited mainly by errors of measurement, by errors in the evaluation of the effective area and the efficiency (because of uncertainty in the ground parameters and other antenna parameters, the standard deviation is <13 per cent) and errors of determination of spectral density of SNG ($\leqslant 7$ per cent). Besides random errors and equipment instability, there must be added to the errors of measurement the effect of variations in the ionospheric absorption coefficient which at night and even at the lowest frequency did not exceed $0 \cdot 2-0.3 \mathrm{db}$. When interference was important, the error was increased by the maximum magnitude of parasitic signals.

The minimum level of measurable signals was determined by the side lobe scattered radiation level rather than by the width of the main lobe of the response pattern.

The resulting measurement error shown in the figures and tables was determined as the sum of the systematic error and the standard deviation of the random error. All the measurements were repeated until the standard deviation became less than 5^{-10} per cent.

25		Spectral index		
S	$\pm \Delta S \%$	$\alpha_{h f}{ }^{*}$	$\alpha_{h f}$	$\alpha_{l f}$
I'I	18	$\mathrm{I} \cdot 08$ [20]	I•15	
		- 933 [19]	I-05	
		$\bigcirc \cdot 78$ [19]	$0 \cdot 85$	1.5
1.7	43	-0.92 [19]	I-02	
2.2	27	- 50 [19]	$0 \cdot 54$	1
$8 \cdot 6$	43	$0 \cdot 40$ [19]	$0 \cdot 32$	I•42
53	14	-0.82 [19]	0.82	
I 3	21	- 73 [19]	0.82	
$0 \cdot 65$	32	$0 \cdot 48$ [19]	$0 \cdot 52$	1-86
1.6	16	- $0 \cdot 58$ [19]	$0 \cdot 68$	I•92
$\mathrm{I} \cdot \mathrm{O}$	16	- 0.98 [19]	I. 02	
$4 \cdot 1$	16	$\mathrm{I} \cdot \mathrm{O}^{\text {[19] }}$	$1 \cdot 0$	
		$0 \cdot 87$ [19]	- 99	
I 0	16	$0 \cdot 70$ [20]	0.85	
		- $0 \cdot 85$ [19]	- 89	1•32
$2 \cdot 6$	14	1-17 [19]	I 2	
23	13	- 098 [19]	I•04	
11.5	13	$0 \cdot 70$ [19]	$0 \cdot 73$	
		$0 \cdot 77$ [19]	$0 \cdot 78$	
		$0 \cdot 69$ [19]	$0 \cdot 77$	$1 \cdot 7$
315	14	- 0.80 [19]		
580	14	$\bigcirc \cdot 77$ [19]	$\bigcirc \cdot 77$	
I• 1	15	I-16 [2I]	$1 \cdot 41$	
0.64	27	$0 \cdot 99$ [2I]	I•18	2.5
1.8	44	1-19 [15]	I•15	
0.63	24	I•O [16]	I-09	$2 \cdot 1$
0.84	16	I 55 [21]	1.55	
3.0	17	1.68 [15]	I.48	

Fig. 2(a). Spectra of the radio sources.

Fig. 2(b). Spectra of the radio sources.

Fig. 2(c). Spectra of the radio sources.

Fig. 2(d). Spectra of the radio sources.

THE RESULTS OF THE MEASUREMENTS
The basic results of the measurements are given in Table I which gives spectral flux densities S in $\mathrm{IO}^{-24} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$ and the resulting percentage error ΔS for five frequencies from 12.6 to 25 MHz . Designations and co-ordinates of sources except for some particular cases correspond to those given in catalogues (13)-(15). For the sources 3_{3} C 144, 3 C 274 and NRAO 416, the flux density was also measured at io MHz . Their values in units of $10^{-24} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~Hz}^{-1}$ are equal to 66,90 and 127 with percentage errors of 29,18 and 32 respectively. The results obtained in the decametric wavelength range together with those taken from the literature ($\mathbf{(})-(\mathbf{9})$, (15)-(22) allow us to represent the source spectra in detail. Furthermore, in certain cases it is possible to specify spectral features of the observed sources in a much wider range from 12 to $1000-3000 \mathrm{MHz}$. In Fig. 2 such spectra are shown on a logarithmic scale. On the basis of these plots, drawn by the method of least squares, the spectral indices $\alpha_{l f}$ and $\alpha_{h f}$ were determined respectively at low (i.e. $<30 \mathrm{MHz}$) and high (i.e. $>30 \mathrm{MHz}$) frequencies. For comparison purposes in Table I, indices $\alpha_{h f}{ }^{*}$ determined by Kellerman (19) and other authors (15), (16), (20), (2I) are given.

From the data shown, it is evident that in the decametric range the spectral parameter essentially differs from that typical of the synchrotron radiation mechanism for which $S \sim f^{-\alpha_{h f}}$.

The spectra of the radio sources may be classified in four groups as follows. The first two groups, already known from the literature (2), (4), (8), include logarithmically linear spectra having $\alpha_{l f}=\alpha_{h f}$ and those with negative curvature. The third type involves spectra with positive curvature when the spectral index α increases with decreasing frequency. Finally there are some radio sources with more complicated spectra. These sources have spectral regions with both positive and negative curvature. A detailed analysis of all these types of spectral characteristics will be made in the following paper (Part II).

ACKNOWLEDGMENTS

In conclusion, the authors would like to thank L. G. Sodin and Ju. M. Bruck for their contribution to the design of the receiving equipment and the determination of the array parameters.

REFERENCES

(1) Roger, R. S., Costain, C. H. \& Purton, C. R., 1965. Nature, Lond., $207,62$.
(2) Ericson, W. C. \& Cronyn, W. M., 1965. Astrophys. F., 142, 1157.
(3) Clark, T. A., 1966. Astr. F., 71, 158.
(4) Andrew, B. H., 1967. Astrophys. 7., 147, 423.
(5) Bridle, A. H., 1967. Observatory, 87, 60.
(6) Guidice, D. A., 1966. Nature, Lond., 2II, 57.
(7) Bazelyan, L. L., Braude, S. Ya., Bruck, Yu. M., Zhouck, I. N., Megn, A. V., Ryabov, B. P., Sodin, L. G. \& Sharykin, N. K., 1963. Radiofiz., 6, 897.
(8) Bazelyan, L. L., Braude, S. Ya., Vaisberg, V. V., Krymkin, V. V., Megn, A. V. \& Sodin, L. G., 1965. Astr. Zh., 42, 618.
(9) Bazelyan, L. L., Braude, S. Ya. \& Megn, A. V., 1966. Astr. Cirk., No. 357.
(10) Bruck, Yu. M., Goncharov, N. Yu., Megn, A. V., Sodin, L. G., Sharykin, N. K., 1967. Radiofiz., 10, 608.
(II) Bruck, Yu M., Goncharov, N. Yu., Zhouck, I. N., Inyutin, G. I., Megn, A. V., Sodin, L. G. \& Sharykin, N. K., 1968. Radiofiz., II, 28.
(12) Sodin, L. G., 1968. Radiofiz.II, , IOI.
(13) Bennett, A. S., 1962. Mem. R. astr. Soc., 68, 163.
(14) Pilkington, J. D. H. \& Scott, P. F., 1965 . Mem. R. astr. Soc., 69, 183 ; Gower, J. F. R., Scott, P. F. \& Wills, D., 1967. Mem. R. astr. Soc., 71, 49.
(15) Pauliny-Toth, I. I. K., Wade, C. M. \& Heeschen, D. S., 1966. Astrophys. F., Suppl. Ser., 13, 65.
(16) Day, G. A., Shimmins, A. J., Ekers, R. D. \& Cole, D. J., 1966. Aust. F. Phys., 19, 35; Shimmins, A. J., Day, G. A., Ekers, R. D. \& Cole, D. J., 1966. Aust. F. Phys., 19, 837.
(17) Williams, P. J. S., Kenderdine, S. \& Baldwin, J. E., 1966. Mem. R. astr. Soc., 70, 53.
(18) Artyukh, V. S., Vitkevich, V. V., Dagkesamanskii, R. D. \& Koshukhov, V. N., 1967. Preprint No. 82, Lebedev Physics Institute, Academy of Sciences, U.S.S.R.
(19) Kellerman, K. I., 1964. Astrophys. F., 140, 969.
(20) Long, R. J., Smith, M. A., Stewart, P. \& Williams, P. J. S., 1966. Mon. Not. R. astr. Soc., 134, 371.
(21) Olsen, E. T., 1967. Astr. F., 72, 738.
(22) Aslanian, A. M., Dagkesemanskii, R. D., Kozhukhov, V. N., Malumian, V. G. \& Sanamian V. A., 1968. Astrofiz., 4, 129.

[^0]: * Preliminary results of this paper were reported to Commission 40 of the I.A.U. at the 13th General Assembly in Prague on 29th August 1967.

