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Abstract

In the study of the spectra of power law graphs, there are basically two competing approaches.
One is to prove analogues of Wigner’s semi-circle law while the other predicts that the eigenvalues
follow a power law distributions. Although the semi-circle law and the power law have nothing in
common, we will show that both approaches are essentially correct if one considers the appropriate
matrices. We will show that (under certain conditions) the eigenvalues of the (normalized) Lapla-
cian of a random power law graph follow the semi-circle law while the spectrum of the adjacency
matrix of a power law graph obeys the power law. Our results are based on the analysis of random
graphs with given expected degrees and their relations to several key invariants. Of interest are
a number of (new) values for the exponent β where phase transitions for eigenvalue distributions
occur. The spectrum distributions have direct implications to numerous graph algorithms such as
randomized algorithms that involve rapidly mixing Markov chains, for example. 1

1 Introduction

Eigenvalues of graphs are useful for controlling many graph properties and consequently have nu-
merous algorithmic applications including low rank approximations [4], information retrieval [22] and
computer vision [16]. Of particular interest is the study of eigenvalues for graphs with power law
degree distributions (i.e., the number of vertices of degree j is proportional to j−β for some exponent
β). It has been observed by many research groups [2, 3, 5, 14, 20, 23, 24] that many realistic massive
graphs including Internet graphs, telephone call graphs and various social and biological networks
have power law degree distributions.

For the classical random graphs based on the Erdős-Rényi’s model, it has been proved by Füredi
and Komlós that the spectrum of the adjacency matrix follows Wigner’s semi-circle law [19]. Wigner’s
theorem [28] and its extensions have long been used for the stochastic treatment of complex quantum
systems that lie beyond the reach of exact methods. The semi-circle law has extensive applications
in statistical physics and solid state physics [11, 18].

In the 1999 paper by Faloutsos et al. [14] on Internet topology, several power law examples of
Internet topology are given and the eigenvalues of the adjacency matrices are plotted which does not
follow the semi-circle law. It is conjectured that the eigenvalues of the adjacency matrices have a
power law distribution with its own exponent different from the exponent of the graph. Farkas et. al.
[15] looked beyond the semi-circle law and described a ‘triangular-like’ shape distribution (also see
[17]). Recently, Mihail and Papadimitriou [26] showed that the eigenvalues of the adjacency matrix
of a power law graphs with exponent β are distributed according to a power law, for β > 3.
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Here we intend to reconcile these two schools of thoughts on eigenvalue distributions. To begin
with, there are in fact several ways to associate a matrix to a graph. The usual adjacency matrix A
associated with a (simple) graph has eigenvalues quite sensitive to the maximum degree (which is a
local property). The combinatorial Laplacian D−A with D denoting the diagonal degree matrix is
a major tool for enumerating spanning trees and has numerous applications [6, 21]. Another matrix
associated with a graph is the (normalized) Laplacian L = I −D−1/2AD−1/2 which controls the
expansion/isoperimetrical properties (which are global) and essentially determines the mixing rate of
a random walk on the graph. The traditional random matrices and random graphs are regular or
almost regular so the spectra of all the above three matrices are basically the same (with possibly a
scaling factor or a linear shift). However, for graphs with uneven degrees, the above three matrices
can have very different distributions.

In this paper, we will consider random graphs with a general given expected degree distribution
and we examine the spectra for both the adjacency matrix and the Laplacian. We will first establish
bounds for eigenvalues for graphs with a general degree distribution from which the results on random
power law graphs then follow. Here is a summary of our results:

1. The largest eigenvalue of the adjacency matrix of a random graph with a given expected degree
sequence is determined by m, the maximum degree, and d̃, the weighted average of the squares
of the expected degrees. We show that the largest eigenvalue of the adjacency matrix is almost
surely (1+o(1))max{d̃,

√
m} provided some minor conditions are satisfied. In addition, suppose

that the kth largest expected degree mk is significantly larger than d̃2. Then the kth largest
eigenvalue of the adjacency matrix is almost surely (1+o(1))

√
mk.

2. For a random power law graph with exponent β > 2.5, the largest eigenvalue of a random
power law graph is almost surely (1+o(1))

√
m where m is the maximum degree. Moreover, the

k largest eigenvalues of a random power law graph with exponent β have power law distribution
with exponent 2β−1 if the maximum degree is sufficiently large and k is bounded above by a
function depending on β,m and d, the average degree. When 2 < β < 2.5, the largest eigenvalue
is heavily concentrated at cm3−β for some constant c depending on β and the average degree.

3. We will show that the eigenvalues of the Laplacian satisfy the semi-circle law under the condition
that the minimum expected degree is relatively large (� the square root of the expected average
degree). This condition contains the basic case when all degrees are equal (the Erdös-Rényi
model). If we weaken the condition on the minimum expected degree, we can still have the
following strong bound for the eigenvalues of the Laplacian which implies strong expansion rates
for rapidly mixing,

max
i6=0

|1−λi| ≤ (1+o(1))
4√
w̄

+
g(n) log2 n

wmin

where w̄ is the expected average degree, wmin is the minimum expected degree and g(n) is any
slow growing function of n.

In applications, it usually suffices to have the λi’s (i > 0) bounded away from zero. Our result shows
that (under some mild conditions) these eigenvalues are actually very close to 1.

The rest of the paper has two parts. In Section 2, we present our model and the results concerning
the spectrum of the adjacency matrix. Section 3 deals with the Laplacian.
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2 The spectra of the adjacency matrix

2.1 The random graph model

The primary model for classical random graphs is the Erdős-Rényi model Gp, in which each edge is
independently chosen with the probability p for some given p > 0 (see [13]). In such random graphs
the degrees (the number of neighbors) of vertices all have the same expected value. Here we consider
the following extended random graph model for a general degree distribution.

For a sequence w = (w1,w2, . . . ,wn), we consider random graphs G(w) in which edges are inde-
pendently assigned to each pair of vertices (i,j) with probability wiwjρ, where ρ = 1Pn

i=1 wi
. Notice

that we allow loops in our model (for computational convenience) but their presence does not play
any essential role. It is easy to verify that the expected degree of i is wi.

To this end, we assume that maxi w
2
i <

∑
k wk, so that pij ≤ 1 for all i and j. This assumption

insures that the sequence wi is graphical (in the sense that it satisfies the necessary and sufficient
condition for a sequence to be realized by a graph [12]) except that we do not require the wi’s to be
integers). We will use di to denote the actual degree of vi in a random graph G in G(w) where the
weight wi denotes the expected degree.

For a subset S of vertices, the volume Vol(S) is defined as the sum of weights in S and vol(S) is
the sum of the (actual) degrees of vertices in S. That is, Vol(S) =

∑
i∈S wi and vol(S) =

∑
i∈S di.

In particular, we have Vol(G) =
∑

i wi, and we denote ρ = 1
Vol(G) . The induced subgraph on S is

a random graph G(w′) where the weight sequence is given by w′
i = wiVol(S)ρ for all i ∈ S. The

expected average degree is w̄ =
∑n

i=1 wi/n = 1/(ρn). The second order average degree of G(w′) is

d̃ =
P

i∈S w2
iPn

i=1 wi
=
∑

i∈S w2
i ρ. The maximum expected degree is denoted by m.

The classical random graph G(n,p) can be viewed as a special case of G(w) by taking w to be
(pn,pn, . . . ,pn). In this special case, we have d̃ = w̄ = m = np. It is well known that the largest
eigenvalue of the adjacency matrix of G(n,p) is almost surely (1+o(1))np provided that np � logn.

The asymptotic notation is used under the assumption that n, the number of vertices, tends to
infinity. All logarithms have the natural base.

2.2 The spectra of the adjacency matrix of random graphs with given degree
distribution

For random graphs with given expected degrees w1,w2, . . . ,wn, there are two easy lower bounds for
the largest eigenvalue ‖A‖ of the adjacency matrix A, namely, (1+o(1))d̃ and (1+o(1))

√
m.

In [10], the present authors proved that the maximum of the above two lower bounds is essentially
an upper bound.

Theorem 1 If d̃ >
√

m logn, then the largest eigenvalue of a random graph in G(w) is almost surely
(1+o(1))d̃.

Theorem 2 If
√

m > d̃ log2 n, then almost surely the largest eigenvalue of a random graph in G(w)
is (1+o(1))

√
m.

If the k-th largest expected degree mk satisfies
√

mk > d̃ log2 n and m2
k � md̃, then almost surely

the largest k eigenvalues of a random graph in G(w) is (1+o(1))
√

mk.

Theorem 3 The largest eigenvalue of a random graph in G(w) is almost surely at most

7
√

logn ·max{√m,d̃}.
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We remark that the largest eigenvalue ‖A‖ of the adjacency matrix of a random graph is almost
surely (1+o(1))

√
m if

√
m is greater than d̃ by a factor of log2 n, and ‖A‖ is almost surely (1+o(1))d̃

if
√

m is smaller than d̃ by a factor of logn. In other words, ‖A‖ is (asymptotically) the maximum of√
m and d̃ if the two values of

√
m and d̃ are far apart (by a power of logn). One might be tempted

to conjecture that
‖A‖ = (1+o(1))max{√m,d̃}.

This, however, is not true as shown by a counterexample given in [10].
We also note that with a more careful analysis the factor of logn in Theorem 1 can be replaced

by (logn)1/2+ε and the factor of log2 n can be replaced by (logn)3/2+ε for any positive ε provided that
n is sufficiently large. We remark that the constant “7” in Theorem 3 can be improved. We made no
effort to get the best constant coefficient here.

2.3 The eigenvalues of the adjacency matrix of power law graphs

In this section, we consider random graphs with power law degree distribution with exponent β. We
want to show that the largest eigenvalue of the adjacency matrix of a random power law graph is
almost surely approximately the square root of the maximum degree m if β > 2.5, and is almost
surely approximately cm3−β if 2 < β < 2.5. A phase transition occurs at β = 2.5. This result for
power law graphs is an immediate consequence of a general result for eigenvalues of random graphs
with arbitrary degree sequences.

We choose the degree sequence w = (w1,w2, . . . ,wn) satisfying wi = ci−
1

β−1 for i0 ≤ i ≤ n+ i0.
Here c is determined by the average degree and i0 depends on the maximum degree m, namely,
c = β−2

β−1dn
1

β−1 , i0 = n( d(β−2)
m(β−1) )

β−1. It is easy to verify that the number of vertices of degree k is
proportional to k−β.

The second order average degree d̃ can be computed as follows:

d̃ =




d (β−2)2

(β−1)(β−3) (1+o(1)) if β > 3.
1
2d ln 2m

d (1+o(1)). if β = 3.
d (β−2)2

(β−1)(3−β) (
(β−1)m
d(β−2) )3−β(1+o(1)). if 2< β < 3.

We remark that for β > 3, the second order average degree is independent of the maximum degree.
Consequently, the power law graphs with β > 3 are much easier to deal with. However, many massive
graphs are power law graphs with 2 < β < 3, in particular, Internet graphs [23] have exponents
between 2.1 and 2.4 while the Hollywood graph [5] has exponent β ∼ 2.3. In these cases, it is d̃ which
determines the first eigenvalue. The following theorem is a consequence of Theorems 1 and 2. When
β > 2.5, we have

λi ≈ √
mi ∝ (i+ i0−1)−1/((2β−1)−1) ,

for λi sufficiently large. These large eigenvalues follows the power law distribution with exponent
2β−1. (The exponent is different from one in Mihail and Papadimitriou’s paper [26] because they
use a different definition for power law.)

Theorem 4 1. For β ≥ 3 and m > d2 log3+ε n, almost surely the largest eigenvalue of the random
power law graph G is (1+o(1))

√
m.

2. For 2.5 < β < 3 and m > d
β−2

β−2.5 log
3

β−2.5 n, almost surely the largest eigenvalue of the random
power law graph G is (1+o(1))

√
m.
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3. For 2 < β < 2.5 and m > log
3

2.5−β n, almost surely the largest eigenvalue is (1+o(1))d̃.

4. For k < ( d
m logn)β−1n and β > 2.5, almost surely the k largest eigenvalues of the random power

law graph G with exponent β have power law distribution with exponent 2β−1, provided that m
is large enough (satisfying the inequalities in 1, 2).

3 The spectrum of the Laplacian

Suppose G is a graph that does not contain any isolated vertices. The Laplacian L is defined to be
the matrix L = I−D−1/2AD−1/2 where I is the identity matrix, A is the adjacency matrix of G and
D denotes the diagonal degree matrix. The eigenvalues of L are all non-negative between 0 and 2
(see [7]). We denote the eigenvalues of L by 0 = λ0 ≤ λ1 ≤ . . .λn−1. For each i, let φi denote an
orthonormal eigenvectors associated with λi. We can write L as

L =
∑

i

λiPi,

where Pi denotes the i-projection into the eigenspace associated with eigenvalue λi. We consider

M = I−L−P0

=
∑
i6=0

(1−λi)Pi.

For any positive integer k, we have

Trace(M2k) =
∑
i6=0

(1−λi)2k

Lemma 3.1 For any positive integer k, we have

max
i6=0

|1−λi| ≤ ‖M‖ ≤ (Trace(M2k)1/(2k).

The matrix M can be written as

M = D−1/2AD−1/2−P0

= D−1/2AD−1/2−φ∗
0φ0

= D−1/2AD−1/2− 1
vol(G)

D1/2KD1/2

where φ0 is regarded as a row vector (
√

d1/vol(G), . . . ,
√

dn/vol(G)), φ∗
0 is the transpose of φ0 and K

is the all 1’s matrix.
Let W denote the diagonal matrix with the (i, i)-entry having value wi, the expected degree of

the i-th vertex. We will approximate M by

C = W−1/2AW−1/2− 1
Vol(G)

W 1/2KW 1/2

= W−1/2AW−1/2−χ∗χ

where χ is a row vector (
√

w1ρ, . . . ,
√

wnρ). We note that ‖χ∗χ−φ∗φ‖ is strongly concentrated at 0
for random graphs with given expected degree wi. C can be seen as the expectation of M and we
shall consider the spectrum of C carefully.
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3.1 A sharp bound for random graphs with relatively large minimum expected
degree

In this section we consider the case when the minimum of the expected degrees is not too small
compared to the mean. In this case, we are able to prove a sharp bound on the largest eigenvalue of
C.

Theorem 5 For a random graph with given expected degrees w1, . . . ,wn where wmin � √
w̄ log3 n, we

have almost surely

‖C‖ = (1+o(1))
2√
w̄

.

Proof. We rely on Wigner’s high moment method. For any positive integer k and any symmetric
matrix C

Trace(C2k) = λ1(C)2k + · · ·+λn(C)2k,

which implies

E(λ1(C)2k) ≤ E(Trace(C2k)),

where λ1 is the eigenvalue with maximum absolute value: |λ1| = ‖C‖.
If we can bound E(Trace(C2k)) from above, then we have an upper bound for E(λ1(C)2k). The

latter would imply an upper bound (almost surely) on |λ1(C)| via Markov’s inequality, provided that
k is sufficiently large.

Let us now take a closer look at Trace(C2k). This is a sum where a typical term is ci1i2ci2i3 . . .
ci2k−1i2k

ci2ki1 . In other words, each term corresponds to a closed walk of length 2k (containing 2k, not
necessarily different, edges) of the complete graph Kn on {1, . . . ,n} (Kn has a loop at every vertex).
On the other hand, the entries cij of C are independent random variables with mean zero. Thus, the
expectation of a term is non-zero if and only if each edge of Kn appears in the walk at least twice.
To this end, we call such a walk a good walk. Consider a closed good walk which uses l different
edges e1, . . . ,el with corresponding multiplicities m1, . . . ,ml ( the mh’s are positive integers at least 2
summing up to 2k). The (expected) contribution of the term defined by this walk in E(Trace(C2k) is

l∏
h=1

E(cmh
eh

). (1)

In order to compute E(cm
ij ), let us first describe the distribution of cij : cij = 1√

wiwj
−√

wiwjρ =
qij√
wiwj

with probability pij = wiwjρ and cij = −√
wiwjρ = − pij√

wiwj
with probability qij = 1−pij.

This implies that for any m ≥ 2

|E(cm
ij )| ≤

qm
ij pij +(−pij)mqij

(wiwj)m/2
≤ pij

(wiwj)m/2
=

ρ

(wiwj)m/2−1
≤ ρ

wm−2
min

. (2)

Here we used the fact that qm
ij pij +(−pij)mqij ≤ pij in the first inequality (the reader can consider

this fact an easy exercise) and the definition pij = wiwjρ in the second equality.
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Let Wl,k denote the set of closed good walks on Kn of length 2k using exactly l +1 different
vertices. Notice that each walk in Wl,k must have at least l different edges. By (1) and (2), the
contribution of a term corresponding to such a walk towards E(Trace(C2k)) is at most

ρl

w2k−2l
min

.

It follows that

E(Trace(C2k)) ≤
k∑

l=0

|Wl,k| ρl

w2k−2l
min

. (3)

In order to bound the last sum, we need the following result of Füredi and Komlós [19].

Lemma 3.2 For all l < n

|Wl,k| ≤ n(n−1) . . . (n− l)
(

2k
2l

)(
2l
l

)
1

l+1
(l+1)4(k−l). (4)

In order to prove our theorem, it is more convenient to use the following cleaner bound, which is
a direct corollary of (4)

|Wl,k| ≤ nl+14l

(
2k
2l

)
(l+1)4(k−l). (5)

Substituting (5) into (3) yields

E(Trace(C2k)) ≤
k∑

l=0

ρl

w2k−2l
min

nl+14l

(
2k
2l

)
(l+1)4(k−l) =

k∑
l=0

sl,k. (6)

Now fix k = g(n) logn, where g(n) tends to infinity (with n) arbitrarily slowly. With this k and the
assumption about the degree sequence, the last sum in (6) is dominated by its highest term. To see
this, let us consider the ratio sk,k/sl,k for some l ≤ k−1:

sk,k

sl,k
=

((4ρn)w2
min)k−l(2k

2l

)
(l+1)4(k−l)

≥ ((4ρn)w2
min)k−l

2k2(k−l)k4(k−l)
≥ 1

2

(4ρnw2
min

k6

)k−l
,

where in the first inequality we used the simple fact that
(2k

2l

) ≤ (2k)2(k−l)

2(k−l)! ≤ 2k2(k−l). With a proper

choice of g(n), the assumption wmin = Ω(log3 n)
√

w̄ guarantees that 4ρnw2
min

k6 = Ω(1), where Ω(1)
tends to infinity with n. This implies sk,k/sl,k ≥ (Ω(1))k−l. Consequently,

E(Trace(C2k)) ≤
k∑

l=0

sl,k ≤ (1+o(1))sk,k = (1+o(1))ρknk+14k = (1+o(1))n(4ρn)k .

Since E(λ1(C)2k) ≤ E(Trace(C2k)) and ρn = 1
w̄ , we have

E(λ1(C)2k) ≤ (1+o(1))n(
2√
w̄

)2k. (7)
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By (7) and Markov’s equality

P
(
|λ1(C)| ≥ (1+ε)

2√
w̄

)
= P

(
λ1(C)2k ≥ (1+ε)2k(

2√
w̄

)2k
)

≤ E(λ1(C)k)
(1+ε)2k( 2√

w̄
)2k

≤
(1+o(1))n( 2√

w̄
)2k

(1+ε)2k( 2√
w̄

)2k

=
(1+o(1))n
(1+ε)2k

.

Since k = Ω(logn), we can find an ε = ε(n) tending to 0 with n so that n
(1+ε)2k = o(1). This implies

that almost surely |λ1(C)| ≤ (1+o(1)) 2√
w̄

, as desired. The lower bound on |λ1(C)| follows from the
semi-circle law proved in the next section. �

3.2 The semi-circle law.

We show that if the minimum expected degree is relatively large then the eigenvalues of C satisfy
the semi-circle law with respect to the circle of radius r = 2√

w̄
centered at 0. Let W be an absolute

continuous distribution function with (semi-circle) density w(x) = 2
π

√
1−x2 for |x| ≤ 1 and w(x) = 0

for |x| > 1. For the purpose of normalization, consider Cnor = ( 2√
w̄

)−1C. Let N(x) be the number
of eigenvalues of Cnor less than x and Wn(x) = n−1N(x).

Theorem 6 For random graphs with a degree sequence satisfying wmin � √
w̄, Wn(x) tends to W (x)

in probability as n tends to infinity.

Remark. The assumption here is weaker than that of Theorem 5, due to the fact that we only need
to consider moments of constant order.

Proof. As convergence in probability is entailed by the convergence of moments, to prove this
theorem, we need to show that for any fixed s, the sth moment of Wn(x) (with n tending to infinity)
is asymptotically the sth moment of W (x). The sth moment of Wn(x) equals 1

nE(Trace(Csnor)). For
s even, s = 2k, the sth moment of Wx is (2k)!

22kk!(k+1)!
(see [28]). For s odd, the sth moment of Wx is 0

by symmetry.

In order to verify Theorem 5, we need to show that for any fixed k

1
n
E(Trace(C2k

nor)) = (1+o(1))
(2k)!

22kk!(k+1)!
, (8)

and

1
n
E(Trace(C2k+1

nor )) = o(1). (9)

We first consider (8). Let us go back to (3). Now we need to use the more accurate estimate of
|Wl,k| given in (4), instead of the weaker but cleaner one in (5). Define s′l,k = ρl

w2k−2l
min

n(n−1) . . . (n−
l)
(2k

2l

)(2l
l

)
1

l+1(l+1)4(k−l). One can check, with a more tedious computation, that the sum
∑k

l=0 s′l,k is
still dominated by the last term, namely
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k∑
l=0

s′l,k = (1+o(1))s′k,k.

It follows that E(Trace(C2k)) ≤ (1+o(1))s′k,k. On the other hand, E(Trace(C2k)) ≥ |Wk,k|ρk. Now
comes the important point, for l = k, |Wl,k| is not only upper bounded by, but in fact equals, the
right hand side of (4). Therefore,

E(Trace(C2k)) = (1+o(1))s′k,k.

It follows that

E(Trace(Cnor2k)) = (1+o(1))(
2√
w̄

)−2ks′k,k = (1+o(1))n
(2k)!

22kk!(k+1)!
,

which implies (8).

Now we turn to (9). Consider a term in Trace(C2k+1). If the closed walk corresponding to this
term has at least k+1 different edges, then there should be an edge with multiplicity one, and the
expectation of the term is 0. Therefore, we only have to look at terms whose walks have at most
k different edges (and at most k+1 different vertices). It is easy to see that the number of closed
good walks of length 2k +1 with exactly l+1 different vertices is at most O(nl+1). The constant
in O depends on k and l (recall that now k is a constant) but for the current task we do not need
to estimate this constant. The contribution of a term corresponding to a walk with at most l+1
different edges is bounded by

ρl

w2k+1−2l
min

.

Thus |E(Trace(C2k+1))| is upper bounded by

k∑
l=0

c
ρl

w2k+1−2l
min

nl+1, (10)

for some constant c. To compute the (2k+1)th moment of Wn(x), we need to multiply E(Trace(C2k+1))
by the normalizing factor 1

n( 1
2
√

nρ)2k+1. It follows from (10) that the absolute value of the (2k+1)th

moment of Wn(x) is upper bounded by

k∑
l=0

1
n

(
1

2
√

nρ
)2k+1 ρl

w2k+1−2l
min

nl+1 ≤
k∑

l=0

(
1

2
√

nρwmin
)2k+1−2l. (11)

Under the assumption of the theorem 1
2
√

nρwmin
= o(1). Thus, the last sum in (11) is o(1), completing

the proof. �
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3.3 An upper bound on the spectral norm of the Laplacian

In this section, we assume that wmin � log2 n and we will show the following.,

Theorem 7 For a random graph with given expected degrees, if the minimal expected degree wmin

satisfies wmin � log2 n, then almost surely the eigenvalues of the Laplacian L satisfy

max
i6=0

|1−λi| ≤ (1+o(1))
4√
w̄

+
g(n) log2 n

wmin

where w̄ =
Pn

i=1 wi

n is the average expected degree and g(n) is a function tending to infinity (with n)
arbitrarily slowly.

To proof Theorem 7, we recall that eigenvalues of the Laplacian satisfy

max
i6=0

|1−λi| = ‖M‖

where M = D−1/2AD−1/2− 1
vol(G)D

1/2KD1/2. We rewrite M as follows:

M = B+C +R+S where bi,j = (ai,j −wiwjρ)(
1√
didj

− 1√
wiwj

)

ri,j = ρ
wiwj −didj√

didj

si,j = (
1

Vol(G)
− 1

vol(G)
)
√

didj

and C is as defined in the previous section. Clearly,

‖M‖ ≤ ‖B‖+‖C‖+‖R‖+‖S‖.
It suffices to establish upper bounds for the norms of B,C, E and F separately. To do so, we will
use the following concentration inequality for a sum of independent random variables (see [8, 25]).

Let Xi (1 ≤ i ≤ n) be independent random variables satisfying |Xi| ≤ M . Let X =
∑

i Xi. Then
we have

P(|X−E(X)| > a) ≤ e
− a2

2(V ar(X)+Ma/3) . (12)

For each fixed i, we consider the degree di as a sum of random indicator variables di =
∑

j aij.
Since V ar(dj) ≤ wj , we then have

P(|di−wi| > a) ≤ e−a2/(wi+a/3). (13)

By the assumption that wmin � log2 n , we have almost surely

|di−wi| < εwi (14)

for all i where ε is any fixed (small) positive value.
Similarly, by considering the volume vol(G) as vol(G) =

∑
i

∑
j aij , we have almost surely

|vol(G)−Vol(G)| < 2
√

Vol(G)g(n) (15)

for any slow growing function g(n).
We will use the following lemma which will be proved later.
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Lemma 3.3 Suppose that wmin � logn. Almost surely the vector χ with χ(i) = (di −wi)/
√

wi

satisfies
‖χ‖2 ≤ (1+o(1))n.

Proof of Theorem 7: To establish an upper bound for ‖C‖, we follow the proof of Theorem 5. The
following inequality can be derived from (6).

E(Trace(C2k)) ≤
k∑

l=0

ρl

w2k−2l
min

nl+14l

(
2k
2l

)
(l+1)4(k−l)

≤
k∑

l=0

ρl

w2k−2l
min

nl+14l

(
2k
2l

)
(k+1)4(k−l)

≤ (1+o(1))n(
2√
w̄

+
(k+1)2

wmin
)2k

By choosing k =
√

g(n) logn, we have

(E(Trace(C2k)))1/(2k) ≤ n1/(2k)(
2√
w̄

+
g(n) log2 n

wmin
).

Thus, by similar arguments, almost surely we have

‖C‖ ≤ 2√
w̄

+
g(n) log2 n

wmin
.

To bound ‖R‖, we have almost surely

‖R‖ = max
‖y‖=1

〈y,Ry〉

≤ max
‖y‖=1

ρ
∑
ij

yiyj
di(dj −wj)+(di−wi)wj√

didj

≤ ρ max
‖y‖=1



∑

i

√
diyi

∑
j

(dj −wj)yj√
dj

+
∑

i

di−wi)yi√
di

∑
j

wjyj√
dj




≤ ρ max
‖y‖=1


(
∑

i

di)1/2‖y‖·

∑

j

(dj −wj)2

dj




1/2

‖y‖+

(∑
i

(di−wi)2

di

)1/2

‖y‖·(
∑

j

w2
j

dj
)1/2‖y‖




≤ (2+o(1))
√

ρn

= (1+o(1))
2√
w̄

by using (12), Lemma 3.3 and the Cauchy-Schwartz inequality.
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To bound ‖S‖, we have

‖S‖ = max
‖y‖=1

〈y,Sy〉 = max
‖y‖=1

∑
ij

|yiyj(
1

Vol(G)
− 1

vol(G)
)|√didj

≤ (
1

Vol(G)
− 1

vol(G)
)| max

‖y‖=1

∑
ij

|yi

√
di||yj

√
dj |

≤ 2
√

Vol(G) logn

vol(G)Vol(G)
(
∑

i

|yi

√
di|)2

= o(
√

ρ logn‖y‖2)

= o(
1√
w̄

)

almost surely by using (15).
It remains to bound ‖B‖. We note that

bij = (aij −wiwjρ)(
1√
didj

− 1√
wiwj

)

= cij

√
wiwj −

√
didj√

didj

.

Thus, we have

‖B‖ = max
‖y‖=1

〈y,By〉

≤ max
‖y‖=1

∑
ij

yiyjcij

√
di(
√

dj −√
wj)+(

√
di−√

wi)
√

wj√
didj

.

We define y′i = yi(
√

di−√
wi)/

√
di and y′′i = yi

√
wi/

√
di. Then we have almost surely

‖B‖ ≤ max
‖y‖=1

〈y,Cy′〉+〈y′,Cy′′〉

≤ max
‖y‖=1

‖C‖‖y′‖+‖C‖‖y′‖‖y′′‖
≤ o(‖C‖)

since ‖y′‖2 =
∑

i y
2
i (
√

di−√
wi)2/di = o(

∑
i y

2) = o(1) and ‖y′′‖ = (1+o(1))‖y‖.
Together we have

max
i6=0

|1−λi| ≤ ‖M‖
≤ ‖B‖+‖C‖+‖R‖+‖S‖
≤ (1+o(1))(

4√
w̄

+
g(n) log2 n

wmin
).

The proof is complete. �
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Proof of Lemma 3.3: Let Xi = (di−wi)2, X =
∑n

i=1
1
wi

Xi, and xij = aij −wiwjρ. We have

E(Xi) = Var(di) = E(
n∑

j=1

x2
ij) < wi

E(X2
i ) = E((di−wi)4) = E((

n∑
j=1

xij)4)

=
n∑

j=1

E(x4
ij)+6

∑
j1=j2, 6=j3=j4

E(xij1xij2xij3xij4)

≤ wi +6w2
i

since E(xij) = 0. For i 6= j, we have

E(XiXj) = E(di−wi)2(dj −wj)2

= E((
n∑

k=1

xik)2)((
n∑

l=1

xil)2)

= E(Xi)E(Xj)+E(x4
ij)−(E(x2

ij))
2

≤ wiwj +wiwjρ

Thus,

Var(Xi) ≤ wi +5w2
i ,

coVar(Xi,Xj) ≤ wiwjρ.

Therefore,

E(X) =
n∑

i=1

1
wi

E(Xi) < n

Var(X) =
n∑

i=1

1
w2

i

Var(Xi)+2
n∑

i<j

1
wiwj

coVar(Xi,Xj)

≤ (5+
1

wmin
+

1
w̄

)n

= (5+o(1))n

Using the Chebyshev inequality, we have

P(|X−E(X)| > a) ≤ a2

Var(X)
.

By choosing a =
√

n g(n), where g(n) is an arbitrarily slow growing function, almost surely, we have
X = (1+o(1))n. Thus, we have almost surely

‖χ‖2 ≤ (1+o(1))n

as desired. �.
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