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Abstract. For every Perron number A we construct an infinite collection of topological
Markov shifts with entropy log A whose spectra are disjoint except for the necessary
conjugates of A. This is used to show that Marcus' theorem about every Markov
shift of entropy log n factoring onto the full n-shift does not extend to certain
entropy values.

1. Background
Let A be a square non-negative integral matrix, which we assume throughout to be
aperiodic in that some power of A is strictly positive. A familiar procedure [W]
associates to such an A a homeomorphism <TA of a totally disconnected compact
space XA. The topological entropy h(crA) of aA equals log AA, where XA is the largest
eigenvalue of A. For a detailed treatment of these topological Markov shifts and
their central role in dynamics see [DGS].

We say that crA factors onto aB if there is a continuous surjection TT : XA -» XB

with TTO-A = O-BTT. A shift crA is said to be minimal in its entropy class if every shift
with the same entropy factors onto it. Marcus [M] has shown that the full n-shift
is minimal in its entropy class for rational integers n > 2.

Recently Trow [T] established a beautiful generalization of Marcus' theorem. He
showed that the existence of factor maps is closely related to classes of ideals in
2[1/A] generated by coordinates of eigenvectors. In particular, if C > 0 is aperiodic
with irreducible characteristic polynomial, and Z[l/A] is a principal ideal domain
then for every crA with kA = Ac there is an n s l such that aA factors onto <T"C.

Our purpose is to show that these results cannot generalize directly to arbitrary
A. We show in theorem 3 that if the trace of A is strictly negative and the other
conjugates of A have negative real part, then there is no finite collection
{crCl,..., c r c j of shifts with entropy log A such that every aA with h(aA) = log A
has some power that factors onto the same power of some <rc.. We do this by
constructing rather explicitly, for every A and sufficiently large M, a sequence of
aperiodic matrices whose spectra converge to the Mth roots of unity times the
conjugates of A together with the circle of radius A (theorem 1). Rouche's theorem
is used to locate the spectra of these matrices. The geometric localization of the
eigenvalues together with Galois theory makes it easy to extract a subsequence of
these matrices whose spectra are disjoint except for the necessary conjugates of
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572 D. A. hind

A in common (theorem 2). A result of Kitchens on divisibility of zeta functions
then gives the conclusion of theorem 3.

The exact statements are given in § 2. In § 3 we describe the algorithm from [L]
that produces all non-negative integral matrices with prescribed spectral radius. In
§ 4 we show how this works for three pivotal examples, which together contain all
the significant ideas of the general proof. Even in the simplest case when A is a
rational integer, our method yields an interesting family of irreducible polynomials.
The reader is urged to study these examples before reading the proofs, which are
supplied in § 5.

The main ideas behind the proof of theorem 1 were discovered experimentally
using the interactive MATLAB linear algebra package. We thank Roy Adler for
suggesting the original problem, and Don Marshall for several useful conversations.

This research was supported in part by NSF Grant DMS-8320356.

2. Theorems
Define A to be a Perron number if it is an algebraic integer > 1 whose conjugates
have absolute value < A, and denote by P the set of such numbers. In [L] it is shown
that A is a Perron number iff it is the spectral radius of an aperiodic non-negative
integral matrix.

For A e P with degree d, let p(t) be the minimal polynomial of A over Q. Thus
p(t) = Y[j=i (f-Ay), where At = A, A 2 , . . . , Ad are the conjugates of A. If A has spectral
radius AA = A, then the characteristic polynomial XAU) of A has A as a root. Since
p ( ' ) , ^ ( ' ) e Z [ r ] and p(t) is irreducible, p(t) divides # A (0 . and hence each Ay is
an eigenvalue of A. By the Perron-Frobenius theory [G], each is simple.

The first theorem constructs a sequence of matrices whose spectra become
geometrically localized. For A E P , M > 1, and 5 > 0 , let E(\, M, S) denote the set
of complex numbers within 5 of an Mth root of unity times a distinct conjugate of
A, together with the annulus {(1 - 5)A < \z\ < A}.

THEOREM 1. Let A E P . There is an M0(A) such that i / M > M 0 ( A ) , there exists a
sequence {An} of aperiodic non-negative integral matrices with AAn = A such that for
every 8 > 0 the eigenvalues of An are eventually in E(X, M, 5).

It was noted above that every A with AA = A has XA(0 divisible by p(t). However,
theorem 1 together with Galois theory allows inductive construction of an infinite
collection of such A's whose characteristic polynomials have only p(t) in common.

THEOREM 2. For every A e P there exists a sequence of aperiodic non-negative integral
matrices with spectral radius A such that their characteristic polynomials have pairwise
only p(t) in common.

The theorems above rule out a direct generalization of the results of Marcus and
Trow to certain values of A. Let 2A denote the set of mixing topological Markov
shifts with entropy log A.
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THEOREM 3. Let A e P have negative trace and the other conjugates of\ have negative
real part. There is no finite collection (aCi,..., crc} c £A such that every <rA e SA factors
onto some aCj. Indeed, there is no such collection such that for every <xAeXA there is
an integer /c> 1 so that a\ factors onto some o-k

c..

The assumption on the conjugates of A is only needed to prove the second statement,
and likely are not needed at all. See the remarks following the proof of theorem 3.

3. Matrices
Fix A e P. We review here the general method from [L] for constructing all aperiodic
matrices A over the non-negative integers Z+ with AA = A.

Let deg A = d, and B be the d-dimensional companion matrix of the minimal
polynomial p(t) for A. Of course B need not be non-negative. Under the action of
B there is an invariant splitting of Ud into C@D, where D is the one-dimensional
dominant eigenspace for A, and C is its ^-invariant complement. Let TTD:Ud ->D
denote projection to D along C. Identifying D with U, we can speak of the
D-coordinate of xeMd as being nD(x).

Suppose there is an n-tuple ( z , , . . . , zn) of integral vectors in Ud with TTD(ZJ) > 0
for l < i < n , and such that for each j ,

Bzj= I a^, a,jeZ+. (3.1)
< = i

Form the n-dimensional matrix A = [au]. The argument at the end of the proof of
theorem 1 in [L] shows that AA = A, although A may not be aperiodic or even
irreducible. Conversely, if A = [a,j] is an arbitrary aperiodic matrix over Z+ with
AA = A, by [L, theorem 2] there is an n-tuple ( z , , . . . , zn) of integral vectors in Zd

with irDz,>0 such that (3.1) holds. The latter is proved by using a n-dimensional
right eigenvector for A under A whose coordinates lie in Z[A], and identifying
elements of Z[A] with integral vectors in Zd.

In the next two sections, we will describe one systematic way of constructing, for
all large enough n, n-tuples of integral vectors satisfying the above conditions. We
will then analyze the corresponding sequence of matrices and their spectra to prove
theorem 1.

4. Examples
We shall illustrate the main ideas in the proofs of theorems 1 and 2 by showing
how they work on three key examples. We call these the linear, cubic, and quadratic
examples. The first, when A is a rational integer, shows how geometric localization
and separation of the spectra work. Even in this simple case, the method yields
an interesting sequence of irreducible polynomials. Next we treat a particular cubic
algebraic integer A with negative trace. This provides a concrete example for theorem
3 and its proof. Special features of this cubic A are used in the proof to obtain
Mo( A) = 1. The possibility that Mo( A) is forced to be larger arises in the last, quadratic
example. Essentially the entire proof is contained here in simplified form.
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574 D. A. Lind

(i) A linear example. Consider A = X > 2 . Here d = \ and B = [K]. Let z, = 1,
z2 = B z , , . . . , zN = BzN_, = KN~X. The simplest way to guarantee that an irreducible
matrix A is aperiodic is for tr A > 0 . Thus in (3.1) we use

BzN = KN = (K - ]

together with
Bzj = zj+l f o r l < j < J V - l .

This produces an aperiodic matrix AN that is the companion matrix of

Let 5 > 0. We show that for sufficiently large TV all roots /x of ̂ N obey (1 — S)K <
fi\^ K, i.e. they lie in E(K, 1,5). Since A is aperiodic with XA = K, the Perron-
Frobenius theorem shows |/A|=£ K. If XN(H)

 = 0, then

so that
i/(JV-D

for sufficiently large TV.
A variant of this argument, employing Rouche's theorem, extends to the general

case. We give it here for comparison. Let fN(t) = tN -(K-\)KN~^ a n d g N ( 0 = tN~l.
If \t\<p = K{(K-\)/2Ky/(N^\ then

so \fN(t)\>i(K - l)KN~l f o r | f | < p . U\t\ = p t h e n

By Rouche's theorem, since /NU) has no zeros in {|f|sp}, neither does
fN(t)~gN(t) = XN(t)- Thus all roots of XN He in {p<\t\<K}. Since p / K as
TV -» oo, this proves theorem 1 in the linear case.

A simple inductive construction now proves theorem 2. Denote the spectrum of
A by sp (A). Pick Si>0 and by the above choose TV, so that ( 1 - 5 J X <|/x|< X
for fiesp{ANj). Pick S 2 >0 so that ^ S j S , and

max {|/i|: //, e sp (A,), /A # K} < (1 - 52)X,

and produce AN2 with sp (AN 2)c{(l — 82)K <\t\^ K}. Continuing, we obtain ANn

with sp (AN.) n sp (AN.) = {K}, so their characteristic polynomials have only p(t) =
t — K in common.

It is possible to estimate the growth of dim ANn as follows. The argument above
shows there is a constant ct so that
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A careful analysis of the positions of the elements in sp (AN) shows there is a c2

so that

It follows that the Nn can be chosen so that Nn+1<(c,/c2)N3
n, and hence that

dim ANn = O(exp (exp (c3n))) for suitable c3.
For the linear case the characteristic polynomials produced are in fact irreducible

modulo p{t) = t - K. This fact, and its proof, were pointed out to us by David Boyd.

PROPOSITION 1. With the above notation, the polynomials

t-K t-K

are irreducible for TV, K > 2.

Proof. Let q(t) = XN{t)/{t-K), and put

1

KN~
- l)(tN~2+

All roots IJL of r(t) have | / A | < 1 . It suffices to show r(t) is irreducible over Z[t].
Suppose to the contrary that r(t) = (aot

m + • • • +al)(bot
N~1~m+ • • • +b^ with

ao>0, so aobo= K, a,b1 = K-\. We claim maxjlaj/ao, |b i | /b o } s 1- If not, then

fci|___ a0—1 b o - l J_ J_ J_
K a0 b0 a0 b0 a0 b0 K'

so 1 / a0 + 1 / £>0 — 2/ K. Multiplying by K shows a0 + b0 < 2, so a0 = b0 = 1, contradict-
ing aobo= K. If now laj/ao— 1» then the product of the roots of the first factor of
r(t) has modulus |ai |/aos: 1, contradicting the fact that all roots of r(t) have modulus
<1. The case |b]|/feo>l is similar. •

(ii) A cubic example. Let A«3.8916 be the largest root of p(t) = t3 + 3t2- 15r-46,
which is irreducible. Then A has conjugates A2=

K -3.2141 and A3 = -3.6775, soAeP
and trA =—3. The companion matrix B for p(t) has a positive eigenvector w for
A. Let D = Uw and C be the B-invariant complement. Recall that TTD is projection
to D along C.

We pick integral vectors by letting e = [1 0 0]T and z, = Bj~le (1 <j < N). Now
TrDe = aw, where a > 0 and w>0. Since (A"1^)^-^ 7rD, it follows that BNe>0
eventually. Surprisingly, BNe>0 only for 7V>49. Now {z,, z2, z3} is the standard
basis for IR3. This allows the following choice of coefficients in (3.1):

Bzj = zj+U ( 1 < J < J V - 1 ) ,

BzN = BNe = {BNe)lzl + (BNe)2z2+(BNe)3z3.

This yields the matrix AN that is the companion matrix of

* N ( 0 = ' N - [ 1 t t2]BNe.

Since BNe > 0 for TV 2 49, the corresponding AN is both non-negative and aperiodic.
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We shall show that except for A2 and A3, all roots of XN have modulus close to
A. Normalize XN by putting s=t/k and

fN{s) = K-N
XN{ks) = sN-[\ \s \2s2](\-NBNe).

By the Perron-Frobenius theorem, 1 is a root of fN and all other roots lie in {\s\ < 1}.

Also note that if p is fixed with |A3|/A < p < 1, then since 7rDe = aw,

\\A~NBNe-aw\\<pN,

for large enough N.
Consider g(s) = [1 As A2s2]aw. Now B has left eigenvectors [1 A( A2] corre-

sponding to A, (i = 2, 3), and right eigenvector w corresponding to A. Orthogonality
of eigenvectors belonging to distinct eigenvalues shows A2/A and A3/A are the roots
of g(s). Hence min{|g(s): p < s < l } = 0>O.

Let r = (0/2)i/N. We suppose N large enough so r>p. For \s\ = r,

\fN(s)-g(s)\ = \sN-[l Xs \2s2](\-NBNe-aw)\

for TV sufficiently large. By Rouche's theorem, g(s) and/N(s) have the same number
of zeros in {|s|s /•}, namely two. Thus fN(s) has the roots A2/A, A3/A in {|s|< /•},
and its other N-2 roots in {r<|5|<l}.

Consequently ^-^(0 has roots A2 and A3, and its other roots lie in

{(0/2)1/NA<M<A}.

If 5>0, then this shows that for N large enough, sp(AN)<= £(A, 1, S), proving
theorem 1 in this case.

Noting that the roots A, of XN are always simple by Perron-Frobenius, the
inductive construction for theorem 2 follows as in the linear case.

(iii) A quadratic example. The key feature leading to the simplicity of the cubic
example was the existence of an integral vector e so that the dominant eigendirection
was in the positive cone of {e, Be, B2e}. This feature is not true for the quadratic
example below. The proof for this case is more difficult, and shows how roots of
unity times conjugates of A arise.

Let

B -[: a-
with eigenvalues A = (3+V5)/2eP and A2 = (3-V5)/2. Let a = (\+V5)/2 and
)8 = ( l- \ /5)/2, so A = a2, A2 = j82. The eigenvectors for B are w, = [l a]T,
w2 = [-a 1]T, so D = Uwj, C = Uw2.

Denote by vc projection to C along D. Since A2>0, it follows that for every
non-zero z e Z2,0 is not a positive combination of ITC(Z), nc(Bz),..., 7TC(Bkz) for
any k. Thus D is never contained in the positive cone of z, Bz,..., Bkz.

Let M and N be integers (later we will fix M and let iV-»oo). If {e,, e2} is the
standard basis, let

Zj = Bi~1e1 ( l s i<M),

zM+j = BJ-le2 (!«=./<: AT).
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Now

where Fn = (a" - /3")/ V5 is the nth Fibonacci number. For the choice of coefficients
in (3.1) we use

Bzj = zj+1 (1 <7 < M - 1 , M +1 < j < M + N -1) ,

oZM+N — o e2 — r2Nzx-r r2N+xzM+i.

This produces AM,N, which will be aperiodic provided (M, N) = 1. Row eliminations
show that

\tM-F2M^ -F2N "I
)-det(« AMN)-det _ N_

L J 2M * -* 2N + 1J

Normalize by putting s = t/\ and

lsM-KMF -k~NF 1
/M,N(5) = A - M - ^ M > N ( A 5 ) = det , - M ' M " ' N_,-N'N •

Let t/M ={e27rlj/M: 0 < 7 < M - l } . We will find M0(A) below so that ifM>M0(A),
then for S>0 and all sufficiently large N,fMN(s) will have M roots within S
of (A2/A)t/M, and the other JV roots in { 1 - 5 < | S | < 1 } . This will show that
sp (AM?N) c £(A, M, 5) and establish theorem 1 here.

Let

where £ 17 > 0 are absolute constants. Clearly 0 is a root of multiplicity M for gM,/v-
Let n T* 0 be another. Since £+ 77 = 1, it follows |/x| s 1. Then

and since | /A|< 1,
1/(JV-M)

for N - M large enough.
Put p = A2/A < 1 and fix re (p, 1). Then A~"F2n = (l/V5) +O(p"), so multilinearity

of det shows there is an absolute constant K SO that for iV> M, |s|< 1,

For |s| = r we have

gM,N(5)|srM(7j-^riv"M-r'v)>- rM, (4.2)

for N and JV-M sufficiently large. Fix M0(A) so that if M > M0(A) then «pM <
577rM. Fix M>M0(A) and let 0 < 5 < l - r . Then from (4.1) and (4.2) we conclude
by Rouche's theorem that/M N and gMN have an equal number of zeros in {\s\s r},
namely M.

https://doi.org/10.1017/S0143385700003709 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003709
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Let y, be a root of fMN with |/x|> r. Then (4.1) shows

SO

I JV £ JV-M . (P\ . ^

I/* ~&* -77 < K I - I < - ,

and hence as before

for TV - M sufficiently large.
It remains to locate the M roots of/M7V in {\s\s r}. As TV-»oo note that/M,N"

uniformly on {|s|s r}, where

A calculation shows fM,oo(s) = (-a/\f5)[sM - (A 2 /A) M ] . The fact that the roots
of /M,CO are (A2/A)L/M can also be seen by changing bases from {e,,e2} to
\_TTceu irDe2J. Under this change the determinant (4.3) becomes

det

where x(s) is the characteristic polynomial of the restriction to C of k~MBM. A
standard application of Rouche's theorem now shows that for sufficiently large
^,/M,JV(-S) has exactly one root within 8 of each (A2/A)w, w e UM. This completes
the analysis of sp {AM N).

To prove theorem 2 for this example, fix M > M0(A), and choose TVn -» oo induc-
tively as before, with the added constraint (M, TVn) = 1. The induction can continue
provided that sp (AMN) contains no &>A2 with 1 ^ u> e UM. The validity of this is
contained in the following result.

PROPOSITION 2. Let A be an aperiodic matrix over Z+ with \A = A. Suppose that w is
a root of unity, and that /A is a conjugate of A such that (O/JL is an eigenvalue of A.
Then co = 1.

Proof. Let K be the splitting field of \A over Q, so Q<=Q(A)c K. The mapping
T : fj. -» A extends to an element T of the Galois group of K/Q. Now T(«) is a root
of unity, so T((O/X) = T(W)A is an eigenvalue of A with modulus A. By the Perron-
Frobenius theorem, T(W)A = A, proving T(O>) = 1, SO<U = 1. •

5. Proofs
We have now laid the preparations for the proof of theorems 1-3.

Proof of theorem 1. Fix A e P , and let the notation be as in § 3. The proof when
deg A = 1 is given in § 4 (i), so assume deg A > 2. We begin by finding an integral
basis for Zd whose positive cone contains the dominant eigenvector w for B.

LEMMA 1. (Handelman [H]). There are ult..., ud e Zd forming an integral basis for
Zd such that 7rDUj > 0 for 1 s j < d, and w is a strictly positive combination of the Uj.
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Proof. Let U = [ul- • • ud] e GL (d, Z), and w* be a left eigenvector for B belonging
to A such that TTDX = w*x. The conditions TTDUJ > 0 are equivalent to w*U> 0. The
other condition is that there be a c > 0 such that w = Uc, or U~lw> 0. The existence
of UeGL (d,Z) simultaneously satisfying w*U>0 and U~1w>0 is established in
the proof of theorem I in [H]. •

Now fix p and r with

m a x ^

LEMMA 2. | |A~nB"-TTD|| = 0{p")

Proof. Since \~'B has a simple eigenvalue of 1 with eigenvector w, and its other
eigenvalues are A7/A (2sj<d), this follows since |A,/A|<p. D

LEMMA 3. There is an M,(A) such that i / M s M , ( A ) , then each BMUj is a strictly
positive combination of ux,... ,ud.

Proof. Letting U = [ui • • • ud], by lemma 1, U'1w>0. By lemma 2, X'MBM^ irD,
so A~MBMUj-> TTD(UJ)W, where TTD(UJ)>0 by lemma 1. Hence

proving that for each j , BMu} is eventually a strictly positive combination of the ut.

•
Fix M > M , W and TV>M, and construct AMiN using § 3 as follows. Let z,y = B^"1 M,
for l < ( < r f - l , l < y < M , and also i = d, l ^ j < i V . Since M, N>M,(A), there are
-ŷ i > 0 such that

BztM = BMut = X yHiit, (1 < i s d -1),

These relations together with Bzis = ^u f = z u + 1 for the remaining ztj define a matrix
A M N of size {d-\)M + N which will be aperiodic if (M, N) = l.

Let G = [y,j] and put A(0 = diag {tM,..., tM, tN). Using row eliminations, the
determinant defining the characteristic polynomial XM,N(t) of AMtN can be reduced
to the d- dimensional

The columns of G are just coordinates of BMut or BNud with respect to the basis
{ u , , . . . , ud}, so changing to this basis gives

Normalize by setting s = f/A and

JM,NKS) — "•

By lemma 2, A'MBMu, = ajw + O(pM), where a^TToM^O. Hence if

= d e t [*M"i -atw,...,sNud- adw],
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expansion of fM<N(s) by multilinearity shows

where h(s) is a sum of at most d\ monomials with coefficients uniformly bounded
by an absolute constant K.

Expand gMiJV(s) by multilinearity to obtain
„ /•_•>_ _ ( d - l ) M + JV r (d-2)M + N _ . ( < i - l ) M

where | , rj > 0 depend only on the a, and w, hence only on A. We first locate the
zeros of gMN. Clearly 0 is a zero of multiplicity (d - 1)M. Suppose n 5* 0 is another.
Now

so | / i |<l . Since / A J V - ^ ' V " M = T/,

so

if N - M is large enough.
We now estimate gMiN(s) on |s| = R. Clearly

provided £RN~M, RN < 17/4. Furthermore, since |fi(s)|<*:</! on {|s|<l}, we have

\fM.As)-gM,N(s)\ = pM\h(s)\^ KdlpM.

Let M2(A) be large enough so M>M2(A) implies Kd!pM <(r?/4)rM. Then for
M>M2(A) and large enough N — M, by Rouche's theorem /M,N(S) and
have the same number of roots inside {\s\ < R}, namely (d — 1)M.

Suppose fi is one of the remaining roots of fMN(s) with |/x|> R. Then

so since M >M2(A),

'I ~~ ra(d-l)A

It follows that
„ \ 1/(JV-M)

provided only that N - M is large enough.
We conclude the proof by locating the (d-l)M roots of/MN(s) inside {\s\s r j .

There, as iV-»oo,/M)V(.s)->/Moo(s) uniformly, where

/M.CC(S) = det [(5M - A-MBM)M l , . . . , (s
M -\-MBM)ud^, adw].
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Using the basis {ncUi,..., TTCud-x, nDw}, this determinant becomes

where x(s) is the characteristic polynomial of the restriction to C of \~MBM, with
roots (Aj/A)M ( 2 < j < d ) . Therefore/M>co(5) has roots wA;/A ( 2 < j < d , « e L/M). A
standard application of Rouche's theorem then shows that for all large enough N,
each root o f / M N ( s ) lies within 5 of one of the wA /̂A.

Letting M0(A) = max {M^A), M2(A)}, the above shows that given M > M0(A) and
5 > 0, for TV sufficiently large and relatively prime to M we have

sp(A M > N )c£(A, M, S),

concluding the proof. •

Proof of theorem 2. Pick M>M 0 (A) , and choose Nn inductively as follows. Pick
S, > 0 and using theorem 1 find TV, with (M, TV,) = 1 and sp (AM_Nl) c £(A, M, 5,).
By proposition 2 of § 4, there is a <52>O such that

Find JV2 with (M, 7V2) = 1 and sp ( A M N 2 ) C £(A, M, 52). Continuing gives 7Vn with
AM>Nn having the required properties. D

Proof of theorem 3. Let A e P with t r A < 0 and ReAj<0 for 2 < j < d . Let z e Z d

have 7rD(z)>0. We claim that the eigenvector w for A is in the strictly positive
cone of {2, Bz,..., Bd~1z}. Let T=B\C and x = 7r c (z )^0 . Applying nc, our
claim is equivalent to 0 being a positive combination of x, Tx,..., Td~lx. Now
xAt) = I\'f=2{t-\j) = td~i + b]t

d~2+ • • • +fed_, is a product of linear (for A,
real) and quadratic (for AJ; A, complex) factors all of which have strictly posi-
tive coefficients. Hence bj>0,1 s_/< d - l . By the Cayley-Hamilton theorem,
(Td 1 + b ,T d - 2 + • • •+bd_J)x = 0, verifying the claim.

Now fix z G Zd with TTD(Z) > 0, and construct A1N using «! = z, u2 = B z , . . . , ud =
Bd 'z as in the proof of theorem 1 with M = 1. Since BNz is eventually in the
positive cone of {ux,..., ud}, it follows A1JV

 a 0 for large enough N.
Suppose there were C , , . . . , Cn with the property stated. Then for some C,,

infinitely many crAlN factor onto o-c.. Pick 5 so that sp (C,)c {|(|<(l -<5)A}u{A}.
There is an N such that aAi N factors onto aCj and, by the argument used in the
cubic example, sp (A1N)<= E{\, 1, 5). We now invoke a theorem of Kitchens [K]
that if aA factors onto crB, then * B ( 0 divides xA(t) modulo powers of t. Therefore
suppose &AlN factors onto O-Q for some k. Since sp (A,jv)^{M —(1 — 5)A} =
{A2, . . . , Ad}, Kitchens' result shows

n dn
Since sp (C,) ^ { A , , . . . , Ad}, the above shows sp (C,) = {A! , . . . , Ad}. Hence tr A =
tr C, > 0, contradicting the assumption on tr A. •

The above argument shows that no assumption about the conjugates of A is needed
to prove the first part of theorem 3. It appears likely that the whole theorem is true
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without such an assumption. For this to fail, there would have to exist A € P with

tr A < 0 simultaneously satisfying two conditions. The first is the existence of an

aperiodic C > 0 of size < ( d - l ) M 0 ( A ) + l = k such that for every eigenvalue of C

there is a A, of equal modulus. Note there are only finitely many possible *c( ' ) 's

to check, since the coefficients are integers bounded by k !A * and deg Xc — k. The

second condition is that the (d - \)M eigenvalues in {\s\ < (1 - 5)A} of all but finitely

many of the AMN constructed in the proof each have modulus the same as some

A,. Numerical work suggests that neither of these possibilities occurs.
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