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We present the main properties of the spectral-element method, which is well

suited for numerical calculations of synthetic seismograms for three-dimensional

Earth models. The technique is based upon a weak formulation of the equations

of motion and combines the flexibility of a finite-element method with the accuracy

of a pseudospectral method. The mesh is composed of hexahedral elements and

honors the main discontinuities in the Earth model. The displacement vector is

expressed in each element in terms of high-degree Lagrange interpolants, and

integrals are computed based upon Gauss-Lobatto-Legendre quadrature, which

leads to an exactly diagonal mass matrix and therefore drastically simplifies the

algorithm. We use a fluid-solid coupling formulation that does not require iterations

at the core-mantle or inner-core boundaries. The method is efficiently implemented

on parallel computers with distributed memory based upon a message-passing

methodology. We present two large-scale simulations for a realistic three-dimen-

sional Earth model computed on the Japanese Earth Simulator at periods of 5 s

and longer.

1. INTRODUCTION

The accurate calculation of seismograms in realistic three-

dimensional (3-D) Earth models represents an ongoing chal-

lenge in local, regional, and global seismology. In the past

three decades, a wide variety of numerical techniques has

been used to address this issue. The most widely used ap-
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proach for full-waveform modeling is probably the finite

difference method [e.g., Madariaga, 1976; Virieux, 1986], in

which one approximates derivatives by differences between

adjacent grid points. This approach has been used to calculate

the wave field in 3-D local and regional models [e.g., Graves,

1996; Ohminato and Chouet, 1997]. Unfortunately, this clas-

sical method suffers from limitations when addressing the

complexity of typical 3-D models, such as the presence of

surface topography or major discontinuities within the model

[e.g., Robertsson, 1996; Ohminato and Chouet, 1997]. Re-

cently developed optimal or compact finite-difference opera-

tors have improved this situation [e.g., Zingg et al., 1996;

Zingg, 2000]. Methods that resort to more accurate spatial

derivative operators, such as spectral and pseudospectral

techniques based on global gridding of the model, have also

been used to address regional [e.g., Carcione, 1994] and
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global [e.g., Tessmer et al., 1992] seismic wave propagation

problems. However, because of the use of global basis func-

tions (polynomial: Chebyshev or Legendre, or harmonic:

Fourier), these techniques are limited to smooth media, and

numerical noise (i.e., ringing) appears in the presence of

sharp discontinuities in the model, such as major interfaces

or faults.

Boundary element [e.g., Kawase, 1988] or boundary inte-

gral methods [e.g., Sánchez-Sesma and Campillo, 1991] pro-

vide a powerful direct way of incorporating topographic

variations and interfaces, but are restricted to a finite number

of homogeneous regions. In addition, in 3-D the cost of such

techniques increases rapidly with numerical resolution, and

a truncation threshold often has to be applied, which leads

to numerical artefacts in the solution [e.g., Bouchon et al.,

1996].

Classical finite-element methods have been successfully

applied to the study of wave propagation in 3-D sedimentary

basins [e.g., Bao et al., 1998]. These techniques handle

previously mentioned difficulties related to the presence of

topography or major interfaces by allowing grid boundaries

to coincide with major interfaces. However, the spatial dis-

cretization itself is often inadequate because of the low poly-

nomial degree used to expand functions within each element,

and, in addition, large linear systems have to be solved by

approximate, iterative routines, which increases the cost of

the calculations and complicates the implementation of the

algorithm, in particular on a parallel computer. A low poly-

nomial degree is traditionally used in such techniques be-

cause the complexity of the linear system increases with the

degree.

The purpose of this article is to give an introduction to

the main properties of the spectral-element method (SEM)

for seismic wave propagation. The SEM has been used for

two decades in computational fluid dynamics [Patera, 1984].

It has more recently been applied to problems related to

two-dimensional (2-D) [Cohen et al., 1993; Priolo et al.,

1994] and 3-D local or regional [Komatitsch, 1997; Faccioli

et al., 1997; Komatitsch and Vilotte, 1998; Seriani, 1998;

Komatitsch and Tromp, 1999; Komatitsch et al., 2004; Liu

et al., 2004] and global [Chaljub, 2000; Komatitsch and

Tromp, 2002a, b; Komatitsch et al., 2002; Chaljub et al.,

2003; Komatitsch et al., 2003; Chaljub and Valette, 2004]

seismic wave propagation. We introduce the full complexity

of the 3-D Earth, i.e., lateral variations in compressional-

wave speed, shear-wave speed, and density in the mantle, a

3-D crustal model, anisotropy, ellipticity, surface topography

and bathymetry, as well as the effects of the oceans, rotation,

and self-gravitation. All of these effects have been bench-

marked in previous publications [Komatitsch and Vilotte,

1998; Komatitsch and Tromp, 1999; Komatitsch et al.,

2000a, b; Komatitsch and Tromp, 2002a, b]. In this article,

we use a simpler fluid-solid coupling method that does not

require numerical iterations, based on the recent work of

Chaljub and Valette [2004]. We illustrate how the method

can be applied to high-resolution simulations of seismic

wave propagation in the 3-D Earth on a very large parallel

computer: the Earth Simulator at JAMSTEC in Japan.

2. DESIGN OF THE MESH

The first, crucial step in the SEM consists of designing a

high-quality mesh for the 3-D model, subject to constraints

imposed by the required number of grid points per shortest

wavelength, the numerical stability condition, and accept-

able geometrical distortions of the elements. The mesh is

designed once and for all: seismic wave propagation is gener-

ally a small deformation problem and therefore one does not

need to consider dynamically deforming meshes or dynamic

remeshing. This step is very similar to mesh design for

general finite-element methods (FEMs), therefore the reader

is referred to Zienkiewicz [1977] and Hughes [1987] for a

thorough introduction to such techniques.

The model volume � is subdivided into a number of

nonoverlapping elements �e, e = 1, . . . , ne, such that � =

∪ ne
e=1 �e (Figure 1). In the context of FEMs, various types

of elements �e can be used, such as tetrahedra, hexahedra,

pyramids, and prisms. In the classical SEM, however, one

can only use hexahedra, for reasons that will be explained

in Section 3. It is worth mentioning that SEMs can be devel-

oped on triangles [e.g., Sherwin and Karniadakis, 1995;

Taylor and Wingate, 2000; Komatitsch et al., 2001], but this

leads to theoretical complications that are beyond the scope

of this article. The basic idea is that on hexahedral elements

one can use a tensor product of 1-D basis functions, which

in turn gives an exactly diagonal mass matrix, while with

tetrahedra the tensorization is lost. As in any FEM, the mesh

needs to be geometrically conforming, i.e., the six sides of

each hexahedral element must match up exactly with the

sides of neighboring elements. Let us also mention that

the SEM can be adapted to geometrically non-conforming

meshes based on the so-called ‘mortar’ matching method

[e.g., Chaljub, 2000; Chaljub et al., 2003], and that such

non-conforming meshes can be coupled with other numerical

or quasi-analytical techniques, such as normal-mode summa-

tion [Capdeville et al., 2003], but this is beyond the scope

of this article.

The shape of the physical grid is formulated by a mapping

(deformation) of a reference cube. Cartesian points x = (x,

y, z) within a given deformed, hexahedral element �e are

mapped to the reference cube based upon the transform
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Figure 1. Finite Earth model with volume � and free surface ∂�

(top). � is the artificial absorbing boundary, and n̂ the unit outward

normal on the surface. xs indicates the location of the source. The

model is subdivided into curved spectral elements using quadran-

gles in 2-D and hexahedra in 3-D (bottom). The shape of the

elements is adapted to all the major discontinuities in the geological

model, i.e., surface topography, main layers, and faults. Inside each

element, the model can be heterogeneous.

x(�) = �
na

a=1

Na(�)xa . (1)

Points within the reference cube are denoted by the vector

� = (�,�,� ), where −1 ≤ � ≤ 1, −1 ≤ � ≤ 1 and −1 ≤ � ≤ 1.

In our implementation, the geometry of the spectral elements

is controlled by na = 27 points, or anchors, xa, as shown in

Figure 2. The na shape functions Na are triple products of

1-D degree-2 Lagrange polynomials in the three orthogonal

directions of space in the reference cube. The three Lagrange

polynomials of degree 2 with three control points �0 = −1,

�1 = 0, and �2 = 1 are �
2
0(� ) = 1

2
� (� − 1), �

2
1(� ) = 1 − � 2,

and �
2
2(� ) = 1

2
� (� + 1).

The Jacobian J of the mapping J = |∂(x, y, z) /∂ (�, �, � )|

is used to define the relationship between a small volume

dx dy dz within a given finite element and a volume d� d�
d� in the reference cube:

dx dy dz = J d� d� d� . (2)

The partial derivative matrix ∂x /∂� needed for the calcula-

tion of the Jacobian is obtained by analytically differentiating

Figure 2. The geometry of each of the curved hexahedra is defined

by 27 control nodes, or anchors. Lagrange interpolants of degree 2

at these control points allow one to compute the Jacobian matrix

of the transformation between the reference cube and the deformed

spectral element.

the mapping (1). The partial derivatives of the shape func-

tions Na are expressed in terms of Lagrange polynomials of

degree 2 and their derivatives at the 27 control points.

As in any FEM [e.g., Hughes, 1987], the Jacobian matrix

plays a critical role in designing a good mesh for a realistic

3-D structure. First, the determinant of the Jacobian matrix

J should never vanish to ensure that the local mapping (1)

is unique and invertible. Second, local variations of the

Jacobian should be smooth everywhere within the mesh.

Sharp local variations indicate highly-distorted elements that

lead to inaccurate or even unstable calculations.

For the implementation of absorbing boundary conditions

as well as in the context of fluid-solid coupling, surface

integrals need to be evaluated. Because the mesh of hexahe-

dra �e honors the major discontinuities in the model, the

surfaces are naturally divided in terms of non-overlapping

quadrilateral surface elements �b that are isomorphous to

the square. For any given boundary element, the relation

between a point x within the element and a point (�, �) in

the reference square may be written in terms of 2-D shape

functions Na(�, �) and anchors xa in the form

x(�, �) = �
na

a=1

Na(�, �)xa . (3)

In this case the shape functions are products of 1-D degree-

2 Lagrange polynomials. Given this mapping, the normal n̂

to a boundary element �b is given by

n̂ =
1

Jb

∂x

∂�
×

∂x

∂�
, (4)
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where Jb denotes the Jacobian of the transformation:

Jb = ��∂x

∂�
×

∂x

∂��� . (5)

The relationship between a small surface element dx dy and

a surface d� d� in the reference square is then

dx dy = Jb d� d� . (6)

To avoid a staircase discretization of major interfaces and

the related spurious diffraction that appears in methods based

on a regular grid of points, a good mesh should honor all

the major discontinuities in the model (Figure 1). In addition,

wave speed usually increases with depth (e.g., sediments

above bedrock at the local or regional scale, or crust above

mantle on a global scale), and ideally one wants to increase

the size of the elements with depth in order to maintain a

similar number of points per wavelength everywhere in the

model (i.e., to provide the same numerical resolution every-

where).

To illustrate how to construct a mesh in practice for the

globe, we explain how to build a grid designed to match

the 1-D Preliminary Reference Earth Model (PREM) [Dzie-

wonski and Anderson, 1981]. Following the ideas of Taylor

et al. [1997] and Chaljub [2000], we first decompose the

sphere into six blocks using the concept of the ‘quasi-uni-

form gnomonic projection’, or ‘cubed sphere’ [Sadourny,

1972; Ronchi et al., 1996], as illustrated in Figure 3. We

then mesh each of the six blocks, making sure that they

match perfectly at their common interfaces. Following Chal-

jub [2000], the singularity of coordinates at the Earth’s center

Figure 3. The ‘cubed sphere’ decomposition of the spherical Earth

into six blocks. One of the six blocks has been removed for clarity.

is avoided by placing a small cube around the center of the

inner core. The mesh within this cube matches up with the

cubed sphere mesh at the inner-core boundary (ICB). As

mentioned above, our final mesh needs to honor all first-

order discontinuities in PREM, which are the middle crust

at a depth of 15 km, the Moho at a depth of 24.4 km, the

upper mantle discontinuities at depths of 220 km, 400 km,

and 670 km, the core-mantle boundary (CMB), and the

ICB; it also honors second-order discontinuities at 600 km,

771 km, and at the top of D’’. The density of the mesh is

increased in the upper part of the model (crust and upper

mantle) based upon a set of geometrical doubling mesh cells

(Figure 4). A first doubling region is introduced below the

Moho, a second below the 670 km discontinuity, and a third

just above the ICB. Note that for other classical models,

such as IASP91 [Kennett and Engdahl, 1991], the mesh

would be slightly modified because it would need to honor

a set of major discontinuities located at slightly different

depths.

For our 3-D global mesh we use mantle model S20RTS

of Ritsema et al. [1999], whose lateral variations are super-

imposed on PREM. Variations in density are obtained by

scaling the shear-wave speed variations by a factor of 0.4,

in accordance with mineral physics estimates [Anderson,

1987; Karato, 1993]. For the crust we use model Crust 2.0

[Bassin et al., 2000], which is a global 2° × 2° model. We

implement a smooth, interpolated version of this crustal

model to define the compressional- and shear-wave speeds

at existing grid points in our mesh. We do not adapt our

mesh to the shape of the Moho or intracrustal discontinuities

given by this crustal model because we would need to signifi-

Figure 4. Close-up of the two geometrical mesh doubling regions

in the mantle.
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cantly increase the number of grid elements in the crust and

right below the Moho, which in turn would significantly

increase the cost of the numerical simulations. Presently,

the shape of these intracrustal interfaces and the Moho is

insufficiently known to warrant this.

Once the mantle and crustal models have been added, we

make the Earth elliptical in shape. Our mesh incorporates a

smoothed version of global topography and bathymetry. The

bathymetry map is also used to define the thickness of the

oceans at the surface of the mesh in order to take into account

the effects of the oceans on global wave propagation, as

will be explained in Section 3.5.

The quality of the mesh can be expressed in terms of the

number of grid points per wavelength, i.e., the resolution of

the mesh in terms of how well it samples the wave field,

N = �0 (v/�h)min. Here �0 denotes the shortest period of the

source and (v/�h)min denotes the minimum ratio of shear-

wave or surface-wave speed v and grid spacing �h within

a given spectral element in the mesh. Because surface waves

are slower than shear waves, in elements located at the

free surface it is the surface-wave speed that controls the

resolution of the mesh, not the shear-wave speed; inside the

model it is the shear-wave speed that matters.

3. SOLVING THE WAVE EQUATION ON A

SPECTRAL-ELEMENT GRID

3.1. The Weak Form of the Seismic Wave Equation

The differential form of the seismic wave equation is classi-

cally written in the form

�∂2
t s = � · T + f , (7)

where � denotes the 3-D distribution of density and T the

stress tensor, which is linearly related to the displacement

gradient �s by Hooke’s law:

T = c : �s . (8)

We make no particular assumption on the structure of the

stiffness tensor c that describes the properties of the medium,

i.e., the formulation is general and can handle a fully aniso-

tropic tensor with 21 independent coefficients. In an attenuat-

ing medium, the stress is determined by the entire strain

history, and Hooke’s law (8) becomes:

T(t) = �t

-	
∂t c(t − t′ ) : �s(t′ )dt′ . (9)

In seismology, the quality factor Q is generally observed to

be approximately constant over a wide range of frequencies.

To approximate such an absorption-band solid, Liu et al.

[1976] introduced the idea of using a series of L standard

linear solids [e.g., Emmerich and Korn, 1987; Carcione et

al., 1988; Moczo et al., 1997]. An almost constant Q can

usually be approximated with a reasonable level of accuracy

using three such linear solids. In the Earth, the bulk quality

factor is several hundred times larger than the shear quality

factor, which means that attenuation mainly depends on

the shear quality factor. Therefore as far as attenuation is

concerned one can safely assume that it is sufficient to model

the time evolution of the average isotropic shear modulus.

As a consequence, following Liu et al. [1976], we write:


 (t) = 
R �1 − �
L

�=1

(1 − ��
� /� �

� )e-t/� �
�� H(t) . (10)

Here 
R denotes the relaxed modulus, H(t) is the Heaviside

function, and � �
� and � �

� denote the stress and strain relax-

ation times, respectively, of the �-th standard linear solid.

Using the absorption-band shear modulus (10), the constitu-

tive relation (9) becomes

T = cU : �s − �
L

�=1

R� , (11)

where cU is the unrelaxed elastic tensor determined by the

unrelaxed shear modulus


U = 
R �1 − �
L

�=1

(1 − � �
� /��

�� . (12)

For each standard linear solid we therefore have to solve the

so-called ‘memory variable’ equation

∂ tR� = − (R� − 
�D) /��
� , (13)

where D is the strain deviator:

D = 1

2
[�s + (�s)T] − 1

3
(� · s)I . (14)

Here a superscript T denotes the transpose and I is the

identity tensor. The memory-variable tensors R� are sym-

metric and have zero trace, such that each standard linear

solid introduces five additional unknowns. The modulus

defect 
� associated with each individual standard linear

solid is determined by


� = −
R(1 − ��
� /� �

� ) . (15)
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If the earthquake can be represented by a point source, the

force f in (7) may be written in terms of the moment tensor

M as [Dahlen and Tromp, 1998]:

f = − M · ∇(x − xs) S(t) . (16)

The location of the point source is denoted by xs,  (x − xs)

is the Dirac delta distribution located at xs, and S(t) is the

source-time function. In the case of a source of finite size,

such as a fault plane ∑s, the source term can be written in

terms of the moment-density tensor m as

f = − m(xs, t) · ∇(x − xs) on ∑s . (17)

In what follows we will use the finite source (17) for reasons

of generality.

As illustrated in Figure 1, two types of boundary condi-

tions must be considered: on the free surface ∂� the traction

n̂ · T, where n̂ denotes the unit outward normal on the

free surface, vanishes, and in the case of local or regional

simulations, seismic energy needs to be absorbed on the

fictitious boundaries � of the domain, in order to mimic a

semi-infinite medium. To accomplish the latter, one usually

uses a paraxial equation to damp the wave field on the edges

[Clayton and Engquist, 1977; Quarteroni et al., 1998], for

instance

T · n̂ = � [vn(n̂ · ∂ts)n̂ (18)

+ v1(t̂1 · ∂ts) t̂1 + v2(t̂2 · ∂ts) t̂2] ,

where t̂1 and t̂2 are orthogonal unit vectors tangential to the

absorbing boundary � with unit outward normal n̂, vn is the

quasi-P wave speed of waves traveling in the n̂ direction,

v1 is the quasi-S wave speed of waves polarized in the t̂1

direction, and v2 is the quasi-S wave speed of waves polar-

ized in the t̂2 direction. The absorbing boundary condition

(18) perfectly absorbs waves impinging at a right angle to

the boundary, but is less effective for waves that graze

the boundary [Clayton and Engquist, 1977]. It is valid for

transversely isotropic media with a horizontal or vertical

symmetry axis; general anisotropy can be accommodated

by tapering it such that the medium becomes transversely

isotropic on the absorbing boundary �. It is worth mentioning

that in recent years a significantly more efficient absorbing

condition called the Perfectly Matched Layer (PML) has

been introduced [Bérenger, 1994; Collino and Tsogka,

2001], and it has been shown recently that it can be adapted

to SEMs [Komatitsch and Tromp, 2003; Basu and Chopra,

2004; Festa and Vilotte, 2005]. In the near future, this condi-

tion could replace classical paraxial equations such as that

of Clayton and Engquist [1977] in existing FEM or SEM

codes.

The differential form of the equation of motion (7), which

is frequently called the ‘strong’ formulation of the problem,

is used in many classical numerical techniques, such as

finite-difference and pseudospectral methods. In FEMs or

SEMs, however, one works with a modified version of the

equation called the integral or ‘weak’ formulation of the

problem. It is obtained by first taking the dot product of the

momentum equation (7) with an arbitrary vector w, which

is called a test vector in the context of finite-element analysis.

Next, one performs an integration by parts over the volume �

of the model, imposing the boundary conditions mentioned

above, which gives:

�
�

�w · ∂2
t s d3x = − �

�
∇w : T d3x

+ �
∑s

m(xs, t) : ∇w(xs) d2xs + �
�

n̂ · T · w d2x . (19)

Equation (19) is equivalent to the strong formulation (7)

because it holds for any test vector w. Note that the source

term (17) has been integrated explicitly using the properties

of the Dirac delta distribution. Equation (19) illustrates why

the SEM is very accurate for modeling surface waves: the

traction-free surface condition is imposed naturally and auto-

matically during the integration by parts, because the contour

integral over the free surface ∂� in (19) simply vanishes.

In other words, the free-surface condition is a natural condi-

tion of the problem. In the context of local and regional

simulations, the last integral on the right-hand side of (19)

involves the absorbing boundary �, which may be imple-

mented based upon the one-way treatment (18). One of the

nice aspects of simulating global wave propagation from

a numerical point of view is that there are no absorbing

boundaries, which simplifies the problem.

At long periods one needs to incorporate the effects of

self gravitation and rotation on seismic wave propagation,

which are mostly relevant for long-period surface waves.

Such effects have been included in the SEM and lead to

additional terms in the weak formulation (19). These terms

were introduced in Chaljub [2000], Komatitsch and Tromp

[2002b], Chaljub et al. [2003] and Chaljub and Valette

[2004], and the corresponding effects on seismic waves were

carefully benchmarked. We summarize these results in the

following sections for completeness.

3.2. The Wave Equation in the Mantle and the Crust

In a rotating, self-gravitating Earth model, the elastic wave

equation for the mantle and crust may be written in the form

[Dahlen and Tromp, 1998]
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� (∂2
t s + 2� × ∂ts) = ∇ · T + ∇(�s · g) − �∇�

− ∇ · (�s)g + f . (20)

Here � denotes the Earth’s angular rotation vector, g the

gradient of the geopotential, and T the stress tensor, which

is linearly related to the displacement gradient ∇s by

Hooke’s law (8) in an elastic model, or by the generalization

(9) in an anelastic model. The earthquake source is repre-

sented by the force f, which is given in terms of the moment-

density tensor m by (17). The perturbed gravitational poten-

tial � is determined by Poisson’s equation within the Earth,

∇2� = − 4�G∇ · (�s), and by Laplace’s equation in the rest

of space, ∇2� = 0.

Because Laplace’s equation is defined in all of space,

solving the momentum equation (20) in conjunction with

Poisson’s and Laplace’s equations is difficult numerically.

The approach can be simplified considerably by making what

is known as Cowling’s approximation [Cowling, 1941], as

discussed by Valette [1987], Dahlen and Tromp [1998] and

Chaljub et al. [2003]. In this approximation one ignores per-

turbations � in the gravitational potential while retaining the

unperturbed gravitational potential. Physically, this means

that we ignore the effects of mass redistribution. Under this

assumption the momentum equation (20) becomes

�(∂ 2
t s + 2� × ∂ts) = ∇· T + ∇(�s·g) − ∇· (�s)g + f . (21)

The associated boundary conditions are that on the free

surface the traction n̂ · T, where n̂ denotes the unit outward

normal to the free surface, needs to vanish. On the CMB

the normal component of displacement n̂ · s needs to be

continuous, and the traction n̂ · T at the bottom of the

mantle needs to match the traction − p n̂ at the top of

the outer core, where p denotes the perturbed pressure in

the fluid.

The weak form of the equation of motion (21) is obtained

by taking the dot product with an arbitrary test vector w,

integrating by parts over the volume M of the mantle and

crust, and imposing the stress-free surface boundary condi-

tion. This gives

�
M

� w · ∂ 2
t s d3x + �

M
2�w · (� × ∂ ts) d3x =

− �
M

∇w : (T + G) d3x + �
∑s

m(xs, t): ∇w(xs) d2xs

− �
M

�s · H · wd3x + �
CMB

pn̂ · w d2x , (22)

where we have used the continuity of traction at the CMB,

and where we have defined the second-order tensors

G = � [sg − (s · g)I ] (23)

and

H = ∇g . (24)

Because G is non-symmetric, let us note that our definition

of the double dot product between two second-order tensors

A and B is A : B = Aij Bij. The gravitational acceleration g

is the gradient of a potential, and thus H is a symmetric

second-order tensor.

3.3. The Wave Equation in the Outer Core

In the fluid outer core the equation of motion may be written

in the form

� (∂2
t s + 2� × ∂ts) = ∇(�∇ · s + �s · g) − �∇�

− ∇ · (�s)g , (25)

where � denotes the bulk modulus of the fluid. Under the

assumption of hydrostatic equilibrium prior to the earth-

quake, the equation of motion in the fluid may be rewritten

in the form

∂2
t s + 2� × ∂ ts = ∇(�-1 �∇ · s + s · g − �)

+ �-1
g

-2�(∇ · s) N2g , (26)

where g = |g| and

N2 = (�-1∇� − ��-1g) · g (27)

is the Brunt-Väisälä frequency [e.g., Valette, 1986; Dahlen

and Tromp, 1998; Chaljub et al., 2003; Chaljub and Valette,

2004].

In previous work [Komatitsch and Tromp, 2002b] we

made the assumption that the outer core was stably stratified

and isentropic, which meant that N2 = 0, and that perturba-

tions in gravity could be ignored, i.e., � = 0, based upon the

Cowling approximation. Chaljub and Valette [2004] recently

introduced a formulation of self-gravitation in a fluid me-

dium that is valid for N2 ≠ 0 and that does not require the

Cowling approximation. Following their work, and ex-

tending it by incorporating the effects of rotation, we will

obtain a weak implementation that does not involve these

approximations. This improved formulation is important in

practice because compared to the implementation in Komat-

itsch and Tromp [2002b] it does not require numerical itera-

tions on the fluid-solid coupling condition at the CMB or

at the ICB [Chaljub and Valette, 2004], thus making the
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SEM algorithm much simpler and more efficient, as will be

illustrated in Section 4.

We express the displacement field s in terms of a scalar

potential � and a vector u as

s = ∇� + u , (28)

where � and u remain to be determined. Note that in Komat-

itsch and Tromp [2002b] we expressed velocity ∂ ts in terms

of another potential � and a vector u instead. Upon substitu-

tion of the representation (28) in (26) we obtain

∇∂2
t � + ∂ 2

t u + 2� × ∇∂t� + 2� × ∂t u =

∇(�-1�∇2� + �-1�∇ · u + g · ∇� + g · u − �)

+ �-1
g

-2�(∇2� + ∇ · u)N2g . (29)

Let � be determined by

∂2
t � = �-1�∇ · (∇� + u) + g · (∇� + u) − � , (30)

then u satisfies

∂2
t u + 2� × ∂tu = − 2� × ∇∂t�

+ g
-2[∂ 2

t � − g · (∇� + u) + �]N2g . (31)

At the ICB and CMB we need to exchange pressure p be-

tween the fluid and the solid. Using (28) and (30) we have

p = −�∇ · s = −�[∂ 2
t � (32)

− g · (∇� + u) + �] .

The weak form of (30) is obtained by multiplying it by an

arbitrary test function w and integrating by parts, using the

continuity of the normal component of displacement:

�
OC

�-1�w∂ 2
t �d3x = −�

OC
(∇w) · (∇� + u)d3x

+ �
OC

�-1�w[g · (∇� + u) − �]d 3x

+ �
CMB

wn̂ · sd2x − �
ICB

w n̂ · sd2x . (33)

The weak form of (31) is obtained by dotting it with a test

vector w:

�
OC

w · ∂ 2
t u d3x =

−2 �
OC

w · [� × (∂tu + ∇∂t�)]d3x

− �
OC

�-1
g

-2pN2w · gd3x , (34)

where we have used (32). Making the Cowling approxima-

tion involves simply setting � equal to zero in (30)–(34). If

we make the Cowling approximation and set the Brunt-

Väisälä frequency N equal to zero, as in Komatitsch and

Tromp [2002b], we obtain the following equation for �:

∂2
t � = �-1�∇ · (∇� + u) + g · (∇� + u) , (35)

and for u:

∂tu + 2� × u = − 2� × ∇� . (36)

The pressure p in (32) becomes

p = − �[∂2
t � − g · (∇� + u)] . (37)

In the absence of rotation (31) reduces to the scalar equation

∂2
t u + N2u = g

-1[∂ 2
t � − g · ∇� + �] N2 , (38)

where u is determined by u = ug/g. Assuming further that

the Brunt-Väisälä frequency N equals zero implies u = 0 and

∂ 2
t � = �-1�∇2� + g · ∇� − � . (39)

Under these assumptions the pressure reduces to

p = −�(∂2
t � − g · ∇� + �) . (40)

Finally, if we also ignore the effects of self-gravitation we

obtain

∂2
t � = �-1�∇2� , (41)

and the pressure becomes

p = − �∂ 2
t � . (42)

This final approximation amounts to solving the acoustic

wave equation in the outer core.

In the domain decomposition between the fluid outer core

and the solid inner core and mantle, we match the normal

component of displacement by taking n̂ · s at the bottom of

the mantle and using it in the surface integral over the CMB

in (33), and by taking n̂ · s from the top of the inner core

and using it in the surface integral over the ICB in (33).

The continuity of traction is honored by calculating the fluid

pressure p from (37) based upon ∂ 2
t � in the fluid and the

normal component of displacement n̂ · s = n̂ · (∇� + u)

taken from the solid at the bottom of the mantle (CMB) or

at the top of the inner core (ICB).
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3.4. The Wave Equation in the Inner Core

The weak form of the equation of motion in the solid inner

core is similar to (22):

�
IC

�w · ∂ 2
t s d 3x + �

IC
2� w · (� × ∂ ts) d3x =

−�
IC

∇w : (T + G) d3x

−�
IC

�s · H · w d3x − �
ICB

pn̂ · w d2x . (43)

Note that the inner core-outer core interactions represented

by the surface integrals over the ICB in (33) and (43) also

honor continuity in traction and continuity of the normal

component of displacement and velocity.

3.5. Additional Terms to Model the Effect of the Oceans

We also seek to include the effect of the oceans, which is

mostly relevant for free-surface reflected phases, such as

PP, SS, and SP, and for the dispersion of Rayleigh waves.

Those areas of the Earth that are covered by oceans are

therefore subject to a slightly more complicated weak formu-

lation of the problem. The weak form of the equations of

motion in the solid Earth (mantle and crust) covered by

water is

�
M

� w · ∂ 2
t s d3x + �

M
2� w · (� × ∂ts) d3x =

−�
M

∇w : (T + G) d3x

+ �
∑s

m(xs, t) : ∇w(xs) d2xs

− �
M

� s · H · w d3x + �
CMB

p n̂ · w d2x

−�
OCB

p n̂ · w d2x , (44)

where OCB denotes the ocean-crust boundary (i.e., the ocean

floor). We then need an expression for the fluid pressure p

at the OCB. In the oceans the waves satisfy the fluid wave

equation (26), which, making the Cowling approximation

and setting N2 = 0, can be rewritten as:

∂2
t s + 2� × ∂ts = −∇(p − s · g) . (45)

In Komatitsch and Tromp [2002b], we made the assumption

that the oceans were incompressible, which meant that the

entire water column moved as a whole as a result of the

normal displacement n̂ · s of the sea floor. We obtained the

local expression for pressure at the ocean bottom

p = �w h n̂ ·∂ 2
t s+2�w h n̂ · (� × ∂ts)+4�G �2

w h n̂ ·s , (46)

where �w denotes the density of sea water, and where the

local thickness of the oceans, h, can be taken from a global

bathymetry map. As a result, the weak form of the equation

of motion in the crust and mantle (44) becomes

�
M

�w · ∂ 2
t s d3x + �

M
2� w · (� × ∂ts) d3x

+ �
OCB

�wh (w · n̂)(n̂ · ∂ 2
t s) d2x =

− �
M

∇w : (T + G) d3x

+ �
∑s

m(xs, t) : ∇w(xs) d2xs

− �
M

� s · H · w d3x + �
CMB

p n̂ · wd2x . (47)

This means that the effect of the oceans can be taken into

account very efficiently by a simple modification of the

mass matrix for the degrees of freedom located at the ocean

floor. Unfortunately, this approximation becomes invalid at

periods shorter than typically 20 s. Below this threshold,

the thickness of the ocean layer cannot be neglected, and

the fluid wave equation needs to be solved numerically in

the oceans and coupled at the ocean bottom with the solid

wave equation in the crust and the mantle. This is not an

easy task, because the compressional-wave speed in the

oceans is much smaller than that in the crust, and because

the thickness of the oceans varies considerably, complicating

mesh design.

3.6. Definition of the Wave Field on an Element

After meshing the model and expressing the seismic wave

equation in its weak form, we need to define basis functions

to represent the unknown displacement vector and the test

vector on each element. In most FEMs, both the geometry

of the problem and the vector fields are expressed using

low-degree polynomials. In the SEM, the geometry of the

curved elements is also usually defined using low-degree

polynomials, as explained above, but all unknown functions

are defined using higher-degree polynomials. This is a major

difference between SEMs and FEMs. In this regard, SEMs

are related to so-called h-p FEMs, which also use polynomi-

als of higher degree (but result in a non-diagonal mass ma-
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trix) [e.g., Guo and Babus̆ka, 1986]. Typically, a SEM uses

Lagrange polynomials of degree 4 to 10 for the interpolation

of functions. The n + 1 Lagrange polynomials of degree n

(Figure 5) are defined in terms of n + 1 control points -1 ≤

�� ≤ 1, � = 0, . . . , n, by

�
n
�(�) = (48)

(� − �0) . . . (� − ��−1)(� − ��+1) . . . (� − �n)

(�� − �0) . . . (�� − ��−1)(�� − ��+1) . . . (�� − �n)
.

As a result of this definition, the Lagrange polynomials are

equal to either zero or one at any given control point:

�
n
�(��) = �� , (49)

where  denotes the Kronecker delta. In a SEM, the control

points ��, � = 0, . . . , n, needed in the definition (48) are

chosen to be the n + 1 Gauss-Lobatto-Legendre (GLL) points

(Figure 5), which are the roots of (1 − � 2) P ′
n (� ) = 0, where

P ′
n denotes the derivative of the Legendre polynomial of

degree n [Canuto et al., 1988]. As will be explained later,

this choice is motivated by the fact that the combination

of Lagrange interpolants with GLL quadrature leads to an

exactly diagonal mass matrix. As a result of this choice,

each spectral element contains a grid of (n + 1)3 GLL points,

and each edge of an element contains a grid of (n + 1)2 GLL

points, as illustrated in Figure 6.

Functions f on an element are interpolated in terms of

triple products of Lagrange polynomials as

Figure 5. Lagrange interpolants of degree N = 4 on the reference

segment [−1, 1]. The N + 1 = 5 Gauss-Lobatto-Legendre points

can be distinguished along the horizontal axis. All Lagrange poly-

nomials are, by definition, equal to 1 or 0 at each of these points.

Note that the first and last points are exactly −1 and 1.

f (x(�, �, � )) (50)

≈ �
��,�

�
,��

�,�,�=0

f ���
��(� )��(�)��(� ) ,

where f ��� = f(x(��, ��, �� )) denotes the value of the func-

tion f at the GLL point x(��, ��, ��). To simplify the notation,

we omit the degree n as a superscript on the Lagrange

polynomials. Using the polynomial representation (50), the

gradient of a function, ∇f = ∑3
i=1 x̂i ∂i f, evaluated at the GLL

point x(��′, ��′, ��′), can be expressed as

∇f(x(��′, �
�′

, ��′))

≈ �
3

i=1

x̂i �(∂i� )�′�′�′ �
��

�=0

f ��′�′
�′

�(��′) (51)

+ (∂i�)�′�′�′ �
��

�=0

f �′��′
�′

� (��′)

+ (∂i� )�′�′�′ �
��

�=0

f �′�′�
�′

� (��′)� .

Figure 6. When a polynomial degree n is used to discretize the

wave field, each 3D spectral element contains a grid of (n + 1)3

Gauss-Lobatto-Legendre points, and each 2D face of an element

contains a grid of (n + 1)2 Gauss-Lobatto-Legendre points, as

illustrated here in the case of n = 4. These points are non-evenly

spaced. Low-order finite-element methods usually use n = 1 or

n = 2, while in the spectral-element method for seismic wave

propagation n is usually chosen between 4 and 10.
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Here x̂i, i = 1, 2, 3, denote unit vectors in the direction of

increasing x, y, and z, respectively, and ∂i, i = 1, 2, 3, denote

partial derivatives in those directions. We use a prime to

denote derivatives of the Lagrange polynomials, as in � ′
�.

The matrix ∂� /∂x is obtained by inverting the matrix ∂x /

∂�. We know that this inverse exists, because this is a

requirement that we imposed during mesh design (the Jacob-

ian never vanishes).

3.7. Numerical Integration

To solve the weak form of the equation of motion (19),

integrals need to be evaluated numerically over each ele-

ment. In the context of classical FEMs, one frequently uses

Gauss quadrature for this purpose. In a SEM, a Gauss-

Lobatto-Legendre (GLL) integration rule is used instead,

because it leads to a diagonal mass matrix when used in

conjunction with GLL interpolation points. Integrations over

elements with volume �e hence give

�
�e

f (x) d3x

= �1

-1
�1

-1
�1

-1
f (x(�, �, � )) J(�, �, � ) d� d� d�

≈ �
��,�

�
,��

�,�,�=0

������ f ��� J��� , (52)

where J��� = J(��, ��, ��), and �� > 0, for � = 0, . . . , n,

denote the weights of the GLL quadrature [Canuto et al.,

1988].

On the fluid-solid boundaries in the model we need to

evaluate surface integrals in order to implement the coupling

based upon domain decomposition. At the elemental level,

using GLL quadrature, these surface integrations may be

written in the form

�
�b

f(x) d2x = �1

-1
�1

-1
f(x(�,�)) Jb(�,�) d� d�

≈ �
��,�

�

�,�=0

���� f �� J��
b , (53)

where �b denotes a surface element located on the fluid-

solid interface, and J��
b = Jb(��, ��) is the surface Jacobian (5)

evaluated at the GLL points. Note that in local and regional

simulations the implementation of the absorbing boundary

conditions represented by the last term in (19) also involves

numerical integrations of the form (53) along the edges of

the model.

Other authors [e.g., Priolo et al., 1994; Seriani, 1998] use

a different implementation of the SEM based on Chebyshev

polynomials. The main advantages are that the Gauss-Lo-

batto-Chebyshev integration rule is exact for the chosen

polynomial basis, while it is only approximate in the case

of GLL (see Section 3.11), and that the Gauss-Lobatto-

Chebyshev points and weights are known analytically (in

the GLL version they are computed numerically). The main

disadvantage of the approach is that it does not lead to a

diagonal mass matrix, and that therefore iterative solvers for

large matrix systems have to be implemented and an implicit

time-marching scheme is often used. This is technically

difficult, but has been used successfully even in 3-D [Seriani,

1997, 1998]. Because an unconditionally stable implicit time

scheme is used, this method is not sensitive to very high P-

wave speeds in small grid cells that can drastically reduce

the time step and therefore increase the cost of the explicit

time scheme used in the Legendre approach.

3.8. Discrete Form of the Weak Equation in the Solid

Regions

In the weak form of the solid wave equations (19), (22),

(43), and (47), we first need to expand the displacement

field s in terms of Lagrange polynomials:

s(x(�,�,� ), t) ≈ �
3

i=1

x̂i �
��,��,��

�,�,�=0

s���
i (t)�� (� )�� (�)�� (� ) ,

(54)

and the test vector w:

w(x(�, �, � )) = �
3

i=1

x̂i �
��,��,��

�,�,�=0

w���
��(� )�� (�)��(� ) .

(55)

Because we use the same basis functions to express the

displacement and test vectors, the SEM is a so-called Galer-

kin method. The next step is to evaluate the integrals at the

elemental level based upon GLL quadrature. At the elemen-

tal level, for the first term on the left-hand side of the

equations of motion (19), (22), (43), and (47), known as the

mass matrix, this integration gives

�
�e

�w · ∂ 2
t s d3x = �1

-1
�1

-1
�1

-1
� (x(� ))

w(x(� ))· ∂ 2
t s(x(� ),t) J(� ) d3� . (56)

Upon substituting the interpolations (54) and (55) in (56),

using the quadrature (52), we obtain
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�
�e

�w · ∂ 2
t s d3x ≈ �

��,��,��

�,�,�=0

������ J��� ����

× �
3

i=1

w���
i s̈���

i (t) , (57)

where ���� = � (x(��, ��, ��)), and where a dot denotes

differentiation with respect to time. By independently setting

factors of w���
1 , w���

2 , and w���
3 equal to zero, since the weak

formulation (19) must hold for any test vector w, we obtain

independent equations for each component of acceleration

s̈ ���
i (t) at grid point (��, ��, ��). One can see that the value

of acceleration at each point of a given element s̈ ���
i (t) is

simply multiplied by the factor ������ ����J���, which

means that the elemental mass matrix is exactly diagonal.

This is one of the key ideas behind the SEM, and the main

motivation behind the choice of Lagrange interpolation at

the GLL points used in conjunction with GLL numerical

integration.

The weak form of the Coriolis term in (22), (43), and (47)

for an element �e is

�
�e

2�w · (� × ∂t s) d3r ≈ (58)

2� �
n

�,�,�=0

������ J������� �
3

i,j=1

w���
i �i3j ṡ

���
j .

Here �ijk denotes the alternating tensor. It is worth men-

tioning that the effect of rotation has a negligible impact on

the numerical cost of realistic global Earth simulations, both

in terms of memory requirements and CPU time, because,

considering that rotation is a small effect, the Coriolis

term (58) can be handled based on an explicit time scheme

and therefore added to the right-hand side of the wave equa-

tion after discretization at the global level.

The first integral on the right-hand side of (19), (22), (43),

and (47) that needs to be evaluated at the elemental level

is the so-called stiffness matrix. We can write

�
�e

∇w : T d3x ≈ �
��,��,��

�,�,�=0
�
3

i=1

w���
i

× ����� �
��′

�′=0

��′ J
�′��
e F�′��

i1 �′�(��′)

+ ���� �
��′

�′=0

��′ J
��′�
e F��′�

i2 �′� (��′)

+ ���� �
��′

�′=0

��′ J
���′
e F���′

i3 �′� (��′)� . (59)

where

Fik = �
3

j=1

Tij ∂j �k , (60)

and where F���
ik = Fik (x(��, ��, ��)) denotes the value of Fik

at the GLL point x(��, ��, ��). For brevity, we have intro-

duced index notation �i, i = 1, 2, 3, where �1 = �, �2 = �,

and �3 = �. In this notation, the elements of the mapping

matrix ∂�/∂x may be written as ∂i�j. In the case of self-

gravitation, in (59) the matrix T needs to be replaced by

T + G, as in (22), (43), and (47).

The value of the stress tensor T at the integration points

is determined by

T(x(��,��,��), t) =

c(x(��,��,��)) : ∇s(x(��,��,��), t) . (61)

Note that, as mentioned in the discussion after (8), we have

made no particular assumption on the structure of the stiff-

ness tensor c, i.e., the SEM can handle a fully anisotropic

tensor with 21 independent coefficients (see also Komatitsch

et al.[2000b] and Komatitsch and Tromp [2002a]). In our

SEM implementation, the ratio of CPU time requirements

with full anisotropy with 21 coefficients compared to an

isotropic simulation is approximately 1.15. To perform the

calculation (61), we first need to compute the gradient of

displacement ∇s at the GLL integration points. Upon differ-

entiating (54) we get

∂isj(x(��,��,��), t) =

��
n�

�=0

s���
j (t)� ′� (��)� ∂i� (��,��,��)

+ ��
n�

�=0

s���(t)� ′� (��)� ∂i� (��,��,��), j

+ ��
n�

�=0

s���
j (t)� ′� (��)� ∂i�(��,��,��) . (62)

In an anelastic medium, the stiffness matrix is still defined

by (59), except that the stress tensor (61) is

T(x(��,��,��), t) = c(x(��,��,��)) : ∇s(x(��,��,��), t)

− �
L

�=1

R�(x(��,��,��), t) , (63)

in accordance with (11). This implies that the five indepen-

dent components of the symmetric, zero-trace memory ten-

sor R� need to be stored on the grid for each standard linear
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solid. Because of this requirement, anelastic simulations

require significantly more memory than purely elastic calcu-

lations. In our SEM implementation based on three linear

solids in parallel, the ratio of memory requirements and

of CPU time requirements with and without anelasticity is

approximately 1.5. To reduce these additional requirements,

one can spread the memory variables across adjacent grid

points to mimic the expected anelastic behavior in average

[Zeng, 1996; Day, 1998].

The second term on the right-hand side of the weak form

of the equation of motion (19), (22), and (47) is the source

term, which may be expressed as

�
∑s

m(xs, t) : ∇w(xs) d2xs ≈ �
3

i=1

w���
i

× ��� �
��

�s=0

��s
J�s�

b g
�s��
i1 �′�(��s

)

+ �� �
��

�s=0

��s
J��s

b g
��s�
i2 �′� (��s

)

+ ���� J��
b g

���s
i3 �′� (��s

)� , (64)

where

gik = �
3

j=1

mij ∂j � k . (65)

For the point source (16) this reduces to

M : ∇w(xs) ≈ �
��,��,��

�,�,�=0
�
3

i=1

w���
i

� �
��,��,��

�,�,�=0

�� (��s
)�� (��s)�� (��s

)

× �G���
i1 �′� (��s

)�� (��s)�� (��s
)

+ G���
i2 ��(��s

)�′
� (��

s
)�� (��s

)

+ G���
i3 ��(��s

)�� (��
s
)�′� (��s)�	 , (66)

where we have defined Gik = ∑3
j=1 Mij ∂j �k, and where

G���
ik = Gik(x(��, ��, ��)) and x(��s

, ��s, ��s
) = xs.

Note that unlike many grid methods, in the context of

the SEM the source can be located anywhere in the model,

and does not need to correspond with a GLL grid point.

Because of the polynomial basis used in each element,

a point moment-tensor source gets spread over the entire

element that contains the point source after discretization.

This is consistent with the use of a polynomial basis and

is not a problem, except perhaps when receivers are placed

in the same spectral element as the source [Faccioli et

al., 1997], a situation almost never encountered in practice.

Self-gravitation in the context of the Cowling approxima-

tion contributes two terms to (22), (43), and (47). As men-

tioned earlier, the first contribution can be incorporated in

the calculation of the stiffness matrix by making the substitu-

tion T → T + G in (61), remembering that G is non-symmet-

ric. The second gravity contribution has the weak form

�
�e

�s · H · w d3r ≈ �
n

�,�,�=0

������ J��� ����

�
3

i,j=1

w���
i H���

ij s���
j . (67)

Note that this gravity term is diagonal. The self-gravitation

terms require no significant memory storage and have a

minor impact on CPU time.

3.9. Discrete Form of the Weak Equation in the Fluid

Regions

To obtain explicit expressions for the weak formulation of

the problem in the fluid regions, we first expand the potential

� in terms of Lagrange polynomials:

� (x(�, �, � ), t) ≈ �
��,��,��

�,�,�=0

� ���(t)�� (� )��(�)�� (� ) , (68)

and the scalar test function w:

w (x(�, �, � )) = �
��,��,��

�,�,�=0

w���
�� (� )�� (�)�� (� ) . (69)

Using this representation, the first term on the left-hand side

of the weak form of the outer-core wave equation (33) may

be written at the elemental level in the form

�
�e

�-1�w∂ 2
t � d3r ≈ �

�� ,�� ,��

�,�,�=0

������ J���

(���� )-1����w��� �̈ ���(t) . (70)

As for the left-hand side of the weak form in the solid

regions, this elemental ‘mass’ matrix is diagonal.

The first integral on the right-hand side of the fluid weak

formulation (33) becomes at the elemental level
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�
�e

∇w · ∇� d3r ≈ �
�� ,�� ,��

�,�,�=0

w���

����� �
��′

�′=0

��′ J�′��
e (∂1�)�′��

�′�(��′)

+ ���� �
��′

�′=0

��′ J��′�
e (∂2�)��′�

�′� (��′)

+ ���� �
��′

�′=0

��′ J���′
e (∂3�)���′

�′� (��′)� , (71)

where

(∂i�)��� = �
��

�=0

���′�′
�′�(��′)∂i�

+ �
��

�=0

��′��′
�′�(��′)∂i�

+ �
��

�=0

��′�′�
�′� (��′)∂i� . (72)

The second term on the right-hand side of the weak form

of the wave equation in the outer core (33), which arises in

the presence of self-gravitation and rotation, is

�
�e

�-1�w g · (∇� + u) d3r ≈

�
n

�, �, �=0

������ J���w���(����)-1����

�
3

i=1

g
���
i [(∂i�)��� + u���

i ] , (73)

where (∂i�)���, and where we have made the Cowling ap-

proximation.

The weak form of (34) is, in fact, entirely diagonal, which

means that one needs to solve a second-order ordinary differ-

ential equation at each GLL point. Making the Cowling

approximation and assuming that N2 = 0 reduces the problem

to solving the first-order equation (36), which may be accom-

plished based upon a Runge-Kutta scheme, as discussed in

Komatitsch and Tromp [2002b].

3.10. Coupling Between Fluid and Solid Regions

The final term on the right-hand side of the weak forms of

the equation of motion in the solid regions (22), (43), and

(47) is the surface integral over the CMB or ICB that repre-

sents the interactions in traction and normal velocity between

the solid mantle, the liquid core, and the solid inner core.

A key ingredient of our domain decomposition technique is

that, since we have a conforming mesh everywhere, i.e., the

grid points on the CMB are common to the meshes in the

mantle and in the outer core and the grid points on the ICB

are common to the meshes in the outer and inner core, we

can take the value of pressure at a given grid point from the

fluid side and use it directly in the surface integral on the

solid side. Therefore, no interpolation is needed at a fluid-

solid interface. This type of matching is referred to as point-

wise matching in the finite-element literature. At the elemen-

tal level on a boundary, the surface integrals over the CMB

and the ICB in the solid regions may therefore be ex-

pressed as

�p n̂ · wd2x ≈ �
��,��

�,�=0

���� J��
b p��(t) �

3

i=1

���
i n̂��

i ,

(74)

where Jb is the surface Jacobian (5), n̂ is the normal (4),

and where we calculate the pressure p based upon (37),

taking the values of the right-hand side terms from the

fluid side.

Similarly, the two surface integrals over the CMB and the

ICB in the weak form of the equation of motion in the outer

core (33) may be expressed as

�w n̂ · s d2x ≈ �
��,��

�,�=0

���� J��
b w�� �

3

i=1

s��
i n̂��

i . (75)

3.11. Accuracy of the Method

In a standard FEM, low-degree polynomials (usually of de-

gree 1 or 2) are used to discretize functions, and therefore

the accuracy of the method can mainly be adjusted based

upon the typical size of an element in the mesh, �h, i.e.,

based upon mesh density. This means that in a traditional

FEM, mesh design is the main parameter that controls accu-

racy. In a SEM, however, high-degree Lagrange interpolants

are used to express functions. Therefore, the polynomial

degree used to represent functions on an element, n, is an

additional parameter that can be used to adjust the accuracy

of the method.

Even on a unit cube with homogeneous material proper-

ties, the GLL numerical integration rule is exact only for

polynomials of degree 2n − 1. Any integration on the refer-

ence element involving the product of two polynomials of

degree n –the displacement and the test function– is never

exact, even in this simplest case. For deformed elements

there are additional errors related to curvature [Maday and

Rønquist, 1990]; the same is true for elements with heteroge-
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neous material properties. Thus a diagonal mass matrix is

obtained in the Legendre SEM by purposely selecting

a numerical integration rule that is not exact (but of course

still very accurate) for the polynomial basis chosen (a process

known as sub-integration in the finite-element literature). In

this respect, the SEM is related to FEMs in which mass

lumping is used to avoid the costly resolution of the non-

diagonal system resulting from the use of a Gauss quadrature

rule [e.g., Cohen et al., 1993]. As mentioned above, a differ-

ent choice is made in the Chebyshev SEM used by some

authors [e.g., Priolo et al., 1994; Seriani, 1998], in which

an integration rule that is exact for the polynomial basis

chosen is used, with the consequence that the exactly diago-

nal mass matrix is lost.

One of the shortcomings of the SEM for elastic media is

that to our knowledge no theoretical analysis of its accuracy

is available in the literature. For other classical numerical

techniques such an analysis is usually performed in the spec-

tral domain for a regular grid in a homogeneous medium.

In the case of the SEM doing so turns out to be challenging

because the polynomial degree used to discretize the wave

field is high and also because the GLL numerical integration

points are non-evenly spaced, which makes it technically

difficult to use a standard Fourier analysis to perform the

accuracy study, even in the case of a regular mesh of spectral

elements in a homogeneous medium. In addition, one of the

main ideas behind the use of the SEM is to take advantage

of its geometrical flexibility and to therefore use highly-

distorted non-regular meshes. On such meshes, performing

an accuracy analysis is even more difficult because there

are additional error terms associated with the distortion of the

mesh elements, as in any finite element or spectral method

[Maday and Rønquist, 1990]. To our knowledge, only Tordj-

man [1995] and Cohen and Fauqueux [2000] have attempted

such a theoretical accuracy study for the SEM in the acoustic

case, and Seriani and Priolo [1994] have addressed the issue

based on a numerical study, also in the acoustic case.

Therefore, by trial and error, heuristic rules of thumb have

emerged in order to determine how to select the polynomial

degree to use in practice for an elastic SEM with a non-

regular deformed mesh and a heterogeneous medium. Basi-

cally, we have used the main conclusions of Seriani and

Priolo [1994] in the acoustic case and checked numerically

by performing numerous benchmarks and comparisons to

analytical solutions for simple cases that these conclusions

extend reasonably well to the elastic case. Based on these

numerical experiments, we can say that using polynomial

degrees lower than typically 4 leads to similar inaccuracies

as with standard FEMs [Marfurt, 1984], i.e., a large amount

of numerical dispersion, which means that with such low

degrees the advantages of using a SEM are lost. In contrast,

if the polynomial degree is very large, e.g., greater than 10,

the SEM is spatially very accurate, but the computational

requirements become prohibitive because of the size of the

calculations related to matrix multiplications involving the

full stiffness matrix, a process with a cost of O(n4) in 3-D,

i.e., the numerical cost of the technique becomes prohibitive.

Another problem in the case of a high degree is that the non-

evenly spaced GLL numerical integration points become

clustered toward the edges of each spectral element (the

spacing between the first two GLL points varies approxi-

mately as O(n-2)), and as a result of the small distance

between these first two points, very small time steps have

to be used to keep the explicit time-marching scheme stable

(see Section 4), which drastically increases the cost of the

Legendre SEM. Therefore, the rule of thumb is that for most

wave propagation applications, polynomial degrees between

approximately 4 and 10 should be used in practice.

In our case, we always use a polynomial degree n = 4. In

order to obtain accurate results, we use another heuristic

rule of thumb that says that for this polynomial degree the

average grid spacing �h should be chosen such that the

average number of points per minimum wavelength �min in

an element, (n + 1)�min/�h, be roughly equal to 5. It would

be of interest to study this more precisely in the 3-D elastic

case based on numerical experiments with different polyno-

mial degrees and different values of the grid spacing, and

to see how this accuracy analysis would compare to similar

studies for more classical numerical techniques such as the

finite-difference method. Such a comparative study should

include both body and surface waves, the former being more

difficult to model accurately than the latter, in particular for

methods that are not based on a variational formulation of

the wave equation. Schubert [2003] has started to study this

problem in the 1-D case.

4. TIME INTEGRATION OF THE GLOBAL SYSTEM

In each individual spectral element, functions are sampled

at the GLL points of integration. As can be seen in Figure 5,

these points include −1 and 1, i.e., each element has grid

points located exactly on its edges, and therefore shares

these points (on its faces, edges, or corners) with neighboring

elements in the spectral-element mesh. Therefore, as in

a classical FEM, we need to distinguish the local mesh of

grid points inside each element from the global mesh of

points in the entire structure, which contains many points

that are shared amongst several elements. In addition, the

number of elements that share a given point (the so-called

valence of a point) can vary and take any value in the mesh

(in other words, the mesh can be non-structured), unlike in

a regular mesh of cubes, in which the valence of a shared
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point is always 2 inside a face, 4 on an edge, and 8 at a

corner.

Therefore, the first required step is to uniquely number

the global points in order to define a mapping between the

local mesh and the global mesh. This can be accomplished

using efficient finite-element global numbering libraries that

either take advantage of the known and fixed topology of

the mesh (valence and list of neighbors) to uniquely assign

a global point number to each local point inside a given

spectral element, or perform a triple sorting algorithm on

each coordinate of the points (sorting by increasing x, then

by increasing y for the same x, then by increasing z for the

same x and y), again to detect common points and uniquely

assign a global point number to each local point. Once this

mapping has been defined, the internal forces computed

separately on each element need to be summed at common

grid points (in the finite-element literature this step is called

‘assembling the system’). On a parallel computer, this part

is the only step in the SEM that involves communications

between adjacent mesh slices, as we will see in Section 5,

because different slices located on different processors can

share common points on their respective edges.

Let U denote the global displacement vector in the solid

regions of the model, i.e., U contains the displacement vector

at all the grid points in the global mesh, classically referred

to as the global degrees of freedom of the system. The time

evolution of the global system is governed by an ordinary

differential equation of the general form

MsÜ + KsU + Bsp = Fs , (76)

where Ms denotes the global diagonal mass matrix, Ks the

global stiffness matrix, Bsp the fluid-solid coupling term

involving the pressure p that represents the boundary interac-

tions at the CMB or ICB, and Fs the earthquake source term.

As mentioned above, one can take advantage of the fact that

the global mass matrix is diagonal by using a fully explicit

second-order finite-difference scheme to march this second-

order ordinary differential equation, moving the stiffness

term to the right-hand side. The memory-variable equation

(13) is solved for R� using a modified second-order Runge-

Kutta scheme in time, since such schemes are known to be

efficient for this problem [Carcione, 1994]. We do not spread

the memory variables across the grid.

In the fluid regions of the model (the outer core in the case

of the global Earth), we similarly get an ordinary differential

equation of the general form:

Mf Ẍ + Kf X + Bf U = 0 , (77)

where X is the global potential, Mf denotes the global diago-

nal generalized mass matrix, Kf the global generalized stiff-

ness matrix, and Bf U the global fluid-solid coupling term

involving the solid displacements U that represents the

boundary interactions at the CMB or ICB (note that there

is no source term in the fluid because the earthquake source

is always located in the solid).

Compared to Komatitsch and Tromp [2002a, b], the im-

proved formulation in the fluid region developed in Chaljub

and Valette [2004] (see also Section 3.3 above) leads to a

time-marching scheme in which there is no need to iterate

on the fluid-solid coupling condition, i.e., following Chaljub

and Valette [2004] we simply first solve (77) in the fluid

and then (76) in the solid. The fluid-solid coupling term is

evaluated based on the new values on the fluid side computed

by solving (77).

The explicit time schemes introduced above are condition-

ally stable, i.e., for a given mesh and a given model there

exists an upper limit on the time step above which calcula-

tions are unstable. One can define the Courant stability num-

ber of the explicit time integration schemes C = �t(v/�h)max,

where �t is the time step chosen and (v/�h)max denotes

the maximum ratio of P-wave speed and grid spacing. The

Courant stability condition [Courant et al., 1928] then says

that the Courant number should not be chosen higher than

an upper limit:

C ≤ Cmax (78)

that determines how large the time step can be while main-

taining a stable simulation. Unfortunately, for the SEM to

our knowledge there is no published theoretical analysis of

how to determine the maximum Courant number Cmax. The

heuristic rule of thumb that we use in practice is that for

regular meshes Cmax 
 0.5, while for very irregular meshes

with distorted elements and/or very heterogeneous media

Cmax reduces to approximately 0.3 to 0.4. As for the issue

of accuracy in Section 3.11, performing such a theoretical

analysis for the SEM in the elastic case would be very

difficult, even for a regular mesh in a homogeneous medium,

because of the high polynomial degrees used, and because

of the fact that the GLL numerical integration points are

non-evenly spaced.

5. IMPLEMENTATION ON PARALLEL COMPUTERS

The mesh designed in Section 2 is too large to fit in memory

on a single computer. Modern parallel computers such as

clusters or grids of computers have a distributed memory

architecture. The standard approach for programming paral-

lel machines with distributed memory in a portable way is

to use a message-passing methodology, usually based upon
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a library called MPI [e.g., Gropp et al., 1994], an acronym

for ‘Message Passing Interface’.

Because we use an explicit time-marching scheme (see

Section 4), our SEM algorithm mostly consists in small

local matrix-vector products in each spectral element, which

implies that the processors spend most of their time doing

actual calculations, and only a small amount of time in the

communication step. Hence, the SEM algorithm is not very

sensitive to the speed of the network connecting the different

processors. It can therefore run on high-latency networks

such as clusters of PC computers, sometimes referred to as

‘Beowulf’ machines, or on grids of computers.

In order to run an SEM algorithm on such parallel ma-

chines, we need to split the mesh into as many slices as the

number of processors we use on the machine. Plate 1 shows

how the mesh of Figure 3 for the global Earth is split into

slices in the case of calculations distributed over 1944 proc-

essors (6 chunks of 18 × 18 slices each), as will be used in

Section 6. Calculations can be performed locally by each

processor on the spectral elements that constitute the mesh

slice it carries, and one communication phase is then required

at each time step of our time-marching algorithm in order

to sum the internal forces computed at the common faces,

edges, and corners shared by mesh slices carried by different

processors. Therefore, MPI communication tables that or-

chestrate the (constant) sequence of messages that needs to

be exchanged amongst the slices at each time step need to

be created once and for all when the mesh is built.

6. NUMERICAL RESULTS

In previous work, synthetic seismograms for 3-D Earth mod-

els calculated based on the SEM have been successfully

compared to broadband data, both for sedimentary basins

[Komatitsch et al., 2004; Liu et al., 2004] and at a global

scale [Komatitsch and Tromp, 2002b; Chaljub et al., 2003;

Komatitsch et al., 2003; Tsuboi et al., 2003; Capdeville et

al., 2003]. Here, as an application of the SEM to a large-

scale 3-D problem, we combine all the complications of

a fully 3-D Earth model. The simulations include anisotropy

(the reference 1-D PREM upper mantle model is anisotropic,

see Komatitsch and Tromp [2002a] for details), attenuation,

self-gravitation, the oceans, rotation, ellipticity, topography

and bathymetry, a 3-D mantle model and a 3-D model of

crustal wave speeds, as explained in Section 2 (see also

Komatitsch and Tromp [2002b] for more details on these

models).

The SEM calculations are performed on the Earth Simula-

tor at the Japan Agency for Marine Earth Science and Tech-

nology (JAMSTEC). This computer has 640 8-processor

compute nodes, for a total of 5120 processors. Each node

has 16 gigabytes of shared memory, for a total of 10 terabytes

of memory. The peak performance per node is 64 gigaflops

(i.e., 64 billions of floating-point operations per second) and

the total peak performance is 40 teraflops. On 48 nodes of

the Earth Simulator we can model periods of 9 s and

a typical simulation lasts 10 hours, 243 Earth Simulator

nodes enable us to reach periods of 5 s, and on 507 nodes this

is further reduced to a shortest period of 3.5 s [Komatitsch et

al., 2003; Tsuboi et al., 2003]. To put these numbers in

perspective, typical normal-mode summation codes that cal-

culate semi-analytical synthetic seismograms for 1-D Earth

models are accurate down to 6 s. In other words, the Earth

Simulator allows us to simulate global seismic wave propa-

gation in fully 3-D Earth models at periods shorter than

current seismological practice for 1-D spherically symmetric

models.

We model the September 2, 1997, 210 km deep Colombia

earthquake, which had a magnitude of Mw = 6.7. We use

the mesh in Figures 3, 4 and Plate 1 and a polynomial degree

n = 4, which gives a grid composed of 82 million spectral

elements and a total of 14.5 billion grid points. At the surface

of the model the size of the spectral elements is 1.04° in the

two horizontal directions (i.e., the average spacing between

adjacent grid points is 0.026°, or equivalently 2.9 km). The

time step is �t = 72 ms, and we propagate the signal for

3600 s. Receivers from the global network of seismic stations

record the three components of displacement. Figure 7 shows

the results of a simulation on the Earth Simulator accurate

down to 5 s. The source is the CMT solution taken from

the Harvard catalog. The vertical component data are lined

up on the Rayleigh wave. Note the remarkable fit both at

short and long periods. In Figure 8 we present the same

results centered on the P-wave arrival. Note the distinct

pP and sP arrivals, and also note that the sP arrivals are

consistently late in the SEM synthetic seismograms, which

implies that the shear wave speed model we use is too slow

in the mantle wedge above the subducting plate.

In the case of large earthquakes, the finite size of the

earthquake source must be taken into account, and an equiva-

lent CMT cannot be used. Plate 2 shows a snapshot of such

a finite-fault simulation for the November 3, 2002, Denali

fault, Alaska, earthquake, which had a magnitude of Mw =

7.9 and ruptured several fault segments over a total distance

of 220 km [Eberhart-Phillips et al., 2003]. The finite source

model, which is represented by 475 point double couple

solutions, was determined by Ji et al. [2004]. Because the

earthquake rupture propagates in a southeasterly direction

along the Denali fault, the waves that propagate along the

West coast of the United States have large amplitudes. This

directivity effect due to the finite size of the earthquake fault

is captured well by the SEM simulations. We show full
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Plate 1. The spectral-element method uses a mesh of hexahedral

finite elements on which the wave field is interpolated by high-

degree Lagrange polynomials on Gauss-Lobatto-Legendre integra-

tion points. In order to perform the calculations on a parallel com-

puter with distributed memory, the mesh in Figures 3 and 4 is split

into slices based upon a regular domain-decomposition topology.

Each slice is handled by a separate processor. Adjacent slices

located on different processors exchange information about com-

mon faces and edges based upon a message-passing methodology.

The top figure shows a global view of the mesh at the surface,

illustrating that each of the six sides of the so-called ‘cubed sphere’

mesh is divided into 18 × 18 slices, shown here with different

colors, for a total of 1944 slices. The bottom figure shows a close-

up of the mesh of 48 × 48 spectral elements at the surface of each

slice. Within each surface spectral element we use 5 × 5 = 25 Gauss-

Lobatto-Legendre grid points, which translates into an average grid

spacing of 2.9 km (i.e., 0.026°) on the entire Earth surface.

Plate 2. Snapshot of the propagation of seismic waves in the

Earth generated by the November 3, 2002 Denali fault, Alaska,

earthquake. Note the large amplification of the waves along the

western coast of the United States.
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Figure 7. Comparison of vertical component data (solid line) and

spectral-element synthetic seismograms (dashed line) for the Sep-

tember 2, 1997, 210 km deep Colombia earthquake. Both the

synthetic seismograms and the data are lowpass-filtered at 5 s. The

source azimuth measured clockwise from due North is indicated

on the left, and the station name and epicentral distance are on the

right. Records are aligned on the Rayleigh wave.

waveform comparisons between data and synthetic seismo-

grams in Figure 9. Note that the SEM synthetic seismograms

capture the dispersion of the Rayleigh waves remarkably

well.

7. CONCLUSIONS

We have presented a detailed description of the spectral

element method for 3-D seismic wave propagation. The

full complexity of Earth models, i.e., surface topography,

attenuation, anisotropy and fluid-solid interfaces, and, in the

case of global simulations, self-gravitation, rotation and the

oceans, are taken into account. We have used an improved

SEM formulation for the outer core in the presence of self-

gravitation and rotation that has the important benefit that

it does not require iterations on the fluid-solid coupling

Figure 8. Comparison of vertical component data (solid line) and

spectral-element synthetic seismograms (dashed line) for the Sep-

tember 2, 1997, 210 km deep Colombia earthquake. Both the

synthetic seismograms and the data are lowpass-filtered at 5 s. The

source azimuth measured clockwise from due North is indicated

on the left, and the station name and epicentral distance are on the

right. Records are aligned on the P wave. Note the distinct pP and

sP arrivals at 60 s and 80 s after the P wave, respectively. The

amplitudes in this plot are more than ten times smaller than those

in Figure 7.

condition at the CMB or at the ICB, thus making the SEM

algorithm much simpler and more efficient numerically. The

method has been implemented on a parallel computer with

distributed memory based upon a message-passing method-

ology.

In the current implementation we make the Cowling ap-

proximation, make the assumption that the Brunt-Väisälä

frequency is zero, use an approximate treatment of the effect

of the oceans, and rely on a simple one-way treatment for

absorbing boundaries in the case of regional or local simula-

tions. Effects of the Cowling approximation and a non-

zero Brunt-Väisälä frequency are only relevant at very long

periods (typically > 500 s). Improved implementations of
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Figure 9. Comparison of vertical component data (solid line) and

spectral-element synthetic seismograms (dashed line) for the No-

vember 3, 2002, Denali fault, Alaska, earthquake. Both the syn-

thetic seismograms and the data are lowpass-filtered at 5 s. The

source azimuth measured clockwise from due North is indicated

on the left, and the station name and epicentral distance are on the

right. Records are aligned on the P wave.

the oceans are under investigation and will be the focus of

future work.

We have used the Japanese Earth Simulator to perform

a direct comparison between synthetic seismograms calcu-

lated for a realistic fully 3-D Earth model and observed

seismograms for two large earthquakes. This comparison

shows that our spectral-element simulations capture general

features of the Earth’s 3-D structure fairly well. However,

it is also apparent that the agreement between synthetic and

observed seismograms decreases at high frequency due to the

fact that current 3-D Earth models are not well constrained at

such high frequencies.

In the near future, we believe that the SEM will become

the method of choice for the simulation of seismic wave

propagation in fully 3-D Earth models. The main difficulty

is the cost of large simulations, as is the case for all methods

that are based upon the full wave equation discretized on

a grid. However, because of the continuous evolution of

computer technology, a small group of researchers can now

assemble a PC cluster at a reasonable cost in a reasonable

amount of time and perform large-scale 3-D simulations in-

house, and at the same time, very large machines such as the

Earth Simulator in Japan or large geographically-distributed

networks of clusters of computers (known as GRIDs) start

to provide enough memory and processors to run complex

models at unprecedented resolution. This has already led to

Centroid-Moment Tensor (CMT) source inversion in fully

3-D Earth models [Liu et al., 2004], opening the door to

full waveform tomographic inversions.

The full source code of our program SPECFEM3D is

freely available for academic, non-commercial research from

www.geoframework.org.
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