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Abstract
We study a fractional quantum Hall system with maximal filling ν = 1/3 in the thin torus limit. The correspond-
ing Hamiltonian is a truncated version of Haldane’s pseudopotential, which upon a Jordan-Wigner transformation
is equivalent to a one-dimensional quantum spin chain with periodic boundary conditions. Our main result is a
lower bound on the spectral gap of this Hamiltonian, which is uniform in the system size and total particle num-
ber. The gap is also uniform with respect to small values of the coupling constant in the model. The proof adapts
the strategy of individually estimating the gap in invariant subspaces used for the bosonic ν = 1/2 model to the
present fermionic case.

1 Introduction

1.1 Hamiltonian description of FQHE on the torus

Haldane pseudopotentials provide a Hamiltonian description of the main features for factional quantum Hall
(FQH) systems [5, 6]. These are parent Hamiltonians for Laughlin’s famous many-particle wave functions cor-
responding to a fixed filling ratio ν in a two-dimensional geometry with a perpendicular constant magnetic field
[15, 18, 24, 28], and have been shown to emerge in a scaling limit of short-range interactions [25].

An example of a non-trivial two-dimensional geometry is a rectangular torus of lengths a, b > 0. In the
presence of the magnetic field all lengths are naturally measured in terms of the magnetic length ` > 0. For
integer flux L := ab

2π`2
∈ N, the lowest Landau level (LLL) on the torus is an L-dimensional Hilbert space, which

is spanned by the orthonormal functions

ψ[m](x, y) :=
∑
j∈Z

ψm+jL(x, y), 0 ≤ x < a, 0 ≤ y < b, (1.1)

for 1 ≤ m ≤ L where α := 2π`
b and

ψm(x, y) :=
( α

2π3/2

)1/2
ei
α
`
mye−

1
2

(x/`−αm)2
, m ∈ Z,

constitutes an orthogonal basis of Landau orbital’s on the infinite cylinder. The one-particle basis (1.1) of the
LLL on the torus can thus be identified with the L sites of the integer lattice ΛL = [1, L] in the ring geometry. In
contrast to the planar, spherical or cylinder geometry, various suggestions (deviating only in small details) exist
in the physics literature for the precise form of Haldane’s pseudopotentials on the torus [7, 14, 15, 24]. In this
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geometry, the most basic form of Laughlin’s N -particle wave function with filling fraction ν = (p + 2)−1 with
p ∈ N0 is proportional to [4, 8, 13]

exp

−∑
j

x2
j

2`2

 ∏
j<k

ϑ1

(
zj − zk
a

, i
a

b

)p+2

when written in complex coordinates zj = xj + iyj . The Jastrow factor involves Jacobi’s theta function ϑ1(z, τ),
which has its zeros at z ∈ Z + τZ. Following the pragmatic approach of taking the second-quantization of
Trugman-Kivelson’s singular pair-interactions [28] projected onto the LLL, which has wave functions with the
above Jastrow-factor in its kernel, one arrives at the Hamiltonian

W per
ΛL

=
∑
s

B∗sBs, with Bs :=
∑
k

′
Fp(k) cs+kcs−k, (1.2)

which is expressed in terms of creation and annihilation operators c∗m, cm of the single-particle orbitals (1.1).
Here the first summation is over all integers and half-integers with 1

2 ≤ s ≤ L. The second summation is over k
with 1

2 ≤ k ≤ N such that s+k (and hence s−k) is integer. Moreover, as will always be the case for the periodic
system, additions are understood modulo L. The function Fp depends on the filling fraction ν = (p+ 2)−1 under
consideration. For the case of interest in this paper, ν = 1/3, one has

F1(k) =
∑
j∈Z

α(k + jN)e−α
2(k+jN)2

.

The ν = 1/2-pseudopotential, which stems from a delta-pair interaction on the LLL, is represented by F0(k) =∑
j∈Z e

−α2(k+jN)2
. Above, the (anti-)commutation relations of the creation and annihilation operators must be

chosen appropriately to reflect that odd p correspond to fermionic models and even p to bosonic models.
In the thin torus limit α→∞, it is suggestive to truncate the k-sum in (1.2) to the first few leading terms. For

ν = 1/3, a truncation at |2k| ≤ 1 would yield the so-call Tao-Thouless Hamiltonian [27], which consists of the
commuting local terms nmnm+2 and nm+1nm+2. Such a Hamiltonian trivially has a spectral gap, but does not
describe a non-zero Hall conductivity [11] (see also [2] and references therein). The first non-trivial truncation is
at |2k| ≤ 3, which, upon neglecting another overall multiplicative constant, corresponds to approximating W per

ΛL
by ∑

m∈ΛL

(
nmnm+2 + |F1(1)|−2b∗mbm

)
, nm := c∗mcm, bm := F1(1

2) cm+1cm+2 + F1(3
2) cmcm+3.

As the original operator W per
ΛL

, its truncated version conserves the total particle number as well as center of
mass. Truncated Haldane pseudopotentials of the above form have been studied in [9, 22, 23, 26, 29] and are
believed to capture, at least qualitatively, the main features of FQH systems such as their incompressibility (see
also [3, 4]). In the Hamiltonian description, the latter is explained by combining the maximal filling factor ν of
their degenerate ground-state space with a spectral gap above these ground states, which is uniform in the particle
number as well as the volume ΛL. For the case ν = 1/3 these properties were mathematically established in [22].
However, the estimates of the bulk gap were plagued by edge modes. It is the purpose of the present paper to
revisit and fix this problem.

1.2 Bulk spectral gap of the corresponding spin chain

As in [22] we find it convenient to rewrite the fermionic system as a spin-1
2 chain using the Jordan-Wigner

transformation on ΛL = [1, L] ∩ Z. Given the three Pauli matrices σ1
x, σ

2
x, σ

3
x and the corresponding lowering

2



and raising operators σ±x := 1
2(σ1

x + iσ2
x), which act on C2 ≡ span{|1〉, |0〉} for each x, the operators

cx = Px−1σ
−
x , c∗x = Px−1σ

+
x , Px−1 :=

x−1∏
k=1

σ3
k. (1.3)

implement the canonical anticommutation relations [10] on the tensor product

HΛL :=
L⊗
x=1

C2.

As usual, we suppress the identity 1l from our notation when considering the Pauli matrices on HΛL . Our
conventions are such that σ3|k〉 = (−1)k+1|k〉 for k = 0, 1, and P0 := 1l, from which one finds that the parity
operator satisfies PL = exp

(
iπ
∑L

x=1(nx − 1)
)

= (−1)N+L, where N =
∑L

x=1 nx is the total number of
particles operator.

Under the Jordan-Wigner transformation, the truncated Haldane ν = 1/3-pseudopotential with periodic
boundary conditions is unitarily equivalent to the following spin-1

2 chain:

Hper
ΛL

:=
L∑
x=1

(nxnx+2 + κq∗xqx) (1.4)

where κ > 0 and λ ∈ C will subsequently be taken as arbitrary parameters. The ‘physical’ values correspond to
κ = |F1(1

2)|2/|F1(1)|2 and λ = −F1(3
2)/F1(1). For all x ∈ ΛL\{L− 2, L}, under the transformation (1.3) the

nontrivial four-spin coupling q∗xqx is consistent with the definition

qx = σ−x+1σ
−
x+2 − λ σ

−
x σ
−
x+3 . (1.5)

For x ∈ {L − 2, L}, one obtains qx = σ−x+1σ
−
x+2 + λPL σ

−
x σ
−
x+3, which is equivalent to (1.5) on all subspaces

of fixed total particle number N with L + N odd. By redefining the Jordan-Wigner transformation replacing
σ−x 7→ eiπx/Lσ−x , one finds that on all subspaces of fixed total particle number N with L + N even, the trans-
formed Hamiltonian is isospectral to (1.4) with qx defined as in (1.5) for all x ∈ ΛL. Since we are merely
interested in spectral information, we will subsequently analyze the spectrum of (1.4) with qx as in (1.5) for all
x ∈ ΛL.

There are two main strategies for proving spectral gaps in quantum spin Hamiltonians: (1) inductive methods
based on norm-estimates of nested ground-state projections, such as the martingale method [1, 19], and (2) finite-
size criteria, such as the approach by Knabe [12]. Both methods can be applied to open and periodic boundary
conditions [16, 17, 32]. To obtain results for the periodic system, in practice one often uses the gap bound from
the martingale method for the system with open boundary conditions for the finite-size criteria. However, if the
model with open boundary conditions has low-lying edge excitations that are not present in the periodic system,
this strategy is at best sub-optimal as it produces gap estimates that do not accurately reflect the bulk behavior.
This was the case of the spectral-gap results in [22], where all estimates on spectral gaps depend on lower bounds
of the spectral gap for the Hamiltonian with the open boundary conditions, i.e.,

HΛL =
L−2∑
x=1

nxnx+2 + κ
L−3∑
x=1

q∗xqx, (1.6)

with qx as in (1.5). As was explained in more detail in [22], this Hamiltonian has a multitude of eigenstates
associated with excitations at the left or right boundary of the interval ΛL = [1, L] ⊆ Z, whose eigenvalues tend
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to zero as λ → 0. For example, if L ≥ 6 the subspace span{|110010 . . . 〉, |101100 . . . 〉}, which is spanned by
tensor products of the canonical basis vectors of C2, is invariant under HΛL . For small |λ|, the smaller of the two
eigenvalues on this subspace is of the order κ

1+κ |λ|
2 +O(|λ|4). However, as suggested by the numerics in [22],

such modes do not appear in the system with periodic boundary conditions and, as such, do not accurately reflect
the bulk gap.

In [30] we introduced a strategy to circumvent such edge modes for the Hamiltonian with open boundary
conditions and produce a robust estimate on the bulk gap in the case of a truncated version of Haldane’s ν = 1/2
pseudopotential. The aim of this work is to adapt this strategy to the ν = 1/3 model. Our main result is the
following theorem.

Theorem 1.1. There is a monotone increasing function f : [0,∞) → [0,∞) such that for all 0 6= λ ∈ C with
the property f(|λ|2) < 1/3 and all κ ≥ 0:

lim inf
L→∞

gap(Hper
ΛL

) ≥ min

{
γper,

κ

6(1 + 2|λ|2)

(
1−

√
3f(|λ|2)

)2
}

(1.7)

where

γper :=
1

3
min

{
1,

κ

2 + 2κ|λ|2
,

κ

1 + κ

}
. (1.8)

The function f(r) (defined in Theorem 3.1 below) was analyzed in [22, Appendix A] where it was shown
that f(|λ|2) < 1/3 for |λ| < 5.3. The bound (1.7) is a significant improvement over [22, Theorem 1.2] since
it remains open in the limit λ → 0. It is consistent with the numerical results in [22, 23, 29] and the variational
calculation in [21]. The latter is based on a quasi-particle-hole ansatz (‘magnetoroton’ [31]) and predicts the
asymptotic parabolic behavior 1 − 2κ

κ−1 |λ|
2 + O(|λ|4) as λ → 0 for the spectral gap when κ > 1 . While the

RHS of (1.7) is not sharp, it is consistent with this asymptotics.

The paper is organized as follows. In the next section, a slew of invariant subspaces for both the Hamiltonian
of interest, Hper

ΛL
, and its counterpart with open boundary conditions, HΛL are classified. Key to the invariant

subspace gap strategy in [30] is identifying invariant subspaces that contain ground states. We focus on such
subspaces and discuss a number of additional relevant properties for proving Theorem 1.1. The invariant subspace
strategy for the gap is then reviewed and applied to the present model in Section 3. The arguments in this paper
not only improve the estimate on the bulk gap in [22], but also streamline parts of the arguments presented there.

2 Invariant subspaces and ground states

One way to identify an invariant subspace of a Hamiltonian is to construct a subspace that is invariant under each
of its interaction terms. For the Hamiltonians from (1.4) and (1.6) this can be accomplished by starting from a
vector in the occupation basis {

|µ〉 : µ = (µa, . . . , µb) ∈ {0, 1}|Λ|
}
⊆ HΛ

and then taking the subspace spanned by all occupation states arising from successive action of the interaction
terms. Since the occupation basis is invariant under the electrostatic interaction terms nxnx+2, any subspace
which is invariant under all q∗xqx that contribute to H#

Λ , # ∈ {·, per}, will necessarily be an invariant subspace
for the respective Hamiltonian. A benefit of this approach is that the constructed subspace remains invariant after
removing one or more terms from the Hamiltonian. In this case, the original subspace decomposes into a direct
sum of invariant subspaces for the new Hamiltonian. This is particularly useful when one considers (1) both the
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Hamiltonian with periodic and open boundary conditions or (2) how HΛ′ ≡ HΛ′ ⊗ 1lΛ\Λ′ acts on an invariant
subspace of HΛ where Λ′ ⊆ Λ. Both of these situations will occur in this work.

We focus on identifying invariant subspaces that contain ground states. Due to frustration-freeness, the ground
state space for either choice of boundary condition is given by

GΛ := ker(HΛ) =

L−2⋂
x=1

kernxnx+2 ∩
L−3⋂
x=1

ker qx, Gper
Λ := ker(Hper

Λ ) =

L⋂
x=1

(kernxnx+2 ∩ ker qx)

where Λ = [1, L]. The constraint imposed by the electrostatic terms in the Hamiltonian implies that ground states
can only be linear combinations of |µ〉with µxµx+2 = 0 for all sites x relevant to the boundary conditions. States
belonging to ker qx can hold at most two particles on [x, x + 3]. On this interval and at this maximal filling, qx
has exactly three zero eigenstates that satisfy the electrostatic condition, namely

|1100〉, |0011〉, and |1001〉+ λ|0110〉. (2.1)

Moreover, any configuration with one or no particles on [x, x + 3] is necessarily in ker qx. The entire ground
state space can be deduced from these simple observations. To organize these in a way that succinctly describes
invariant subspaces and ground states, it is convenient to introduce domino tilings of Λ. We begin by considering
periodic boundary conditions.

2.1 Periodic boundary conditions

A (periodic) VMD tiling T is any covering of the ring Λ = [1, L] by void V , monomer M , and dimer D domino
tiles, which are defined as follows:

1. The void tile V = (0) covers one lattice site and contains no particles.

2. The monomer tile M = (100) covers three lattice site and has a single particle on the first site.

3. The dimer tile D = (011000) covers six lattice sites and has a particle on the second and third sites.

The last eigenstate from (2.1) motivates the reversible replacement rule

(100)(100)↔ (011000) (2.2)

which exchanges two neighboring monomers by a dimer (or vice versa). It is clear that by replacing all dimer tiles
by a pairs of monomer, each VMD tiling T is transformed to a tiling R consisting of just voids and monomers.
Such a tiling R is called a periodic root tiling, see Figure 1. More generally, the replacement rule constitutes an
equivalence relation on the set of all periodic VMD tilings, denoted by T per

Λ . Two tilings T, T ′ are connected,
which we denote by T ↔ T ′, if one is transformed into the other after a finite number of replacements. The
equivalence classes are thus classified by the set of root tilings,Rper

Λ :

T per
Λ =

⊎
R∈Rper

Λ

T per
Λ (R), T per

Λ (R) = {T ∈ T per
Λ : T ↔ R}. (2.3)

As shown in the next lemma, the map σΛ : T per
Λ → {0, 1}L that identifies a tiling with its associated configuration

is injective.

Lemma 2.1. Fix a ring Λ of L sites and let σΛ : T per
Λ → {0, 1}L be the mapping that associates a VMD tiling

with its configuration . Then µ = (µ1, . . . , µL) ∈ ranσΛ if and only if the follow conditions hold:
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Figure 1: An example of a periodic root tiling R and all connected tilings T ↔ R for L = 14. Since the
replacement rule only applies to monomers, we use the void at site x = L− 1 to unravel the ring to an
interval for convenience.

1. µx±2 = 0 for every x ∈ Λ such that µx = 1 and µx±1 = 0.

2. For every x ∈ Λ such that µx = µx+1 = 1:

a) The first three sites on either side of this pair are unoccupied, i.e., µs±3/2 = µs±5/2 = µs±7/2 = 0
where s = x+ 1/2.

b) If the next possible site is occupied, it is proceeded by a vacant site, i.e., if µs+9/2 = 1 then µs+11/2 =
0, and if µs−9/2 = 1 then µs−11/2 = 0 where s = x+ 1/2.

Moreover, the tiling T ∈ T per
Λ for which µ = σΛ(T ) is unique and so σΛ is injective. (Here, all additions are

understood modulo L.)

The elementary proof is a simplified adaption of [30, Lemma 2.1] and the details are left to the reader. The
forward direction is trivial and only requires counting the number of unoccupied sites between particles on dif-
ferent tiles. The idea for the reverse direction is based off the observation that, for any µ ∈ ranσΛ, pairs of
nearest neighbor occupied sites must be covered by a dimer, while isolated occupied sites must be covered by a
monomer. One then first lays all dimers, then monomers, and finally voids and uses Conditions 1 and 2 to verify
at each step that a newly placed tile will not overlap with any previously laid tile. This also constructs the unique
tiling T associated with each configuration satisfying Conditions 1 and 2 to prove injectivity.

Two immediate consequences of the partition of VMD tilings (2.3) and the orthogonality of configuration
states are

Cper
Λ =

⊕
R∈Rper

Λ

Cper
Λ (R) and Cper

Λ (R) ⊥ Cper
Λ (R′) for all R 6= R′ (2.4)

where Cper
Λ is the subspace of all VMD tilings and Cper

Λ (R) is VMD subspace associated to R, i.e.

Cper
Λ = span{|σΛ(T )〉 : T ∈ T per

Λ }, Cper
Λ (R) = span{|σΛ(T )〉 : T ∈ T per

Λ (R)}. (2.5)

In particular, these satisfy the following properties.

Lemma 2.2. The subspace Cper
Λ (R) is invariant underHper

Λ for each periodic root tilingR. Moreover, it supports
a unique ground state

ψper
Λ (R) =

∑
T∈T per

Λ (R)

λd(T )|σΛ(T )〉 (2.6)

where d(T ) is the number of dimers D used in the tiling T .
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Proof. We compute the action of qx and q∗xqx on an arbitrary tiling state |σΛ(T )〉 ∈ Cper
Λ (R). The individual

tiles are constructed so |σΛ(T )〉 is in the kernel of each electrostatic interaction term nxnx+2 and qx|σΛ(T )〉 = 0
unless T has either two consecutive monomers or a dimer beginning at x. Thus, to show both the subspace
invariance and unique ground state it is sufficient to restrict our attention to these T .

Fix x ∈ Λ and assume T =: TM ∈ T per
Λ (R) has two monomers starting at x. Then, the tiling TD obtained

from replacing these monomers with a dimer also belongs to T per
Λ (R). A direct computation shows

q∗xqx|σΛ(TM )〉 = |λ|2|σΛ(TM )〉 − λ|σΛ(TD)〉
q∗xqx|σΛ(TD)〉 = −λ|σΛ(TM )〉+ |σΛ(TD)〉.

The invariance property immediately follows since both vectors on the RHS belong to Cper
Λ (R). A similar calcu-

lation produces
qx (cTM |σΛ(TM )〉+ cTD |σΛ(TD)〉) = (cTD − λcTM )|σΛ(TV )〉 (2.7)

for any coefficients cTM , cTD ∈ C, where TV is the tiling obtained from replacing the two monomers in TM with
six voids. Consider an arbitrary state

ψ =
∑

T∈T per
Λ (R)

cT |σΛ(T )〉 ∈ ker(qx).

Since T ′V 6= TV for any other tiling T ′M ∈ T
per

Λ (R) with two consecutive monomers starting at x, the injectivity
of σΛ implies cTD = λcTM by (2.7). By frustration-freeness, if ψ is a ground state of Hper

Λ , then iterating this
procedure over all x ∈ Λ yields cT = λd(T )cR, from which the claim follows.

The main result in this subsection shows that there are no other ground states beyond those identifies in the
previous lemma for rings of length L ≥ 6. A similar result can also be proved for L = 4, 5. However, the
definitions of the tiles would need to be adjusted to fit the smaller volume.

Theorem 2.3. For any Λ = [1, L] with L ≥ 6, the ground state space is a subspace of the tiling space, i.e.
Gper

Λ ⊆ Cper
Λ . As a consequence,

{ψper
Λ (R) : R ∈ Rper

Λ }

is an orthogonal basis of the ground state space.

Proof. Consider any ψ =
∑

µ∈{0,1}L ψ(µ)|µ〉 ∈ ker(Hper
Λ ) and rewrite

〈ψ | Hper
Λ ψ〉 =

∑
µ∈{0,1}L

eΛ(µ)|ψ(µ)|2 +
∑

ν∈{0,1}L

L∑
x=1

|〈ν | qxψ〉|2, eΛ(µ) :=
L∑
x=1

µxµx+2. (2.8)

Introducing the convention that ψ(∅) = 0, it is straightforward to see that

|〈ν | qxψ〉|2 =
∣∣ψ(α∗x+1α

∗
x+2ν)− λψ(α∗xα

∗
x+3ν)

∣∣2 (2.9)

where for each x ∈ Λ the configuration raising operator

α∗x : {0, 1}L ∪ {∅} → {0, 1}L ∪ {∅} (2.10)

is defined so that if µx = 0, then µ 7→ α∗xµ is the configuration obtained from increasing µx by one, and
otherwise α∗xµ = ∅. Similarly, the configuration lowering operator αx : {0, 1}L ∪ {∅} → {0, 1}L ∪ {∅} is such
that µ 7→ αxµ decreases µx by one if µx = 1, and αxµ = ∅ otherwise.

7



We use the characterization in Lemma 2.1 to show that µ ∈ ranσΛ if ψ(µ) 6= 0.
If eΛ(µ) > 0, then ψ(µ) = 0 by (2.8). Thus, assume the electrostatic condition eΛ(µ) = 0 holds. If µ is the

zero configuration, then it trivially satisfies the conditions of Lemma 2.1. Otherwise, pick x ∈ Λ so that µx = 1.
The electrostatic condition implies µx±2 = 0 and µx−1µx+1 = 0. If µx±1 = 0, then Condition 1 of Lemma 2.1
holds. Otherwise we are left to consider whether Condition 2 is satisfied. Assume without loss of generality
that µx+1 = 1 and µx−1 = 0. Then µx+3 = 0 again by the electrostatic condition. Setting s = x + 1/2, this
collectively implies that µs±3/2 = µs±5/2 = 0. If µs+7/2 = µx+4 = 1, then by (2.9),

0 = |〈ν | qx+1ψ〉|2 = |ψ(η)− λψ(µ)|2

where ν := αx+1αx+4µ and η := α∗x+2α
∗
x+3ν. However, eΛ(η) ≥ ηxηx+2 = 1 and so ψ(µ) = ψ(η) = 0. The

analogous argument holds if µs−7/2 = 1. Thus, Condition 2(a) must be satisfied if ψ(µ) 6= 0.
To check Condition 2(b), assume that µs+9/2 = µs+11/2 = 1. Since s + 9/2 = x + 5, the electrostatic

condition guarantees µx+7 = 0, and applying (2.9),

0 = |〈ν | qx+4ψ〉|2 = |ψ(µ)− λψ(η)|2

where ν := αx+5αx+6µ and η := α∗x+4α
∗
x+7ν. However, ψ(η) = 0 by the previous case, and so once again

ψ(µ) = 0. An analogous argument holds if µs−9/2 = µs−11/2 = 1.
Thus, one concludes that ψ(µ) 6= 0 only if µ ∈ ranσΛ, completing the proof.

2.2 Open boundary conditions

A similar (but slightly more complicated) tiling construction describes the invariant subspaces that support ground
states of the Hamiltonian with open boundary conditions. The relevant lattice tilings come from restricting
periodic VMD tilings to a subinterval. Additional boundary tiles emerge when the restriction cuts through the
interior of a monomer or dimer tile. Listing only those truncated tiles that cannot be built from other tiles, this
produces the following set of boundary tiles:

1. On the left boundary:

a) The dimer Bl = (11000) covering five sites with particles on the first two sites.

2. On the right boundary:

a) The monomer M1 = (1) covering one site with a single particle.

b) The monomer M2 = (10) covering two sites with a particle on the first site.

c) The dimer D1 = (0110) covering four sites with a particle on the second and third sites.

d) The dimer D2 = (01100) covering five sites with a particle on the second and third sites.

e) The dimer Br = (011) covering three sites with particles on the last two sites.

A BVMD tiling T of the interval Λ = [a, b] is any covering of Λ consisting of voids V , monomers M , dimers
D, and boundary tiles. Of course, one can place any of the bulk tiles {V, M, D} at the boundary. However,
boundary tiles may only be placed on their respective boundary.

The truncated monomers, Mi, and dimers, Di, for i = 1, 2 give rise to new (reversible) replacement rules:

(100)(10)↔ (01100), (100)(1)↔ (0110) . (2.11)

The dimers Bl and Br cannot be replaced as the Hamiltonian preserves particle number and center of mass.
Combining these rules with (2.2) once again produces an equivalence relation on the set of all BVMD tilings

8



Figure 2: The set of all connected tilings T ↔ R associated with a root tiling R on an interval of 16 and 11 sites,

respectively. The second is the set of T ↔M
(2)
4 associated with the squeezed Tao-Thouless state ϕ(2)

4 .

TΛ, where we say two tilings are connected, T ′ ↔ T , if one tiling can be transformed into the other with a
finite number of replacements. The equivalence classes are again labeled by RΛ = {R ∈ TΛ : R a root tiling}
analogous to (2.3) where we classify R as a root tiling if it does not contain any dimers Di, i = 1, 2, 3, where
D3 := D, see Figure 2.

Severing a periodic VMD tiling between the first and last site of the ring creates a BVMD tiling. As a result,
the set of VMD tilings T per

Λ can be identified with a subset of TΛ. The configuration map σΛ : TΛ → {0, 1}|Λ|
remains injective after extending the domain, and the classification from Lemma 2.1 again holds with the minor
adjustment that the conditions are trivially assumed to be satisfied for any x ∈ Λc rather than considering addition
moduloL. Analogous versions of the other properties from Section 2.1 hold for the BVMD tilings. To state these,
we denote by

CΛ = span{|σΛ(T )〉 : T ∈ TΛ}, CΛ(R) = {|σΛ(T )〉 : T ↔ R} (2.12)

the space of all BVMD tilings and the BVMD subspace associated with R ∈ RΛ, respectively.

Theorem 2.4. Fix an interval Λ = [a, b]. The following properties apply to each root tiling R ∈ RΛ:

1. CΛ(R) ⊥ CΛ(R′) for any root R′ 6= R.

2. CΛ(R) is invariant under HΛ. As a consequence, so is CΛ =
⊕

R∈RΛ
CΛ(R).

3. GΛ ∩ CΛ(R) = span{ψΛ(R)} where

ψΛ(R) =
∑
T↔R

λd(T )|σΛ(T )〉 (2.13)

and d(T ) is the number of dimers Di, i = 1, 2, 3, in the tiling T .

4. If |Λ| ≥ 8, then ker(HΛ) = span{ψΛ(R) : R ∈ RΛ}.

The proof is a slight variation of arguments in Section 2.1. An alternate proof of the last property using a
different approach can be found in [22, Theorem 2.15].

Several other properties of the BVMD states ψΛ(R) will be important for the analysis in Section 3.1. Any
tiling T ∈ TΛ can be written in terms of its ordered tiling T = (T1, T2, . . . Tk) where

T1 ∈ {Bl} ∪ Dbulk, Tk ∈ {Br,Mi, Di : i = 1, 2} ∪ Dbulk.

and Ti ∈ Dbulk := {V,M,D} for all 2 ≤ i ≤ k − 1. Setting M3 = M , a special case is the root tiling

M
(i)
L = (M,M, . . . ,M,Mi)

9



which covers an interval Λi of 3(L−1)+i sites with Lmonomers for i = 1, 2, 3, see Figure 2. The corresponding
ground state ϕ(i)

L := ψΛi(M
(i)
L ) is called a squeezed Tao-Thouless state, and all BVMD states ψΛ(R) can be

written (up to boundary terms) as a product of such states and void states |0〉. Namely, if {v1, . . . , vn} denotes
the ordered set of sites covered with voids by R = (R1, . . . , Rk), then

ψΛ(R) = ψl ⊗ ϕL0 ⊗ |0〉v1 ⊗ . . .⊗ ϕLn−1 ⊗ |0〉vn ⊗ ψr (2.14)

where ϕL := ϕ
(3)
L , Li is the number of monomers between vi and vi+1 in R, L0 is the number of monomers to

the left of v1, Ln is the number of monomers to the right of vn and

ψl =

{
|11000〉 R1 = Bl

1 otherwise
, ψr =


ϕLn ⊗ |011〉 Rk = Br

ϕ
(i)
Ln

Rk = Mi

1 otherwise

,

see Figure 2. The choice of the right boundary condition, and placement of the last void vn will play a critical
role in classifying the tiling spaces CΛ(R) and, hence, the BVMD states ψΛ(R) for the martingale method in
Section 3.1.

The squeezed Tao-Thouless states ϕ(i)
L also satisfy a number of useful recursion relations. To state them, we

slightly abuse the notation and write

|D1〉 = |0110〉, |D2〉 = |01100〉, |D3〉 = |011000〉

as well as the simplified form |D〉 := |D3〉 for the configuration states associated with the dimers Di. Similarly
we write |Mi〉 for the configuration state associated with a monomer of length i = 1, 2, 3. Then for each
i ∈ {1, 2, 3} the squeezed Tao-Thouless states satisfy the following properties:

1. For any 1 ≤ j < i and n ∈ N, ϕ(i)
n = ϕ

(j)
n ⊗ |0〉⊗i−j .

2. For any l, r ∈ N with r ≥ 2

ϕ
(i)
l+r = ϕl ⊗ ϕ(i)

r + λϕl−1 ⊗ |D〉 ⊗ ϕ
(i)
r−1. (2.15)

3. For any n ≥ 2
ϕ(i)
n = ϕn−1 ⊗ |Mi〉+ λϕn−2 ⊗ |Di〉. (2.16)

As a consequence, ‖ϕ(i)
n ‖2 = ‖ϕn−1‖2 + |λ|2‖ϕn−2‖2 and the ratio

βn :=
‖ϕn−1‖2

‖ϕn‖2
=

1

β+

1− βn

1− βn+1
(2.17)

is a convergent sequence where β± = (1±
√

1 + 4|λ|2)/2 and β = β−
β+
∈ (−1, 0).

The various state decompositions are immediate after considering the set of tilings T ↔ M
(i)
n and the definition

of ψΛi(M
(i)
n ), see Figure 2 and (2.13). The norm equality is trivial as the two states on the RHS of (2.16) are

orthogonal. A full proof of (2.17) is given in [22, Lemma 2.13].
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2.3 Embeddings and isospectrality

Applying a spectral-gap method to a local Hamiltonian on some Hilbert spaceHΛ requires considering the action
of local Hamiltonians HΛ′ associated to smaller volumes Λ′ ⊆ Λ. For the model at hand, the tiling spaces will
play the role of the local Hilbert space. To illuminate a useful isospectral relationship, we examine the relation
between the (B)VMD tiling spaces associated with the Hamiltonians

HΛ′ ≤ HΛ ≤ Hper
Λ (2.18)

where Λ′ ⊆ Λ = [1, L] and we use the standard identification HΛ′ := HΛ′ ⊗ 1lΛ\Λ′ .
Both tiling spaces C#

Λ , with # ∈ {·, per}, from Sections 2.1-2.2 were defined so that they are invariant under
all interaction terms associated H#

Λ . Thus, these subspaces are then also invariant under all of the interaction
terms associated with HΛ′ , and so

HΛ′C#
Λ ⊆ C

#
Λ . (2.19)

The Hamiltonian HΛ′ only acts non-trivially on the portion of a tiling state |σΛ(T )〉 that covers Λ′. This corre-
sponds to the configuration obtained from truncating the tiling T to Λ′. The boundary tiles were introduced in
Section 2.2 so that the restriction agrees with a tiling on Λ′. Hence, there is a unique T �Λ′∈ TΛ′ such that

σΛ(T ) �Λ′= σΛ′(T �Λ′). (2.20)

A natural question is whether C#
Λ can be written in terms of BVMD tiling spaces CΛ′(R

′).

Lemma 2.5. Fix Λ′ = [a, b] ⊆ [1, L] = Λ. Then

CΛ =
⊕

R′∈RΛ′

⊕
µ∈ranσΛ :

µ=(µl,σΛ′ (R
′),µr)

|µl〉 ⊗ CΛ′(R
′)⊗ |µr〉. (2.21)

Moreover, if |Λ| ≥ |Λ′|+ 4, the same equality holds if one replaces CΛ in the LHS with Cper
Λ , and σΛ in the RHS

with σΛ �T per
Λ

.

In the above, µl and µr are the subconfigurations of µ supported on the subinterval of Λ to the left and right of
Λ′, respectively. In the case that one of these subintervals is empty, we use the convention |µ#〉 = 1. Here, we
also use the notation

ψl ⊗ V ⊗ ψr := {ψl ⊗ ψ ⊗ ψr : ψ ∈ V}

for a subspace V ⊆ H. The constraint |Λ| ≥ |Λ′| + 4 for the case of periodic boundary conditions here and
Corollary 2.6 below simply guarantees that all BVMD tilings on Λ′ can extend to a periodic VMD tiling on Λ.

The proof follows from the same reasoning used in [30, Lemma 3.3]. Since the truncated replacement rules
from (2.11) agree with the original rule (2.2) after appending one or two additional zeros, the claimed equality
(2.21) is a consequence of (2.20) noticing that for any T ′ ↔ R′ ∈ RΛ′ :

(µl, σΛ′(T
′), µr) ∈ ranσΛ ⇐⇒ (µl, σΛ′(R

′), µr) ∈ ranσΛ. (2.22)

This can be checked using the open boundary conditions version of Lemma 2.1. We illustrate (2.22) in Figure 3,
and leave the details of its proof to the reader.

The block decomposition in Lemma 2.5 implies that any operator A ∈ B(HΛ′) that leaves CΛ′(R
′) invariant

for all R′ ∈ RΛ′ also leaves C#
Λ invariant for each # ∈ {·,per}. This guarantees the following isospectral

relationships which are used in the application of the martingale method and finite size criterion in Sections 3.1-
3.2 below.
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Figure 3: A restricted tiling T ′ = T �Λ′∈ TΛ′ . Freezing the configurations outside of Λ′ and replacing T ′ with
any T ′′ ↔ T ′ again produces a tiling configuration on Λ.

Corollary 2.6. Let A ∈ B(HΛ′) be an operator which leaves CΛ′(R
′) invariant for each R′ ∈ RΛ′ . Then:

1. ‖A⊗ 1lΛ\Λ′‖CΛ = ‖A‖CΛ′ , where the subscript denotes the Hilbert space with which the norm is taken.

2. If A∗ = A, then spec(A⊗ 1lΛ\Λ′ �CΛ) = spec(A �CΛ′ )

Moreover, if |Λ| ≥ |Λ′|+ 4, the same relations hold when one replaces CΛ with Cper
Λ .

Proof. Since A leaves CΛ′(R
′) invariant for each R′ ∈ RΛ′ , Lemma 2.5 guarantees C#

Λ is invariant under A ⊗
1lΛ\Λ′ , and so

A⊗ 1lΛ\Λ′ �C#
Λ

= PC#
Λ

(A⊗ 1lΛ\Λ′)PC#
Λ

where PC#
Λ

is the orthogonal projection onto CΛ# . Moreover, as the BVMD-subspaces {CΛ′(R
′) : R′ ∈ RΛ′}

form family of orthogonal subspaces, A ⊗ 1lΛ\Λ′ is block diagonal with respect to the decomposition from
Lemma 2.5. Recalling that CΛ′ =

⊕
R′ CΛ′(R

′) and each CΛ′(R
′) is represented on the RHS of (2.21), the

second property is immediate. Additionally recognizing that

‖A⊗ 1lΛ\Λ′‖C#
Λ

= ‖PC#
Λ

(A⊗ 1lΛ\Λ′)PC#
Λ
‖HΛ

, ‖A‖CΛ′ = ‖PCΛ′APCΛ′‖HΛ

the first property again follows from the block diagonalization (2.21).

We end this section by providing an orthogonal basis for the intersection

CΛ ∩ (GΛ′ ⊗HΛ\Λ′).

The situation of interest for the gap estimate produced in Section 3.1 is when Λ′ and Λ only differ by the last
three sites, i.e.

Λ′ := [1, L− 3] ⊆ [1, L] =: Λ.

Using frustration-freeness, one immediately has

ψΛ(R) ∈ GΛ′ ⊗HΛ\Λ′ (2.23)

for all R ∈ RΛ, but this set is incomplete. Knowing how a single CΛ(R) decomposes in terms of the BVMD
spaces CΛ′(R

′) will help identify how to extend this to a basis. For Λ′ ⊆ Λ as above, this decomposition is
completely characterized by whether the replacement rules apply to the last two tiles of an arbitrary root tiling
R = (R1, . . . , Rk) ∈ RΛ, and so we set

RMM
Λ = {R ∈ RΛ |R ends in two or more monomers}. (2.24)
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Figure 4: An example of the decomposition of CΛ(R) for a root R ∈ RΛ \ RMM
Λ and R ∈ RMM

Λ , respectively.

For any R ∈ RΛ \ RMM
Λ , the particle content of the last three sites of any T ↔ R is left invariant as the

replacement rules do not apply. As a consequence, for all such R,

CΛ(R) = CΛ′(R
′)⊗ |σΛ(R) �Λ\Λ′〉, (2.25)

where R′ = R �Λ′ is such that (2.20) holds, see Figure 4.
On the other hand, if R = (R1, . . . , Rk−2,M,Mi) ∈ RMM

Λ for some i ∈ {1, 2, 3}, the set of tiles T ↔ R can
be partitioned into two sets: those ending in Mi, and those ending in Di. Setting RD = (R1, . . . , Rk−2, Di), this
produces

CΛ(R) =
(
CΛ′(R

′)⊗ |σΛ(R) �Λ\Λ′〉
)
⊕
(
CΛ′(R

′
D)⊗ |σΛ(RD) �Λ\Λ′〉

)
(2.26)

where R′ = R �Λ′ and R′D = RD �Λ′ , see Figure 4.
Recalling that each BVMD space CΛ′(R

′) supports a unique ground state by Theorem 2.4, it is immediately
clear from (2.25)-(2.26) that

dim
(
CΛ(R) ∩ (GΛ′ ⊗HΛ\Λ′)

)
=

{
1 R ∈ RΛ \ RMM

Λ

2 R ∈ RMM
Λ

. (2.27)

Hence, given the direct sum decomposition of CΛ and the orthogonality properties from Theorem 2.4, to extend
the BVMD states {ψΛ(R) : R ∈ RΛ} to an orthogonal basis of CΛ∩GΛ′⊗HΛ\Λ′ , one only needs to find a single
vector

ηΛ(R) ∈ CΛ(R) ∩ (GΛ′ ⊗HΛ\Λ′) such that 〈ηΛ(R) | ψΛ(R)〉 = 0 (2.28)

for each R ∈ RMM
Λ . For any such root tiling there is a unique n ≥ 2 and i ∈ {1, 2, 3} so that the ordered tiling

of R can be partitioned into two sub-roots R = (R̃,M
(i)
n ) where R̃ does not end in a monomer. (In the case that

R = M
(i)
n we use the convention that R̃ = ∅.) The next result shows that

ηΛ(R) := ψΛ(n,i)(R̃)⊗ η(i)
n (2.29)

satisfies both requirements from (2.28) where

η(i)
n := −λαn−1ϕn−1 ⊗ |Mi〉+ ϕn−2 ⊗ |Di〉 ∈ C[1,3(n−1)+i](M

(i)
n ) (2.30)

and Λ(n, i) ⊆ Λ is the subinterval covered by R̃.

Lemma 2.7. Suppose that Λ′ = [1, L− 3] ⊆ [1, L] = Λ for some L ≥ 4. Then

{ψΛ(R) : R ∈ RΛ} ∪ {ηΛ(R) : R ∈ RMM
Λ } (2.31)

is an orthogonal basis for CΛ ∩ GΛ′ ⊗HΛ\Λ′ .
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Proof. Given (2.27) and since

CΛ ∩ GΛ′ ⊗HΛ\Λ′ =
⊕
R∈RΛ

(
CΛ(R) ∩ GΛ′ ⊗HΛ\Λ′

)
,

we only need to verify that ηΛ(R) defined as in (2.29) satisfies (2.28). Recalling the recursion relation from
(2.16), it is straightforward to calculate 〈ϕ(i)

n | η(i)
n 〉 = 0 for all n ≥ 2 and i ∈ {1, 2, 3}. By the fragmentation

property (2.14) and (2.29),
〈ηΛ(R) | ψΛ(R)〉 = ‖ψΛ(n,i)(R̃)‖2〈ϕ(i)

n | η(i)
n 〉,

which implies the orthogonality condition (2.28).
Using the three properties of the squeezed Tao-Thouless state surrounding (2.15)-(2.17), the first term on the

RHS of (2.30) can be rewritten in order to conclude that there are roots R1, R2 ∈ RΛ′ so that

ψΛ′(R1) = ψΛ(n,i)(R̃)⊗ ϕ(i)
n−1, ψΛ′(R2) = ψΛ(n,i)(R̃)⊗ ϕn−2 ⊗ |D̃i〉

where |D̃1〉 = |0〉, |D̃2〉 = |01〉, and |D̃3〉 = |011〉. This proves that ηΛ(R) ∈ GΛ′ ⊗HΛ\Λ′ .

3 Uniform bulk gap via invariant subspaces

In this section, we adapt the novel method from [30] of establishing bulk spectral gaps in the presence of edge
states via invariant subspaces to the present case. Let us briefly review the general approach.

As we saw in Section 2.1, the periodic Hamiltonian Hper
Λ is block diagonal with respect to decomposition

HΛ = Cper
Λ ⊕ (Cper

Λ )⊥. The gap above its ground state space Gper
Λ ⊆ Cper

Λ therefore is

gap(Hper
Λ ) = min{E1(Cper

Λ ), E0((Cper
Λ )⊥)}

where

E1(Cper
Λ ) = inf

ψ∈Cper
Λ ∩(Gper

Λ )⊥

ψ 6=0

〈ψ | Hper
Λ ψ〉

‖ψ‖2
, E0((Cper

Λ )⊥) = inf
06=ξ∈(Cper

Λ )⊥

〈ξ | Hper
Λ ξ〉

‖ξ‖2
.

For our proof of Theorem 1.1., we establish separate bounds on E1(Cper
Λ ) and E0((Cper

Λ )⊥) that are (1) uniform
in the volume and (2) robustly positive in the limit λ→ 0. The estimate on E0((Cper

Λ )⊥) in Section 3.3 is model
specific and utilizes the characterization of tiling-state configurations in Lemma 2.1 to produce electrostatic
estimates. The bound on E1(Cper

Λ ) produced in Section 3.2 relies on a version of Knabe’s finite size criteria from
[12]. In turn, this estimate depends on a uniform lower bound on

gap(HΛ′ �Cper
Λ

) = inf
06=ψ∈Cper

Λ ∩G⊥
Λ′

〈ψ | HΛ′ψ〉
‖ψ‖2

(3.1)

for Λ′ ⊆ Λ sufficiently large, which is proved in Section 3.1 using the martingale method [19, 20]. Since (3.1)
involves the Hamiltonian HΛ′ with open boundary, one could worry that edge states, whose energies tend to zero
as λ→ 0 and which hinder the estimates of the bulk gap in [22], could again destroy the required robust estimates
on E1(Cper

Λ ). The reason this does not occur is that all of the low-lying edge states of HΛ′ belong to (Cper
Λ )⊥ and

hence do not enter (3.1). Cutting off the edge states before applying martingale or finite-volume analysis is the
core idea of the new method from [30].
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3.1 Martingale method

As a consequence of the isospectral and embedding properties in Corollary 2.6, a lower bound on the gap in (3.1)
is immediately obtained from a lower bound on

E1(CΛ) := sup
06=ψ∈CΛ∩G⊥Λ

〈ψ | HΛψ〉
‖ψ‖2

(3.2)

for any sufficiently large interval Λ = [1, L]. This will be established via the martingale method from [20]. The
idea behind this approach is to use a sequence of operators to effectively trap a single excitation to a finite region
independent of Λ. For the truncated ν = 1/3 model, the method will approximately localize an excitation to an
interval with 8 to 10 sites, which is captured by the norm bound (3.7) below.

To set up the method, write L = 3N + k for some N ≥ 2 and k ∈ {1, 2, 3}, and define two finite sequences
of Hamiltonians hn, Hn ∈ B(HΛ)

hn = HΛn , Hn =
n∑

m=2

hm, Λn =

{
[1, 6 + k] n = 2

[3n+ k − 8, 3n+ k], 2 < n ≤ N
(3.3)

for 2 ≤ n ≤ N . Furthermore, denote by gn and Gn the orthogonal projections onto the corresponding ground
state spaces ker(hn) = GΛn ⊗ HΛ\Λn and ker(Hn), respectively. Every interaction term (nxnx+2 or q∗xqx) is
supported on at least one and at most three of the intervals Λn. As each interaction is non-negative, for all
2 ≤ n ≤ N ,

H[1,3n+k] ≤ Hn ≤ 3H[1,3n+k], (3.4)

and, in particular, the ground state spaces agree, i.e. ker(Hn) = G[1,3n+k] ⊗ HΛ\[1,3n+k]. Finally, define a
resolution of the identity defined in terms the ground state projections:

En :=


1l−G2, n = 1

Gn −Gn+1, 2 ≤ n ≤ N − 1

GN , n = N.

(3.5)

We consider the restrictions of these operators to CΛ. As discussed in Section 2.3, both Hn and hn (and,
thus, their corresponding ground-state projections) leave CΛ invariant. To simplify notation, denote by AV the
restriction of an operator A ∈ B(HΛ) to an invariant subspace V ⊆ HΛ, i.e.

AV := A �V= PVAPV (3.6)

where PV is the orthogonal projection onto V . In particular, invariance implies A = AV +AV
⊥

.

Theorem 3.1. Fix Λ = [1, L] with L ≥ 10. The restrictions of the operators hn, Hn, gn and En to CΛ, defined
as in (3.3)-(3.6), satisfy the following three properties for all 2 ≤ n ≤ N :

1. hCΛn ≥ κ(1l− gn)CΛ

2. [gCΛn , ECΛm ] 6= 0 only if m ∈ [n− 3, n− 1].

3. For|λ| 6= 0, the ground state projections satisfies

‖gCΛn ECΛn−1‖
2 ≤ f(|λ|2) := sup

k≥4
fk(|λ|2) (3.7)

where, given βk from (2.17),

fk(r) = rβkβk−2

(
[1− βk−1(1 + r)]2

1 + 2r
+ βk−3

r(1− βk−1)2

1 + r

)
. (3.8)
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Figure 5: The root tilings Ri1 and Ri2 for i = 1, 2, 3 obtained by truncating tilings T ∈ CΓ(n,i)(M
(i)
N ) to Λ2.

As a consequence, if |λ| > 0 and f(|λ|2) < 1/3, the spectral gap of HΛ � CΛ is bounded from below by

E1(CΛ) ≥ κ

3

(
1−

√
3f(|λ|2)

)2
. (3.9)

The main challenge to prove of Theorem 3.1, which is left to the end of this subsection, is to establish the third
property.

Lemma 3.2. Fix |λ| > 0 and L ≥ 10, and define Λ = [1, L], Λ1 = [1, L− 3] and Λ2 = [L− 8, L]. Then

‖GΛ2(1l−GΛ)GΛ1‖2CΛ ≤ f(|λ|2) (3.10)

where GΛ′ is the orthogonal projection onto the ground state space GΛ′ ⊗HΛ\Λ′ .

Proof. The frustration-free property and Theorem 2.4 guarantee that GΛ ⊆ DΛ
Λ1

:= GΛ1 ⊗ HΛ\Λ1
∩ CΛ. As a

consequence, the norm can be expressed as

‖GΛ2(1l−GΛ)GΛ1‖2CΛ = sup
06=ψ∈G⊥Λ ∩D

Λ
Λ1

‖GΛ2ψ‖2

‖ψ‖2
. (3.11)

The subspace DΛ
Λ1

is of the form considered in Lemma 2.7 and since the BVMD states ψΛ(R) form a basis for
the ground-state space GΛ, this yields

G⊥Λ ∩ DΛ
Λ1

= span{ηΛ(R) : R ∈ RMM
Λ }.

We first bound ‖GΛ2ηΛ(R)‖2 for each R ∈ RMM
Λ and then generalize this to an arbitrary ψ ∈ G⊥Λ ∩ DΛ

Λ1
.

Factoring ηΛ(R) as in (2.29), the first step breaks into two cases determined by whether or not Γ(n, i) :=
Λ \ Λ(n, i) is a subset of Λ2.

If n = 2, 3, then Γ(n, i) ⊆ Λ2 as |Γ(n, i)| ≤ 9, and the frustration-free property of the ground-state space
implies that GΛ2 = GΛ2GΓ(n,i). Therefore, applying (2.29),

GΛ2ηΛ(R) = GΛ2

(
ψΛ(n,i)(R̃)⊗GΓ(n,i)η

(i)
n

)
= 0, (3.12)

where the last equality holds since η(i)
n , ϕ

(i)
n ∈ CΓ(n,i)(M

(i)
n ) are orthogonal, and η(i)

n is orthogonal to all other
BVMD states in CΓ(n,i) by the subspace orthogonality relations, see Theorem 2.4.

If n ≥ 4, then applying Theorem 2.4, GΛ2 can be expressed (up to a factor of the identity) as

GΛ2 =
∑

R∈RΛ2

|ψΛ2(R)〉〈ψΛ2(R)|
‖ψΛ2(R)‖2

, (3.13)

and GΛ2ηΛ(R) = ψΛ(n,i)(R̃) ⊗ GΛ2η
(i)
n as the support of the projection satisfies Λ2 ⊆ Γ(n, i). We only need

to consider the states ψΛ2(R) that have a nonzero overlap with η(i)
n ∈ CΓ(n,i)(M

(i)
n ). These are identified by
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the set of tilings produced from restricting M (i)
n �Λ2 . For each case i ∈ {1, 2, 3}, there are precisely two roots

Ri1, R
i
2 ∈ RΛ2 (sketched in Figure 5) whose connected tilings T ↔ Rik are obtained as such restrictions. Using

(2.30) and the recursion relations (2.15)–(2.16) to rewrite η(i)
n and these two BVMD states, a direct calculation

then yields

GΛ2η
(i)
n =

∑
m=1,2

|ψΛ2(Rim)〉〈ψΛ2(Rim)|
‖ψΛ2(Rim)‖2

η(i)
n

=
λ(1− βn−1‖ϕ2‖2)

‖ϕ3‖2
ϕn−3 ⊗ ϕ(i)

3 +
|λ|2(1− βn−1)

‖ϕ2‖2
ϕn−4 ⊗ |D〉 ⊗ ϕ(i)

2 . (3.14)

The norm of η(i)
n can be expressed as ‖η(i)

n ‖2 = ‖ϕn−3‖2/(βnβn−2) using (2.30). Combined with (3.14) and
substituting ‖ϕ(i)

3 ‖2 = 1 + 2|λ|2 and ‖ϕ(i)
2 ‖ = 1 + |λ|2, this produces the final estimate

‖GΛ2ηΛ(R)‖2 = fn(|λ|2)‖ηΛ(R)‖2. (3.15)

The mutual orthogonality of the BVMD spaces from Theorem 2.4 implies that {GΛ2ηΛ(R) : R ∈ RMM
Λ } is

again a set of orthogonal states as each CΛ(R) is invariant under GΛ2 . Thus, for an arbitrary ψ ∈ DΛ
Λ1

,

‖GΛ2ψ‖2 ≤ sup
n≥4

fn(|λ|2)‖ψ‖2 = f(|λ|2)‖ψ‖2,

by (3.12) and (3.15). Hence, (3.10) follows from (3.11).

We can now prove the lower bound on E1(CΛ) from Theorem 3.1.

Proof of Theorem 3.1. If Properties 1-3 hold, then by the martingale method [20, Theorem 5.1],

gap(HCΛN ) := sup
06=ψ∈G⊥Λ ∩CΛ

〈ψ | HNψ〉
‖ψ‖2

≥ κ(1−
√

3f(|λ|2))2.

The operator inequality (3.4) still holds when the Hamiltonians are restricted to the invariant subspace CΛ. It
implies E1(CΛ) ≥ gap(HCΛN )/3, and the claim follows. Thus, one needs only verify the three properties.

1. By translation invariance, one trivially has for all n ≥ 2,

hCΛn ≥ min
k∈{7,8,9}

E1(C[1,k])(1l− gn)CΛ

as hn = HΛn with |Λn| ∈ {7, 8, 9}. The value κ = infk∈{7,8,9}E1(C[1,k]) is obtained by calculating the gap in
each BVMD space C[1,k](R) and taking the minimum. This establishes Property 1.

2. Since CΛ is invariant under each gn and Em, the commutator can be expressed as

[gCΛn , ECΛm ] = PCΛ [gn, Em]PCΛ

where PCΛ is the orthogonal projection onto CΛ. For m < n − 3, the support of Em and gn is disjoint and the
operators commute. For m > n − 1, the support of gn = GΛn is contained in the support of Gm = G[1,3m+k]

and Gm+1 = G[1,3(m+1)+k]. Hence, gnEm = Emgn = Em for such m by (3.5) and frustration-freeness. This
establishes Property 2.

3. The claim is trivial for n = 2 as g2E1 = 0. For any 3 ≤ n ≤ N , similar to Property 2, the norm can be
rewritten as

‖gCΛn ECΛn−1‖ = ‖PCΛgnEn−1PCΛ‖ = ‖gnEn−1‖CΛ .
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Notice that supp(gnEn−1) ⊆ Λ̃n := [1, 3n + k] and, moreover, CΛ̃n
(R) is invariant under gnEn−1 for all

R ∈ RΛ̃n
. Thus, by Corollary 2.6,

‖gnEn−1‖CΛ = ‖gnEn−1‖CΛ̃n = ‖GΛ̃n\Λ̃n−3
(1l−GΛ̃n

)GΛ̃n−1
‖CΛ̃n

where we have inserted the definitions of gn and En−1, and applied the frustration-free property to factor En−1.
The last expression is of the form treated in Lemma 3.2, which establishes Property 3.

3.2 Finite size criterion

It is now possible to produce a bound on E1(Cper
Λ ) that is both |Λ| independent and is strictly positive in the limit

λ→ 0. To do so, we employ the variant of Knabe’s finite size criterion [12] found in [22, Theorem 3.10] together
with the open-boundary-conditions bound from Theorem 3.1. The final bound will additionally depend on two
constants

κ = min
k∈{6,7,8}

E1(C[1,k]), κ(1 + 2|λ|2) = max
k∈{6,7,8}

‖H[1,k]‖C[1,k]
(3.16)

which are calculated by determining the gap, resp. norm, of the Hamiltonian restricted to each BVMD space
C[1,k](R) and then taking the minimum, resp. maximum, over all R and k.

Theorem 3.3. Fix n ≥ 2. Then for any ring Λ = [1, L] with L ≥ 3n+ 9,

E1(Cper
Λ ) ≥ n

2(1 + 2|λ|2)(n− 1)

[
min

3≤k≤5
E1(C[1,3n+k])−

κ(1 + 2|λ|2)

n

]
. (3.17)

The proof proceeds in a series of general operator inequalities that imply gap bounds. Namely, the kernels of
a pair of non-negative operators A,B ∈ B(H) necessarily agree if there constants c, C > 0 such that cB ≤ A ≤
CB. If this kernel is nontrivial, then it is a ground-state space of both operators, and the inequality lifts to their
respective spectral gaps, i.e.

c gap(B) ≤ gap(A) ≤ C gap(B). (3.18)

For simplicity, we will refer to such a pair as gap equivalent operators. For a frustration-free Hamiltonian H , a
simple way to construct a gap equivalent operator is to take P = 1l − G where G is the orthogonal projection
onto its ground state space, ker(H). This is sometimes referred to as the spectrally flattened Hamiltonian, and it
satisfies

gap(H)P ≤ H ≤ ‖H‖P. (3.19)

Spectrally flattened Hamiltonians can be used to construct course-grained versions of a frustration-free quantum
spin model which are amenable to finite size criterion. This is the approach taken here.

Proof. We write L = 3N + r for some r ∈ {3, 4, 5}. Similar to the martingale method, we introduce a sequence
of intervals Λm, 1 ≤ m ≤ N + 1, that cover the ring Λ in such a way that every interaction term (nxnx+2 or
q∗xqx) is supported on at least one and at most two of the intervals; specifically,

Λm =

{
[3m− 2, 3m+ 3], 1 ≤ m ≤ N,
[L− r + 1, L+ 3] m = N + 1,

(3.20)

where we identify x ≡ x+ L in the ring geometry. Thus, the operator bounds

HΛn,k ≤
n+k−1∑
m=k

HΛm ≤ 2HΛn,k , Hper
Λ ≤

N+1∑
m=1

HΛm ≤ 2Hper
Λ (3.21)
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hold for each 1 ≤ k ≤ N+1, where Λn,k =
⋃n+k−1
m=k Λm and the addition n+k−1 is understood moduloN+1.

These inequalities also hold when the operators are restricted to Cper
Λ as this is an invariant subspace of all of the

Hamiltonians. Notice that the intervals Λn,k satisfy 3n + 3 ≤ |Λn,k| ≤ 3n + 5 for all k. Since |Λ| ≥ 3n + 9,
translation invariance and Corollary 2.6 imply the first gap bound

min
1≤k≤N+1

gap(HΛn,k �Cper
Λ

) ≥ min
3≤k≤5

E1(C[1,3n+k]). (3.22)

We replace HΛn,k �Cper
Λ

and Hper
Λ �Cper

Λ
with gap equivalent Hamiltonians that are amenable to finite-size

criteria. These are obtained from the spectrally flattened Hamiltonians Pm : Cper
Λ → Cper

Λ that are the orthogonal
projections onto ran(HΛm �Cper

Λ
). Corollary 2.6 implies that spec(HΛm �Cper

Λ
) = spec(HΛm �CΛm ). Therefore,

by (3.19)
κPm ≤ HΛm �Cper

Λ
≤ κ(1 + 2|λ|2)Pm

where we invoke (3.16) since |Λm| ∈ {6, 7, 8}. Summing the above over appropriate values of m and applying
the restricted form of (3.21) produces

κ

2
Hn,k ≤ HΛn,k �Cper

Λ
≤ κ(1 + 2|λ|2)Hn,k,

κ

2
HN ≤ Hper

Λ �Cper
Λ
≤ κ(1 + 2|λ|2)HN (3.23)

where Hn,k, HN ∈ B(Cper
Λ ) are the gap equivalent Hamiltonians defined by

Hn,k =
n+k−1∑
m=k

Pm, HN =
N+1∑
m=1

Pm.

The second set of operator inequalities in (3.23) guarantees that HN is a frustration-free Hamiltonian as the
kernel is nontrivial and Pm ≥ 0 for all m. In addition, any pair of distinct intervals Λl and Λm are disjoint unless
|l−m| = 1 or {l,m} = {1, N + 1}. Since Pmψ = (1l−GΛm)ψ, for all ψ ∈ Cper

Λ , this implies that [Pm, Pl] = 0
under the same constraints. Thus, the Hamiltonians Hn,k, HN ∈ B(Cper

Λ ) satisfy the conditions of [22, Theorem
3.10], and so the respective spectral gaps satisfy

gap(HN ) ≥ n− 1

n

(
min

1≤k≤N+1
gap(Hn,k)−

1

n

)
. (3.24)

Equations (3.18) and (3.23) imply that

E1(Cper
Λ ) = gap(Hper

Λ �Cper
Λ

) ≥ κ

2
gap(HN ), gap(Hn,k) ≥

1

2κ(1 + 2|λ|2)
gap(HΛn,k �Cper

Λ
). (3.25)

Hence, the result is an immediate consequence of combining the bounds in (3.22) and (3.24)-(3.25).

3.3 Electrostatic estimates

The desired lower bound on E0((Cper
Λ )⊥) is the focus of this section. The subspace (Cper

Λ )⊥ is spanned by the set
of configuration states labeled by the set

SΛ := {0, 1}|Λ| \ ran(σΛ �T per
Λ

).

Our main objective is to identify a constant γ = γ(κ, λ) > 0, which is independent of Λ and strictly positive in
the limit λ→ 0, so that the expected energy for any state ψ =

∑
µ∈SΛ

ψ(µ)|µ〉 satisfies

〈ψ | Hper
Λ ψ〉 =

∑
µ∈S(1)

Λ

eΛ(µ)|ψ(µ)|2 + κ
∑

ν∈{0,1}|Λ|

∑
x∈Λ

|〈ν | qxψ〉|2 ≥ γ‖ψ‖2, (3.26)
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where eΛ(µ) =
∑

x∈Λ µxµx+2 is the electrostatic energy associated with µ, and

S(1)
Λ :=

{
µ ∈ {0, 1}|Λ| : eΛ(µ) ≥ 1

}
⊆ SΛ.

As is evident from (3.26), the main challenge comes from the configurations µ ∈ SΛ\S(1)
Λ . Lemma 2.1 implies

these can be partitioned into the following two sets (which are understood with the convention x ≡ x+ |Λ|):

S(2)
Λ =

{
µ ∈ {0, 1}|Λ| : µx = µx+1 = 1, µx−3 + µx+4 ≥ 1 for some x ∈ Λ

}
\ S(1)

Λ

S(3)
Λ =

{
µ ∈ {0, 1}|Λ| : µx = µx+1 = µx−4 = µx−5 = 1 for some x ∈ Λ

}
\ (S(1)

Λ ∪ S(2)
Λ ).

Recalling the notation from (2.9), the strategy for the next result is to use this classification to pick a config-
uration ν ∈ {0, 1}|Λ| and site x ∈ Λ for each µ ∈ S(2)

Λ ∪ S(3)
Λ so that µ ∈ {α∗x+1α

∗
x+2ν, α

∗
xα
∗
x+3ν}, and then

estimate
|〈ν | qxψ〉|2 = |ψ(α∗x+1α

∗
x+2ν)− λψ(α∗xα

∗
x+3ν)|2

from below by a linear combination of |ψ(α∗x+1α
∗
x+2ν)|2 and |ψ(α∗xα

∗
x+3ν)|2.

Theorem 3.4. Suppose that Λ = [1, L] with L ≥ 11 and |λ| > 0. Then, E0(Cper
Λ )⊥) ≥ γper, where as defined

in (1.8),

γper =
1

3
min

{
1,

κ

2 + 2κ|λ|2
,

κ

1 + κ

}
.

Proof. We fix ψ ∈ (Cper
Λ )⊥and consider separately all µ ∈ SΛ in the support of ψ to establish (3.26).

Case µ ∈ S(1)
Λ : One trivially has the lower bound

eΛ(µ)|ψ(µ)|2 ≥ |ψ(µ)|2 =: γ(1)|ψ(µ)|2. (3.27)

For future purpose, we additionally set Tψ(µ) := 0.
Case µ ∈ S(2)

Λ : Set x ≡ xµ = max{y ∈ [1, L] : µy+1 = µy+2 = 1 ∧ µy−2 + µy+5 ≥ 1}. Except those
sites indicated by this set, all other sites between [x − 2, x + 5] are unoccupied since µ /∈ S(1)

Λ . Thus, both
ν = αx+1αx+2µ and η(µ) ≡ η = α∗xα

∗
x+3ν are nonempty configurations. By the Cauchy-Schwarz inequality,

the lower bound

Tψ(µ) := |〈ν | qxψ〉|2 = |ψ(µ)− λψ(η)|2 ≥ (1− δ)|ψ(µ)|2 − |λ|2 1− δ
δ
|ψ(η)|2

holds for all δ ∈ (0, 1). Choosing δ = κ|λ|2
1+κ|λ|2 , and noting that eΛ(η) ≥ 1 produces the final estimate

eΛ(η)|ψ(η)|2 + κTψ(µ) ≥ κ

1 + κ|λ|2
|ψ(µ)|2 =: γ(2)|ψ(µ)|2. (3.28)

Case µ ∈ S(3)
Λ : Set x ≡ xµ = max{y ∈ [1, L] : µy+1 = µy+2 = µy−3 = µy−4 = 1}. Again, since

µ /∈ S(1)
Λ ∪ S(2)

Λ all other (non-required) sites between [x − 4, x + 3] are unoccupied. Thus, the following four
configurations are nonempty:

ν = αx+1αx+2µ, η′ = α∗xα
∗
x+3ν, ν ′ = αx−3αxη

′, η(µ) ≡ η = α∗x−2α
∗
x−1ν

′,
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and for all δ, δ′ ∈ (0, 1) the Cauchy-Schwarz inequality yields

Tψ(µ) :=|〈ν | qxψ〉|2 + |〈ν ′ | qx−3ψ〉|2 = |ψ(µ)− λψ(η′)|2 + |ψ(η)− λψ(η′)|2

≥(1− δ)|ψ(µ)|2 + |λ|2
(

1− δ′ − 1− δ
δ

)
|ψ(η′)|2 − 1− δ′

δ′
|ψ(η)|2.

By considering its occupation on [x − 4, x + 3], it is easy to check that eΛ(η) = 1. Hence, choosing δ′ = κ
κ+1

and δ = 1
2−δ′ gives

eΛ(η)|ψ(η)|2 + κTψ(µ) ≥ κ

1 + κ
|ψ(µ)|2 =: γ(3)|ψ(µ)|2. (3.29)

In each of the three cases i ∈ {1, 2, 3} the pairs (x, ν) that contribute to Tψ(µ) for any µ ∈ S(i)
Λ are unique.

Thus, for fixed i,

γ(i)
∑
µ∈S(i)

Λ

|ψ(µ)|2 ≤
∑
µ∈S(i)

Λ

(
eΛ(η(µ))|ψ(η(µ))|2 + κTψ(µ)

)
≤ ci

∑
η∈S(1)

Λ

eΛ(η)|ψ(η)|2 + κ
∑

ν∈{0,1}|Λ|

∑
x∈Λ

|〈η | qxψ〉|2 ≤ ci〈ψ | HΛψ〉 (3.30)

where ci := max
η∈S(1)

Λ

|{µ ∈ S(i)
Λ : η(µ) = η}| ≥ 1. The claimed bound is then a consequence of dividing by ci

and summing over i. Thus, the result follows from determining ci for i = 1, 2, 3.
It is trivial that c1 = 1. The values c2 = 2 and c3 = 1 can be determined for noting that there is an interval

Λ′x ⊆ Λ of at most 8 sites near x = xµ that contains all sites of η = η(µ) that contribute to the electrostatic
energy. The constraint |Λ| ≥ 11 guarantees this interval can be uniquely identified in the ring geometry. In the
case of c3, eΛ(η) = ηx−4ηx−2, from which it is possible to identify x and map back to the unique µ. In the
case of c2, depending on the value of ηx−2 + ηx+5 ≥ 1, we have eΛ(η) = ηx−2ηx + ηx+3ηx+5 ∈ {1, 2}. When
eΛ(η) = 1, it is not always possible to determine if the electrostatic energy comes from the interval [x− 2, x] or
[x+ 3, x+ 5], which accounts for the value c2 = 2.

A similar approach can be used produce a lower bound

E0(C⊥Λ ) := sup
06=ψ∈C⊥Λ

〈ψ | HΛψ〉
‖ψ‖2

≥ γobc

with 0 < γobc = O(|λ|2) reflecting the presence of the edge modes discussed in the introduction and [22]. The
difference in the bound is due to configurations µ ∈ S(2)

Λ where the pair of nearest-neighbor occupied sites are
along the boundary of Λ.

3.4 Proof of Theorem 1.1

We now provide the final details in the proof of the main result.

Proof of Theorem 1.1. Fix |Λ| ≥ 18 and let n = n(|Λ|) ≥ 3 be the largest integer so that |Λ| ≥ 3n + 9. The
subspace Cper

Λ is invariant under Hper
Λ . Thus, the Hamiltonian is block diagonal with respect to the Hilbert space
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decompositionHΛ = Cper
Λ ⊕ (Cper

Λ )⊥. Since Gper
Λ ⊆ Cper

Λ , Theorem 3.3 and Theorem 3.4 imply

gap(Hper
Λ ) = min{E0((Cper

Λ )⊥), E1(Cper
Λ )}

≥ min

{
γper,

1

2(1 + 2|λ|2)

[
min

3≤k≤5
E1(C[1,3n+k])−

κ(1 + 2|λ|2)

n

]}
≥ min

{
γper,

κ

6(1 + 2|λ|2)

(
1−

√
3f(|λ|2)

)2
− κ

2n

}
where in the last inequality we have used Theorem 3.1 to bound E1(C[1,3n+k]). The result immediately follows.
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