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Abstract

We are going to study the limiting spectral measure of fixed dimensional Hermitian block-
matrices with large dimensional Wigner blocks. We are going also to identify the limiting
spectral measure when the Hermitian block-structure is Circulant. Using the limiting spectral
measure of a Hermitian Circulant block-matrix we will show that the spectral measure of a
Wigner matrix with k−weakly dependent entries need not to be the semicircle law in the limit.

1 Preliminaries and main results

Let Mn(C) be the space of all n × n matrices with complex-valued entries. Define the nor-
malized trace of a matrix A = (Aij)

n
i,j=1 ∈ Mn(C) to be trn(A) := 1

n

∑n
i=1 Aii.

Definition 1. The spectral measure of a Hermitian n×n matrix A is the probability measure
µA given by

µA =
1

n

n∑

j=1

δλj

where λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A and δx is the point mass at x.

The weak limit of the spectral measures µAn
of a sequence of matrices {An} is called the

limiting spectral measure. We will denote the weak convergence of a probability measure µn

to µ by

µn
D−→ µ as n → ∞.

Definition 2. A finite symmetric block-structure Bk(a, b, c, . . . ) (or shortly Bk) over a finite
alphabet K = {a, b, c, . . . } is a k × k symmetric matrix whose entries are elements in K.
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If Bk is a k×k symmetric block-structure and A,B,C, . . . are n×n Hermitian matrices, then
Bk(A,B,C, . . . ) is an nk × nk Hermitian matrix. One of the interesting block structures is
the k × k symmetric Circulant over {a1, a2, . . . , ak} that is defined as

Ck(a1, a2, . . . , ak) =
1√
k




a1 a2 a3 . . . ak

ak a1 a2 . . . ak−1

ak−1 ak a1 . . . ak−2

...
...

...
. . .

...
a2 a3 a4 . . . a1




(1)

where aj = ak−j+2 for j = 2, 3, . . . , k.

A random matrix A is a matrix whose entries are random variables. If Bk is a block-structure
and A,B,C, . . . are random matrices, then Bk(A,B,C, . . . ) is a random block-matrix.

Definition 3. We call an n×n Hermitian random matrix A = 1√
n
(Xij)

n
i,j=1 a Wigner matrix

if {Xij ; 1 ≤ i < j} is a family of independent and identically distributed complex random
variables such that E(X12) = 0 and E(|X12|2) = σ2. In addition, {Xii; i ≥ 1} is a family
of independent and identically distributed real random variables that is independent of the
upper-diagonal entries. We will denote all such Wigner matrices of order n by Wigner(n, σ2).

If {An} is a sequence of Wigner(n, σ2) matrices, then by Wigner’s Theorem (cf. [2]),

µAn

D−→ γ0,σ2 as n → ∞ a.s.

where γα,σ2 is the semicircle law centered at α and of variance σ2 which is given as

γα,σ2(dx) =
1

2πσ2

√
4σ2 − (x − α)2 1[α−2σ,α+2σ](x)dx.

Now we are ready to state the main result of this paper.

Theorem 1 (Existence Theorem). Consider a family of independent Wigner(n, 1) ma-

trices
(
{A(i)

n } : i = 1, . . . , h
)

for which E(|A(i)
12 |4) < ∞ and E(A

(i)
11 )2 < ∞ for every i. For a

fixed k × k symmetric block-structure Bk, define

Xn,k := Bk(A(1)
n ,A(2)

n , . . . ,A(h)
n ).

Then there exists a unique non-random symmetric probability measure µBk
with a compact

support in R which depends only on the block-structure Bk such that

µXn,k

D−→ µBk
as n → ∞ a.s.

In [5], Far et al. introduced a method to find the limiting spectral measure of random block-
matrices with Gaussian blocks and showed how that is applicable to wireless communications.
Since our Theorem 1 implies that the law µBk

does not depend on the distribution of the entries

of the blocks A
(i)
n , the results in [5] have wider applicability than stated there. In particular,

they hold for matrices with real Gaussian or non-Gaussian entries. The proof of Theorem 1
relies on free probability theory and will be given in Section 2.2.
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Consider the symmetric Circulant block-matrix Ck defined in (1). If A
(1)
n ,A

(2)
n , . . . ,

A
(⌊ k

2 ⌋+1)
n are independent Wigner(n, 1) for every n, then Theorem 1 insures the existence of

a non-random probability measure νk such that

µ
Ck(A

(1)
n ,A

(2)
n ,...,A

(⌊ k
2
⌋+1)

n )

D−→ νk as n → ∞ a.s.

However, Theorem 1 doesn’t specify νk but we will identify it in the following proposition.

Proposition 1. If A
(1)
n ,A

(2)
n , . . . ,A

(⌊ k
2 ⌋+1)

n are independent Wigner(n, 1) for every n, then

µ
Ck(A

(1)
n ,A

(2)
n ,...,A

(⌊ k
2
⌋+1)

n )

D−→ νk as n → ∞ a.s.

where

νk =





k−1
k γ0, k−1

k
+ 1

k γ0, 2k−1
k

, if k is odd;

k−2
k γ0, k−2

k
+ 2

k γ0, 2k−2
k

, if k is even.

Proof. Since A
(j)
n = A

(k−j+2)
n for j = 2, 3, . . . , k; then [4, Theorem 3.2.2.] implies that

Ck(A
(1)
n ,A

(2)
n , . . . ,A

(⌊ k
2 ⌋+1)

n ) has the same eigenvalues as {B(j)
n ; j = 1, . . . , k} where

B(j)
n :=

1√
k

[A(1)
n + 2

(k+1)/2∑

ℓ=2

cos(
2π(ℓ − 1)(j − 1)

k
)A(ℓ)

n ] (2)

if k is odd, and

B(j)
n :=

1√
k

[A(1)
n + 2

k/2∑

ℓ=2

cos(
2π(ℓ − 1)(j − 1)

k
)A(ℓ)

n + cos((j − 1)π)A
( k
2 +1)

n ] (3)

if k is even. Hence,

µ
Ck(A

(1)
n ,A

(2)
n ,...,A

(⌊ k
2
⌋+1)

n )
=

1

k

k∑

j=1

µ
B

(j)
n

.

Using the well known trigonometric sum
∑N

ℓ=0 cos(ℓx) = 1
2 (

sin((N+ 1
2 )x)

sin x
2

+ 1), one can check

that
N∑

ℓ=0

cos2(ℓx) =
1

2
(N +

3

2
+

sin((2N + 1)x)

sinx
). (4)

Consider the case when k is odd. In Equation (2), for j 6= 1, B
(j)
n is a Wigner(n, k−1

k ) where

the variance of the off-diagonal entries of B
(j)
n is given by 1

k [1 + 4
∑(k+1)/2

ℓ=2 cos2( 2π(ℓ−1)(j−1)
k )]

which turns out to be k−1
k by Equation (4). For j = 1, B

(1)
n is simply a Wigner(n, 2k−1

k ).

Hence, Wigner’s theorem for B
(1)
n and the rest k−1 Wigner matrices B

(j)
n ; j = 2, . . . , k finishes

the proof of the odd case.
The case when k is even follows from a similar argument by showing that for j = 1, k

2 + 1;

B
(j)
n is a Wigner(n, 2k−2

k ) and for j 6= 1, k
2 + 1; B

(j)
n is a Wigner(n, k−2

k ).
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In [2, p.626], Bai raised the question of whether Wigner’s theorem is still holding true when
the independence condition in the Wigner matrix is weakened. Schenker and Schulz-Baldes
[11] provided an affirmative answer under some dependency assumptions in which the number
of correlated entries doesn’t grow too fast and the number of dependent rows is finite. After
the first draft of the underlying paper was completed, we have learnt that Anderson and
Zeitouni [1] showed that it doesn’t hold in general and they gave an example in which the
limiting spectral distribution is the free multiplicative convolution of the semicircle law and
shifted arcsine law. In the rest of this section, we are going to use the following corollary of
Proposition 1 to give another example.
Let W(a11, a12, . . . , ann) be the Wigner symmetric block-structure, i.e.,

W(a11, a12, . . . , ann) =




a11 a12 . . . a1n

a12 a22 . . . a2n

...
...

. . .
...

a1n a2n . . . ann


 .

Consider the family of k × k random matrices {Aij : i, j ≥ 1} such that Aij = Aji and
Aij = Ck(aij , bij , cij , . . .) where {aij , bij , cij , . . . : i, j ≥ 1} are independent and identically
distributed random variables with variance one. Then Kn,k := W(A11,A12, . . . ,Ann) is an
kn × kn symmetric matrix.

Corollary 1. Fix k ∈ N. The limiting spectral measure of Kn,k is given by

µKn,k

D−→ νk as n → ∞ a.s.

In order to prove this corollary we need the following definitions. Let A and B be n × m and
k × ℓ matrices, respectively. By ⊗ we mean here the Kronecker product for which A ⊗ B =
(AijB)i=1,...,n;j=1,...,m is an nk ×mℓ matrix. The (p, q)-commutation matrix Pp,q is a pq × pq
matrix defined as

Pp,q =

p∑

i=1

q∑

j=1

Eij ⊗ ET
ij

where Eij is the p× q matrix whose entries are zero’s except the (i, j)−entry is 1. It is known
that P−1

p,q = PT
p,q = Pq,p and Pn,k(A ⊗ B)Pℓ,m = B ⊗ A (cf. [7]).

Proof. Since Kn,k =
∑n

i,j=1 Ẽij ⊗ Aij where Ẽij is the n × n matrix whose entries are zero’s
except the (i, j)−entry is 1. Hence

Pk,nKn,kPn,k =
∑n

i,j=1 Aij ⊗ Ẽij

=
∑n

i,j=1 Ck(aij , bij , cij , . . .) ⊗ Ẽij

=
∑n

i,j=1 Ck(aijẼij , bijẼij , cijẼij , . . .)

= Ck(
∑n

i,j=1 aijẼij ,
∑n

i,j=1 bijẼij ,
∑n

i,j=1 cijẼij , . . .)

= Ck(An,Bn,Cn, . . .)

where An = (aij)
n
i,j=1, Bn = (bij)

n
i,j=1, Cn = (cij)

n
i,j=1, . . . are independent Wigner(n, 1)

matrices. Therefore, Kn,k and Ck(An,Bn,Cn, . . .) are similar to each other and so have the
same eigenvalues. Thus the result follows.
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Now, we define the distance on N2 by d ((i, j), (i′, j′)) = max{|i−i′|, |j−j′|} and for S, T ⊂ N2;
d (S, T ) = min{d ((i, j), (i′, j′)) : (i, j) ∈ S, (i′, j′) ∈ T}. We say the random field {Xij : (i, j) ∈
N2

≤} is (k − 1)-dependent if the σ-fields FS = σ({Xij : (i, j) ∈ S}) and FT = σ({Xij : (i, j) ∈
T}) are independent for all S, T ⊂ N2

≤ such that d (S, T ) > k − 1.
The matrix Kn,k = W(A11,A12, . . . ,Ann), defined in Corollary 1, is an kn × kn matrix
with (k − 1)-dependent entries, up to symmetry. That is, if we write Kn,k = (Xij)

nk
i,j=1, then

{Xij : (i, j) ∈ N2
≤} is a (k−1)-dependent random field. However, the limiting spectral measure

of Kn,k is not the semicircle law but rather a mixture of two semicircle laws due to Corollary 1.
Our example violates the conditions imposed on the Wigner matrix by Schenker and Schulz-
Baldes in [11] in both the number of correlated entries and the number of dependent rows grow
as O(n2) and not o(n2).
Unfortunately, {Xij : (i, j) ∈ N2

≤}, in our example, is not strictly stationary as the distributions
remain the same only when shifts are made by multiple of k.

2 Proofs

In order to prove Theorem 1 we need to introduce some definitions from free probability theory.
A noncommutative probability space (A, τ) is a pair of a unital algebra A with a unit element
I and a linear functional τ , called the state, for which τ(I) = 1. We call an element a ∈ A a
noncommutative random variable and call τ(an) its nth moment. We say that A is a *-algebra
if the involution * is defined on A. In addition, we assume that τ(a∗) = τ(a) and τ(a∗a) ≥ 0.
Henceforth, we will consider only *-algebras. We say that a ∈ A is selfadjoint if a∗ = a.
Fix a noncommutative probability space (A, τ). For each selfadjoint a ∈ A there exists a
probability measure µa on R such that

τ(an) =

∫

R

xnµa(dx)

for all n ≥ 1, see [9, p.2]. The probability measure µa is unique if |τ(an)| ≤ Mn for some
M > 0 and for all n ≥ 1.

Definition 4 ([8]). A family of subalgebras (Aj ; j ∈ J) of A, which contain I, is said to be
free with respect to τ if for every k ≥ 1 and j1 6= j2 6= . . . 6= jk ∈ J ⊂ N

τ(a1a2 · · · ak) = 0

for all ai ∈ Aji
whenever τ(ai) = 0 for every 1 ≤ i ≤ k.

Random variables in a noncommutative probability space (A, τ) are said to be free if the
subalgebras generated by them and I are free.

Definition 5. We say that a family of sequences of random matrices ({A(l)
n }; l = 1, . . . ,m)

is almost surely asymptotically free (cf. [8]) if for every noncommutative polynomial p in m
variables

trn

(
p(A(1)

n , . . . ,A(m)
n )

)
n→∞−−−−→ τ (p(a1, . . . ,am)) a.s.

where (a1, . . . ,am) is a family of free noncommutative random variables in some noncommu-
tative probability space (A, τ).
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In [3], Capitaine and Donati-Martin showed the asymptotic freeness for independent Wigner
matrices when the distribution of the entries is symmetric and satisfies Poincaré inequality.
Recently, Guionnet [6] gave a proof where she assumes that all the moments of the entries
exist. Szarek [12] showed us a proof for symmetric and non-symmetric matrices with uniformly
bounded entries. Szarek’s proof, in brief, is based on concentration inequalities and some tools
of operator theory. In this paper, we give a combinatorial proof of the almost sure asymptotic
freeness for Wigner matrices under the assumption of finite variance and fourth moment of
the entries.

Theorem 2. If ({A(l)
n }; l = 1, . . . ,m) is a family of independent Wigner(n, 1) matrices for

which E(|A(l)
12 |4) < ∞ and E(A

(l)
11 )2 < ∞, then ({A(l)

n }; l = 1, . . . ,m) is almost surely asymp-

totically free.

2.1 Proof of Theorem 2

The Schatten p-norm of a matrix A is defined as ‖A‖p := (trn|A|p) 1
p whenever 1 ≤ p < ∞,

where |A| = (AT A)
1
2 . The operator norm is defined as ‖A‖ := max1≤i≤n |λi| where λi;

i = 1, 2, . . . , n are the eigenvalues of A. The following three inequalities hold true;

1. Domination inequality [8, p.154]

|trn(A)| ≤ ‖A‖1 ≤ ‖A‖p ≤ ‖A‖ (5)

2. Hölder’s inequality [8, p.154]
‖AB‖r ≤ ‖A‖p‖B‖q (6)

whenever 1
r = 1

p + 1
q for p, q > 1 and r ≥ 1.

3. Generalized Hölder’s inequality

‖A(1)A(2) · · ·A(m)‖1 ≤ ‖A(1)‖p1
‖A(2)‖p2

· · · ‖A(m)‖pm
(7)

where A(1),A(2), . . . ,A(m) are n × n matrices and
∑m

i=1
1
pi

= 1. This inequality follows

from (6) by induction.

Let A = 1√
n
(Xij)

n
i,j=1 be a Wigner(n, 1) matrix. We define Ã(c) = 1√

n
(X̃ij(c))

n
i,j=1 to be

the matrix whose off-diagonal entries are those of A truncated by c/
√

n and standardized. We

will also assume that the diagonal entries of Ã(c) are equal to zero. In other words,

X̃ij(c) =

{ 1
σ(c)

[
Xij1(|Xij |≤c) − E(Xij1(|Xij |≤c))

]
, for i < j;

0, for i = j

where 1(|Xij |≤c) is equal to one if |Xij | ≤ c and zero otherwise; and

σ2(c) = E | Xij1(|Xij |≤c) − E(Xij1(|Xij |≤c)) |2≤ 1.

We would choose sufficiently large c so that σ(c) > 0 and X̃ij(c) would be well defined. Note
that σ2(c) → 1 as c → ∞ and Var(X121(|X12|>c)) ≤ 1 − σ2(c).
The proof of Theorem 2 resembles the proof of Wigner’s theorem given in [2]. We will split it
into a number of lemmas.
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Lemma 1. Let
(
{A(l)

n } : l = 1, . . . ,m
)

be a family of independent sequences of Wigner(n, 1)

matrices for which E(|A(l)
12 |4) < ∞ and E(A

(l)
11 )2 < ∞ for every l. Then, for any ǫ > 0 there

exists M ∈ (0,∞) such that for every c ≥ M :

lim sup
n→∞

|trn

(
A(1)

n A(2)
n · · ·A(m)

n

)
− trn(Ã(1)

n (c)Ã(2)
n (c) · · · Ã(m)

n (c))| < ǫ

with probability one.

Proof. First, we can write the difference between products of matrices as a telescopic sum,
i.e.,

A(1)
n A(2)

n · · ·A(m)
n − Ã(1)

n (c)Ã(2)
n (c) · · · Ã(m)

n (c) =

m∑

j=1

j−1∏

k=1

Ã(k)
n (c)(A(j)

n − Ã(j)
n (c))

m∏

l=j+1

A(l)
n

with the convention that
∏0

k=1 Ã
(k)
n (c) =

∏m
l=m+1 A

(l)
n = In. But,

|trn

(∏j−1
k=1 Ã

(k)
n (c) (A

(j)
n − Ã

(j)
n (c))

∏m
l=j+1 A

(l)
n

)
| =

= |trn




m∏

l=j+1

A(l)
n

j−1∏

k=1

Ã(k)
n (c) (A(j)

n − Ã(j)
n (c))


 |

≤ ‖
m∏

l=j+1

A(l)
n

j−1∏

k=1

Ã(k)
n (c)‖2 · ‖A(j)

n − Ã(j)
n (c)‖2

≤
m∏

l=j+1

‖A(l)
n ‖2(m−1) ·

j−1∏

k=1

‖Ã(k)
n (c)‖2(m−1) · ‖A(j)

n − Ã(j)
n (c)‖2

for all 1 ≤ j ≤ m with the convention that
∏0

k=1 ‖Ã
(k)
n (c)‖p =

∏m
l=m+1 ‖A

(l)
n ‖p = 1. The last

two inequalities are due to the generalized Hölder’s inequality (7).

It is known that if E(|X(l)
12 |4) < ∞ and E(X

(l)
11 )2 < ∞ for every l, then

lim
n→∞

‖A(l)
n ‖ = 2

almost surely (cf. [2, Theorem 2.12]). Similarly, we can see that

lim
n→∞

‖Ã(l)
n (c)‖ = 2

almost surely for each l. By the domination inequality (5)

‖A(l)
n ‖2(m−1) ≤ ‖A(l)

n ‖ and ‖Ã(k)
n (c)‖2(m−1) ≤ ‖Ã(k)

n (c)‖.

Therefore,

lim sup
n→∞

m∏

l=j+1

‖A(l)
n ‖2(m−1) ·

j−1∏

k=1

‖Ã(k)
n (c)‖2(m−1) ≤ 2m−1.

Now, let Â
(j)
n (c) := A

(j)
n − σj(c)Ã

(j)
n (c) or X̂

(j)
rs (c) := X

(j)
rs − σj(c)X̃

(j)
rs (c) for every r and s.

Thus,
‖A(j)

n − Ã(j)
n (c)‖2 ≤ ‖Â(j)

n (c)‖2 + |1 − σj(c)| ‖Ã(j)
n (c)‖2.
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By definition,

‖Â(j)
n (c)‖2

2 =
1

n2

n∑

r=1

n∑

s=1

|X̂(j)
rs (c)|2 =

1

n2

n∑

r=1

|X̂(j)
rr (c)|2 +

1

n2

∑

r 6=s

|X̂(j)
rs (c)|2.

Note that

X̂(j)
rs (c) =

{
X

(j)
rs 1

(|X(j)
rs |>c)

− E(X
(j)
rs 1

(|X(j)
rs |>c)

), for r < s;

X
(j)
rr , for r = s.

Since E(X
(j)
11 )2 < ∞ then limn→∞

1
n2

∑n
r=1(X

(j)
rr )2 = 0 almost surely due to the Strong Law

of Large Numbers (SLLN ). Once more the SLLN implies that

lim
n→∞

1

n2

∑

r 6=s

|X̂(j)
rs (c)|2 = Var(X12(j)1(|X(j)

12 |>c)
) a.s.

Hence, limn→∞ ‖Â(j)
n (c)‖2

2 = Var(X
(j)
12 1

(|X(j)
12 |>c)

) almost surely. It is also evident that limn→∞ ‖Ã(j)
n (c)‖2 =

1 almost surely. Therefore,

lim sup
n→∞

‖A(j)
n − Ã(j)

n (c)‖2 ≤
√

1 − σ2
j (c) + |1 − σj(c)|

almost surely. Consequently, for all c > 0

lim sup
n→∞

|trn

(
A(1)

n A(2)
n · · ·A(m)

n

)
− trn(Ã(1)

n (c)Ã(2)
n (c) · · · Ã(m)

n (c))|

≤ 2m−1
m∑

j=1

(
√

1 − σ2
j (c) + |1 − σj(c)|)

with probability one. But since σj(c) → 1 as c → ∞, then for any ǫ1 > 0, there exists

M ∈ (0,∞) such that
√

1 − σ2
j (c) + |1 − σj(c)| < ǫ1 for every c ≥ M and for all j. Hence,

lim sup
n→∞

|trn

(
A(1)

n A(2)
n · · ·A(m)

n

)
− trn(Ã(1)

n (c)Ã(2)
n (c) · · · Ã(m)

n (c))|

≤ m2m−1ǫ1 = ǫ

with probability one.

Lemma 2 ([10]). If
(
{Ã(l)

n }; l = 1, . . . m
)

is a family of independent sequences of Wigner(n, 1)

matrices whose entries are bounded, then

lim
n→∞

E
(
trn

(
Ã(1)

n Ã(2)
n · · · Ã(m)

n

))
= τ (a1a2 · · · am) (8)

where ai’s are some free noncommutative random variables in (A, τ) such that ai has the

semicircle law γ0,1 for all i.

We say that a partition π = {B1, . . . , Bp} of a set of integers is non-crossing if a < b < c < d
is impossible for a, c ∈ Bi and b, d ∈ Bj when i 6= j. We denote the family of all non-crossing
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partitions of {1, . . . , k} by NC(k). Also let NC2(k) be the family of all non-crossing pair
partitions which is empty unless k is even. The Catalan number

Ck =
1

k + 1

(
2k
k

)

is equal to the size of NC(k) and also the size of NC2(2k).
If (al; l = 1, . . . m) is a family of free semicircular random variables which have mean zero and
variance one, then (cf. [10, Equation (8)])

τ (ai1ai2 · · · aik
) =

{ ∑
π∈NC2(k)

∏
{p,q}∈π 1ip=iq

, if k is even;

0, otherwise.
(9)

for any i1, . . . , ik ∈ {1, . . . ,m}.

Lemma 3. If
(
{Ã(l)

n }; l = 1, . . . m
)

is a family of independent sequences of Wigner(n, 1)

matrices whose entries are bounded, then

∞∑

n=1

Var

(
trn

(
m∏

i=1

Ã(li)
n

))
< ∞

for all l1, . . . , lm ≥ 1 with possible repetitions among them.

Proof. It is enough to show that

Var

(
trn

(
m∏

i=1

Ã(li)
n

))
= O(n−2).

We will denote the number of distinct integers among (i1, . . . , im) by 〈i1, . . . , im〉. Let z be
the complex conjugate of z.
First,

Var

(
trn

(
m∏

i=1

Ã(li)
n

))
= E

(
| trn

(
m∏

i=1

Ã(li)
n

)
|2

)
− | E

(
trn

(
m∏

i=1

Ã(li)
n

))
|2=

=
1

nm+2

∑
[E

(
m∏

r=1

X̃
(lr)
ir ir+1

m∏

s=1

X̃
(ls)

js js+1

)
− E

(
m∏

r=1

X̃
(lr)
ir ir+1

)
E

(
m∏

s=1

X̃
(ls)

js js+1

)
]

where the sums are running over (i1, . . . , im) and (j1, . . . , jm) in {1, . . . , n}m and such that
im+1 = i1 and jm+1 = j1. The term under summation is zero unless:

1. Each one of the unordered pairs ({i1, i2}, . . . , {im, i1}, {j1, j2}, . . . , {jm, j1}) appears at
least twice.

2. At least one of the unordered pairs ({i1, i2}, . . . , {im, i1}) is identical to one of the un-
ordered pairs ({j1, j2}, . . . , {jm, j1}).

The first condition implies that 〈〈i1, . . . , im, j1, . . . , jm〉〉 ≤ m+2. Adding the second condition
forces at least two more integers to be replications which implies that 〈〈i1, . . . , im, j1, . . . , jm〉〉 ≤
m. Since |X̃(l)

i j | are bounded for every i, j and l, then
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Var

(
trn

(
m∏

i=1

Ã(li)
n

))
≤ C

n2
.

Concusion of the proof of Theorem 2. Any noncommutative polynomial p can be written as a
linear combination of noncommutative monomials, i.e.,

p
(
A(1)

n , . . . ,A(m)
n

)
=

∑
ui1,...,ik

A(i1)
n A(i2)

n · · ·A(ik)
n

where the sum runs over i1, . . . , ik ∈ {1, . . . ,m} for k ≥ 1 and ui1,...,ik
∈ C are constants. Note

that p has a finite number of terms. Therefore,

|trnp
(
A(1)

n ,A(2)
n , . . . ,A(m)

n

)
− trnp(Ã(1)

n (c), Ã(2)
n (c), . . . , Ã(m)

n (c))|

≤
∑

|ui1,...,ik
| |trn

(
A(i1)

n A(i2)
n · · ·A(ik)

n

)
− trn(Ã(i1)

n (c)Ã(i2)
n (c) · · · Ã(ik)

n (c))|

Hence, given ǫ > 0

lim sup
n→∞

|trnp
(
A(1)

n ,A(2)
n , . . . ,A(m)

n

)
− trnp(Ã(1)

n (c), Ã(2)
n (c), . . . , Ã(m)

n (c))|

≤ ǫ
∑

|ui1,...,ik
|

(10)

almost surely, for sufficiently large c.
Due to Lemma 2

lim
n→∞

E
(
trn(Ã(i1)

n (c)Ã(i2)
n (c) · · · Ã(ik)

n (c))
)

= τ (ai1ai2 · · ·aik
) (11)

for all i1, . . . , ik ∈ {1, . . . ,m} and k ≥ 1 where ai’s are some free noncommutative random
variables in some noncommutative probability space (A, τ) such that ai has the semicircle law
γ0,1 for all i. Lemma 3 implies that the limit in (11) is holding true in the almost sure sense
due to Borel-Cantelli lemma. Consequently, for every c > 0

lim
n→∞

trnp(Ã(1)
n (c), Ã(2)

n (c), . . . , Ã(m)
n (c)) = τ (p(a1,a2, . . . ,am)) (12)

almost surely, since τ is a linear functional.
Equation(10) implies that

lim sup
n→∞

|trnp
(
A(1)

n ,A(2)
n , . . . ,A(m)

n

)
− τ (p(a1,a2, . . . ,am)) |

≤ lim sup
n→∞

|trnp
(
A(1)

n ,A(2)
n , . . . ,A(m)

n

)
− trnp(Ã(1)

n (c), Ã(2)
n (c), . . . , Ã(m)

n (c))|

+ lim sup
n→∞

|trnp(Ã(1)
n (c), Ã(2)

n (c), . . . , Ã(m)
n (c)) − τ (p(a1,a2, . . . ,am)) |

≤ ǫ1

(13)

almost surely, for sufficiently large c > 0 and arbitrary ǫ1 > 0.
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2.2 Proof of Theorem 1

Fix k ≥ 1 and a symmetric block-structure Bk. Let us introduce the noncommutative proba-
bility space (A⊗Mk(C), τ

⊗
trk), where

⊗
stands for the tensor product. A typical element

in A⊗Mk(C) is a k × k matrix whose entries are noncommutative random variables in A.
For example, Bk(a1, . . . ,ah) ∈ A

⊗
Mk(C) for any a1, . . . ,ah ∈ A. The state τ

⊗
trk is de-

fined by τ
⊗

trk(A) = 1
k

∑k
i=1 τ(Aii) for any A ∈ A⊗Mk(C). The involution is given by

the *-transpose, i.e., for any A = (aij)i,j=1,...,k ∈ A⊗Mk(C) the involution of A is given by
(a∗

ij)
T
i,j=1,...,k.

The proof of Theorem 1 is based on the method of moments. First, we are going to show that

for every s ∈ N, the limit of trnk

(
Bk

(
A

(1)
n , . . . ,A

(h)
n

)s)
exists as n → ∞, almost surely.

Fix s ≥ 1. We can see that the trace for the s-power of Xn,k = Bk

(
A

(1)
n , . . . ,A

(h)
n

)
is the

trace of some noncommutative polynomials in the matrices A
(1)
n , . . . ,A

(h)
n . In other words,

trnk

(
Xs

n,k

)
=

1

k

k∑

i=1

trn

(
pi

(
A(1)

n , . . . ,A(h)
n

))

for some noncommutative polynomial pi and 1 ≤ i ≤ k. Theorem 2 implies that for each i

trn

(
pi

(
A(1)

n , . . . ,A(h)
n

))
→ τ (pi (a1, . . . ,ah)) as n → ∞ a.s.

where {al : l = 1, . . . ,m} is a family of free noncommutative random variables that have the
semicircle law with variance equals to one. Therefore

trnk

(
Bk

(
A(1)

n , . . . ,A(h)
n

)s)
→ 1

k
τ

(
k∑

i=1

pi (a1, . . . ,ah)

)
as n → ∞ a.s.

Thus,

trnk

(
Xs

n,k

)
→ τ

⊗
trk (Bk (a1, . . . ,ah)

s
) as n → ∞ a.s.

Since Bk (a1, . . . ,ah) is self-adjoint, then there exists a probability measure µBk
such that

τ
⊗

trk (Bk (a1, . . . ,ah)
s
) =

∫

R

xsµBk
(dx).

Note that if s is an odd integer then τ
⊗

trk (Bk (a1, . . . ,ah)
s
) is zero by Equation (9). This

implies that µBk
is a symmetric probability measure.

To complete the proof, we need to prove that µBk
is unique and has a compact support in R.

Both follows by showing that there exist M > 0 and C > 0 such that τ
⊗

trk

(
Bk (a1, . . . ,ah)

2s
)
≤

C M2s for all s ≥ 1. But for a fixed s ≥ 1

τ
⊗

trk

(
Bk (a1, . . . ,ah)

2s
)

=
∑

J(2s,k)

τ(Bj1j2Bj2j3 · · ·Bj2sj1)

where Bij ∈ {a1, . . . ,ah} and J(m, k) := {(j1, . . . , jm) : 1 ≤ j1, . . . , jm ≤ k}. But again by
Equation (9), ∑

J(2s,k)

τ(Bj1j2Bj2j3 · · ·Bj2sj1) ≤ k2sCs = (2k)2s
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where the Catalan number Cs is at most 4s.
Therefore, there exists a unique non-random symmetric probability measure µBk

with a com-
pact support in R that has the moments τ

⊗
trk (Bk (a1, . . . ,ah)

s
), for every s ≥ 1, such

that
µXn,k

D−→ µBk
as n → ∞ a.s.
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