THE SPECTRAL MAPPING THEOREM

FOR THE ESSENTIAL APPROXIMATE POINT SPECTRUM
By
CHRISTOPH SCHMOEGER (KARLSRUHE)

1. Introduction and preliminaries. Let X be an infinite-dimensional complex Banach space and denote the set of bounded linear operators on X by $\mathcal{B}(X) . \mathcal{K}(X)$ denotes the ideal of compact operators on X. Let $\sigma(T)$ and $\varrho(T)$ denote, respectively, the spectrum and the resolvent set of an element T of $\mathcal{B}(X)$. The set of those operators T of $\mathcal{B}(X)$ for which the range $T(X)$ is closed and $\alpha(T)$, the dimension of the null space $N(T)$ of T, is finite is denoted by $\Phi_{+}(X)$. Set

$$
\Phi_{-}(X)=\{T \in \mathcal{B}(X): \beta(T) \text { is finite }\}
$$

where $\beta(T)$ is the codimension of $T(X)$. Observe that $T(X)$ is closed if $T \in \Phi_{-}(X)\left([3]\right.$, Satz 55.4). Operators in $\Phi_{+}(X) \cup \Phi_{-}(X)$ are called semiFredholm operators. For such an operator T we define the index of T by $\operatorname{ind}(T)=\alpha(T)-\beta(T)$. An operator T is called a Fredholm operator if $T \in$ $\Phi(X)=\Phi_{+}(X) \cap \Phi_{-}(X)$. Let $\Phi_{+}^{-}(X)$ denote the set of those operators T in $\Phi_{+}(X)$ for which $\operatorname{ind}(T) \leq 0$.

For an operator T in $\mathcal{B}(X)$ we will use the following notations:

$$
\begin{aligned}
\Phi(T) & =\{\lambda \in \mathbb{C}: \lambda I-T \in \Phi(X)\} \\
\Sigma(T) & =\{\lambda \in \mathbb{C}: \lambda I-T \text { is semi-Fredholm }\} \\
\Sigma_{+}(T) & =\left\{\lambda \in \mathbb{C}: \lambda I-T \in \Phi_{+}(X)\right\}
\end{aligned}
$$

and

$$
\mathcal{H}(T)=\{f: \Delta(f) \rightarrow \mathbb{C}: \Delta(f) \text { is open, } \sigma(T) \subseteq \Delta(f), f \text { is holomorphic }\}
$$

It is well known that $\Phi(T), \Sigma(T)$ and $\Sigma_{+}(T)$ are open [3], §82. For $f \in \mathcal{H}(T)$, the operator $f(T)$ is defined by the well-known analytic calculus (see [3]).

Let $T \in \mathcal{B}(X)$. We write $\sigma_{\mathrm{e}}(T)$ for Schechter's essential spectrum of T

[^0]Key words and phrases: semi-Fredholm operators, essential spectrum.
(see [11]), i.e.,

$$
\sigma_{\mathrm{e}}(T)=\bigcap_{K \in \mathcal{K}(X)} \sigma(T+K)
$$

This essential spectrum has the following properties:

1. $\mathbb{C} \backslash \sigma_{\mathrm{e}}(T)=\{\lambda \in \Phi(T): \operatorname{ind}(\lambda I-T)=0\}$ ([3], Satz 107.3).
2. $\sigma_{\mathrm{e}}(f(T)) \subseteq f\left(\sigma_{\mathrm{e}}(T)\right)$ for each $f \in \mathcal{H}(T)$, and this inclusion may be proper (see [2] and [6]; see also [12], where the above inclusion is shown in the context of Fredholm elements in Banach algebras).
3. If $f \in \mathcal{H}(T)$ is univalent, then $\sigma_{\mathrm{e}}(f(T))=f\left(\sigma_{\mathrm{e}}(T)\right)$ (see [6], Remark 1 in Section 3).

In [12] we have introduced (in a more general context) the following class of operators:

$$
\begin{aligned}
\mathcal{S}(X)=\{T \in \mathcal{B}(X): \operatorname{ind}(\lambda I-T) \leq 0 \text { for all } \lambda & \in \Phi(T) \\
& \text { or } \operatorname{ind}(\lambda I-T) \geq 0 \text { for all } \lambda \in \Phi(T)\} .
\end{aligned}
$$

We have shown in [12] that

$$
\begin{equation*}
T \in \mathcal{S}(X) \Leftrightarrow \sigma_{\mathrm{e}}(f(T))=f\left(\sigma_{\mathrm{e}}(T)\right) \text { for all } f \in \mathcal{H}(T) \tag{*}
\end{equation*}
$$

Thus (*) is a generalization of Theorem 1 in [5].
Let $\sigma_{\mathrm{ap}}(T)$ denote the approximate point spectrum of $T \in \mathcal{B}(X)$, i.e.,

$$
\sigma_{\mathrm{ap}}(T)=\left\{\lambda \in \mathbb{C}: \inf _{\|x\|=1}\|(\lambda I-T) x\|=0\right\} .
$$

The essential approximate point spectrum $\sigma_{\text {eap }}(T)$ of T was introduced by V. Rakočević in [8] as follows:

$$
\sigma_{\text {eap }}(T)=\bigcap_{K \in \mathcal{K}(X)} \sigma_{\text {ap }}(T+K)
$$

(see also [9] and [10]).
Set further

$$
\begin{aligned}
& \mathcal{S}_{+}(X)=\left\{T \in \mathcal{B}(X): \operatorname{ind}(\lambda I-T) \leq 0 \text { for all } \lambda \in \Sigma_{+}(T)\right. \\
& \left.\quad \text { or } \operatorname{ind}(\lambda I-T) \geq 0 \text { for all } \lambda \in \Sigma_{+}(T)\right\} .
\end{aligned}
$$

Clearly we have $\mathcal{S}_{+}(X) \subseteq \mathcal{S}(X)$.
The aim of the paper is to show the following result:
$(* *) \quad T \in \mathcal{S}_{+}(X) \Leftrightarrow \sigma_{\text {eap }}(f(T))=f\left(\sigma_{\text {eap }}(T)\right)$ for all $f \in \mathcal{H}(T)$.
The first part of the following proposition is probably known. According to C. Pearcy [7], this result has already appeared in a preprint Fredholm operators by P. R. Halmos in 1967. For the convenience of the reader we shall include a proof.

Proposition 1. (1) If $T, S \in \Phi_{+}(X)\left[\right.$ resp. $\left.\in \Phi_{-}(X)\right]$ then $T S \in \Phi_{+}(X)$ $\left.\left[r e s p . \in \Phi_{-} X\right)\right]$, and

$$
\operatorname{ind}(T S)=\operatorname{ind}(T)+\operatorname{ind}(S)
$$

(2) If $T, S \in \mathcal{B}(X), T S \in \Phi_{+}(X)$ resp. $\left.\in \Phi_{-}(X)\right]$ then $S \in \Phi_{+}(X)$ $\left[\right.$ resp. $\left.T \in \Phi_{-}(X)\right]$.

Proof. (1) It suffices to consider the case where $T, S \in \Phi_{+}(X)$ (because of [3], Satz 82.1).

Case 1: $T, S \in \Phi(X)$. Then, by $[3], \S 71, T S \in \Phi(X)$ and $\operatorname{ind}(T S)=$ $\operatorname{ind}(T)+\operatorname{ind}(S)$.

Case 2: $T \notin \Phi(X)$ or $S \notin \Phi(X)$. Then $\beta(T)=\infty$ or $\beta(S)=\infty$. Use [3], Aufgabe $82.2,4$, to get $T S \in \Phi_{+}(X)$ and $\beta(T S)=\infty$. Hence

$$
\operatorname{ind}(T S)=-\infty=\operatorname{ind}(T)+\operatorname{ind}(S)
$$

(2) See [3], Aufgabe 82.3,4.
2. Properties of $\sigma_{\text {eap }}(T)$. We begin with some properties of $\sigma_{\text {eap }}(T)$ due to V. Rakočević:

Proposition 2. Let $T \in \mathcal{B}(X)$.
(1) $\partial \sigma_{\mathrm{e}}(T) \subseteq \sigma_{\text {eap }}(T)$ (where $\partial \sigma_{\mathrm{e}}(T)$ denotes the boundary of $\left.\sigma_{\mathrm{e}}(T)\right)$.
(2) $\sigma_{\text {eap }}(T) \neq \emptyset$.
(3) $\lambda \notin \sigma_{\text {eap }}(T) \Leftrightarrow \lambda I-T \in \Phi_{+}(X)$ and $\operatorname{ind}(\lambda I-T) \leq 0$.
(4) $\sigma_{\text {eap }}(T)$ is compact, $\sigma_{\text {eap }}(T) \subseteq \sigma(T)$.

Proof. For (1), (2), see [8], Theorem 1. For (3), see [8], Lemmata 1 and 2. (4) is clear.

Proposition 3. Let $T \in \mathcal{B}(X)$ and let λ_{0} be a boundary point of $\sigma(T)$. If $\lambda_{0} \in \Sigma(T)$ then λ_{0} is an isolated point of $\sigma(T)$.

Proof. Theorem 3 of [4] shows the existence of $\delta>0$ such that $\lambda \in \Sigma(T)$ for $\left|\lambda-\lambda_{0}\right|<\delta, \alpha(\lambda I-T)$ is a constant for $0<\left|\lambda-\lambda_{0}\right|<\delta$ and $\beta(\lambda I-T)$ is a constant for $0<\left|\lambda-\lambda_{0}\right|<\delta$. Take $\mu_{0} \in \varrho(T)$ with $0<\left|\mu_{0}-\lambda_{0}\right|<\delta$. Then $\alpha\left(\mu_{0} I-T\right)=\beta\left(\mu_{0} I-T\right)=0$, thus $\alpha(\lambda I-T)=\beta(\lambda I-T)=0$ for $0<\left|\lambda-\lambda_{0}\right|<\delta$. This shows that $\lambda \in \varrho(T)$ for $0<\left|\lambda-\lambda_{0}\right|<\delta$.

Proposition 4. Let $T \in \mathcal{B}(X)$ and $h \in \mathcal{H}(T)$. If h has no zeroes in $\sigma_{\text {eap }}(T)$ then h has at most a finite number of zeroes in $\sigma(T)$.

Proof. Assume that the number of zeroes of h in $\sigma(T)$ is infinite. Then there is $z_{0} \in \sigma(T)$ such that z_{0} is an accumulation point of the zeroes of h in $\sigma(T)$. Denote by C the connected component of $\sigma(T)$ which contains z_{0} and by K the connected component of $\Delta(h)$ which contains z_{0} (where $\Delta(h)$ is the open set of the definition of h). It follows that $C \subseteq K$ and $h \equiv 0$ on K. Let $\lambda_{0} \in \partial C$. Then $h\left(\lambda_{0}\right)=0$. Since h does not vanish on $\sigma_{\text {eap }}(T)$,
we have $\lambda_{0} \notin \sigma_{\text {eap }}(T)$ and therefore $\lambda_{0} \in \Sigma(T)$. Since C is a connected component of $\sigma(T)$, we also have $\lambda_{0} \in \partial \sigma(T)$. By Proposition 3 we see that λ_{0} is an isolated point of $\sigma(T)$. Thus $C=\left\{\lambda_{0}\right\}$. Hence we get $z_{0}=\lambda_{0}$, a contradiction, since z_{0} is an accumulation point of $\sigma(T)$.

Proposition 5. Let $\left(T_{n}\right)$ be a sequence in $\mathcal{B}(X)$ converging to $T \in \mathcal{B}(X)$ in the operator norm. If $V \subseteq \mathbb{C}$ is open and $0 \in V$, then there exists $n_{0} \in \mathbb{N}$ such that

$$
\sigma_{\text {eap }}\left(T_{n}\right) \subseteq \sigma_{\text {eap }}(T)+V \quad \text { for all } n \geq n_{0}
$$

Proof. Assume not. Then by passing to a subsequence (if necessary) it may be assumed that for each n there exists $\lambda_{n} \in \sigma_{\text {eap }}\left(T_{n}\right)$ such that $\lambda_{n} \notin \sigma_{\text {eap }}(T)+V$. Since $\left(\lambda_{n}\right)$ is bounded, we may assume (if necessary pass to a subsequence) that $\lim _{n \rightarrow \infty} \lambda_{n}=\lambda_{0}$. This gives $\lambda_{0} \notin \sigma_{\text {eap }}(T)+V$, hence $\lambda_{0} \notin \sigma_{\text {eap }}(T)$. Thus $\lambda_{0} I-T \in \Phi_{+}^{-}(X)$ (Proposition 2(3)). Since $\Phi_{+}^{-}(X)$ is an open multiplicative semigroup (see [3], § 82) and $\lambda_{n} I-T_{n} \rightarrow \lambda_{0} I-T$ $(n \rightarrow \infty)$, we get some $N \in \mathbb{N}$ such that $\lambda_{n} I-T_{n} \in \Phi_{+}^{-}(X)$ for all $n \geq N$. Use again Proposition 2(3) to derive $\lambda_{n} \notin \sigma_{\text {eap }}\left(T_{n}\right)$ for each $n \geq N$, a contradiction.
3. Spectral mapping theorem for $\sigma_{\text {eap }}(T)$. The following result is due to V. Rakočević ([10], Theorem 3.3). For the convenience of the reader we give a (slightly simpler) proof.

Theorem 1. Let $T \in \mathcal{B}(X)$ and $f \in \mathcal{H}(T)$. Then

$$
\sigma_{\text {eap }}(f(T)) \subseteq f\left(\sigma_{\text {eap }}(T)\right)
$$

Proof. Let $\mu \notin f\left(\sigma_{\text {eap }}(T)\right)$ and put $h(\lambda)=\mu-f(\lambda)$. Then h has no zeroes in $\sigma_{\text {eap }}(T)$. Applying Proposition 4 we conclude that h has at most a finite number of zeroes in $\sigma(T)$.

Case 1: h has no zeroes in $\sigma(T)$. Then $h(T)=\mu I-f(T)$ is invertible, thus $\mu \notin \sigma_{\text {eap }}(f(T))$.

Case 2: h has finitely many zeroes in $\sigma(T)$. Let $\lambda_{1}, \ldots, \lambda_{k}$ be those zeroes. Then there exist $n_{1}, \ldots, n_{k} \in \mathbb{N}$ and $g \in \mathcal{H}(T)$ such that

$$
h(\lambda)=g(\lambda) \prod_{j=1}^{k}\left(\lambda_{j}-\lambda\right)^{n_{j}}, \quad g(T) \text { is invertible }
$$

and

$$
h(T)=g(T) \prod_{j=1}^{k}\left(\lambda_{j} I-T\right)^{n_{j}}
$$

Since $\lambda_{1}, \ldots, \lambda_{k} \notin \sigma_{\text {eap }}(T)$ we get

$$
\lambda_{j} I-T \in \Phi_{+}(X) \quad \text { and } \quad \operatorname{ind}\left(\lambda_{j} I-T\right) \leq 0 \quad(j=1, \ldots, k) .
$$

Use Proposition 1(1) to derive $h(T) \in \Phi_{+}(X)$ and

$$
\operatorname{ind}(h(T))=\underbrace{\operatorname{ind}(g(T))}_{=0}+\sum_{j=1}^{k} n_{j} \underbrace{\operatorname{ind}\left(\lambda_{j} I-T\right)}_{\leq 0} \leq 0
$$

Thus $\mu I-f(T)=h(T) \in \Phi_{+}^{-}(X)$ and therefore $\mu \notin \sigma_{\text {eap }}(f(T))$.
Example 4.2 in [9] shows that the inclusion in Theorem 1 may be proper.
In the first section of this paper we introduced the following class of operators:

$$
\begin{aligned}
& \mathcal{S}_{+}(X)=\left\{T \in \mathcal{B}(X): \operatorname{ind}(\lambda I-T) \leq 0 \text { for all } \lambda \in \Sigma_{+}(T)\right. \\
& \left.\quad \text { or } \operatorname{ind}(\lambda I-T) \geq 0 \text { for all } \lambda \in \Sigma_{+}(T)\right\} .
\end{aligned}
$$

Proposition 6. Let $T \in \mathcal{S}_{+}(X)$ and let r be a rational function in $\mathcal{H}(T)$. Then

$$
\sigma_{\text {eap }}(r(T))=r\left(\sigma_{\text {eap }}(T)\right)
$$

Proof. By Theorem 1 we only have to show $r\left(\sigma_{\text {eap }}(T)\right) \subseteq \sigma_{\text {eap }}(r(T))$. Let $r=p / q$, where p and q are polynomials and q has no zeroes in $\sigma(T)$. Hence $q(T)$ is invertible. Let $\mu \notin \sigma_{\text {eap }}(r(T))$, thus, by Proposition 2(3),

$$
\mu I-r(T) \in \Phi_{+}(X) \quad \text { and } \quad \operatorname{ind}(\mu I-r(T)) \leq 0
$$

Put $h(\lambda)=\mu-r(\lambda)$, thus $h(\lambda)=(\mu q(\lambda)-p(\lambda)) / q(\lambda)$. There exist μ_{1}, \ldots, μ_{k}, $\alpha \in \mathbb{C}$ such that

$$
h(\lambda)=\alpha \frac{\left(\mu_{1}-\lambda\right) \ldots\left(\mu_{k}-\lambda\right)}{q(\lambda)}
$$

This gives $q(T) h(T)=\alpha\left(\mu_{1} I-T\right) \ldots\left(\mu_{k} I-T\right)$. Since $q(T) h(T) \in \Phi_{+}(X)$, Proposition 1(2) shows that

$$
\mu_{j} I-T \in \Phi_{+}(X) \quad \text { for } j=1, \ldots, k .
$$

Furthermore, by Proposition 1(1), we have

$$
\begin{aligned}
\sum_{j=1}^{k} \operatorname{ind}\left(\mu_{j} I-T\right) & =\operatorname{ind}(q(T) h(T))=\underbrace{\operatorname{ind}(q(T))}_{=0}+\operatorname{ind}(h(T)) \\
& =\operatorname{ind}(h(T))=\operatorname{ind}(\mu I-r(T)) \leq 0
\end{aligned}
$$

Case 1: $\operatorname{ind}(\lambda I-T) \leq 0$ for all $\lambda \in \Sigma_{+}(T)$. Since $\mu_{j} \in \Sigma_{+}(T)$ for $j=1, \ldots, k$, we derive $\operatorname{ind}\left(\mu_{j} I-T\right) \leq 0$ for $j=1, \ldots, k$, hence $\mu_{j} I-T \in$ $\Phi_{+}^{-}(X)(j=1, \ldots, k)$ and therefore, by Proposition 2(3),

$$
\mu_{j} \notin \sigma_{\text {eap }}(T) \quad \text { for } j=1, \ldots, k .
$$

This gives $\mu \notin r\left(\sigma_{\text {eap }}(T)\right)$.

Case $2: \operatorname{ind}(\lambda I-T) \geq 0$ for all $\lambda \in \Sigma_{+}(T)$. Then $\operatorname{ind}\left(\mu_{j} I-T\right) \geq 0$ $(j=1, \ldots, k)$ and therefore

$$
0 \leq \sum_{j=1}^{k} \operatorname{ind}\left(\mu_{j} I-T\right)=\operatorname{ind}(\mu I-r(T)) \leq 0
$$

This shows that $\operatorname{ind}\left(\mu_{j} I-T\right)=0$ for $j=1, \ldots, k$. Thus $\mu_{j} \notin \sigma_{\text {eap }}(T)$ $(j=1, \ldots, k)$ and hence $\mu \notin r\left(\sigma_{\text {eap }}(T)\right)$.

Now we are in a position to state the main result of this paper:
Theorem 2. If $T \in \mathcal{B}(X)$ then

$$
T \in \mathcal{S}_{+}(X) \Leftrightarrow \sigma_{\text {eap }}(f(T))=f\left(\sigma_{\text {eap }}(T)\right) \text { for all } f \in \mathcal{H}(T)
$$

Proof. " \Rightarrow ". The inclusion " \subseteq " follows from Theorem 1. Let $\Delta(f)$ denote the (open) set of the definition of f. Corollary 6.6 of [1] shows the existence of a sequence $\left(r_{n}\right)$ of rational functions such that $\left(r_{n}\right)$ converges to f uniformly on compact subsets of $\Delta(f)$. Thus $\left\|r_{n}(T)-f(T)\right\| \rightarrow 0$ $(n \rightarrow \infty)$ ([3], Aufgabe 99.1). Let V be an open set in \mathbb{C} containing the origin. By Proposition 5 and the uniform convergence on $\sigma_{\text {eap }}(T)$, there exists $n_{0} \in \mathbb{N}$ such that

$$
f\left(\sigma_{\text {eap }}(T)\right) \subseteq r_{n}\left(\sigma_{\text {eap }}(T)\right)+V
$$

and

$$
\sigma_{\text {eap }}\left(r_{n}(T)\right) \subseteq \sigma_{\text {eap }}(f(T))+V
$$

for all $n \geq n_{0}$. Proposition 6 gives

$$
r_{n}\left(\sigma_{\text {eap }}(T)\right)=\sigma_{\text {eap }}\left(r_{n}(T)\right) \quad \text { for all } n \in \mathbb{N}
$$

thus

$$
f\left(\sigma_{\text {eap }}(T)\right) \subseteq \sigma_{\text {eap }}\left(r_{n_{0}}(T)\right)+V \subseteq \sigma_{\text {eap }}(f(T))+V+V
$$

Since V was an arbitrary neighbourhood of 0 , we get

$$
f\left(\sigma_{\text {eap }}(T)\right) \subseteq \sigma_{\text {eap }}(f(T))
$$

" \Leftarrow ". Assume to the contrary that $T \notin \mathcal{S}_{+}(X)$. Then there are $\lambda_{1}, \lambda_{2} \in$ $\Sigma_{+}(T)$ with

$$
\operatorname{ind}\left(\lambda_{1} I-T\right)>0 \quad \text { and } \quad \operatorname{ind}\left(\lambda_{2} I-T\right)<0
$$

It follows that $\beta\left(\lambda_{1} I-T\right)<\infty$, hence $\lambda_{1} I-T \in \Phi(X)$ and thus $k:=$ $\operatorname{ind}\left(\lambda_{1} I-T\right) \in \mathbb{N}$.

Case 1: $\lambda_{2} I-T \in \Phi(X)$. Put $m:=-\operatorname{ind}\left(\lambda_{2} I-T\right)$, thus $m \in \mathbb{N}$. Define the function $f \in \mathcal{H}(T)$ by $f(\lambda)=\left(\lambda_{1}-\lambda\right)^{m}\left(\lambda_{2}-\lambda\right)^{k}$. Then $f(T) \in \Phi(X)$ and $\operatorname{ind}(f(T))=m k+k(-m)=0$, thus $0 \notin \sigma_{\text {eap }}(f(T))$. Since $\lambda_{1} I-T \notin \Phi_{+}^{-}(X)$ we see by Proposition 2(3) that $\lambda_{1} \in \sigma_{\text {eap }}(T)$ and therefore $0=f\left(\lambda_{1}\right) \in$ $f\left(\sigma_{\text {eap }}(T)\right)$, a contradiction.

Case 2: $\lambda_{2} I-T \notin \Phi(X)$. Then $\beta\left(\lambda_{2} I-T\right)=\infty$ and $\operatorname{ind}\left(\lambda_{2} I-T\right)=$ $-\infty$. Put $f(\lambda)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)$. It follows from Proposition 1(1) that $f(T) \in \Phi_{+}(X)$ and that

$$
\operatorname{ind}(f(T))=k-\infty=-\infty
$$

thus $0 \notin \sigma_{\text {eap }}(f(T))$. As in Case 1 we have $0=f\left(\lambda_{1}\right) \in f\left(\sigma_{\text {eap }}(T)\right)$, a contradiction.
4. The essential defect spectrum. For $T \in \mathcal{B}(X)$ the defect spectrum $\sigma_{\delta}(T)$ is defined by

$$
\sigma_{\delta}(T)=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not surjective }\}
$$

We define the essential defect spectrum $\sigma_{\mathrm{e} \delta}(T)$ of T by

$$
\sigma_{\mathrm{e} \delta}(T)=\bigcap_{K \in \mathcal{K}(X)} \sigma_{\delta}(T+K)
$$

We let X^{*} designate the conjugate space of X and T^{*} the adjoint of $T \in$ $\mathcal{B}(X)$.

Proposition 7. Let $T \in \mathcal{B}(X)$.
(1) $\lambda \notin \sigma_{\mathrm{e} \delta}(T) \Leftrightarrow \lambda I-T \in \Phi_{-}(X)$ and $\operatorname{ind}(\lambda I-T) \geq 0$.
(2) $\sigma_{\text {e } \delta}(T)=\sigma_{\text {eap }}\left(T^{*}\right)$.
(3) $\sigma_{\mathrm{e} \delta}(T) \neq \emptyset$.

Proof. (1) " \Rightarrow ". If $\lambda \notin \sigma_{\mathrm{e} \delta}(T)$ then there is $K \in \mathcal{K}(X)$ such that $\lambda \notin \sigma_{\delta}(T+K)$, thus $\lambda I-T-K$ is surjective, hence $\lambda I-T-K \in \Phi_{-}(X)$ and $\operatorname{ind}(\lambda I-T-K)=\alpha(\lambda I-T-K) \geq 0$. Satz 82.5 of [3] shows then that $\lambda I-T \in \Phi_{-}(X)$ and $\operatorname{ind}(\lambda I-T)=\operatorname{ind}(\lambda I-T-K) \geq 0$.
" \Leftarrow ". If $\lambda I-T \in \Phi_{-}(X)$ and $\operatorname{ind}(\lambda I-T) \geq 0$ then, by [13], Theorem 3.13, there are $U_{1}, U_{2} \in \mathcal{B}(X)$ such that

$$
\lambda I-T=U_{1}+U_{2}, \quad U_{2} \in \mathcal{K}(X), \quad U_{1}(X)=X
$$

Thus $\lambda I-\left(T+U_{2}\right)$ is surjective and therefore $\lambda \notin \sigma_{\delta}\left(T+U_{2}\right)$. This gives $\lambda \notin \sigma_{\mathrm{e} \delta}(T)$.
(2) Use (1), Proposition 2(3) and [3], Satz 82.1, to get

$$
\begin{aligned}
\lambda \notin \sigma_{\mathrm{e} \delta}(T) & \Leftrightarrow \lambda I^{*}-T^{*} \in \Phi_{+}\left(X^{*}\right) \text { and } \operatorname{ind}\left(\lambda I^{*}-T^{*}\right) \leq 0 \\
& \Leftrightarrow \lambda \notin \sigma_{\text {eap }}\left(T^{*}\right)
\end{aligned}
$$

(3) This follows from (2) and Proposition 2(2).

Theorem 3. For $T \in \mathcal{B}(X)$ and $f \in \mathcal{H}(T)$ we have

$$
\sigma_{\mathrm{e} \delta}(f(T)) \subseteq f\left(\sigma_{\mathrm{e} \delta}(T)\right)
$$

Proof. We have

$$
\begin{aligned}
\sigma_{\mathrm{e} \delta}(f(T)) & =\sigma_{\text {eap }}\left((f(T))^{*}\right) & & \text { (by Proposition } 7(2)) \\
& =\sigma_{\text {eap }}\left(f\left(T^{*}\right)\right) & & \\
& \subseteq f\left(\sigma_{\mathrm{eap}}\left(T^{*}\right)\right) & & (\text { by Theorem 1) } \\
& =f\left(\sigma_{\mathrm{e} \delta}(T)\right) & & \text { (by Proposition } 7(2)) .
\end{aligned}
$$

For our final result in this section, which is dual to Theorem 2, we need the following definitions. For T in $\mathcal{B}(X)$ set $\Sigma_{-}(T)=\{\lambda \in \mathbb{C}: \lambda I-T \in$ $\left.\Phi_{-}(X)\right\}$. The class $\mathcal{S}_{-}(X)$ of operators is defined by

$$
\begin{aligned}
& \mathcal{S}_{-}(X)=\left\{T \in \mathcal{B}(X): \operatorname{ind}(\lambda I-T) \geq 0 \text { for all } \lambda \in \Sigma_{-}(T)\right. \\
& \left.\quad \text { or } \operatorname{ind}(\lambda I-T) \leq 0 \text { for all } \lambda \in \Sigma_{-}(T)\right\} .
\end{aligned}
$$

It follows from [3], Satz 82.1, that $\Sigma(T)=\Sigma\left(T^{*}\right), \Sigma_{+}(T)=\Sigma_{-}\left(T^{*}\right)$, $\Sigma_{-}(T)=\Sigma_{+}\left(T^{*}\right)$ and that

$$
\operatorname{ind}(\lambda I-T)=-\operatorname{ind}\left(\lambda I^{*}-T^{*}\right) \quad \text { for all } \lambda \in \Sigma(T)
$$

This gives

$$
T \in \mathcal{S}_{-}(X) \Leftrightarrow T^{*} \in \mathcal{S}_{+}\left(X^{*}\right), \quad T \in \mathcal{S}_{+}(X) \Leftrightarrow T^{*} \in \mathcal{S}_{-}\left(X^{*}\right)
$$

As an immediate consequence of Theorem 2 and Proposition 7 we get
Theorem 4. Let $T \in \mathcal{B}(X)$. Then

$$
T \in \mathcal{S}_{-}(X) \Leftrightarrow f\left(\sigma_{\mathrm{e} \delta}(T)\right)=\sigma_{\mathrm{e} \delta}(f(T)) \text { for all } f \in \mathcal{H}(T)
$$

5. Schechter's essential spectrum. In this final section we return to $\sigma_{\mathrm{e}}(T)=\bigcap_{K \in \mathcal{K}(X)} \sigma(T+K)$. Recall that $\lambda \notin \sigma_{\mathrm{e}}(T)$ if and only if $\lambda \in \Phi(T)$ and $\operatorname{ind}(\lambda I-T)=0$. We have mentioned in Section 1 that the following result holds.

Theorem 5. Let $T \in \mathcal{B}(X)$.
(1) $\sigma_{\mathrm{e}}(f(T)) \subseteq f\left(\sigma_{\mathrm{e}}(T)\right)$ for each $f \in \mathcal{H}(T)$.
(2) $T \in \mathcal{S}(X) \Leftrightarrow \sigma_{\mathrm{e}}(f(T))=f\left(\sigma_{\mathrm{e}}(T)\right)$ for all $f \in \mathcal{H}(T)$.

The aim of this section is to prove Theorem 5 with the aid of the results of the previous sections of this paper.

Proposition 8. For $T \in \mathcal{B}(X)$ we have:
(1) $\sigma_{\mathrm{e}}(T)=\sigma_{\text {eap }}(T) \cup \sigma_{\mathrm{e} \delta}(T)$.
(2) $\mathcal{S}(X)=\mathcal{S}_{+}(X) \cup \mathcal{S}_{-}(X)$.

Proof. (1) Use Propositions 2(3) and 7(1).
(2) The inclusion $\mathcal{S}_{+}(X) \cup \mathcal{S}_{-}(X) \subseteq \mathcal{S}(X)$ is clear. Let $T \in \mathcal{S}(X)$ and assume $T \notin \mathcal{S}_{+}(X) \cup \mathcal{S}_{-}(X)$. Then there are $\lambda_{1}, \lambda_{2} \in \Sigma_{+}(T)$ and $\lambda_{3}, \lambda_{4} \in$
$\Sigma_{-}(T)$ such that $\operatorname{ind}\left(\lambda_{1} I-T\right)>0, \operatorname{ind}\left(\lambda_{2} I-T\right)<0, \operatorname{ind}\left(\lambda_{3} I-T\right)>0$ and $\operatorname{ind}\left(\lambda_{4} I-T\right)<0$. This gives $\beta\left(\lambda_{1} I-T\right)<\infty$ and $\alpha\left(\lambda_{4} I-T\right)<\infty$, hence $\lambda_{1}, \lambda_{4} \in \Phi(T)$. Since $T \in \mathcal{S}(X)$ and $\operatorname{ind}\left(\lambda_{1} I-T\right)>0, \operatorname{ind}\left(\lambda_{4} I-T\right)<0$, we have a contradiction.

Proof of Theorem 5. (1) Use Proposition 8(1), Theorem 1 and Theorem 3 to derive

$$
\begin{aligned}
\sigma_{\mathrm{e}}(f(T)) & =\sigma_{\text {eap }}(f(T)) \cup \sigma_{\mathrm{e} \delta}(f(T)) \subseteq f\left(\sigma_{\text {eap }}(T)\right) \cup f\left(\sigma_{\mathrm{e} \delta}(T)\right) \\
& =f\left(\sigma_{\text {eap }}(T) \cup \sigma_{\mathrm{e} \delta}(T)\right)=f\left(\sigma_{\mathrm{e}}(T)\right)
\end{aligned}
$$

(2) " \Rightarrow ". Let $T \in \mathcal{S}(X)$ and $f \in \mathcal{H}(T)$. We only have to show that $f\left(\sigma_{\mathrm{e}}(T)\right) \subseteq \sigma_{\mathrm{e}}(f(T))$. Let $\mu \notin \sigma_{\mathrm{e}}(f(T))=\sigma_{\text {eap }}(f(T)) \cup \sigma_{\mathrm{e} \delta}(f(T))$. Put $h:=\mu-f$. Assume that there are $\lambda_{1} \in \sigma_{\text {eap }}(T)$ and $\lambda_{2} \in \sigma_{\mathrm{e} \delta}(T)$ such that $h\left(\lambda_{1}\right)=h\left(\lambda_{2}\right)=0$. It follows that $\mu \in f\left(\sigma_{\text {eap }}(T)\right)$ and $\mu \in f\left(\sigma_{\text {e } \delta}(T)\right)$. If $T \in \mathcal{S}_{+}(X)$ then we see by Theorem 2 that $\mu \in \sigma_{\text {eap }}(f(T)) \subseteq \sigma_{\mathrm{e}}(f(T))$, a contradiction. Similarly we get a contradiction if $T \in \mathcal{S}_{-}(X)$. Hence we have shown that h does not vanish on $\sigma_{\text {eap }}(T)$ or h does not vanish on $\sigma_{\mathrm{e} \delta}(T)$. It suffices to consider the case $h(\lambda) \neq 0$ for each $\lambda \in \sigma_{\text {eap }}(T)$ (since $\sigma_{\text {e } \delta}(T)=\sigma_{\text {eap }}\left(T^{*}\right)$ the other case can be treated in the same manner). By Proposition 4, h has at most a finite number of zeroes in $\sigma(T)$.

Case 1: h has no zeroes in $\sigma(T)$. Then $\mu \notin \sigma(f(T))=f(\sigma(T))$. This gives $\mu \notin f\left(\sigma_{\mathrm{e}}(T)\right)$.

Case 2: There are $\mu_{1}, \ldots, \mu_{k} \in \sigma(T)$ and $g \in \mathcal{H}(T)$ such that $h(\lambda)=$ $g(\lambda) \prod_{j=1}^{k}\left(\mu_{j}-\lambda\right)$ and $g(\lambda) \neq 0$ for $\lambda \in \sigma(T)$. Then we get

$$
h(T)=g(T) \prod_{j=1}^{k}\left(\mu_{j} I-T\right), \quad g(T) \text { is invertible. }
$$

Since $\mu \notin \sigma_{\mathrm{e}}(f(T))$ we see that $h(T) \in \Phi(X)$ and $\operatorname{ind}(h(T))=0$. Now use Proposition 1 to derive

$$
\mu_{j} I-T \in \Phi(X) \quad \text { for } j=1, \ldots, k
$$

and

$$
\sum_{j=1}^{k} \operatorname{ind}\left(\mu_{j} I-T\right)=\operatorname{ind}(h(T))=0
$$

Since $T \in \mathcal{S}(X)$ it follows that $\operatorname{ind}\left(\mu_{j} I-T\right)=0(j=1, \ldots, k)$. Thus we have $\mu_{j} \notin \sigma_{\mathrm{e}}(T)(j=1, \ldots, n)$, hence $\mu \notin f\left(\sigma_{\mathrm{e}}(T)\right)$.
" $\Leftarrow "$. Assume to the contrary that $T \notin \mathcal{S}(X)$. Then there are $\lambda_{1}, \lambda_{2} \in$ $\Phi(T)$ with $k:=\operatorname{ind}\left(\lambda_{1} I-T\right)>0$ and $m:=-\operatorname{ind}\left(\lambda_{2} I-T\right)>0$. Put $f(\lambda)=$ $\left(\lambda_{1}-\lambda\right)^{m}\left(\lambda_{2}-\lambda\right)^{k}$. We get $f(T) \in \Phi(X), \operatorname{ind}(f(T))=0,0 \notin \sigma_{\mathrm{e}}(f(T))$ but $0=f\left(\lambda_{1}\right)=f\left(\lambda_{2}\right) \in f\left(\sigma_{\mathrm{e}}(T)\right)$. This contradiction completes the proof.

REFERENCES

[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
[2] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann. 192 (1971), 17-32.
[3] H. Heuser, Funktionalanalysis, 3rd ed., Teubner, 1992.
[4] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
[5] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), 61-64.
[6] K. K. Oberai, Spectral mapping theorems for essential spectra, Rev. Roumaine Math. Pures Appl. 25 (1980), 365-373.
[7] C. Pearcy, Some Recent Developments in Operator Theory, CBMS Regional Conf. Ser. in Math. 36, Amer. Math. Soc., Providence, 1978.
[8] V. Rakočević, On one subset of M. Schechter's essential spectrum, Mat. Vesnik 5 (1981), 389-391.
[9] -, On the essential approximate point spectrum, II, ibid. 36 (1984), 89-97.
[10] -, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198.
[11] M. Schechter, On the essential spectrum of an arbitrary operator, I, J. Math. Anal. Appl. 13 (1966), 205-215.
[12] C. Schmoeger, Ascent, descent and the Atkinson region in Banach algebras, $I I$, Ricerche Mat. 42 (1993), 249-264.
[13] B. Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. J. 18 (1951), 599-612.

Mathematisches Institut I
Universität Karlsruhe
D-76128 Karlsruhe, Germany

[^0]: 1991 Mathematics Subject Classification: 47A10, 47A53.

