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THE SPECTRAL MAPPING THEOREM
FOR THE ESSENTIAL APPROXIMATE POINT SPECTRUM

BY

CHRISTOPH SCHMOEGER (KARLSRUHE)

1. Introduction and preliminaries. Let X be an infinite-dimensional
complex Banach space and denote the set of bounded linear operators on X
by B(X). K(X) denotes the ideal of compact operators on X. Let σ(T ) and
%(T ) denote, respectively, the spectrum and the resolvent set of an element
T of B(X). The set of those operators T of B(X) for which the range T (X)
is closed and α(T ), the dimension of the null space N(T ) of T , is finite is
denoted by Φ+(X). Set

Φ−(X) = {T ∈ B(X) : β(T ) is finite},

where β(T ) is the codimension of T (X). Observe that T (X) is closed if
T ∈ Φ−(X) ([3], Satz 55.4). Operators in Φ+(X) ∪ Φ−(X) are called semi-
Fredholm operators. For such an operator T we define the index of T by
ind(T ) = α(T )−β(T ). An operator T is called a Fredholm operator if T ∈
Φ(X) = Φ+(X)∩Φ−(X). Let Φ−+(X) denote the set of those operators T in
Φ+(X) for which ind(T ) ≤ 0.

For an operator T in B(X) we will use the following notations:

Φ(T ) = {λ ∈ C : λI − T ∈ Φ(X)},
Σ(T ) = {λ ∈ C : λI − T is semi-Fredholm},

Σ+(T ) = {λ ∈ C : λI − T ∈ Φ+(X)}

and

H(T ) = {f : ∆(f) → C : ∆(f) is open, σ(T ) ⊆ ∆(f), f is holomorphic}.

It is well known that Φ(T ), Σ(T ) and Σ+(T ) are open [3], §82. For f ∈H(T ),
the operator f(T ) is defined by the well-known analytic calculus (see [3]).

Let T ∈ B(X). We write σe(T ) for Schechter’s essential spectrum of T
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(see [11]), i.e.,

σe(T ) =
⋂

K∈K(X)

σ(T + K).

This essential spectrum has the following properties:

1. C \ σe(T ) = {λ ∈ Φ(T ) : ind(λI − T ) = 0} ([3], Satz 107.3).
2. σe(f(T )) ⊆ f(σe(T )) for each f ∈ H(T ), and this inclusion may be

proper (see [2] and [6]; see also [12], where the above inclusion is shown in
the context of Fredholm elements in Banach algebras).

3. If f ∈ H(T ) is univalent, then σe(f(T )) = f(σe(T )) (see [6], Remark
1 in Section 3).

In [12] we have introduced (in a more general context) the following class
of operators:

S(X) = {T ∈ B(X) : ind(λI − T ) ≤ 0 for all λ ∈ Φ(T )
or ind(λI − T ) ≥ 0 for all λ ∈ Φ(T )}.

We have shown in [12] that

(∗) T ∈ S(X) ⇔ σe(f(T )) = f(σe(T )) for all f ∈ H(T ).

Thus (∗) is a generalization of Theorem 1 in [5].
Let σap(T ) denote the approximate point spectrum of T ∈ B(X), i.e.,

σap(T ) = {λ ∈ C : inf
‖x‖=1

‖(λI − T )x‖ = 0}.

The essential approximate point spectrum σeap(T ) of T was introduced by
V. Rakočević in [8] as follows:

σeap(T ) =
⋂

K∈K(X)

σap(T + K)

(see also [9] and [10]).
Set further

S+(X) = {T ∈ B(X) : ind(λI − T ) ≤ 0 for all λ ∈ Σ+(T )
or ind(λI − T ) ≥ 0 for all λ ∈ Σ+(T )}.

Clearly we have S+(X) ⊆ S(X).
The aim of the paper is to show the following result:

(∗∗) T ∈ S+(X) ⇔ σeap(f(T )) = f(σeap(T )) for all f ∈ H(T ).

The first part of the following proposition is probably known. According
to C. Pearcy [7], this result has already appeared in a preprint Fredholm
operators by P. R. Halmos in 1967. For the convenience of the reader we
shall include a proof.
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Proposition 1. (1) If T, S∈Φ+(X) [resp. ∈Φ−(X)] then TS∈Φ+(X)
[resp. ∈ Φ−X)], and

ind(TS) = ind(T ) + ind(S).

(2) If T, S ∈ B(X), TS ∈ Φ+(X) [resp. ∈ Φ−(X)] then S ∈ Φ+(X)
[resp. T ∈ Φ−(X)].

P r o o f. (1) It suffices to consider the case where T, S ∈ Φ+(X) (because
of [3], Satz 82.1).

C a s e 1: T, S ∈ Φ(X). Then, by [3], §71, TS ∈ Φ(X) and ind(TS) =
ind(T ) + ind(S).

C a s e 2: T 6∈ Φ(X) or S 6∈ Φ(X). Then β(T ) = ∞ or β(S) = ∞. Use
[3], Aufgabe 82.2,4, to get TS ∈ Φ+(X) and β(TS) = ∞. Hence

ind(TS) = −∞ = ind(T ) + ind(S).

(2) See [3], Aufgabe 82.3,4.

2. Properties of σeap(T ). We begin with some properties of σeap(T )
due to V. Rakočević:

Proposition 2. Let T ∈ B(X).

(1) ∂σe(T ) ⊆ σeap(T ) (where ∂σe(T ) denotes the boundary of σe(T )).
(2) σeap(T ) 6= ∅.
(3) λ 6∈ σeap(T ) ⇔ λI − T ∈ Φ+(X) and ind(λI − T ) ≤ 0.
(4) σeap(T ) is compact , σeap(T ) ⊆ σ(T ).

P r o o f. For (1), (2), see [8], Theorem 1. For (3), see [8], Lemmata 1
and 2. (4) is clear.

Proposition 3. Let T ∈ B(X) and let λ0 be a boundary point of σ(T ).
If λ0 ∈ Σ(T ) then λ0 is an isolated point of σ(T ).

P r o o f. Theorem 3 of [4] shows the existence of δ > 0 such that λ ∈ Σ(T )
for |λ− λ0| < δ, α(λI − T ) is a constant for 0 < |λ− λ0| < δ and β(λI − T )
is a constant for 0 < |λ − λ0| < δ. Take µ0 ∈ %(T ) with 0 < |µ0 − λ0| < δ.
Then α(µ0I − T ) = β(µ0I − T ) = 0, thus α(λI − T ) = β(λI − T ) = 0 for
0 < |λ− λ0| < δ. This shows that λ ∈ %(T ) for 0 < |λ− λ0| < δ.

Proposition 4. Let T ∈ B(X) and h ∈ H(T ). If h has no zeroes in
σeap(T ) then h has at most a finite number of zeroes in σ(T ).

P r o o f. Assume that the number of zeroes of h in σ(T ) is infinite. Then
there is z0 ∈ σ(T ) such that z0 is an accumulation point of the zeroes of h
in σ(T ). Denote by C the connected component of σ(T ) which contains z0

and by K the connected component of ∆(h) which contains z0 (where ∆(h)
is the open set of the definition of h). It follows that C ⊆ K and h ≡ 0 on
K. Let λ0 ∈ ∂C. Then h(λ0) = 0. Since h does not vanish on σeap(T ),
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we have λ0 6∈ σeap(T ) and therefore λ0 ∈ Σ(T ). Since C is a connected
component of σ(T ), we also have λ0 ∈ ∂σ(T ). By Proposition 3 we see that
λ0 is an isolated point of σ(T ). Thus C = {λ0}. Hence we get z0 = λ0, a
contradiction, since z0 is an accumulation point of σ(T ).

Proposition 5. Let (Tn) be a sequence in B(X) converging to T ∈ B(X)
in the operator norm. If V ⊆ C is open and 0 ∈ V , then there exists n0 ∈ N
such that

σeap(Tn) ⊆ σeap(T ) + V for all n ≥ n0.

P r o o f. Assume not. Then by passing to a subsequence (if necessary)
it may be assumed that for each n there exists λn ∈ σeap(Tn) such that
λn 6∈ σeap(T )+V . Since (λn) is bounded, we may assume (if necessary pass
to a subsequence) that limn→∞ λn = λ0. This gives λ0 6∈ σeap(T )+V , hence
λ0 6∈ σeap(T ). Thus λ0I − T ∈ Φ−+(X) (Proposition 2(3)). Since Φ−+(X) is
an open multiplicative semigroup (see [3], § 82) and λnI − Tn → λ0I − T
(n → ∞), we get some N ∈ N such that λnI − Tn ∈ Φ−+(X) for all n ≥ N .
Use again Proposition 2(3) to derive λn 6∈ σeap(Tn) for each n ≥ N , a
contradiction.

3. Spectral mapping theorem for σeap(T ). The following result is
due to V. Rakočević ([10], Theorem 3.3). For the convenience of the reader
we give a (slightly simpler) proof.

Theorem 1. Let T ∈ B(X) and f ∈ H(T ). Then

σeap(f(T )) ⊆ f(σeap(T )).

P r o o f. Let µ 6∈ f(σeap(T )) and put h(λ) = µ − f(λ). Then h has no
zeroes in σeap(T ). Applying Proposition 4 we conclude that h has at most
a finite number of zeroes in σ(T ).

C a s e 1: h has no zeroes in σ(T ). Then h(T ) = µI − f(T ) is invertible,
thus µ 6∈ σeap(f(T )).

C a s e 2: h has finitely many zeroes in σ(T ). Let λ1, . . . , λk be those
zeroes. Then there exist n1, . . . , nk ∈ N and g ∈ H(T ) such that

h(λ) = g(λ)
k∏

j=1

(λj − λ)nj , g(T ) is invertible,

and

h(T ) = g(T )
k∏

j=1

(λjI − T )nj .

Since λ1, . . . , λk 6∈ σeap(T ) we get

λjI − T ∈ Φ+(X) and ind(λjI − T ) ≤ 0 (j = 1, . . . , k).
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Use Proposition 1(1) to derive h(T ) ∈ Φ+(X) and

ind(h(T )) = ind(g(T ))︸ ︷︷ ︸
=0

+
k∑

j=1

nj ind(λjI − T )︸ ︷︷ ︸
≤0

≤ 0.

Thus µI − f(T ) = h(T ) ∈ Φ−+(X) and therefore µ 6∈ σeap(f(T )).

Example 4.2 in [9] shows that the inclusion in Theorem 1 may be proper.
In the first section of this paper we introduced the following class of

operators:

S+(X) = {T ∈ B(X) : ind(λI − T ) ≤ 0 for all λ ∈ Σ+(T )
or ind(λI − T ) ≥ 0 for all λ ∈ Σ+(T )}.

Proposition 6. Let T ∈ S+(X) and let r be a rational function in
H(T ). Then

σeap(r(T )) = r(σeap(T )).

P r o o f. By Theorem 1 we only have to show r(σeap(T )) ⊆ σeap(r(T )).
Let r = p/q, where p and q are polynomials and q has no zeroes in σ(T ).
Hence q(T ) is invertible. Let µ 6∈ σeap(r(T )), thus, by Proposition 2(3),

µI − r(T ) ∈ Φ+(X) and ind(µI − r(T )) ≤ 0.

Put h(λ) = µ−r(λ), thus h(λ) = (µq(λ)−p(λ))/q(λ). There exist µ1, . . . , µk,
α ∈ C such that

h(λ) = α
(µ1 − λ) . . . (µk − λ)

q(λ)
.

This gives q(T )h(T ) = α(µ1I − T ) . . . (µkI − T ). Since q(T )h(T ) ∈ Φ+(X),
Proposition 1(2) shows that

µjI − T ∈ Φ+(X) for j = 1, . . . , k.

Furthermore, by Proposition 1(1), we have
k∑

j=1

ind(µjI − T ) = ind(q(T )h(T )) = ind(q(T ))︸ ︷︷ ︸
=0

+ ind(h(T ))

= ind(h(T )) = ind(µI − r(T )) ≤ 0.

C a s e 1: ind(λI − T ) ≤ 0 for all λ ∈ Σ+(T ). Since µj ∈ Σ+(T ) for
j = 1, . . . , k, we derive ind(µjI − T ) ≤ 0 for j = 1, . . . , k, hence µjI − T ∈
Φ−+(X) (j = 1, . . . , k) and therefore, by Proposition 2(3),

µj 6∈ σeap(T ) for j = 1, . . . , k.

This gives µ 6∈ r(σeap(T )).
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C a s e 2: ind(λI − T ) ≥ 0 for all λ ∈ Σ+(T ). Then ind(µjI − T ) ≥ 0
(j = 1, . . . , k) and therefore

0 ≤
k∑

j=1

ind(µjI − T ) = ind(µI − r(T )) ≤ 0.

This shows that ind(µjI − T ) = 0 for j = 1, . . . , k. Thus µj 6∈ σeap(T )
(j = 1, . . . , k) and hence µ 6∈ r(σeap(T )).

Now we are in a position to state the main result of this paper:

Theorem 2. If T ∈ B(X) then

T ∈ S+(X) ⇔ σeap(f(T )) = f(σeap(T )) for all f ∈ H(T ).

P r o o f. “⇒”. The inclusion “⊆” follows from Theorem 1. Let ∆(f)
denote the (open) set of the definition of f . Corollary 6.6 of [1] shows the
existence of a sequence (rn) of rational functions such that (rn) converges
to f uniformly on compact subsets of ∆(f). Thus ‖rn(T ) − f(T )‖ → 0
(n → ∞) ([3], Aufgabe 99.1). Let V be an open set in C containing the
origin. By Proposition 5 and the uniform convergence on σeap(T ), there
exists n0 ∈ N such that

f(σeap(T )) ⊆ rn(σeap(T )) + V

and
σeap(rn(T )) ⊆ σeap(f(T )) + V

for all n ≥ n0. Proposition 6 gives

rn(σeap(T )) = σeap(rn(T )) for all n ∈ N,

thus
f(σeap(T )) ⊆ σeap(rn0(T )) + V ⊆ σeap(f(T )) + V + V.

Since V was an arbitrary neighbourhood of 0, we get

f(σeap(T )) ⊆ σeap(f(T )).

“⇐”. Assume to the contrary that T 6∈ S+(X). Then there are λ1, λ2 ∈
Σ+(T ) with

ind(λ1I − T ) > 0 and ind(λ2I − T ) < 0.

It follows that β(λ1I − T ) < ∞, hence λ1I − T ∈ Φ(X) and thus k :=
ind(λ1I − T ) ∈ N.

C a s e 1: λ2I−T ∈ Φ(X). Put m := − ind(λ2I−T ), thus m ∈ N. Define
the function f ∈ H(T ) by f(λ) = (λ1−λ)m(λ2−λ)k. Then f(T ) ∈ Φ(X) and
ind(f(T )) = mk+k(−m) = 0, thus 0 6∈ σeap(f(T )). Since λ1I−T 6∈ Φ−+(X)
we see by Proposition 2(3) that λ1 ∈ σeap(T ) and therefore 0 = f(λ1) ∈
f(σeap(T )), a contradiction.



SPECTRAL MAPPING THEOREM 173

C a s e 2: λ2I − T 6∈ Φ(X). Then β(λ2I − T ) = ∞ and ind(λ2I − T ) =
−∞. Put f(λ) = (λ1 − λ)(λ2 − λ). It follows from Proposition 1(1) that
f(T ) ∈ Φ+(X) and that

ind(f(T )) = k −∞ = −∞,

thus 0 6∈ σeap(f(T )). As in Case 1 we have 0 = f(λ1) ∈ f(σeap(T )), a
contradiction.

4. The essential defect spectrum. For T ∈ B(X) the defect spectrum
σδ(T ) is defined by

σδ(T ) = {λ ∈ C : λI − T is not surjective}.

We define the essential defect spectrum σeδ(T ) of T by

σeδ(T ) =
⋂

K∈K(X)

σδ(T + K).

We let X∗ designate the conjugate space of X and T ∗ the adjoint of T ∈
B(X).

Proposition 7. Let T ∈ B(X).

(1) λ 6∈ σeδ(T ) ⇔ λI − T ∈ Φ−(X) and ind(λI − T ) ≥ 0.
(2) σeδ(T ) = σeap(T ∗).
(3) σeδ(T ) 6= ∅.

P r o o f. (1) “⇒”. If λ 6∈ σeδ(T ) then there is K ∈ K(X) such that
λ 6∈ σδ(T + K), thus λI − T −K is surjective, hence λI − T −K ∈ Φ−(X)
and ind(λI−T −K) = α(λI−T −K) ≥ 0. Satz 82.5 of [3] shows then that
λI − T ∈ Φ−(X) and ind(λI − T ) = ind(λI − T −K) ≥ 0.

“⇐”. If λI − T ∈ Φ−(X) and ind(λI − T ) ≥ 0 then, by [13], Theorem
3.13, there are U1, U2 ∈ B(X) such that

λI − T = U1 + U2, U2 ∈ K(X), U1(X) = X.

Thus λI − (T + U2) is surjective and therefore λ 6∈ σδ(T + U2). This gives
λ 6∈ σeδ(T ).

(2) Use (1), Proposition 2(3) and [3], Satz 82.1, to get

λ 6∈ σeδ(T ) ⇔ λI∗ − T ∗ ∈ Φ+(X∗) and ind(λI∗ − T ∗) ≤ 0
⇔ λ 6∈ σeap(T ∗).

(3) This follows from (2) and Proposition 2(2).

Theorem 3. For T ∈ B(X) and f ∈ H(T ) we have

σeδ(f(T )) ⊆ f(σeδ(T )).
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P r o o f. We have
σeδ(f(T )) = σeap((f(T ))∗) (by Proposition 7(2))

= σeap(f(T ∗))
⊆ f(σeap(T ∗)) (by Theorem 1)
= f(σeδ(T )) (by Proposition 7(2)).

For our final result in this section, which is dual to Theorem 2, we need
the following definitions. For T in B(X) set Σ−(T ) = {λ ∈ C : λI − T ∈
Φ−(X)}. The class S−(X) of operators is defined by

S−(X) = {T ∈ B(X) : ind(λI − T ) ≥ 0 for all λ ∈ Σ−(T )
or ind(λI − T ) ≤ 0 for all λ ∈ Σ−(T )}.

It follows from [3], Satz 82.1, that Σ(T ) = Σ(T ∗), Σ+(T ) = Σ−(T ∗),
Σ−(T ) = Σ+(T ∗) and that

ind(λI − T ) = − ind(λI∗ − T ∗) for all λ ∈ Σ(T ).

This gives

T ∈ S−(X) ⇔ T ∗ ∈ S+(X∗), T ∈ S+(X) ⇔ T ∗ ∈ S−(X∗).

As an immediate consequence of Theorem 2 and Proposition 7 we get

Theorem 4. Let T ∈ B(X). Then

T ∈ S−(X) ⇔ f(σeδ(T )) = σeδ(f(T )) for all f ∈ H(T ).

5. Schechter’s essential spectrum. In this final section we return to
σe(T ) =

⋂
K∈K(X) σ(T + K). Recall that λ 6∈ σe(T ) if and only if λ ∈ Φ(T )

and ind(λI − T ) = 0. We have mentioned in Section 1 that the following
result holds.

Theorem 5. Let T ∈ B(X).

(1) σe(f(T )) ⊆ f(σe(T )) for each f ∈ H(T ).
(2) T ∈ S(X) ⇔ σe(f(T )) = f(σe(T )) for all f ∈ H(T ).

The aim of this section is to prove Theorem 5 with the aid of the results
of the previous sections of this paper.

Proposition 8. For T ∈ B(X) we have:

(1) σe(T ) = σeap(T ) ∪ σeδ(T ).
(2) S(X) = S+(X) ∪ S−(X).

P r o o f. (1) Use Propositions 2(3) and 7(1).
(2) The inclusion S+(X) ∪ S−(X) ⊆ S(X) is clear. Let T ∈ S(X) and

assume T 6∈ S+(X) ∪ S−(X). Then there are λ1, λ2 ∈ Σ+(T ) and λ3, λ4 ∈
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Σ−(T ) such that ind(λ1I −T ) > 0, ind(λ2I −T ) < 0, ind(λ3I −T ) > 0 and
ind(λ4I − T ) < 0. This gives β(λ1I − T ) < ∞ and α(λ4I − T ) < ∞, hence
λ1, λ4 ∈ Φ(T ). Since T ∈ S(X) and ind(λ1I −T ) > 0, ind(λ4I −T ) < 0, we
have a contradiction.

P r o o f o f T h e o r e m 5. (1) Use Proposition 8(1), Theorem 1 and
Theorem 3 to derive

σe(f(T )) = σeap(f(T )) ∪ σeδ(f(T )) ⊆ f(σeap(T )) ∪ f(σeδ(T ))
= f(σeap(T ) ∪ σeδ(T )) = f(σe(T )).

(2) “⇒”. Let T ∈ S(X) and f ∈ H(T ). We only have to show that
f(σe(T )) ⊆ σe(f(T )). Let µ 6∈ σe(f(T )) = σeap(f(T )) ∪ σeδ(f(T )). Put
h := µ− f . Assume that there are λ1 ∈ σeap(T ) and λ2 ∈ σeδ(T ) such that
h(λ1) = h(λ2) = 0. It follows that µ ∈ f(σeap(T )) and µ ∈ f(σeδ(T )). If
T ∈ S+(X) then we see by Theorem 2 that µ ∈ σeap(f(T )) ⊆ σe(f(T )),
a contradiction. Similarly we get a contradiction if T ∈ S−(X). Hence
we have shown that h does not vanish on σeap(T ) or h does not vanish on
σeδ(T ). It suffices to consider the case h(λ) 6= 0 for each λ ∈ σeap(T ) (since
σeδ(T ) = σeap(T ∗) the other case can be treated in the same manner). By
Proposition 4, h has at most a finite number of zeroes in σ(T ).

C a s e 1: h has no zeroes in σ(T ). Then µ 6∈ σ(f(T )) = f(σ(T )). This
gives µ 6∈ f(σe(T )).

C a s e 2: There are µ1, . . . , µk ∈ σ(T ) and g ∈ H(T ) such that h(λ) =
g(λ)

∏k
j=1(µj − λ) and g(λ) 6= 0 for λ ∈ σ(T ). Then we get

h(T ) = g(T )
k∏

j=1

(µjI − T ), g(T ) is invertible.

Since µ 6∈ σe(f(T )) we see that h(T ) ∈ Φ(X) and ind(h(T )) = 0. Now use
Proposition 1 to derive

µjI − T ∈ Φ(X) for j = 1, . . . , k

and
k∑

j=1

ind(µjI − T ) = ind(h(T )) = 0.

Since T ∈ S(X) it follows that ind(µjI − T ) = 0 (j = 1, . . . , k). Thus we
have µj 6∈ σe(T ) (j = 1, . . . , n), hence µ 6∈ f(σe(T )).

“⇐”. Assume to the contrary that T 6∈ S(X). Then there are λ1, λ2 ∈
Φ(T ) with k := ind(λ1I−T ) > 0 and m := − ind(λ2I−T ) > 0. Put f(λ) =
(λ1 − λ)m(λ2 − λ)k. We get f(T ) ∈ Φ(X), ind(f(T )) = 0, 0 6∈ σe(f(T )) but
0 = f(λ1) = f(λ2) ∈ f(σe(T )). This contradiction completes the proof.



176 C. SCHMOEGER

REFERENCES

[1] F. F. Bonsa l l and J. Duncan, Complete Normed Algebras, Springer, 1973.
[2] B. Gramsch and D. Lay, Spectral mapping theorems for essential spectra, Math.

Ann. 192 (1971), 17–32.
[3] H. Heuser, Funktionalanalysis, 3rd ed., Teubner, 1992.
[4] T. Kato, Perturbation theory for nullity , deficiency and other quantities of linear

operators, J. Anal. Math. 6 (1958), 261–322.
[5] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum,

Glasgow Math. J. 38 (1996), 61–64.
[6] K. K. Obera i, Spectral mapping theorems for essential spectra, Rev. Roumaine

Math. Pures Appl. 25 (1980), 365–373.
[7] C. Pearcy, Some Recent Developments in Operator Theory , CBMS Regional Conf.

Ser. in Math. 36, Amer. Math. Soc., Providence, 1978.
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