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Abstract

Let Fω be a linear, complex-symmetric Fredholm integral operator with highly os-
cillatory kernel K0(x, y)eiω|x−y|. We study the spectral problem for Fω for large ω and
investigate the asymptotic properties of solutions f = f(x;ω) to the associated Fredholm
integral equation f = µFωf + a as ω → ∞. Possible extensions of these results to highly
oscillatory Fredholm integral operators with more general highly oscillating kernels are
also discussed.
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1 Introduction

The last few years have witnessed substantive effort towards the understanding of highly
oscillatory phenomena, and in particular of highly oscillatory integrals [10, 12, 16]. Using
tools of both asymptotic and numerical analysis, it has emerged that the presence of high
oscillation is no hindrance to the understanding or computation of mathematical objects.
Once we understand the mathematical mechanism underlying rapidly oscillating phenomena
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and employ tools of asymptotic analysis, often in computational setting, there is no need to
fear high frequency!

This paper is the beginning of a longer commitment to extend this approach from highly
oscillatory integrals to integral equations with highly oscillatory kernels. Such equations
occur in a number of applications, in particular in electromagnetics, acoustic scattering and
laser engineering, and the current level of their understanding is exceedingly poor. The
range of issues that we wish eventually to bring under scrutiny include spectral problems
for Fredholm operators, and also the solution of Fredholm and Volterra equations, all with
highly oscillatory kernels.

In the current paper our aim is to analyse the spectral properties of the Fredholm integral
operator Fω : C(I) → C(I) defined by

(Fωf)(x) :=

∫ 1

−1
Kω(x, y)f(y) dy, x ∈ I := [−1, 1], (1.1)

and possessing the highly oscillatory kernel

Kω(x, y) := K0(x, y)eiωg(x,y), ω ≫ 1, (1.2)

with
g(x, y) = |x − y|, (x, y) ∈ D := I2 . (1.3)

The real-valued kernel K0(x, y) is assumed to be smooth on D and independent of ω. We
observe that the integral operator Fω is compact and, for kernels K0 satisfying K0(x, y) =
K0(y, x) on D, complex-symmetric (but not Hermitian). Thus for any given ω > 0 the
spectrum σ(Fω) is at most countable and has at most one limit point (see, e.g. Rudin [18]
or Atkinsom [1, pp. 17–18]). We shall show in Section 3 that Fω possesses infinitely many
discrete eigenvalues that lie on an ellipse-like curve in the complex plane, with the origin
being the limit point of σ(Fω).

We are also interested in refining existing results on the asymptotic behaviour of func-
tions f(x) = f(x, ω), as ω → ∞, that solve Fredholm integral equations of the second kind
associated with Fω,

f(x) = µ(Fωf)(x) + a(x), x ∈ I, (1.4)

when µ−1 ∈ C is not in the spectrum σ(F) of the Fredholm integral operator (1.1) and
a ∈ C∞(I) idoes not depend on ω. It is known (Ursell [19]) that the solution f(x; ω) of (1.4)
is highly oscillatory, too.

Finally, we wish to employ our explicit knowledge of spectral properties to design exceed-
ingly fast spectral solver of problems of the form (1.4).

Our study is the first step towards the understanding of the spectral properties of complex-
symmetric Fredholm integral operators that are more general that the one given in (1.1) and
(1.2); they correspond to the oscillators

g(x, y) = (x − y)2, (x, y) ∈ I2 , (1.5)

and
g(x, y) = xy , (x, y) ∈ I2. (1.6)

The study of the spectra of such integral operators is motivated by applications, especially in
laser theory; see for example the papers by Fox and Li [8], Hochstadt [9], Cochran and Hinds
[7], Landau [14, 15] and Berry [2, 3, 4] for the case (1.5) (we will refer to equation (1.3) with
this function g(x, y) as the Fox–Li equation, and Cochran and Hinds [7, p. 777] for (1.6).
The analysis of the spectra of these more general Fredholm integral operators appears to be
fairly challenging (see also Section 6) and we plan to return to it in future papers.

It is appropriate to recall a quote from Cochran’s 1972 book [6, p. 279] that remains valid
to this day:
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The analysis of integral equations with general complex-symmetric kernels re-
mains, at present, an art form in which each separate equation appears to neces-
sitate treatment based almost solely on its own individual features and peculiar-
ities.

Our ambition is to contribute to converting art into science in this context.

Remark 1.1 The spectral problem corresponding to the function g(x, y) = x− y in (1.2) is,
for kernels K0(x, y) of the form

K0(x, y) =
r
∑

j=1

Aj(x)Bj(y), Aj , Bj ∈ C(I) (1 ≤ j ≤ r), (1.7)

with linearly independent sets {Aj} and {Bj}, trivial, since Fω is now a finite-rank operator.
Setting

zj :=

∫ 1

−1
Bj(y)e−iωyφ(y) dy (1 ≤ j ≤ r),

and introducing the vector z := ( z1, . . . , zr )⊤ ∈ R
r and the matrix

Cr := [ Ck,j ] ∈ R
r×r, Ck,j :=

∫ 1

−1
Aj(x)Bk(x) dx ( = 〈Aj , Bk〉 ), (1.8)

the eigenvalue problem
(Fωφ)(x) = λφ(x), x ∈ I, (1.9)

for the Fredholm operator Fω with kernel K0(x, y) given by (1.7) and g(x, y) = x− y reduces
to the algebraic eigenvalue problem Crz = λz . Hence, the eigenvalues λ1, . . . , λr of this
finite-rank Fredholm integral operator do not depend on ω.

On the other hand, the solution f ∈ C(I) of the Fredholm equation (1.4) with kernel (1.2),
(1.7) (and µ−1 6= λj (j = 1, . . . , r)) is given by

f(x) = µ
r
∑

j=1

Aj(x)fj + a(x), x ∈ I,

where f := ( f1, . . . , fr )⊤ is the (unique) solution of the algebraic system

(Ir − µCr)f = b, with bj = bj(ω) :=

∫ 1

−1
a(x)Bj(x)e−iωx dx (1 ≤ j ≤ r).

The matrix Cr ∈ R
r×r is the same as the one given in (1.8) and is independent of ω. Thus,

the solution f of (1.4) with finite-rank kernel (1.7) does depend on ω and, by the Riemann–
Lebesgue Lemma, has the property that f( · , ω) → 0, uniformly on I, as ω → ∞. It will be
seen in Section 4.1 that this asymptotic property remains true for the integral equation (1.4)
with general highly oscillatory Fredholm operator (1.2–3); see also Ursell [19].)

In Section 2 we show that the eigenvalue problem (1.9) corresponding to the general
Fredholm integral operator (1.1–3) is equivalent to a Sturm–Liouville eigenvalue problem with
complex-valued Robin boundary conditions. This result is used in Section 3 to establish the
existence of an infinite (but countable) spectrum {λm} and the asymptotic behaviour of these
eigenvalues for large ω and large m. In Section 4 we touch upon the asymptotic behaviour
of the solution of the second-kind Fredholm integral equation (1.4) (with µ−1 6∈ σ(Fω)), as
ω → ∞. Section 5 deals briefly with current work on the extension of these asymptotic results
to the more general complex-symmetric Fredhholm integral operators associated with (1.5)
and (1.6).
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2 The spectral problem

Recall that the spectral problem for the Fredholm integral operator Fω is described by

(Fωφ)(x) = λφ(x), x ∈ I, (2.1)

with λ ∈ C and φ ∈ C(I) (φ 6≡ 0). Let σ(Fω) denote the spectrum of Fω, and assume
that φm is an eigenfunction corresponding to λm ∈ σ(Fω). Unless stated otherwise, we will
assume that K0(x, y) ≡ 1 in (1.2), without any essential loss of insight.

Lemma 2.1 The spectral problem for the complex-symmetric Fredholm integral operator Fω

with K0(x, y) ≡ 1 is equivalent to the Sturm–Liouville eigenvalue problem

φ′′
m(x) + ν2

mφm(x) = 0, x ∈ I, (2.2)

with the complex-valued Robin boundary conditions

iωφm(−1) + φ′
m(−1) = 0, iωφm(1) − φ′

m(1) = 0. (2.3)

Here we have set

νm = νm(ω) :=

(

ω2 −
2iω

λm

)1/2

, (2.4)

implying that

λm =
2iω

ω2 − ν2
m

( = µ−1
m ). (2.5)

Proof Setting Fm(x) := (Fωφm)(x) and observing that, for x ∈ I,

Fm(x) = eiωx
∫ x

−1
e−iωyφm(y) dy + e−iωx

∫ 1

x
eiωyφm(y) dy,

we obtain
dFm(x)

dx
= iω

[

eiωx
∫ x

−1
φm(y)e−iωy dy − e−iωx

∫ 1

x
φm(y)eiωy dy

]

(2.6)

and

d2Fm(x)

dx2
= (iω)2

[

eiωx
∫ x

−1
φm(y)e−iωy + e−iωx

∫ 1

x
φm(y)eiωy dy

]

+ 2iωφm(x) (2.7)

= (iω)2Fm(x) + 2iωφm(x).

Since there holds (Fωφm)(x) = λmφm(x) for x ∈ I, it follows that

d2(Fωφm)(x)

dx2
= λmφ′′

m(x) = (iω)2(Fωφm)(x) + 2iωφm(x), x ∈ I,

or, for λm 6= 0,

φ′′
m(x) +

[

−
2iω

λm
− (iω)2

]

φm(x) =: φ′′
m(x) + ν2

mφm(x) = 0; (2.8)

cf. (2.4) and (2.5). The boundary conditions (2.3) follow from (2.6) and the eigenvalue
equation: since F ′

m(−1) = −iωFm(−1), and

d

dx
(Fωφm)(−1) = λmφ′

m(−1), (Fωφm)(−1) = λmφm(−1),

we find φ′
m(−1) = −iωφm(−1). The boundary condition at x = 1 is obtained in an analogous

manner. This completes the proof of Lemma 2.1. 2
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Lemma 2.2 The eigenfunction φm corresponding to an eigenvalue λm of Fω has (up to
renormalization by a nonzero constant) the form

φm(x) = (νm − ω)eiνm(1+x) + (νm + ω)e−iνm(1+x), x ∈ I, (2.9)

with νm given by (2.4).

Proof Since the general solution of (2.2) can be written in the form

φm(x) = αmeiνm(1+x) + βme−iνm(1+x), (2.10)

the coefficients αm and βm are determined by the boundary conditions (2.3): we obtain
nontrivial solutions if, and only if, the determinant of the matrix in the homogeneous linear
system

[

i(νm + ω) i(νm − ω)
i(νm − ω)e2iνm −i(νm + ω)e−2iνm

] [

αm

βm

]

= 0 (2.11)

vanishes; that is, if and only if the condition

(νm − ω)eiνm = ±(νm + ω)e−iνm (2.12)

holds. The assertion (2.9) of Lemma 2.2 then readily follows from (2.11). 2

The condition (2.12) implies that we have two branches of solutions: setting θ := νm (cf.
(2.4) and (2.5)), these branches are given by

θ tan(θ) = −iω and θ cot(θ) = iω, (2.13)

respectively, with θ =
√

ω2 − 2iωµ (where we will temporarily suppress the subscript m in
θ = θm and µ = µm). This observation will be the starting point for our analysis, in Section 3,
of the nature and, especially, the asymptotic behaviour of the spectrum of Fω when ω → ∞.

3 The spectrum of Fω

Subject to the assumptions stated in Section 1, the linear Fredholm integral operator Fω

defined in (1.1–3) is compact. Hence, its spectrum σ(Fω) = {λm}, that is, the set of (complex)
numbers λ := µ−1 (µ 6= 0) for which the integral equation

(Fωφ)(x) = λφ(x), x ∈ [−1, 1],

has nontrivial solutions φ ∈ C(I), is countable. As the following theorem shows, σ(Fω) is in
fact an infinite set, implying that lim

m→∞
λm = 0.

Theorem 3.1 Let Fω be the Fredholm integral operator defined in (1.1–2), and assume that
K0(t, s) ≡ 1 and ω ≫ 1. The spectrum of this integral operator consists of infinitely many
discrete eigenvalues λm which all lie in the right complex half-plane and converge to the origin.
More precisely,

(i) For fixed ω > 0 and small m we have

Re λm ∼
(mπ)2

ω4
−

2(mπ)2 + 5/24(mπ)4

ω6
+ O(ω−8), (3.1)

Im λm ∼ −
2

ω
+

(mπ)2

2ω3
−

3/2(mπ)2 + 1/8(mπ)4

ω5
+ O(ω−7). (3.2)
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Figure 3.1: The values of θm for ω = 50, 100, 200.

(ii) For fixed ω > 0 and m ≫ 1 the real and imaginary parts of λm behave asymptotically
like

Re λm ∼
64ω2

(mπ)4
+ 1792ω4

[

1

3

1

(mπ)6
−

4

(mπ)8

]

(3.3)

+4096ω6
[

13

15

1

(mπ)8
−

26

(mπ)10
+

152

(mπ)12

]

+ · · · , (3.4)

Im λm ∼ −
8ω

(mπ)2
− 32ω3

[

1

(mπ)4
−

20

(mπ)6

]

(3.5)

−128ω5
[

1

(mπ)6
−

22

3

1

(mπ)8
+

2016

3

1

(mπ)10

]

+ · · · . (3.6)

Also,

|λm| ∼
8ω

π2
m−2. (3.7)

(iii) For ω ≫ 1 and fixed m we have

∣

∣

∣

∣

λm −
1

2

∣

∣

∣

∣

∼
1

4
+

4

ω2
−

3m2π2

ω4
+ O(ω−6), (3.8)

while for m ≫ 1 and fixed ω > 0,

∣

∣

∣

∣

λm −
1

2

∣

∣

∣

∣

∼
1

4
−

128

3

ω4

m6π6
+ O(m−8). (3.9)
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Figure 3.2: The eigenvalues λm for ω = 50, 100, 200.

Remark 3.1 In Fig. 3.1 we exhibit the solutions θm of the transcendental equations (2.13):
the solution of the two equations interlace. It is apparent that the solution lie on a curve
composed of two fairly regular regimes. The first regime corresponds to small m, when the
asymptotic behaviour is governed by the oscillation die to ω – this is part (iii) of the theorem.
In the second regime, on the right, ω is fixed while m becomes large (i.e., part (ii)) and
dictates the asymptotics.

As Fig. 3.2 shows, for small m the eigenvalues λm of Fω ‘emerge’ from the origin into
the bottom-right quadrant and then asymptotically lie on a curve resembling an ellipse; part
(iii) of Theorem 3.1 reveals that they depart from a circle only in the intermediate regime.

Proof Recalling the remark made at the end of the previous section, we start by rewriting
the equations in (2.13) in the form

cot(θ) +
θ

iω
= 0 and tan(θ) −

θ

iω
= 0 (ω > 0), (3.10)

respectively.

Case 1: We first consider the branch corresponding to the equation

cot(θ) +
θ

iω
= 0 (3.11)

in (3,10) (or (2.13)). Recall that θ :=
√

ω2 − 2iωµ (where µ = µm). Since the roots of (3.11)
corresponding to ω = ∞ are given by (m+1/2)π, m ∈ N, we find that for ω ≫ mπ, its roots
θ2m+1 can be expressed in the asymptotic form

θ2m+1 = G((m + 1/2)π), m ∈ N , (3.12)
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where for |T | ≪ ω straightforward substitution of an expansion into Maple and comparison
of coefficients results in

G(T ) ∼ T +
1

iω
T +

1

(iω)2
T +

1

(iω)3

(

T −
1

3
T 3
)

+
1

(iω)4
[T −

4

3
T 3]

+
1

(iω)5

(

T −
10

3
T 3 +

1

5
T 5
)

+
1

(iω)6

(

T −
20

3
(T 3 +

23

15
T 5
)

(3.13)

+
1

(iω)7

(

T −
35

3
T 3 +

98

15
T 5 −

1

7
T 7
)

+
1

(iω)8

(

T −
56

3
T 3 +

308

15
T 5 −

176

105
T 7
)

+O(ω−9) .

Case II: For the second equation in (3.10),

tan(θ) −
θ

iω
= 0, (3.14)

we derive in an analogous fashion the asymptotic result (|T | ≪ ω)

θ2m = G((2m)π/2), m ≥ 1, (3.15)

with G( · ) as in (3.13).

Setting, for convenience,

F (T ) := −
(iω)2 + G(T )

iω
,

we derive

F (T ) ∼
1

2
iω −

T 2

2iω
−

T 2

(iω)2
−

3T 2

2(iω)3
−

2T 2 − T 4/3

(iω)4
−

5T 2/2 − 5T 4/3

(iω)5

−
3T 2 − 5T 4 + T 6/5

(iω)6
+ O(ω−7).

This allows us to obtain
µm = F (mπ/2), m ∈ N ;

moreover,

Re F (T ) ∼
1

ω2
T 2 +

1

ω4
[−2T 2 + T 4/3] +

1

ω6
[3T 2 − 5T 4 + T 6/5] + O(ω−8),

Im F (T ) ∼ −
1

2
ω +

1

2

1

ω
T 2 −

3

2

1

ω3
T 2 +

1

ω5
[5T 2/2 − 5T 4/2] + O(ω−7).

The above analysis is of course valid only for T = mπ ≪ ω. In this case, we deduce that all
the {µm} lie on the complex curve corresponding to F and that there is precisely one Im µm

in each interval [am, bm) with the endpoints

am := −
1

2
ω +

(mπ)2

8ω
and bm := −

1

2
ω +

((m + 1)π)2

8ω
(m ∈ N).

In order to obtain the analogous result when T = mπ ≫ ω, we will just consider the
equation (3.11), as (3.14) admits a similar analysis. Thus, again resorting to Maple, we
confirm the following asymptotic expansion for θ = θ2m+1:

θ2m+1 ∼ mπ −
iω

mπ
−

1

mπ

(

iω

mπ

)2

+

[

1

3
−

2

(mπ)2

](

iω

mπ

)3

+

[

4

3

1

mπ
−

5

(mπ)3

](

iω

mπ

)4

+

[

1

5
−

5

(mπ)2
+

14

(mπ)4

](

iω

mπ

)5

−

[

23

15

1

mπ
−

56

3

1

(mπ)3
+

42

(mπ)5

](

iω

mπ

)6

+

[

1

7
−

392

45

1

(mπ)2
+

70

(mπ)4
−

132

(mπ)6

](

iω

mπ

)7

+ O

(

(

ω

mπ

)8
)

.
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It is now a matter of straightforward calculations to verify the assertions in (i)–(iii) of Theorem
3.1, recalling (see end of Section 2) that

µm =
ω2 − θ2

m

2iω
, m ∈ N.

This concludes the proof. 2

4 Behaviour of solutions for large ω

4.1 The result of Ursell (1969)

The asymptotic behaviour of solutions to the Fredholm integral equation (1.4) associated
with the complex-symmetric Fredholm integral operator (1.1)-(1.3),

f(x) = µ(Fωf)(x) + a(x), x ∈ I = [−1, 1], (4.1)

as ω → ∞, was studied by Ursell ([19]) in 1969. We briefly summarise the result most relevant
in the context of the present paper.

Theorem 4.1 Suppose that the kernel K0(x, y) in (1.2) is continuous on I × I, and let
g(x, y) = |x − y|. If a ∈ C(I) is independent of ω, then the solution f = f(x; ω) of (1.4)
(with µ−1 6∈ σ(Fω)) satisfies

f(x; ω) − a(x) = o(1) as ω → ∞.

If K0 and a are continuously differentiable on their respective domains, then we have

f(x; ω) − a(x) = O(1/ω) as ω → ∞. (4.2)

These results hold uniformly in I and for |µ| ≤ µ∗, where µ∗ is an arbitrary fixed positive
number.

Ursell’s proof is based on the ‘splitting’ of the given Fredholm integral equation (4.1)
into a pair of complementary second-kind Volterra integral equations and the analysis of the
resolvent kernels underlying the representation of their solutions.

Remark 4.1 It was shown in [19, p. 450] that the asymptotic result (4.1) is in general
not true for highly oscillatory kernels of the form Kω(x, y) = K0(x, y) cos(ω(x − y)). As an
example, consider the integral equation

f(x) =

∫ 1

−1
cos(ω(x − y))f(y) dy + 1, x ∈ I,

corresponding to a Fredholm integral operator of rank 2. Its (unique) solution is given by

f(x; ω) = 1 −
2 cos(ωx)

cos(ω)
.
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4.2 More precise asymptotic results

We will now refine Ursell’s asymptotic result given in Theorem 4.1 for arbitrarily smooth data
K0 and a in (1.4), by using an approach different from the one employed in his proof. Assume,
without loss of generality, that µ−1 6∈ σ(Fω) is such that the Neumann series associated with
the Fredholm integral equation (4.1) converges uniformly on I. For given a ∈ C(I) the
(unique) solution f = f(x; ω) of (4.1) is then given by

f(x; ω) = a(x) + Rω[a](x) := a(x) +
∞
∑

r=1

µrFr
ω[a](x), x ∈ I, (4.3)

where Fr
ω := Fω ◦ Fr−1

ω (compare, e.g., [6] or [1]). For the subsequent analysis we assume
that a ∈ C∞(I), and we define, for x ∈ I = [−1, 1],

K[a](x) := eiω(1+x)
∞
∑

m=0

1

(iω)m+1
a(m)(−1) + eiω(1−x)

∞
∑

m=0

(−1)m

(iω)m+1
a(m)(1). (4.4)

Proposition 4.1 For every r ≥ 1 it is true that

Fr
ω[a](x) ∼ Fr−1

ω [K[a]](x) +
r−1
∑

l=1

(−2)l
∞
∑

m=0

1

(iω)2m+1

(

m + l − 1

m

)

Fr−1−l
ω [K[a(2m)]](x)

+(−2)r
∞
∑

m=0

1

(iω)2m+r

(

m + r − 1

m

)

a(2m)(x). (4.5)

Proof By induction on r. (4.5) is certainly true for r = 1. Assuming that it is true for r, we
obtain at once

Fr+1
ω [a] ∼ Fr

ω[K[a]] +
r−1
∑

l=1

(−2)l
∞
∑

m=0

1

(iω)2m+l

(

m + r − 1

m

)

Fr−l
ω [K[a(2m)]]

+ (−2)r
∞
∑

m=0

1

(iω)2m+r

(

m + r − 1

m

)

Fω[a(2m)]

However,

∞
∑

m=0

1

(iω)2m+r

(

m + r − 1

m

)

Fω[a(2m)]

∼
∞
∑

m=0

1

(iω)2m+r

(

m + r − 1

m

)

K[a]

− 2
∞
∑

m=0

1

(iω)2m+r

(

m + r − 1

m

)

∞
∑

n=0

1

(iω)2n+1
a(2(m+n))(y)

∼
1

(iω)2m+r

(

m + r − 1

m

)

K[a] − 2
∞
∑

m=0

1

(iω)2m+r+1
dr,ma(2m)(y),

where

dr,m =
m
∑

n=0

(

n + r − 1

n

)

.

It is trivial, though, to prove by induction that dr,m =
(m+r

m

)

, since dr,m = dr−1,m + dr,m−1.
Substitution into the asymptotic expansion completes the proof. 2

We now determine the asymptotic expansions of the terms Fr−1−l
ω [K[a]] in (4.5). Define

the linear operator
Mr := Fr

ω[K[a]](x), x ∈ I, r ≥ 0.

10



Since Fω is a linear operator, Mr is linear; moreover, for r = 0 we have

M0 ∼ eiω(1+x)
∞
∑

m=0

1

(iω)m+1
a(m)(−1) + eiω(1−x)

∞
∑

m=0

(−1)m

(iω)m+1
a(m)(1).

The result in Proposition 4.2 then follows by induction.

Proposition 4.2 It is true that

Mr[a](x) ∼ Fr
ω[eiω(1+x)]

∞
∑

m=0

1

(iω)m+1
a(m)(−1) + Fr

ω[eiω(1−x)]
∞
∑

m=0

(−1)m

(iω)m+1
a(m)(1). (4.6)

We thus need to investigate Fr
ω[eiω(1±x)] for r ≥ 1. Our contention is that

Fr
ω[eiω(1±x)] =

r
∑

m=0

1

(iω)m

m
∑

k=0

(−1)m−k βr,m,k

(r − m)!
[(2k+1)±(−1)kx]r−meiω[(2k+1)±(−1)kx], (4.7)

with appropriate coefficients {βr,m,k} given below.

The proof is based on an elementary (but somewhat messy) induction argument, starting
by setting β0,0,0 = 1 and by observing that (4.7) is certainly true for r = 0.

Long, although fairly straightforward, inductive argument demonstrates that for all α ∈ C

and s ∈ Z+

Kω[(α + y)seiω(α+y)] =
1

s + 1
[(α + y)s+1 − (α − 1)s+1]eiω(α+y) (4.8)

+
s
∑

k=0

(−1)k

(2iω)k+1

s!

(s − k)!
[(α + 1)s−keiω(2+α−y) − (α + y)s−keiω(α+y)]

and

Kω[(α − y)seiω(α−y)] =
1

s + 1
[(α − y)s+1 − (α − 1)s+1]eiω(α−y)

+
s
∑

k=0

(−1)k

(2iω)k+1

s!

(s − k)!
[(α + 1)s−keiω(2+α+y) − (α − y)s−keiω(α−y)].

Letting β0,0,0 = 1, this is certainly true for r = 0. By induction, using (4.8),

Kr+1
ω [eiω(1+y)]

=
r
∑

m=0

1

(iω)m

m
∑

k=0

(−1)m−k βr,m,k

(r − m)!
Kω[[(2k + 1) + (−1)ky]r−meiω[(2k+1)+(−1)ky]]

=
r
∑

m=0

1

(iω)m

m
∑

k=0

(−1)m−k βr,m,k

(r − m)!

×

(

1

r − m + 1
{[(2k + 1) + (−1)ky]r+1−m − (2k)r+1−m}eiω[(2k+1)+(−1)ky]

+
r−m
∑

j=0

(−1)j

(2iω)j+1

(r − m)!

(r − m − j)!

{

(2k + 2)r−m−jeiω[(2k+3)−(−1)ky]

− [(2k + 1) + (−1)ky]r−m−jeiω[(2k+1)+(−1)ky]
})

=
r
∑

m=0

1

(iω)m

m
∑

k=0

(−1)m−k βr,m,k

(r − m + 1)!
[(2k + 1) + (−1)ky]r+1−meiω[(2k+1)+(−1)ky]
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−
r
∑

m=0

1

(iω)m

m
∑

k=1

(−1)m−k βr,m,k

(r − m + 1)!
(2k)r+1−meiω[(2k+1)+(−1)ky]

+
r+1
∑

m=1

1

(iω)m

m
∑

k=1

(−1)m−k(2k)r+1−m
m−k
∑

j=0

1

2j+1

βr,m−j−1,k−1

(r − m + 1)!
eiω[(2k+1)+(−1)ky]

+
r+1
∑

m=1

1

(iω)m

m−1
∑

k=0

(−1)m−k
m−k−1
∑

j=0

1

2j+1

βr,m−j−1,k

(r − m + 1)!
[(2k + 1) + (−1)ky]r+1−m

× eiω[(2k+1)+(−1)ky].

Now, let

βr,m,k =
m−k+1
∑

j=1

1

2j
βr,m−j,k−1, m = 0, . . . , r, k = 0, . . . , m. (4.9)

Then the second and the third sums cancel, except for the m = r + 1 term in the third sum.
Thus,

βr+1,m,k =
m−k
∑

j=0

1

2j
βr,m−j,k, m = 1, . . . , r k = 0, . . . , m

and

βr+1,r+1,k =
r+2−k
∑

j=1

1

2j
βr,r−j+1,k−1 +

r+1−k
∑

j=1

1

2j
βr,r−j+1,k, k = 0, . . . , r + 1.

(We let βr,m,k = 0 outside the range 0 ≤ m ≤ r, 0 ≤ k ≤ m.) However, substituting (4.9),
we observe that

βr+1,m,k = βr,m,k + βr,m,k+1, m = 0, . . . , r, k = 0, . . . , m, (4.10)

βr+1,r+1,k =
1

2
(βr,r,k−1 + 2βr,r,k + βr,r,k+1), k = 0, . . . , r + 1. (4.11)

However, once we assume the last two equations, (4.9) follows by induction on r: suppose
that it is true for r. Then, using (4.10) twice,

m−k+1
∑

j=1

1

2j
βr+1,m−j,k−1 =

m−k+1
∑

j=1

1

2j
βr,m−j,k−1 +

m−k
∑

j=1

1

2j
βr,m−j,k

= βr,m−j,k + βr,m−j,k+1 = βr+1,m,k.

Likewise, it follows from (4.10) and (4.11) that

r−k+2
∑

j=1

1

2j
βr+1,r+1−j,k−1 =

r−k+2
∑

j=1

1

2j
βr,r+1−j,k−1 +

r−k+1
∑

j=1

1

2j
βr,r+1−j,k

=
1

2
βr,r,k−1 +

1

2

r−k+1
∑

j=1

βr,r−j,k−1 +
1

2
βr,r,k +

1

2

r−k
∑

j=1

βr,r−j,k

=
1

2
βr,r,k−1 + βr,r,k +

1

2
βr,r,k+1 = βr+1,r+1,k.

Therefore, (4.9) is equivalent to (4.10–11).
It would have been pleasing to identify the coefficients βr,m,k explicitly. This, however,

seems to be hopeless. The first few terms are

βr,r,r =
1

2r
=

1

2r

(

r

0

)

,
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βr,r,r−1 =
2r

2r
=

1

2r

[

2

(

r − 1

1

)

+ 2

(

r − 1

0

)]

,

βr,r,r−2 =
(r − 1)(2r + 1)

2r
=

1

2r

[

4

(

r − 2

2

)

+ 9

(

r − 2

1

)

+ 5

(

r − 2

0

)]

,

βr,r,r−3 =
2

3

(r − 2)r(2r + 1)

2r

=
1

2r

[

8

(

r − 3

3

)

+ 28

(

r − 3

2

)

+ 34

(

r − 3

1

)

+ 14

(

r − 3

0

)]

and complexity grows rapidly.
Alternatively, we let

Br(x, y) =
r
∑

m=0

m
∑

k=0

βr,m,kx
r−myk, r ∈ Z+.

Then

Br+1(x, y) =
r+1
∑

m=0

m
∑

k=0

βr+1,m,kx
r+1−myk

=
r+1
∑

k=0

βr+1,r+1,ky
k +

r
∑

m=0

m
∑

k=0

βr+1,m,kx
r+1−myk

=
r+1
∑

k=0

(
1

2
βr,r,k−1 + βr,r,k +

1

2
βr,r,k=1)y

k

+
r
∑

m=0

m
∑

k=0

(βr,m,k + βr,m,k+1)x
r+1−myk

=
1

2

(

1

y
+ 2 + y

)

Br(0, y) −
1

2y
Br(0, 0) + x

(

1 +
1

y

)

Br(x, y) −
x

y
Br(x, 0)

=
1

y
[x(1 + y)Br(x, y) +

1

2
(1 + y)2Br(0, y) − xBr(x, 0) −

1

2
Br(0, 0)].

Now set

B(t, x, y) =
∞
∑

r=0

1

r!
Br(x, y)tr.

Then

∂

∂t
B(t, x, y) =

∞
∑

r=0

1

r!
Br+1(x, y)tr (4.12)

=
1

y

[

x(1 + y)B(t, x, y) +
1

2
(1 + y)2B(t, 0, y) − xB(t, x, 0) −

1

2
B(t, 0, 0)

]

.

Unfortunately, the explicit solution of the functional equation (4.12) is unknown. Thus, the
present state of knowledge is as follows: the formula (4.7) is true and the coefficients βr,m,k

can be obtained by the recursion (4.9), alternatively by the (easier) recursions (4.10) and
(4.11). Yet, the explicit form of the βr,m,ks is unknown.

4.3 Assembling the Neumann expansion

Because of the symmetry inherent in (4.8), we deduce from (4.7) that

Kr
ω[eiω(1−y)] =

r
∑

m=0

1

(iω)m

m
∑

k=0

(−1)m−k βr,m,k

(r − m)!
[(2k + 1) − (−1)ky]r−meiω[(2k+1)−(−1)ky],

(4.13)
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with the same coefficients βr,m,k as before.
We compute

∞
∑

r=0

µrKr
ω[eiω(1+y)]

=
∞
∑

r=0

µr
r
∑

m=0

1

(iω)m

m
∑

k=0

(−1)m−k

(r − m)!
βr,m,k[(2k + 1) + (−1)ky]r−meiω[(2k+1)+(−1)ky]

=
∞
∑

m=0

µm

(iω)m

m
∑

k=0

(−1)m−k

{

∞
∑

r=0

µr

r!
βr+m,m,k[(2k + 1) + (−1)ky]r

}

eiω[(2k+1)+(−1)ky]

=
∞
∑

m=0

µm

(iω)m

m
∑

k=0

(−1)m−kUm,k(µ[(2k + 1) + (−1)ky])eiω[(2k+1)+(−1)ky],

where

Um,k(t) =
∞
∑

r=0

βr+m,m,k

r!
tr.

However,

Um,k(t) = βm,m,k +
∞
∑

r=1

1

r!
(βr+m−1,m,k + βr+m−1,m,k+1)t

r

= βm,m,k +
∞
∑

r=0

1

(r + 1)!
βr+m,m,kt

r+1 +
∞
∑

r=0

1

(r + 1)!
βr+m,m,k+1t

r+1

= βm,m,k +

∫ t

0
Um,k(τ) dτ +

∫ t

0
Um,k+1(τ) dτ.

Differentiating, we obtain the ODE

U ′
m,k(t) = Um,k(t) + Um,k+1(t),

with the solution

Um,k(t) = etUm,k(0) +

∫ t

0
et−τUm,k+1(τ) dτ.

For k = m we have βr,m,m = 1/2m, therefore

Um,m(t) =
1

2m
et,

hence Um,m−1(0) = βm,m,m−1 = m/2m−1 implies that

Um,m−1(t) =
t + 2m

2m
et.

Likewise, βm,m,m−2 = (m − 1)(2m + 1)/2m yields

Um,m−2(t) =
1

2m

[

1

2
t2 + 2mt + (m − 1)(2m + 1)

]

et,

while βm,m,m−3 = 2
3(m − 2)m(2m + 1)/2m results in

Um,m−3(t) =
1

2m
[
1

6
t3 + mt2 + (m − 1)(2m + 1)t +

2

3
(m − 2)m(2m + 1)]et.

In general, trivial induction confirms that

Um,m−s(t) =
1

2m
pm,s(t)e

t,
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where pm,0(t) ≡ 1 and

pm,s+1(t) = pm,s+1(0) +

∫ t

0
pm,s(τ) dτ ∈ Ps+1[t].

Of course, qm,s = pm,s(0) = 2mβm,m,m−s.
Using the recurrence, we obtain

qm+1,s = qm,s + 2qm,s−1 + qm,s−2, (4.14)

and this results in

qm,0 ≡ 1,

qm,1 = 2m,

qm,2 = (m − 1)(2m + 1),

qm,3 =
2

3
(m − 2)m(2m + 1),

qm,4 =
1

6
(m − 3)m(2m − 1)(2m + 1),

qm,5 =
1

15
(m − 4)(m − 1)m(2m − 1)(2m + 1).

Proposition 4.3 It is true that

qm,s =
m − s + 1

m + 2

(

2m + 1

s

)

, s = 0, . . . , m, s ∈ Z+. (4.15)

Proof Follows at once by induction from (4.14), because βm,0 = 1. 2

Proposition 4.4 Each pm,s is a degree-s polynomial, given by the recurrence formula

pm,0(t) ≡ 1,

pm,s(t) =
m + 1 − s

m + 1

(

2m + 2

s

)

+

∫ t

0
pm,s−1(τ) dτ, s = 1, 2, . . . , m,

therefore

pm,s(t) =
s
∑

k=0

m + 1 + k − s

m + 1

(

2m + 2

s − k

)

tk

k!
. (4.16)

Proof The assertion (4.16) can be easily proved by induction. 2

We thus deduce that
∞
∑

r=0

µrKr
ω[eiω(1±y)]

∼
∞
∑

m=0

µm

(2iω)m

m
∑

k=0

(−1)m−kpm,m−k(µ[(2k + 1) ± (−1)ky])e(iω+µ)[(2k+1)±(−1)ky].

Now, let us go back to (4.5). We have

f(y, ω) =
∞
∑

r=0

µrKr
ω[a]

∼ a + µ
∞
∑

r=0

µrMr[a] + µ
∞
∑

m=0

1

(iω)2m

∞
∑

l=1

(−2µ)l

(iω)l

(

m + l − 1

m

)

∞
∑

r=0

µrMr[a
(2m)]

+
∞
∑

m=0

1

(iω)2m
a(2m)(y)

∞
∑

r=1

(−2µ)r

(iω)r

(

m + r − 1

m

)

.
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although it is easy to prove that the last term equals

−2µ
∞
∑

m=0

1

(iω)m+1

a(2m)(y)

(iω + µ)m
,

we prefer to leave it as an unsummed series.
To render everything in easier notation, let

ck(y) = (2k + 1) + (−1)ky.

Therefore,

V (y) =
∞
∑

r=0

µrKr
ω[eiω(1+y)]

∼
∞
∑

m=0

µm

(2iω)m

m
∑

k=0

(−1)m−kpm,m−k(µck(y))e(iω+µ)ck(y)

and, using (4.4).

∞
∑

r=0

µrMr[b]

∼ V (y)
∞
∑

n=0

1

(iω)n+1
b(n)(−1) + V (−y)

∞
∑

n=0

1

(iω)n+1
(−1)nb(n)(1).

We have at present all the ingredients to construct fr(y, ω) such that

fr(y, ω) ∼ f(y, ω) + O(ω−r−1).

The steps are as follows:

1. Use (4.16) to produce pm,s for 0 ≤ s ≤ m ≤ r.

2. Form

Vr(y) =
r
∑

m=0

µm

(2iω)m

m
∑

k=0

(−1)m−kpm,m−k(µck(y))e(iω+µ)ck(y).

3. Form

Vr(y)
r−1
∑

n=0

1

(iω)n+1
a(n)(−1) − Vr(−y)

r−1
∑

n=0

1

(−iω)n+1
a(n)(1)

and truncate ω−j terms for j ≥ r + 1. This yields W0,r(y).

4. For every m = 1, . . . , ⌊r/2⌋ form

Vr(y)
r−1
∑

n=0

1

(iω)n+1
a(n+2m)(−1) − Vr(−y)

r−1
∑

n=0

1

(−iω)n+1
a(n+2m)(1)

and truncate ω−j terms for j ≥ r + 1. This results in Wm,r(y).

5. Truncate ω−j terms for j ≥ r + 1 in

⌊r/2⌋
∑

m=0

r−2m
∑

l=1

(−2µ)l

(iω)2m+l

(

m + l − 1

m

)

Wm,r(y)

to obtain Yr(y).
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6. Form

Xr(y) =

⌊r/2⌋
∑

m=0

r−2m
∑

l=1

1

(iω)2m+l
(−2µ)l

(

m + l − 1

m

)

a(2m)(y).

7. Add all the ingredients, whereby

fr(y, ω) = a(y) + µW0,r(y) + µYr(y) + Xr(y).

To recap, we have proved in this section

Theorem 4.2 Assume that a ∈ C∞(I). If µ−1 6∈ σ(Fω), then the (unique) solution of the
second-kind Fredholm integral equation (4.1) has, for ω ≫ 1, the expansion

f(x; ω) ∼ a(x) + µ
∞
∑

r=0

µrMr[a](x) (4.17)

+ µ
∞
∑

m=0

1

(iω)2m

∞
∑

l=1

(−2µ)l

(iω)l

(

m + l − 1

m

) ∞
∑

r=0

µrMr[a
(2m)](x)

+
∞
∑

m=0

1

(iω)2m
a(2m)(x)

∞
∑

r=1

(−2µ)r

(iω)r

(

m + r − 1

m

)

.

We have also expanded f(x, ω) in Neumann series in an explicit form.

5 From asymptotics to numerics

So far, this paper was mostly about asymptotics, except that we have already revealed our
hand in the introduction: in a highly oscillatory setting asymptotics often provides the right
avenue for effective numerics.

There are two numerical challenges commonly associated with Fredholm operators of the
second kind. Firstly, the calculation of the spectrum of Fω and, secondly, the solution of the
equation (4.1). Insofar as the kernel Kω(x, y) = eiω|x−y| is concerned, the spectral problem
has been solved completely (up to the solution of the zeros of the transcendental equations
(2.13)) in Section 2. We defer the discussion of more general spectral problems to the next
section.

Insofar as the solution of the Fredholm equation of the second kind (4.1) is concerned, we
have implicitly introduced in this paper (again, in the case K0(x, y) ≡ 1) two methods. Firstly,
let λm be the eigenvalues of Fω and φ̃m the corresponding eigenfunctions, normalised so that
‖φ̃m‖L2[−1,1] = 1, m = 1, 2, . . .. Note that these can be obtained from (2.5) and (2.9), once we

have solved the transcendental equations (2.13). Note further that the countable set {φ̃m}m≥1

is dense in L2[−1, 1] [18]. Therefore we can expand a ∈ L2[−1, 1] in the eigenfunctions,

a(x) =
∞
∑

m=1

âmφ̃m,

where

âm =

∫ 1

−1
a(y)φ̃m(y) dy, m ∈ N. (5.1)

Substituting f(y) =
∑∞

m=1 f̂mφ̃m into (4.1), bearing in mind that Fω[φ̃m] = λmφ̃m and that
µλm 6= 1, m ∈ N, we easily derive

f̂m =
âm

1 − µλm
, m ∈ N. (5.2)

The implementation of this spectral algorithm proceeds in three steps:
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1. Compute the least M solutions of the transcendental equations (2.13). Note that
the proof of Theorem 3.1 provides excellent initial approximations for λm when m is
large(ish): in our experience, it is possible to obtain the λms to machine precision in a
very small number of Newton–Raphson iterations. Once the solutions νm are available,
we compute λm and φ̃m from (2.5) and (2.9) respectively.

2. We compute âm, m = 1, . . . , M . Note that

φ̃m(x) = αmeiνmx + βme−iνmx, m ∈ N,

for some constants αm and βm. Therefore, (5.1) reduces (for large values of m) to
the calculation of highly oscillatory integrals with Fourier oscillators, a task that can
be accomplished very rapidly by the methods of [10, 12, 16]. Overall, the cost of this
calculation scales like O(M).

3. Once the expansion coefficients of a are available, we evaluate f̂m using (5.2) and form
the solution f as their linear combination.

An alternative to this spectral method is to use directly the Neumann expansion (4.17):
note that all its constituents can be calculated using the material of Section 4. In the
present setting this approach is inferior to the spectral method, yet it is worth mentioning
for the following reason. Neumann expansions are typically considered a method of last
resort, with exceedingly poor convergence [1, 6]. However, high oscillation makes Neumann
expansions converge faster! The reason is that the amplitude of the iterated integrals Fr

ω is
decreasing with r because of high oscillation. It is clear from (4.17) that the convergence of
the Neumann expansion is governed by the size of the operators Mr[a]. We can now use (4.6–
7) to demonstrate that the Mr[a]s are small for large r and that they are becoming smaller
when ω increases. The more rapid the oscillation, the faster the convergence of Neumann
series!

6 Outlook: More general complex-symmetric integral opera-
tors

6.1 General oscillators g(x, y) with stationary points

The results on the asymptotic spectral properties of Section 3 are curently being extended to
highly oscillatory Fredholm integral operators (1.1–2) with more general oscillators like the
ones described in (1.5) and (1.6). (Compare also [5].)

6.2 Fredholm integral operators with weakly singular kernels

Do the qualitative spectral properties of Section 3 remain valid if the Fredholm integral
operator Fω is replaced by the weakly singular operator

(Fω,αf)(x) :=

∫ 1

−1
Kω,α(x, y)f(y) dy, x ∈ I, (6.1)

whose kernel now has the form

Kω,α(x, y) := K0(x, y)|x − y|−αeiω|x−y|, α ∈ (0, 1) ?

Preliminary results indicate that weak singularity plays role fairly similar to stationary points
in classical asymptotic analysis of highly oscillatory integrals.
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6.3 The finite section method

We already have an extensive body of results of the computation of fairly general highly os-
cillatory spectra using the finite section method with appropriate conditioning. This includes
the Li–Fox oscillator (1.5) and other Fredholm operators of relevance in applications. It will
feature in future papers.

6.4 The Neumann method for highly oscillatory Fredholm operators

The results of Section 4 are unlikely to be replicated in an equally comprehensive manner
for more general Fredholm operators. Having said so, their main thrust, namely that the
Neumann method is highly efficient in the presence of oscillation, is an observation of great
generality and, we believe, importance. Here the challenge is in the computation of multivari-
ate highly oscillatory integrals. Although there exist significant numerical theory and pow-
erful algorithms for multivariate highly oscillatory integrals with various kernels [11, 13, 17],
the challenge is to identify the salient feature of such ‘Neumann integrals’, in particular the
structure of their stationary points. This, as our experience indicates, is a nontrivial issue. In
particular, Abel-type kernels Kω(x, y) = K0(x, y)eiωg(x−y) are likely to have a continuum of
stationary points along the line x = y and this calls for further developments in the numerical
theory of multivariate highly oscillatory integrals.
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