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Abstract

This paper provides new upper bounds on the spectral radius ρ (largest eigenvalue

of the adjacency matrix) of graphs embeddable on a given compact surface. Our method

is to bound the maximum rowsum in a polynomial of the adjacency matrix, using simple

consequences of Euler’s formula. Let γ denote the Euler genus (the number of crosscaps

plus twice the number of handles) of a fixed surface Σ. Then (i) for n ≥ 3, every n-vertex

graph embeddable on Σ has ρ ≤ 2 +
√

2n + 8γ − 6, and (ii) a 4-connected graph with a

spherical or 4-representative embedding on Σ has ρ ≤ 1 +
√

2n + 2γ − 3. Result (i) is

not sharp, as Guiduli and Hayes have recently proved that the maximum value of ρ is

3/2 +
√

2n + o(1) as n → ∞ for graphs embeddable on a fixed surface. However, (i) is the

only known bound that is computable, valid for all n ≥ 3, and asymptotic to
√

2n like

the actual maximum value of ρ. Result (ii) is sharp for the sphere or plane (γ = 0), with

equality holding if and only if the graph is a ‘double wheel’ 2K1 + Cn−2 (+ denotes join).

For other surfaces we show that (ii) is within O(1/n1/2) of sharpness. We also show that

a recent bound on ρ by Hong can be deduced by our method.

* Supported by NSF Grant Number DMS-9622780
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1. Introduction

Let G be an n-vertex graph with adjacency matrix A. In this paper graph means a simple

graph, with no loops or multiple edges. The spectral radius ρ of G is the largest eigenvalue of A.

Schwenk and Wilson [11] suggested the study of the eigenvalues of planar graphs. At about

the same time, the spectral radius of planar graphs became of interest to geographers as a measure

of overall connectivity of a planar network (see [1] or [3, Subsection 6.2] for references). The first

significant result was by Hong [7], who used a result about the spectral radius of graphs in general

to show that for n-vertex planar graphs ρ ≤
√

5n − 11. This bound was improved to 4 +
√

3n − 9

by Cao and Vince [2], who also conjectured that the planar graph of a given order with largest

spectral radius was K2 +Pn−2 (+ denotes join). This conjecture had been proposed independently

by Boots and Royle [1] based on computer studies of planar graphs on up to 11 vertices; they noted

that the conjecture is not true for n = 7 and 8, but suggested it was true for all n ≥ 9.

In further work, Hong [8] improved the bound for planar graphs to ρ ≤ 2
√

2 +
√

3n − 15
2 . In

that paper Hong also gave the first bound on the spectral radius of graphs on an arbitrary surface.

In terms of the Euler genus γ (the number of crosscaps plus twice the number of handles), Hong’s

bound had the form ρ ≤
√

6(n + γ − 2)f(γ) where f(γ) is 24γ+O(
√

γ). In his Ph.D. thesis Guiduli

[5] showed that ρ ≤ 1 +
√

6γ +
√

3n, and Hong [9] showed that ρ ≤ 1 +
√

3n + 6γ − 8. Recently

Guiduli and Hayes [6] showed that on any fixed surface the maximum value of ρ is 3
2 +

√
2n + o(1)

as n → ∞. Moreover, they showed that on the plane the Boots-Royle-Cao-Vince conjecture is true

for sufficiently large n.

Other work on the spectral radius of planar graphs has included work on outerplanar graphs

by Rowlinson [10], Cao and Vince [2], and Guiduli and Hayes [6]. Guiduli and Hayes also disproved

a second conjecture of Cao and Vince on planar graphs with minimum degree at least 4.

For a general discussion of eigenspaces of graphs we refer the reader to the book by Cvetković,

Rowlinson and Simić [4], and for a discussion of the spectral radius in particular see the survey

paper by Cvetković and Rowlinson [3].

In this paper we provide a new upper bound on the spectral radius of an n-vertex graph

embedded in a surface of Euler genus γ. Our method is to bound the maximum rowsum in a

polynomial of the adjacency matrix, using simple consequences of Euler’s formula. For planar
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graphs, our bound is off by 1
2 + o(1) from the Boots-Royle-Cao-Vince conjecture, but it is valid

for all n, unlike Guiduli and Hayes’ verification of the conjecture, which is valid only for large n.

For graphs on arbitrary surfaces our bound is also off by 1
2 + o(1) from the asymptotic expression

obtained by Guiduli and Hayes, but our result yields computable numerical bounds, whereas their

asymptotic expression does not. Moreover, the way in which the bound varies with the Euler genus

is clear for our bound, but not for theirs.

We also obtain a bound on the spectral radius of a 4-connected embedded graph where the

embedding is either spherical or 4-representative. In this case, our bound is sharp for the plane,

and we characterize exactly when equality occurs. For arbitrary surfaces our bound is proved to

be within O(1/n1/2) of sharpness.

Finally, we show that the most recent bound of Hong [9] can be obtained by our methods, and

we compare Hong’s bound to our new one.

2. Lemmas

In this section we provide the necessary definitions and the lemmas on which our main results

rely. We begin with some simple matrix results. Let B be an m×n matrix. Then si(B) will denote

the i-th rowsum of B, i.e. si(B) =
∑n

j=1 Bij , where 1 ≤ i ≤ m.

Lemma 2.1. Let B be a real symmetric n × n matrix, and let λ be an eigenvalue of B with an

eigenvector x all of whose entries are nonnegative. Then

min
1≤i≤n

si(B) ≤ λ ≤ max
1≤i≤n

si(B).

Moreover, if the rowsums of B are not all equal and if all entries of x are positive, then both

inequalities above are strict.

Proof. Since B is symmetric, we may consider x to be a row vector such that xB = λx. Without

loss of generality we may assume that
∑n

j=1 xj = 1. Then

λ = λ(
n

∑

j=1

xj) =
n

∑

j=1

(λx)j =
n

∑

j=1

(xB)j

=

n
∑

j=1

n
∑

i=1

xiBij =

n
∑

i=1

xi

n
∑

j=1

Bij =

n
∑

i=1

xisi(B).
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In other words, since the entries of x are nonnegative and sum to 1, λ is a convex combination of

the rowsums of B, and the result follows.

Lemma 2.2. Let G be a connected n-vertex graph and A its adjacency matrix, with spectral

radius ρ. Let p be any polynomial. Then

min
v∈V (G)

sv(p(A)) ≤ p(ρ) ≤ max
v∈V (G)

sv(p(A)).

Moreover, if the rowsums of p(A) are not all equal then both inequalities are strict.

Proof. By the well known Perron-Frobenius Theorem (see for example [11, Theorem 4.1]), A has

an eigenvector x with all entries positive for ρ. Now p(A) has x as an eigenvector for the eigenvalue

p(ρ), and we may apply Lemma 2.1.

Now we begin to look at graphs embedded in surfaces; we assume that the reader is familiar

with this notion. A surface here is a compact connected 2-manifold. The Euler genus γ = γ(Σ) of

a surface Σ is defined to be 2− χ(Σ), where χ(Σ) is the Euler characteristic, so that a sphere with

h handles has Euler genus 2h and a sphere with k crosscaps has Euler genus k. The faces of an

embedding are the connected components that remain when the embedded graph is deleted from

the surface. An embedding is k-representative if no noncontractible closed curve in the surface

intersects the embedded graph at fewer than k points. An embedding is cellular if every face is

homeomorphic to an open disk; an embedding is cellular if and only if the graph is connected and

either the surface is the sphere or the embedding is 1-representative. In a cellular embedding each

face is bounded by a closed walk, whose length is the degree of the face. An embedding of a graph

in a surface induces a circular order on the neighbours of any given vertex v, which we call the

embedded order around v.

Lemma 2.3. Let G be a pseudograph (a graph where loops and multiple edges are permitted)

cellularly embedded in a surface of Euler genus γ in such a way that each face has degree at least

g, g ≥ 3. Then

|E(G)| ≤
(

g

g − 2

)

(|V (G)| + γ − 2).

Moreover, equality holds precisely when every face has degree g.

Proof. This is a standard result derived from Euler’s formula.
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Given a graph G, a vertex v, and i ≥ 0, let Ni(v,G) denote the set of vertices at distance i

from v, and let ni(v,G) = |Ni(v,G)|. Note that n1(v,G) = degG(v) is just the degree of v in G.

Let Mij(v,G) denote the set of edges with one end in Ni(v,G) and the other in Nj(v,G), and let

mij(v,G) = |Mij(v,G)|.

The following lemma contains most of the structural analysis used in proving our main results.

Lemma 2.4. Let G be a graph on at least two vertices, with adjacency matrix A and with a

cellular embedding Ψ in a surface of Euler genus γ. Let v be any vertex of G, and let c(v,Ψ) be

the number of edges that join two vertices of N1(v,G) that are not consecutive in the embedded

order around v. Then if n1(v,G) ≥ 3 we have

(i) sv(A
2) ≤ 4n1(v,G) + 2n2(v,G) + 2c(v,Ψ) + 2γ − 2,

(ii) c(v,Ψ) ≤ n1(v,G) + 3γ − 3, and

(iii) sv(A
2) ≤ 6n1(v,G) + 2n2(v,G) + 8γ − 8.

Proof. We abbreviate Ni(v,G) and ni(v,G) to Ni and ni respectively, and c(v,Ψ) to c. Designate

a local clockwise direction at v. Let the neighbours of v be u0, u1, . . . , un1−1 in clockwise order

around v, with subscripts interpreted modulo n1. For each i, 0 ≤ i ≤ n1 − 1, let Fi denote the face

extending clockwise from the edge vui to the edge vui+1.

Since G is simple, every face of G has degree at least 3. From G form a new embedded graph

H as follows. For each i, 0 ≤ i ≤ n1 − 1, we (a) do nothing if uiui+1 is a boundary edge of Fi,

(b) move the edge uiui+1 to cross Fi if it occurs in G but is not a boundary edge of Fi, or (c) add

the edge uiui+1 crossing Fi if it does not already occur in G. Since n1 ≥ 3, no multiple edges are

created. Due to changes of type (b), the embedding of H may no longer be cellular, but if so we

may make it cellular again by replacing each non-disk face with one or more disks. Thus, we get

a cellular embedding of H on a surface of Euler genus γ′ ≤ γ. Then Ni(v,H) = Ni = Ni(v,G)

for every i, and the edges of M11(v,H), which is a superset of M11(v,G), may be divided into two

classes: there are n1 edges that are boundary edges of faces of the form vuiui+1v, and there are c

other edges.

To prove (i), form an embedded graph B0 from H by deleting all vertices in N3 ∪ N4 ∪ . . .

and all edges in M22(v,H) = M22(v,G). Then form B from B0 by subdividing every edge in
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M11(v,H). B is connected and bipartite, with bipartition ({v} ∪ S ∪ N2, N1), S being the set of

new vertices created by subdivision. If the embedding of B is not cellular, we again make it cellular

by appropriate face replacements. Thus, we have B cellularly embedded on a surface of Euler genus

γ′′ ≤ γ′ ≤ γ.

Note that sv(A
2) is exactly the number of walks of length 2 in G that begin at v. By counting

these walks according to their middle vertex we see that (1) sv(A
2) =

∑

u∈N1
degG(u). Now, (2)

the degrees of the vertices of N1 are the same in H and B, (3) every edge of B is incident with

exactly one vertex of N1, and (4) since B is bipartite we can apply Lemma 2.3 to B with g = 4.

Thus,

sv(A
2) =

∑

u∈N1

degG(u) by (1)

≤
∑

u∈N1

degH(u)

=
∑

u∈N1

degB(u) by (2)

= |E(B)| by (3)

≤ 2(|V (B)| + γ′′ − 2) by (4)

≤ 2(|V (B)| + γ − 2) = 2(1 + n1 + n2 + |S| + γ − 2)

= 2(1 + n1 + n2 + (n1 + c) + γ − 2) = 4n1 + 2n2 + 2c + 2γ − 2,

proving (i).

To prove (ii), let J be the subgraph of H induced by {v}∪N1. If J is not cellularly embedded

we modify the embedding as usual, obtaining a cellular embedding of J on a surface of Euler genus

γ′′′ ≤ γ. Now we may apply Lemma 2.3 to J with g = 3, giving

2n1 + c = |E(J)| ≤ 3(|V (J)| + γ′′′ − 2)

≤ 3(|V (J)| + γ − 2)

= 3((1 + n1) + γ − 2) = 3n1 + 3γ − 3

from which c ≤ n1 + 3γ − 3, proving (ii).

Finally, (iii) follows by substituting (ii) into (i).

6



In the above proof, we need to be careful in how we define H. The essential property of H that

we need to make our counting arguments work is that the faces around v are triangles whose edges

opposite v form a cycle. One might think that we could obtain such an H in a way independent

of v by adding edges to make G into a triangulation. This works on the plane, but for arbitrary

surfaces this can result in the creation of multiple edges, and then the faces around some vertices

do not have the correct structure.

All parts of Lemma 2.4 are sharp. To see this, take a simple (no loops or multiple edges) trian-

gulation J of Σ of Euler genus γ having a vertex v adjacent to all other vertices (such triangulations

exist, for example, when there is a complete graph with a triangular embedding in Σ). Into every

face not incident with v insert a vertex of degree 3 to obtain G. Then in the proof of Lemma 2.4

we have H = G since G is a triangulation. The B in part (i) of the proof has all faces of degree 4,

and n = 1 + n1 + n2, so that (i) is sharp. The J in part (ii) of the proof is the J we started with,

which has all faces of degree 3, so that (ii) is sharp. It follows that (iii) is also sharp.

3. Main results

Now we state our main results. The general bounds are given in Theorem 3.1, with spe-

cialization to the plane in Corollary 3.2. After stating and proving the bounds we discuss their

sharpness.

Theorem 3.1. Let G be an n-vertex graph, n ≥ 3, with spectral radius ρ. Suppose G can be

embedded on a surface of Euler genus γ (or Euler characteristic χ = 2 − γ).

(i) Then ρ ≤ 2 +
√

2n + 8γ − 6 = 2 +
√

2n + 10 − 8χ.

(ii) If G is 4-connected and either the surface is the sphere or the embedding is 4-representative

then ρ ≤ 1 +
√

2n + 2γ − 3 = 1 +
√

2n + 1 − 2χ.

Proof. We may make the following assumptions. First, the embedding is cellular, as otherwise we

can embed G on a surface of smaller Euler genus. Second, n ≥ 4, as the theorem is clearly true for

n = 3. Third, every vertex has degree at least 3, as otherwise we may add edges to obtain a graph

with larger spectral radius embedded on the same surface, as follows. If v is a vertex of degree 1,

with neighbour u, then since n ≥ 4 there are at least two other vertices besides u on the boundary
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of the unique face with which v is incident, and we may join v to both of those without creating

any multiple edges. If v has degree 2, then since n ≥ 4 at least one of the faces with which v is

incident is not a triangle (if both were triangles G would have a multiple edge), so there is a vertex

to which v may be joined without creating a multiple edge.

Let A be the adjacency matrix of G. Note that sv(A) = degG(v) = n1(v,G) for every vertex

v. Fix a vertex v. Since degG(v) = n1(v,G) ≥ 3, we may apply Lemma 2.4(iii). Using the notation

from the proof of that lemma, we have

sv(A
2 − 4A) = sv(A

2) − 4sv(A) = sv(A
2) − 4n1

≤ 2n1 + 2n2 + 8γ − 8

Since n ≥ 1 + n1 + n2, we have sv(A
2 − 4A) ≤ 2n + 8γ − 10. As this holds for every vertex v,

Lemma 2.2 implies that ρ2 − 4ρ ≤ 2n + 8γ − 10. Solving the quadratic gives the upper bound of

(i).

Now if G is 4-connected, and if the embedding Ψ of G is 4-representative when it is not on the

sphere, then for each vertex v we must have n1(v,G) = degG(v) ≥ 4, and also c(v,Ψ) = 0. For,

any edge joining two non-consecutive neighbours ui, uj of v produces a nonfacial triangle vuiujv

which is either separating (violating 4-connectivity) or nonseparating and hence noncontractible

(violating 4-representativity).

Again fix a vertex v. Using Lemma 2.4(i), and using the notation from the proof of that

lemma, we have

sv(A
2 − 2A) = sv(A

2) − 2sv(A) = sv(A
2) − 2n1

≤ (4n1 + 2n2 + 2c + 2γ − 2) − 2n1 = 2n1 + 2n2 + 2c + 2γ − 2

But since c = 0 and n ≥ 1 + n1 + n2, we have sv(A
2 − 2A) ≤ 2n + 2γ − 4. As this holds for every

vertex v, Lemma 2.2 implies that ρ2 − 2ρ ≤ 2n + 2γ − 4. Solving the quadratic gives the upper

bound of (ii).

Corollary 3.2. Let G be an n-vertex planar graph, n ≥ 3, with spectral radius ρ.

(i) Then ρ ≤ 2 +
√

2n − 6.

(ii) If G is 4-connected then ρ ≤ 1 +
√

2n − 3.

Unfortunately, Theorem 3.1(i), or even Corollary 3.2(i), is not sharp. We know from the

work of Guiduli and Hayes [6] that for graphs on any fixed surface, the maximum value of ρ is
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3
2 +

√
2n + o(1) as n → ∞. For the sphere or plane they show that for large n the maximum value

of ρ is attained uniquely by the graph Gn = K2 + Pn−2, for which

3
2 +

√

2n − 15
4 − 8

8n − 15 −
√

8n − 15
< ρ < 3

2 +
√

2n − 15
4 .

On the other hand, Guiduli and Hayes’ result for planar graphs applies only for large n, whereas

Corollary 3.2(i) applies for all n. Moreover, in the case of surfaces other than the sphere Guiduli

and Hayes give an asymptotic expression, but no actual numbers can be derived from this, whereas

our Theorem 3.1(i) gives a number for each n. For our result, it is clear how the bound varies with

γ, but the asymptotic expression does not explicitly mention γ at all. Therefore, Theorem 3.1(i)

and Corollary 3.2(i) provide information that Guiduli and Hayes’ results do not.

With Corollary 3.2(ii) we are more fortunate. It is sharp, as is shown by the ‘double wheel’

Dn = 2K1 + Cn−2. The spectral radius of Dn is easily calculated to be 1 +
√

2n − 3, using the fact

that the vertices fall into only two orbits under the action of the automorphism group, so that the

entries of the eigenvector for ρ have only two distinct values. In Theorem 3.3 below we show that

Dn is in fact the unique extremal graph for every n ≥ 6.

It is interesting to note that Cao and Vince [2] conjectured the double wheel to be the graph

with maximum spectral radius over planar graphs with minimum degree at least 4 of a given order.

This conjecture is in fact false, as Guiduli and Hayes [6] have shown that minor modifications

to Gn = K2 + Pn−2 give a graph G′
n with minimum degree 4 and spectral radius larger than

Dn when n ≥ 113 (and possibly for smaller values of n too). Moreover, they can show [personal

communication] that G′
n is in fact the extremal graph for large values of n.

We do not know whether Theorem 3.1(ii) is sharp for surfaces other than the sphere. However,

on every given surface Σ other than the sphere we can construct 4-connected graphs with 4-

representative embeddings having a spectral radius of 1 +
√

2n − O(1/n1/2), so that Theorem

3.1(ii) differs from the best possible result by at most O(1/n1/2). To construct these examples take

a fixed 4-connected 4-representative embedded graph G0 on Σ, having a face F of degree 4. (Such

a G0 can easily be constructed by gluing together several copies of either C4 × C4 embedded on

the torus or a similar graph embedded on the projective plane.) If |V (G0)| = n0, then for every

n ≥ n0 + 1 we may add n − n0 vertices inside F in such a way that the n − n0 new vertices and
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the four boundary vertices of F induce a planar graph G1 = 2K1 + Pn−n0+2. Now, 2K1 + Pk−2

can be shown by standard methods (thinking of it as obtained by deleting one edge from Dk) to

have spectral radius 1 +
√

2k − 3 − O(1/(k − 2)). Therefore, G1, and hence the whole new graph

G, have spectral radius at least 1 +
√

2n − 2n0 + 5−O(1/(n− n0 + 2)) = 1 +
√

2n−O(1/n1/2). It

is not difficult to see that G is 4-connected and its embedding is 4-representative.

Now we prove our result on the sharpness of Corollary 3.2(ii).

Theorem 3.3. Equality holds in Corollary 3.2(ii) if and only if G is a double wheel Dn = 2K1 +

Cn−2 for some n ≥ 6.

Proof. As described above, Corollary 3.2(ii) is sharp for Dn.

Suppose now that G is a 4-connected plane graph for which Corollary 3.2(ii) is sharp. G must

be a triangulation, as otherwise we can add edges and obtain a new plane graph with larger spectral

radius, violating the bound. As is well known, a plane triangulation is 4-connected if and only if it

has no separating triangles.

Now equality must hold in each of the inequalities which we used to derive Corollary 3.2(ii).

In particular, by Lemma 2.2 every vertex v must have sv(A
2 − 2A) = 2n − 4. Fix v, and use the

notation of the proof of Lemma 2.4. From the proof of Theorem 3.1, for equality we must have

n = 1 + n1 + n2, or in other words every vertex is at distance at most 2 from v. Next, consider

the proof of Lemma 2.4(i). Since G is a triangulation, H = G. Since every vertex is at distance at

most 2 from v, B is a subdivision of a spanning subgraph of G. By Lemma 2.3, for equality every

face of B must have degree 4. We claim that therefore G has no induced K1 ∪ K3 with v as the

K1. In other words, there is no triangle T all of whose vertices are nonadjacent to v. If there were,

T would bound a face, since G has no separating triangles. Such a face would be contained in a

face of B on whose boundary the vertices of T , elements of N2, were pairwise separated by at least

one vertex of N1, giving rise to a face of degree 6 or more in B, a contradiction.

Since v was arbitrary, G is a 4-connected plane triangulation of diameter at most 2, and with

no induced K1 ∪ K3. We show that this implies that G ∼= Dn.

Again fix an arbitrary vertex v of G. Let Zi denote the subgraph of G induced by Ni =

Ni(v,G). Since G is a triangulation without separating triangles, Z1 is a chordless cycle u0u1 . . .
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un1−1u0. Since G is 4-connected, degG(u) ≥ 4 for every vertex u, and in particular |V (Z1)| = n1 =

degG(v) ≥ 4. Think of G as embedded in the plane with v outside Z1. Then Z2 is induced by all

vertices inside Z1, since G has diameter 2. Since |V (Z1)| ≥ 4, Z1 is not a face boundary, and so Z2

is nonempty. If Z2 is a single vertex then G ∼= Dn, so we may suppose that n2 = |V (Z2)| ≥ 2.

Since G is a triangulation, any cycle in Z2 contains the vertices of a triangle, leading to an

induced K1 ∪ K3, and if Z2 has two or more components then Z1 must have a chord. Thus, Z2

is a tree. Let w and x be two leaves of Z2. Since degG(w) ≥ 4, the neighbours of w in Z1 induce

a subpath of Z1 with 3 or more vertices, which we may without loss of generality suppose to be

the subpath u0u1 . . . up, where p = degG(w) − 2 ≥ 2. By planarity, x is not adjacent to v or any

of u1, u2, . . . , up−1. Thus, if p ≥ 3 then x and the triangle vu1u2v are an induced K1 ∪ K3, so

p = 2 and degG(w) = 4. Similarly, degG(x) = 4 and the neighbours of x on Z1 form a subpath

uquq+1uq+2. Neither vu0u1v nor vu1u2v can induce a K1 ∪ K3 with x, so x must be adjacent to

both u0 and u2. Thus, uquq+1uq+2 = u2u3u0, so that Z1 is a 4-cycle u0u1u2u3u0.

Now u0 and u2 are the only vertices of Z1 to which a vertex y of Z2 other than w or x can

be adjacent. Therefore degZ2
(y) ≥ 2 for every such y, and Z2 has no leaves other than w and x.

Thus, Z2 is a path, and it follows that G ∼= Dn, with u0 and u2 forming the 2K1 and the other

vertices forming the Cn−2.

4. Hong’s bound

We conclude by discussing the bound ρ ≤ 1+
√

3n + 6γ − 8 obtained by Hong [9]. For a given

γ, this bound is better than Theorem 3.1(i) when n is small. Here we show that Hong’s bound can

be derived using our methods, and we determine the values of n for which each bound, Theorem

3.1(i) or Hong’s, is to be preferred.

Theorem 4.1 (Hong [9]). Let G be an n-vertex graph, n ≥ 3, with spectral radius ρ. Suppose

G can be embedded on a surface of Euler genus γ (or Euler characteristic χ = 2 − γ). Then

ρ ≤ 1 +
√

3n + 6γ − 8 = 1 +
√

3n + 4 − 6χ.
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Proof. We use the notation of Lemma 2.4, as well as abbreviating mij(v,G) to mij . It is clear

that for every vertex v,

sv(A
2) ≤

∑

u∈N1

degH(u) = 3n1 + m12 + 2c.

By examining the graph B0 of the proof of Lemma 2.4 and using Lemma 2.3 with g = 3, we may

derive the inequality

c ≤ n1 + 3n2 − m12 + 3γ − 3.

(This inequality may be shown to be sharp using the same graphs as for Lemma 2.4.) Now, we use

this inequality together with Lemma 2.4(ii) to obtain

sv(A
2) ≤ 3n1 + (m12 + c) + c

≤ 3n1 + (n1 + 3n2 + 3γ − 3) + (n1 + 3γ − 3)

= 5n1 + 3n2 + 6γ − 6.

Hence,

sv(A
2 − 2A) = sv(A

2) − 2n1 ≤ 3n1 + 3n2 + 6γ − 6

and since n ≥ 1 + n1 + n2 we get sv(A
2 − 2A) ≤ 3n + 6γ − 9 for every vertex v. Thus, by Lemma

2.2 we have ρ2 − 2ρ ≤ 3n + 6γ − 9, giving ρ ≤ 1 +
√

3n + 6γ − 8.

In fact, by taking convex combinations of the bound on sv(A
2 − 2A) above and the bound

on sv(A
2 − 4A) in the proof of Theorem 3.1, we can obtain a whole family of results, namely

ρ ≤ (1 + α) +
√

(3 − α)n + (6 + 2α)γ + (α2 + α − 8) for every α ∈ [0, 1]. However, for a given γ

and n, this is always monotone as a function of α, so one of the extreme values α = 0 (Hong’s

bound) or α = 1 (Theorem 3.1(i)) provides the smallest bound. A little algebra reveals that the

best overall bound we can get here is the following.

Corollary 4.2. Let G be an n-vertex graph, n ≥ 3, with spectral radius ρ. Suppose G can be

embedded on a surface of Euler genus γ. Then

ρ ≤
{

1 +
√

3n + 6γ − 8 if 3 ≤ n ≤ 7 + 2γ + 4
√

1 + 3γ,
2 +

√
2n + 8γ − 6 if n ≥ 7 + 2γ + 4

√
1 + 3γ, or n = 3 and γ = 0.

Thus, even this extension of our method does not result in a bound of the form 3
2 +

√
2n+o(1).

Given that Lemma 2.4 is sharp, as is the upper bound on c we derived in the proof of Theorem

12



4.1, we cannot hope to get better bounds from the technique of examining maximum rowsums in

quadratic polynomials in A. A different method will be needed to verify the Boots-Royle-Cao-

Vince conjecture for all n, or to provide computable bounds that agree with Guiduli and Hayes’

asymptotic result for arbitrary surfaces.

References

[1] B. N. Boots and Gordon F. Royle, A conjecture on the maximum value of the principal

eigenvalue of a planar graph, Geographical Analysis 23 (1991) 276-282.

[2] Dasong Cao and Andrew Vince, Spectral radius of a planar graph, Linear Algebra Appl. 187

(1993) 251-257.
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