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Abstract. We show that a certain Riesz-product type measure is singular. This
proves the singularity of the spectral measures of a certain ergodic transformation,
known as the staircase.

Introduction. The staircase transformation is an example of a "rank one"
transformation whose properties have been of interest in ergodic theory recently
[Adams], [Adams, Friedman], [Choksi, Nadkarni]. Here we prove that it has singular
spectrum. To be more precise, this means that the maximal spectral type of the induced
unitary operator is singular with respect to the Lebesgue measure on the circle. We
refer the reader to [Choksi, Nadkarni, (example 2)] for the definition of the staircase
transformation and for other background information. It is shown there that the problem
reduces to proving the singularity of a specific measure μ, which is defined as follows.
Let hn, n= 1, 2, be the integers defined inductively by

Define trigonometric polynomials Pn(z), where z = eiθ, 0e[O, 2π), by

p ίz\= n + z /ir,+ l + z 2 f i n + l + 2 _ | _ z 3 / i n + l + 2 + 3_|_ . . . _j_ ̂ (n- l)hn + n(n- l)/2\

If λ denotes the normalized Lebesgue measure on [0, 2π) the measures ΠΓ=i \Pn\2dλ
turn out to have weak* limit dμ. The purpose of this paper is to prove that μ _L λ.

THEOREM, μlλ.

For this theorem, the reader will not need to know the ergodic theory background.
Only the definitions of the polynomials Pn are really used. The overall method of the
proof is based on [Bourgain]. Then some specific properties of the above polynomials
are needed to make the method work in this case.

The proof actually gives more than the statement of the theorem. It gives the same
result for other "staircase constructions". By this we mean that one can have polynomials
Pnj, of the above type, but with hn replaced by hj where hj+1 =«/A/ + (l + 2 + + «,-).
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Some mild conditions on n} seem to be required however. For example, the proof of

Proposition 9 requires that

As this stage we have not attempted to optimize the proof for such other staircase

constructions. (Recently, the condition on nj has been removed by F. L. Nazarov

(unpublished).)

I would like to thank Reem Yassawi and David Clark for their work on Propositions

9 and 10b) respectively.

The Proof of the Theorem. In the following, all 1-norms and integrals are taken

with respect to normalized Lebesgue measure on the circle.

PROPOSITION 1. // suffices to show that

M{\\Pnι- "PJ,: keN^n^ - " <nk}=0 .

PROPOSITION 2. Fix k, ni<- <nk, and let Q = Pnι- Pnk. Then

limsup ί|βPJ<f|β|-cYliminf ί| β| ||/>J2-1 |Y

π-»oo J J \ rn^co J /

where cί > 0 is an absolute constant.

PROPOSITION 3. Let w>0 be any continuous function on the circle T. Then

liminf Γw| |P r a | 2 -l |>c 2 ίv
m-»oo J J

where c2>0 is an absolute constant.

w

PROOF OF THE THEOREM. Let α be the infimum in Proposition 1, i.e., α =

U: β = Λ,r " 'Λ k , ^/V, nx< <nk). For a fixed Q = PHί- Pnk, Proposition 3

with w = I QI gives

iminf f | β |
m-+oo J

lim

Hence Proposition 2 gives

But the left hand side is bounded below by α since n>nk as «->oo and QPn

Pnι-• • pnk K Hence

Taking the infinum over all Q now gives
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α<α —

and hence α = 0 since Cic\>Q. Hence μ±.λ by Proposition 1.

Proof of the Propositions 1, 2 and 3. Propositions 1 and 2 follow from the initial
remarks in Bourgain's paper [Bourgain, equations (2.15) and (2.22)]. We remark here
that the inequality (2.20) in Bourgain's paper may be interpreted as

J |β | IΛnl 2 <ίll i m s u p \\Q\\Pm\2<\\Q\

(where Q is fixed).
The remainder of this paper will consist of the proof of Proposition 3. Before giving

the proof, we will explain the main ideas. The main problem is the case w= 1. In that
special case, we are trying to prove that the L1 norm of | Pn |

2 — 1 is at least an absolute
constant. We do this by explicitly computing | P J 2 — 1 (see Proposition 4) and seeing
that it consists of approximately n Dirichlet kernels Si(z)/n, each of order about n.
If all of these contributed their full L1 norms (\ogn)/n, we would therefore get
n(\ogή)/n = \ogn, which cannot be correct because the L1 norm is at most 1 + 1=2.
Therefore, we make the guess that in reality, they each contribute l/«, and that this
comes from the intervals around the central maximum of the Dirichlet kernels (which
also happen to be uniformly distributed around the circle). The proof below then consists
of carrying out this estimate. We use the characteristic functions of these central intervals
(see Definition 6) to do the calculation.

PROOF OF PROPOSITION 3. We first show that without loss of generality w is a
trigonometric polynomial: Suppose that the proposition holds for all trigonometric
polynomials v>0. Let w>0 be a continuous function on the circle and let ε>0. Then
there is a trigonometric polynomial v>0 with ||w-v\\^ <ε (take v = KN* w with N large
enough, KN: Fejer kernel). So for each m,

L

-ll-Ww-vWn ί| Λ J 2 - l

since J11 Pm | 2 -11 < J(| Pm \2 +1) = 2. Taking lim inf on both sides,

liminf L | | / > m | 2 - 1 |>liminf L | | P m | 2 - 11 —2ε
m-* oo J m-κχ> J
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>c2 \v — 2ε>c2 w — c2£ — 2ε .

Since ε>0 is arbitrary, the proposition for weC(T) follows. So from now on, w>0 is

without loss of generality a trigonometric polynomial.

PROPOSITION 4. Define fn = PnPn-\. Then

fn = 9n + 9n where,

4a) gn(z) = -nΣ^Si(z), (z = eiθ)
n i=i

4b) 5 ι ( z ) = l + z i + z 2 ί + + z ( M - 1 - ° ί = £ \zy
j=o

i

4c) ai = ihn+ Σj> I = 1 , . . . , ( / I - 1 ) .

PROOF. Multiply out /*„-?„.

PROPOSITION 5.

5a) I α£ — α7-1 > An > (ΛI — 1)! /or \<iφj<n-\ {and ^ > A Π > ( « - 1 ) ! ) .

5b) Re^(z)>(Λ-i)/y[2 whenever z = eiθ,and\θ-2πk/i\<π/4i(n-i\keZ.

PROOF. 5a) \ai — aj\>\i—j\hn>hn for iΦj, by 4c). Also, Ax = 1, hn + 1>nhn implies

by induction that hn>(n— 1)!

5b) If Jfc E Z and | θ - 2πk/i \ < π/4i(n - i) then | ijθ - 2πkj \ < πj/4(n - i) < π/4 for all

i, j with 1 < i < n — 1, 0 <j < n — i. Thus cos(//0) > cos(π/4) = 1 jyfl and

J=0 j=0

REMARK. 5b) implies that for

— « < / < — « , (ieΛ0
4 4

we have Re Sf(z) > n/4y/Ύ whenever

\θ~2πk/i\< = 4π/9n2 .
'"4(3n/4X3n/4)

6. DEFINITIONS. Let γ = π/\00n2 and let

6a) £(0) = χ£(0), θεT=R/2πZ, where ^ = 2 π Z + [ - y , y] .

In other words



SPECTRAL TYPE OF THE STAIRCASE TRANSFORMATION 251

\θ\<y

ijk{θ) = B(θ-2πk/i), ieN, keN.

<pi= Σ Bi,k,
( i , f c ) = l

6b) Define

6c) Define

where (i, k) denotes the greatest common divisor of / and k.

6d) Define

n/4<i<3«/4

PROPOSITION 7.

7a) \φ{n){z)\<\ for all z with | z | = l , and neN.

7b) lim inf w/Λφ ( n ) > c 2 w for some absolute constant c2 .

Before getting into the proof of Proposition 7, we note that it immediately gives

Proposition 3, since

\wfnΦ(n) ^

PROOF OF 7a). By 6d)

by 7a)

p

π | 2 — 11 by definition ,

\<Pl(z)\

= Σ Σ B(θ-2πk/i)
3/i/4 ( i , f c ) = l

l f c ί

= Σ X2πfc/i + [ - y f # ) , θ e [ - π, π)
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where the last summation ranges over all pairs (Ϊ, k) with (i, k) = 1 (relatively prime),
n/4 < i < 3n/4, \<k<i. Therefore it suffices to check that none of the translated intervals
2πk/i+[ — γ, y] intersect. That is, we need to show that

7c)

whenever (i, k)φ(ϊ, k') and (i, k) and (/', k') belong to the range of summation. We have

2π
k k'

1 1

\kϊ-k'i\ 2π 2π
= 2π > > -

ii' ίϊ (3n/4)2

since kϊ — k'i is a nonzero interger. But y = π/100«2 is less than one half of the latter
estimate. Hence the proof of 7a) is complete. The proof of 7b) requires several more
propositions.

PROOF OF 7b). We have

J J
f / 1 n-l

= H - Σ Z"'
1 B - l

- Σ

= — U Σ Si{z)φi{z) + — \w
n J n/4<i<3n/4. Π J

= 1 + 11

where in II the summation is over / Φj such that 1 < / < n — 1, or — (n — 1) < / < — 1, n/4 <
j<3n/4 and we have defined a_t= —ah S-i(z) = Si(z) for convenience.

PROPOSITION 8. lim infn^^ Re(I) > c2 J w for some absolute constant c2 >0.

PROPOSITION 9. lim,^ ^ | II | = 0.

REMARK. Clearly, Propositions 8 and 9 imply 7b).

PROOF OF PROPOSITION 8. Fix n/4<i<3n/4. Then

λLSiφi = —\wSi Σ 8* = - Σ Us,**.
n J n ] a,k) = i n ( i , f c ) = i J

Now w > 0, Bik > 0 and

on the support of Bik, which is: \θ-2πk/i\<y = π/\00n2 (see Proposition 5b) and
Definition 6). Hence
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\« J / π ( ί i k)=i j na,k) = ij \4y/2j V 2 J
Re

Summing over / we have that

We now need the following proposition. It states that a) the numbers k relatively prime

to / are "uniformly distributed" as /->oo, and b) the average number of relatively prime

k is at least &n when / ranges over [n/4, 3n/4].

PROPOSITION 10. (Recall that φ£ depends implicitly on ή)

10a) lim ^ - — = w

10b) Σ \Ψi>c
«/4<i<3π/4 J

for some absolute constant c>0 {where n is large enough).

PROOF. See the appendix on number theory.

COMPLETION OF THE PROOF OF PROPOSITION 8. Fixing w, we can choose n0 so that

(by 10a))

aw )( iΨi ) ( whenever n>n0 and — n < i < — n ) .
Λ J / V 4 4 /

Then for all n>n0 and large enough so that 10b) holds, we have

•»/4 2 VJ Λ J /

1 f
8 / 1 I

π/4<i<3i

w by 10b).

Thus we can take c2 = (

PROOF OF PROPOSITION 9. Recall that

_ 1

n

where the summation ranges over iΦj, (j\k)=\, with 1 < | / | < « — 1, n/4<j<3n/4 and

1 v̂  Γ
Pj(z) = - Σ Uz β ' " β ^(
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1 <k<j. Also, we have defined a_{= —at and S-i(z) = Si(z). In this proof, the fact that

j and k are relatively prime will not be used.

Now w is a fixed trigonometric polynomial. Let

w(z)= X w{η)zη.
—ω<η<ω

Recall that

α = 0

Hence w{z)Si(z) is of the form

Φ)St(z)= Σ CβZ*
\β\<n2 + ω

with coefficients Cβ bounded by

\Cβ\<n- max| w(η)\=nM.
n

Therefore,

\wza^Si(z)Bjk(z)= Σ Cβ \za^^Bjk{z)= Σ CβBjk{-aiΛ

By Definition 6, and recalling that B and Bjk are functions on the circle,

D (γ\— R(γ\p~i2πkxIJ (]'— I — 1 ̂  X^7

l4(x)| = |J(x)|

= fy/π x=0

11 sin(xy) |/π| x I xφO, xeZ.

For x= —cii + aj—β [iφj) we have by 5a)

This also holds for — (n— 1 ) < Ϊ < — 1 since by definition

-l)\, \—n<j<—n
\4 4

Therefore x / 0 for « large enough, and

| ^ kWI<2/|

for all x=-ai + aj-β in the range of the summation. Thus
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<[2(n2 + ω) + 1] max | Cβ | max | Bjk(x) \

nM- 4/(n~ 1)!

<cn3/(n — 1)! where c does not depend on n .

Hence

IIII <—card {(i, 7, k) in range of Σ} cn3/(n-1)!
n

<—-(2n •«•«)• c?z3/(n-l)!->0 as w->oo .
n

This completes the proof of Proposition 9.

Appendix on number theory. Let xe [0, 1] and define δx to be the unit point mass

at x. Define measures μi9 i= 1, 2, by

Thus μi(̂ 4) is the number of A: such that k/ieA and kji is in lowest terms, and 0<k/i<\.

LEMMA Al. Fix an interval /<=[0, 1]. Then

PROOF. We first claim that there exist α < 1 and an integer i0 such that for all

/>ι'o a n d f°Γ a ^ intervals /, /ci[0, 1] of equal length,

0) \μιV)-μAJ)\<>r.

To see this, let A m̂(/) denote the number of integer multiples of m in the (real) interval

/, where m is an integer. Clearly \NJil^) — Nm(I2)\<\ for any two intervals of equal

length, Ix and 72. Let ieN and let p1 < <pk be the distinct prime divisors of /. Then

for any interval /<= [0, 1], μf(7) is the number of integers in the dilated interval // which

are not divisible bypl9...,pk. Hence

μi(l)^N1(iη-ΣNPm(iI)+ Σ NPmPβ(iί)- -
α Λ<β

a a<β

which implies
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since il and // have the same length. Suppose that / was an odd number. Then pγ > 3,

so i>p1p2'' Λ > 3 3 3 = 3fc so 3*</=>2 f c<(/) l o g 3 2, and so we can take α = log 3 2< 1

and io = 3. If i=2xj where j is odd, we can modify this reasoning as follows. Let Mm(I)

denote the number of odd integer multiples of m in the interval /. Then again

for all m and all intervals of equal length 7X and 72. Let 3<p1 < <pk be the prime

divisors of j . Then μi(I) equals the number of odd numbers in //which are not divisible

by/>i,.. .,Λ, h e n c e

So again

\μi(I)-μi(J)\<2k.

But ί>j>p1 - - pk>3k. So again we can take α = log32. Then claim (1) is proved. Next

we claim that for any β< 1 there is c>0 such that for all /,

(2) rf,l])^#')>^.

(Recall that φ(ί) is the Euler function). To see this recall that

Pi

wherepx pk are the distinct prime divisors of /. But for any ε>0, 1 — l/x> \/xε when

x is large enough, say x>xo(ε). Thus

m"H(ι-7-)£lι-j:)
>ί | — Π — ^ — •—= —

V2/ llpl \2) ie \2

*o l / l γ » l / lV 0 . , ε

So we can let ε=l—β and c = (l/2)Xo(ε). Now we can prove Lemma Al. Fix cc<β<\

in the claims (1) and (2) above. Let NeN and let It = [t/N, (t+ \)/N), ί = 0, 1, . . . , N-1.

Then for all /,

Nmmμi(It)<μi(l0, 1])<
i t

But if i is large enough μt ([0, Y])>ciβ and max,^(/J —111111^4(/t)^iα. Hence
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N — " " - N

But /7/i, ([0, l])</7ci"->0 as /-»oo. Hence

as /-.oo

The result for arbitrary intervals /c=[0, 1] follows easily by approximation.

PROOF OF PROPOSITION 10a). For any interval la [0, 1], we have (integrating with
respect to normalized Lebesgue measure on T)

%2π/Φi<μiW 2y/2π andπ and χ2κiφi > (μf(/) - 2)2y/2π

since the intervals 2πfc//+[ —7, y], (fc, i )=l, \<k<ί are disjoint and at most two of
them contain end points of 2π/. Also

|φ,-ft(TO. l]) 2y/2π.
J

Hence

as n^co, n/4<i<3n/4, since μΛEO, l])^oo.
In 10a) the w is continuous, so uniformly continuous. Hence 10a) follows. In other

words, we have shown that the weak* limit of φ^Q^φ^θ as «->oo is the Lebesgue
measure.

PROOF OF PROPOSITION 10b).

Σ [<Pi= Σ μι([0,l]) 2y/2π = — I - , - Σ #')
n/4<i<3«/4 J «/4<i<3n/4 1 (JU/t n/4<i<3n/4

where φ is the Euler function. But

where/?1(/)<^2(0< ' ' ' are the distinct prime divisors of/. Also, the arithmetic-geometric
mean inequality gives (letting 7V=card{/eiV, n/4<i<3n/4}):
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1 / \1/N

Π #')> Σ #')
:i<3n/4 \π/4<ί<3n/4 /

π τ(ι—7Ϊ
n/4<i<3n/4 4 \ /?iViJ

where c and c'>0 are absolute constants. Hence the proof of 10b) is complete.

REMARKS. 10b) is a weakened form of the following fact, whose proof was shown
to me by D. Clark:

10c) For any ε>0, there is a δ>0 such that

-n<i<-n ώ(i)>(\-ε)i]>δn
4 4 ~ J

whenever n is large enough.
The proof of Clark is a generalization of [Hardy & Wright, Thm#330]. Also, it

is possible to prove the result of this paper using 10c) instead of 10a) and 10b). This
was in fact the strategy in a preliminary form of the proof.
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