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ABSTRACT

Context. The Hertzsprung-Russell diagram is an essential diagnostic diagram for stellar structure and evolution, which has now been
in use for more than 100 years.
Aims. We introduce a new diagram based on the gravity-effective temperature diagram, which has various advantages.
Methods. Our spectroscopic Hertzsprung-Russell (sHR) diagram shows the inverse of the flux-mean gravity versus the effective
temperature. Observed stars whose spectra have been quantitatively analyzed can be entered in this diagram without the knowledge
of the stellar distance or absolute brightness.
Results. Observed stars can be as conveniently compared to stellar evolution calculations in the sHR diagram as in the Hertzsprung-
Russell diagram. However, at the same time, our ordinate is proportional to the stellar mass-to-luminosity ratio, which can thus be
directly determined. For intermediate- and low-mass star evolution at constant mass, we show that the shape of an evolutionary track in
the sHR diagram is identical to that in the Hertzsprung-Russell diagram. We also demonstrate that for hot stars, their stellar Eddington
factor can be directly read off the sHR diagram. For stars near their Eddington limit, we argue that a version of the sHR diagram may
be useful where the gravity is exchanged by the effective gravity.
Conclusions. We discuss the advantages and limitations of the sHR diagram, and show that it can be fruitfully applied to Galactic
stars, but also to stars with known distance, e.g., in the LMC or in galaxies beyond the Local Group.
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1. Introduction

The Hertzsprung-Russell (HR) diagram has been an important
diagram for the understanding of stellar evolution for more than
a hundred years (Nielsen 1964). Hertzsprung (1905) and later
independently Russell (1919) realized that the knowledge of the
absolute brightness of stars together with their spectral type or
surface temperature allowed fundamentally different types of
stars to be distinguished.

Hertzsprung and Russell had already realized that the appar-
ent stellar brightness was insufficient to draw conclusions, but
that the absolute brightnesses, i.e., the distances, are required to
properly order the stars in the HR diagram. Order can also be
achieved for stars in star clusters where the distance may still be
unknown, but the distances of all stars are roughly equal, in what
we now call color–magnitude diagrams because the apparent and
absolute brightness differences are equal.

Hertzsprung and Russell pointed out that the HR diagram
contains information about the stellar radii, with the giant se-
quence to be found at a larger brightness but similar surface
temperatures to the cools stars of the dwarf or main sequence.
And indeed, it remains one of the main advantages of the quan-
titative HR diagram that stellar radii can be immediately deter-
mined, thanks to the Stefan-Boltzmann law.

Later, with the advent of stellar model atmosphere
calculations, it became possible to quantitatively derive accurate
stellar surface gravities (see, e.g., Auer and Mihalas 1972, and
references therein). This allowed stars to be ordered in the sur-
face gravity-effective temperature (g− Teff) diagram (sometimes
called the Kiel diagram), since a larger surface gravity for stars
of a given surface temperature can imply a larger mass (Newell
1973; Greenstein & Sargent 1974). The main advantage of the

g − Teff diagram is that stars can be compared to stellar evolu-
tion predictions without the prior knowledge of their distance (a
first example is given in Kudritzki 1976). However, the radius
or any other stellar property can not be directly identified from
the g − Teff diagram. Moreover, the comparison with stellar evo-
lution calculations is often negatively affected by the relatively
large uncertainties of the spectroscopic gravity determinations.

In this paper, we want to introduce a diagnostic diagram
for stellar evolution which combines the advantages of the
Hertzsprung-Russell and of the g − Teff diagram. We introduce
the spectroscopic Hertzsprung-Russell (sHR) diagram in Sect. 2
and compare it with the Hertzsprung-Russell and the g − Teff
diagram in Sect. 3. We discuss stars with changing mass and he-
lium abundance in Sect. 4, and focus on stars near the Eddington
limit in Sect. 5, and on low- and intermediate-mass stars in
Sect. 6. Finally, we give an example for the application of the
sHR diagram in Sect. 7, and close with concluding remarks in
Sect. 8.

2. The sHR diagram

The idea of the sHR diagram is to stick to the variables surface
gravity and effective temperature, as those can be directly de-
rived from stellar spectra without knowledge of the stellar dis-
tance. We then define the quantity L := T 4

eff/g, which is the in-
verse of the “flux-weighted gravity” defined by Kudritzki et al.
(2003). Kudritzki et al. (2003, 2008) showed that 1/L – and
thus L as well – is expected to remain almost constant in mas-
sive stars, because combining

g =
GM
R2
, (1)
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where M and R are stellar mass and radius, G the gravi-
tational constant, and g the stellar surface gravity, with the
Stefan-Boltzmann law

L = 4πσR2T 4
eff, (2)

with L and Teff representing the stellar bolometric luminosity
and effective temperature, and σ being the Stefan-Boltzmann
constant, one finds that

L = 4πσGM
T 4

eff

g
= 4πσGML . (3)

The fact that massive stars evolve at nearly constant luminos-
ity (see below) allowed Kudritzki et al. (2003, 2008) to use the
flux-weighted gravity-luminosity relationship as a new method
for deriving extragalactic distances. Since for stars of constant
mass, L ∼ L, L behaves like the stellar luminosity, and the
evolutionary tracks in the L −Teff diagram partly resemble those
in the Hertzsprung-Russell diagram. In a sense, the sHR diagram
is a version of the g−Teff diagram where the stellar evolutionary
tracks of massive stars are horizontal again, which allows for a
better visual comparison (see Sect. 3). More importantly, since
for hot massive stars the spectroscopic determination of the flux
weighted gravity gF = g/T 4

eff is less affected by the uncertainties
of temperature than the determination of gravity (see Sect. 6.1 in
Kudritzki et al. 2012, for a detailed physical explanation), gF can
be determined more precisely than g. A good example is the case
of blue supergiant stars, where the uncertainty of log gF is about
0.05 dex, while the error in log g is two or three times as large
(see Kudritzki et al. 2008 and 2012, Tables 1 and 2, respectively).

However, the sHR diagram is not just a rectified version of
the g − Teff diagram, or a distance independent version of the
Hertzsprung-Russell diagram. Its deeper meaning becomes ob-
vious when we write Eq. (3) as

L =
1

4πσG
L
M
, (4)

or, with the Eddington factor Γ = L/LEdd and LEdd = 4πcGM/κ
as

L =
c
σκ
Γ, (5)

where c is the speed of light and κ the radiative opacity at the
stellar surface. Obviously, L , for a given surface opacity, is di-
rectly proportional to the luminosity-to-mass ratio (Eq. (4)) and
to the stellar Eddington factor Γ (Eq. (5)).

Again, this is particularly useful for massive stars, where
the Eddington factor is not extremely small anymore and can
approach values close to unity. In addition, in hot massive
stars, the radiative opacity is dominated by electron scattering
(Kippenhahn & Weigert 1990), which can be approximated as

κ � κe = σe(1 + X), (6)

with the cross section for Thomson scattering σe and the surface
hydrogen mass fraction X. Consequently, for massive stars with
unchanged surface abundances, L is truly proportional to the
Eddington factor. Furthermore, for helium enriched stars, the he-
lium abundance can also be determined from model atmosphere
analyses, and the opacity can be corrected accordingly.

The near proportionality of L to the Eddington factor im-
plies a fundamental difference between the sHR and the HR or
the g−Teff diagrams. In contrast to the last two, the sHR diagram
has an impenetrable upper limit, i.e., the Eddington limit. For ex-
ample, since for large mass the mass-luminosity exponent α in

the mass luminosity relation L ∼ Mα tends asymptotically to
α = 1 (Kippenhahn & Weigert 1990), even stars of extremely
high mass may not violate the Eddington limit, which means
that there is no upper bound on the luminosity of stars in the
HR diagram. In contrast, in the sHR diagram for hot stars of nor-
mal composition (X � 0.73), we find that log L /L� � 4.6 is
the maximum achievable value.

2.1. Limitations of the sHR diagram

The sHR diagram introduced above can be produced from any
stellar evolution models without limitations, and any star for
which effective temperature and surface gravity are measured
can be entered in this diagram. However, the interpretation of a
comparison of observed stars with stellar models in this diagram
has some restrictions.

In order to be able to interpret the ordinate of the
sHR diagram in terms of an Eddington factor, the opacity that
applies to the surfaces of the stars (modeled or observed) needs
to be the same for all stars considered in the diagram. As men-
tioned above, this is approximately given for hot stars with the
same hydrogen abundance, and thus holds for most Galactic OB
stars.

For helium-enriched hot stars, their Eddington factor can still
be read off the sHR diagram, as long as the helium abundance
is known (e.g., from a stellar atmosphere analysis) because the
electron fraction can then be computed, and the electron scatter-
ing opacity can be computed from Eq. (6).

For cool stars, the situation becomes more complicated
since hydrogen and helium may be partly recombined. This be-
comes noticeable for hydrogen for T ∼< 10 000 K and strong
for T ∼< 8000 K. For helium, the first electron recombines at
T � 28 000 K, while the recombination temperature for the sec-
ond electron is similar to that of hydrogen. This means that
for stars with temperatures below T � 28 000 K the electron-
scattering Eddington factor as determined from the sHR diagram
may only be correct to within ∼10%. Of course, a precise elec-
tron fraction can be obtained from stellar model atmosphere
calculations.

3. Comparison of the diagrams

Figure 1 shows contemporary evolutionary tracks for stars in the
mass range 10 M� . . . 100 M� in the HR and in the g − Teff dia-
gram (cf. Langer 2012). They can be compared to tracks of the
same models in the sHR diagram in Fig. 2. For the sHR diagram
we plot the quantity L := T 4

eff/g as function of the effective
temperature of selected evolutionary sequences, where g is the
surface gravity, and where L is normalized to solar values for
convenience (with log L� � 10.61). With the above definition of
the Eddington factor, we obtain L = c/(κeσ) Γe, where σ is the
Stefan-Boltzmann constant. For a given surface chemical com-
position, L is proportional to the Eddington factor Γe. For Solar
composition, we have log L /L� � 4.6 + logΓe.

According to the definition of L in Sect. 2, lines of constant
log g can be drawn as straight lines in the sHR diagram, as

4 log Teff − log
L

L�
= log L� + log g (7)

(see Fig. 2). We note that in the classical HR diagram, this is not
possible, as two stars with the same surface temperature and lu-
minosity that have different masses occupy the same location in
the HR diagram, but since they must have the same radius, their
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Fig. 1. Evolutionary tracks of stars initially rotating with an equatorial velocity of ∼100 km s−1, with initial masses in the range 10 M� . . . 100 M�,
in the HR diagram (left), and in the g − Teff diagram (right). The initial composition of the models is solar. The models up to 60 M� are published
by Brott et al. (2011), while those of higher mass are unpublished additions with identical input physics.

Fig. 2. Tracks of the same models
as those shown in Fig. 1, in the
sHR diagram. While the ordinate is de-
fined via the spectroscopically measur-
able quantities Teff and log g, its nu-
merical value gives the logarithm of the
luminosity-to-mass ratio, in solar units.
The right-side ordinate scale gives the
atmospheric Eddington factor for hot
hydrogen-rich stars. The horizontal line
at log L /L� � 4.6 indicates the loca-
tion of the Eddington limit. The dotted
straight lines are lines of constant log g,
as indicated.

surface gravities are different. In the sHR diagram, both stars fall
on different iso-g lines.

Comparing the two diagrams in Fig. 1, it becomes evident
that the evolutionary tracks, especially of the very massive stars
in the g − Teff diagram, are located very close together. For ex-
ample, the tracks of the 80 M� and the 100 M� stars can barely
be distinguished. The reason is that

g = 4πσGT 4
eff

M
L
, (8)

and since the exponent α in the mass-luminosity relation tends
to unity (see Sect. 2) we find that the gravities of very mas-
sive stars of the same effective temperature must become almost
identical. Equation (8) determines the gravities of stars near the
Eddington-limit, as it transforms to

g =
σκe

c

T 4
eff

Γe
(9)

Table 1. Surface gravity (see Eq. (1)) of stars with a normal helium sur-
face mass fraction (Y � 0.26) near their Eddington limit, as a function
of their surface temperature, according to Eq. (9).

Teff/kK = 100 50 40 30 20

Γe → 1 4.82 3.61 3.22 2.72 2.02
Γe = 0.9 4.86 3.66 3.27 2.77 2.07
Γe = 0.8 4.91 3.71 3.32 2.82 2.12
Γe = 0.7 4.97 3.77 3.38 2.88 2.17
Γe = 0.5 5.12 3.91 3.52 3.03 2.32
Γe = 0.3 5.34 4.13 3.75 3.25 2.54
Γe = 0.1 5.81 4.61 4.22 3.72 3.02

(see Table 1). For stars with a helium-enriched surface, Eq. (9)
results in smaller gravities because of the reduced electron scat-
tering opacity.
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Fig. 3. Combined sHR diagram for low-,
intermediate- and high-mass stars. The
tracks are computed using the LMC ini-
tial composition and include those pub-
lished in Brott et al. (2011) and Köhler
et al. (in prep.).

While this is a problem that remains true also for the
sHR diagram, Fig. 2 shows why it is somewhat remedied in this
case. The gravities of stars change by many orders of magnitude
during their evolution, which is reflected in the Y-axis of the
g − Teff diagram. Therefore, rectifying the tracks in the g − Teff
diagram, i.e., inverting the gravity and multiplying by T 4

eff, does
not only turn the tracks horizontal. As the luminosities of mas-
sive stars vary very little during their evolution, this also allows
the Y-axis of the sHR diagram to be much more stretched, which
makes the tracks of the most massive stars more distinguishable.
An example of this is provided by Markova et al. (2014; their
Fig. 6). That this possibility has its limits when high- and low-
mass stars are shown together is demonstrated in Fig. 3. We thus
note here that the use of the effective gravity in Sect. 5 stretches
the sHR diagram close to the Eddington limit even more.

We note again that spectroscopic determinations of log L
L�

can be made with a precision of about 0.05 dex, whereas the un-
certainties of log g are a factor of two to three larger (see Sect. 2).
This makes it difficult to determine masses from the g− Teff dia-
gram in Fig. 1 for masses larger than 30 M�, but allows Fig. 2 to
be used as a diagnostic tool for stellar masses.

Furthermore, it is interesting to compare the tracks of the
stars in the three diagrams in Figs. 1 and 2 that lose so much mass
that their surface temperatures, after reaching a minimum value,
become hotter again. In the HR diagram, as the luminosities of
these stars remain almost constant during this evolution, it will
thus be difficult to distinguish whether an observed star is on the
redward or on the blueward part of the track. While it remains
hidden in the HR diagram, the sHR diagram reveals nicely that
the mass loss drives these stars towards the Eddington limit. As
a consequence, the evolutionary state of observed stars will be
much clearer in the sHR diagram.

4. Stars with changing mass and helium abundance

For stars that evolve as ordinary single stars, one may use either
the sHR diagram or, for known distances, the HR diagram to de-
rive their properties, including their masses, in comparison to

stellar evolution models – assuming here that models in partic-
ular for core hydrogen burning are trustworthy enough to allow
this. However, it is predicted that a certain fraction of stars does
evolve according to unusual evolutionary paths, in particular the
close binary stars, which undergo mass transfer. Moreover, at
high mass there is also the possibility of chemically homoge-
neously evolving stars as a consequence of rapid rotation (Brott
et al. 2011). It is interesting to consider both types of evolution
in the HR and sHR diagram.

Both situations can lead to stars that are overluminous, i.e.
stars that have a luminosity larger than the luminosity of a sin-
gle star of comparable mass and evolutionary state. Kippenhahn
& Weigert (1990) showed that main sequence stars are expected
to obey the relation L ∼ Mαμβ, where μ is the average mean
molecular weight and β > 1. An overluminosity is thus related
to a larger mean molecular weight in a star than expected for
an ordinary star (Langer 1992). In the HR diagram, the ordinate
(L) is increased by a factor of (1 + δμ)β, where δμ measures
the excess in average mean molecular weight in our overlumi-
nous star. Interestingly, in the sHR diagram, where the ordinate
is proportional to L/M (independent of the helium abundance),
the ordinate value of our star is increased by the same factor over
that of an ordinary star of the same mass. Because the ordinate
in the HR diagram depends more strongly on the mass (L ∼ Mα)
than the ordinate in the sHR diagram (L/M ∼ Mα−1), we con-
clude that the upward shift of our overluminous star with respect
to stellar evolution tracks for ordinary stars leads to higher ap-
parent masses (i.e. masses determined by comparison to these
tracks) in the sHR diagram than in the HR diagram.

We can see this at the example of the evolutionary track of
an extremely rapidly rotating 30 M� star (Brott et al. 2011) in
the HR and sHR diagrams, in comparison to the tracks of slowly
rotating stars in Fig. 4. We note that in practice the determina-
tion of the surface gravity of a rapidly rotating star may require
a centrifugal correction (Herrero et al. 1992), and its inclina-
tion dependence may introduce additional uncertainties (Maeder
1999; Townsend et al. 2004). We do not consider this here, but
focus on the effect of the helium enrichment produced by the
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Fig. 4. Evolutionary tracks of a rapidly rotating 30 M� star, and of both components of a 16 M�+14 M� close binary, in the HR diagram (left) and
in the sHR diagram (right). Dots are placed on the tracks such that the stars spend 105 yr between two dots. For comparison, the same tracks shown
in Figs. 1 and 2 are included (black dotted lines). The sHR diagram contains lines of constant gravity (dotted straight lines), and its right ordinate
scale is only valid for an unchanged surface helium abundance of Y � 0.26.

rapid rotation, which remains once the star has spun down. The
considered model evolves quasi-chemically homogeneously un-
til a helium mass fraction of about Y = 0.47 is achieved, at
which time it has spun down sufficiently to switch to ordinary
evolution. In both diagrams, the chemically homogeneous part
of the track covers a range of the ordinate value of ∼0.3 dex.
Whereas in the HR diagram this leads to an apparent mass of
MHRD � 37 M�, in the sHR diagram it leads to MsHRD � 42 M�.
Because of stellar wind mass loss, the true mass of the model is
slightly below 30 M�.

We see the same behavior in mass donors of interacting close
binary models. This is demonstrated by the evolutionary track of
the mass donor of a close binary model with an initial period
of 2.5 d and with initial masses of 16 M� and 14 M� (system 42
in Wellstein et al. 2001) in the HR and sHR diagram (Fig. 4).
Its absolute and relative change in mass is similar to that of the
mass gainer (the binary evolution model is almost conservative).
In the first mass transfer event, the mass donor loses about 9 M�.
Its core mass becomes much larger than that of a single stars of
7 M�, which corresponds to its actual mass. This increases its
average mean molecular weight to values which ordinary single
stars could not achieve. An apparent mass of MHRD � 9.5 M�
can be read off the HR diagram (from the thick part of the track
at log Teff � 4.25), while in the sHR diagram an apparent mass
of about MsHRD � 11 M� can be determined.

Figure 4 shows that later, after the star returns from its
minimum effective temperature, the effect becomes even more
drastic. The mass donor is by then reduced to a total mass
of 2.5 M�. Compared to an ordinary 2.5 M� star, its luminos-
ity is increased by ∼2.4 dex, leading to an apparent mass of
MHRD � 12 M� (again at log Teff � 4.25) in the HR diagram.
A shift by 2.4 dex in the sHR diagram leads a 2.5 M� star from
log ((L/L�)/(M/M�)) � 1.6 to log ((L/L�)/(M/M�)) � 4, or an
apparent mass of MsHRD � 30 M�. We note that similarly drastic
differences in the apparent mass derived from the HR diagram
from that derived from the sHR diagram can be expected for
post-AGB stars and post-red supergiant WNL stars.

For the mass gainer in interacting binaries, there may be al-
most no such effect. After the mass transfer, these stars may in
many cases (though not always; see Langer 2012) rejuvenate
and show global parameters (R, L, T, g) that are very similar to

those of a single star of the same mass (except that they will
appear younger than they are). This is shown by the evolution-
ary track of the mass gainer of the mentioned binary evolution
model in Fig. 4. The star with an initial mass of 14 M� ends up
with ∼26 M�, and in both diagrams it is located slightly above
the 25 M� single star track; i.e., among single stars, the location
of the mass gainer in both diagrams would not be conspicuous. It
would require a surface abundance analysis to show its enhanced
nitrogen surface abundance and potentially fast rotation to iden-
tify it as a binary product (Langer 2012), or its identification as
a blue straggler in a star cluster (Schneider et al. 2014).

We note that overluminous stars may or may not have an
increased helium surface abundance (Langer 1992). While in
practice, the determination of the effective temperature through
model atmosphere calculations may go along with the determi-
nation of the surface helium abundance, the knowledge of the
latter is not required in order to identify the position of the star
in either the HR or the sHR diagram. The surface helium abun-
dance is only necessary for being able to read off the Eddington
factor from the right-side ordinate of the sHR diagram in Fig. 4.
In our figure, Eddington factors are given for a normal helium
surface mass fraction (Y0 = 0.26). For other values, it can easily
be adjusted according to

Γe =
σ

c
L (σe (2 − Y)) (10)

or

Γe(Y) = Γe(Y0)
2 − Y
2 − Y0

· (11)

Compared to Y0 = 0.26, the Eddington factor for helium-rich at-
mospheres can be reduced by up to a factor of 0.57, or 0.24 dex.

For stars with known distance, for which in addition to g and
Teff, L can also be derived, the HR and the sHR diagram can be
used together to identify overluminous stars. The actual mass
follows directly from the ordinate values of both diagrams as

log
M
M�
= log

L
L�
− log

L

L�
, (12)

which corresponds to the spectroscopic mass, as it is effec-
tively derived from the spectroscopic gravity, effective temper-
ature, and luminosity. Only a reliable mass-luminosity relation
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Fig. 5. Evolutionary tracks for the same
stellar evolution models shown in Fig. 2,
here plotted in the effective sHR diagram
(solid lines), for which the Eddington-
factor can be read off from the ordinate
on the right. For comparison, the tracks
from Fig. 2 are also copied into this di-
agram (dotted lines). The right ordinate
scale is not valid for them. The labels give
the initial masses for the tracks drawn as
solid lines.

is then required, or corresponding stellar evolutionary tracks
for ordinary single stars, to check whether the differences be-
tween the observationally determined ordinate values and the or-
dinate values of an ordinary star with the mass determined from
Eq. (12) are equal in both diagrams. If they are, then the true ac-
tual mass can be consistently determined from both diagrams.
Instead of using Eq. (12), it can also be determined from the ap-
parent masses determined from the evolutionary tracks in both
diagrams as

M =
MαHRD

Mα−1
sHRD

, (13)

where α is the exponent of the mass luminosity relation (e.g.,
Gräfener et al. 2011). We provide an example in Sect. 7.

5. Near the Eddington limit

In stars with a high luminosity-to-mass ratio, the radiation pres-
sure may dominate the atmospheric structure. Considering the
equation of hydrostatic equilibrium in the form

1
ρ

dPrad

dr
+

1
ρ

dPgas

dr
=

GM
R2
= g (14)

and replacing the first term by the photon momentum flux
κ

c
Frad

at the stellar surface, we can define as effective gravity the accel-
eration which opposes the gas pressure gradient term as

geff =
GM
R2
− κ

c
Frad, (15)

which can be written as geff = g(1 − Γ). In order to define an ef-
fective gravity that does not vary near the photosphere and in the
wind acceleration zone, we only consider the electron scattering
opacity here and approximate

geff � g(1 − Γe). (16)

Because of the high luminosity and the reduced surface grav-
ity, stars near their Eddington limit tend to have strong stellar

winds. As a consequence, the stellar spectrum may be domi-
nated by emission lines, and the ordinary gravity may be hard
to determine. However, model atmosphere calculations which
include partly optically thick outflows allow – for stars with a
known distance – the stellar temperature, luminosity, and radius
to be determined (Hamann et al. 2006; Crowther 2007; Martins
et al. 2008). From the widths of the emission lines, it is also
possible to derive the terminal wind speed, �∞. While not es-
tablished for optically thick winds, optically thin winds show a
constant ratio of the effective escape velocity from the stellar
surface, �esc,eff =

√
2GM(1 − Γe)/R, to the terminal wind ve-

locity over wide ranges in effective temperature (Abbott 1978;
Kudritzki et al. 1992; Kudritzki & Puls 2000). Thus, assuming a
relation of the form

�∞ = r�esc,eff, (17)

where r is assumed constant, would allow the calculation of the
effective gravity from

geff =
�2esc,eff

2R
· (18)

It may thus be useful to consider a sHR diagram for massive stars
where gravity is replaced by the effective gravity. We define

Leff =
T 4

eff

g(1 − Γe)
, (19)

and consider an “effective sHR diagram” where we plot
log Leff/L� versus stellar effective temperature. Here, we ap-
proximate L�,eff by L�, as both quantities differ only by the
factor 1/(1 − Γ�), where the solar Eddington factor, assuming
electron scattering opacity (since we aim at massive stars), is
Γ� � 2.6 × 10−5.

It is straightforward to plot evolutionary tracks in the effec-
tive sHR diagram, which is shown in Fig. 5. We see that only
above ∼15 M�, the tracks deviate significantly from those in the
original sHR diagram. For more massive stars, the difference can
be quite dramatic, as seen for example from the tracks at 100 M�.

A52, page 6 of 8

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201423374&pdf_id=5


N. Langer and R. P. Kudritzki: The spectroscopic Hertzsprung-Russell diagram

Fig. 6. sHR diagram for low- and intermediate-mass stars. Because
L ∼ L/M, one can use the spectroscopically determined effective tem-
perature and gravity to determine the stellar mass-to-luminosity ratio
(right Y-axis).

The topological character of the effective sHR diagram is dif-
ferent from that of the original sHR diagram, as it no longer has
a strict upper limit. However, instead of L = (c/σκe)Γe, we now
have

Leff =
c
σκe

Γe

1 − Γe
· (20)

While this means that we can still read the Eddington factor of
stars directly off the effective sHR diagram (Fig. 5, right ordi-
nate), the scale in logΓe is no longer linear, but instead it is

Γe =
1

10−(log(Leff/L�)+log Γ�) + 1
· (21)

Furthermore, we see that Leff → ∞ for Γe → 1. Consequently,
the effective sHR diagram conveniently stretches vertically for
high Γe, in contrast to the ordinary sHR diagram. In practice the
openness of the effective sHR diagram may not matter. It has
been shown for massive star models of Milky Way and LMC
metallicity that a value of Γe � 0.7 is not expected to be exceeded
(Yusof et al. 2013; Köhler et al., in prep.) – because at roughly
this value, massive stars reach their Eddington limit when the
complete opacity is considered. Therefore, although this does
not form a strict limit, stars of the considered metallicity are not
expected to exceed values of Leff � 5 (see Fig. 5). However,
for stars of much lower metallicity, much higher values of Leff
might be possible.

6. sHR diagram of low- and intermediate-mass stars
In Fig. 6, we show the tracks of stars from 1 M� to 5 M� in the
sHR diagram. For stars in this mass range, the Eddington fac-
tor is small, and to be able to read it off the sHR diagram may
not be very relevant. Furthermore, except for the very hottest
of these stars, the true electron-scattering Eddington-factor is
smaller than the indicated values, because the electron fraction
is reduced as a consequence of recombination of helium and
hydrogen ions. However, independent of surface temperature
and composition, it remains true that L ∼ L/M (see Eq. (4)).
Consequently, we have

log L /L� = log

(
L/L�

M/M�

)
(22)

(Fig. 6).

Fig. 7. sHR diagram showing the evolutionary track of a 3 M� star. This
track is identical to a track in the HR diagram, and the stellar luminosity
is given by the alternative Y-axis on the right side of the diagram.

In the considered mass range, the sHR diagram has another
advantage. At least until very late in their evolution, these stars
lose practically no mass, and so we have for a star, or evolution-
ary track, of a given mass that

L =
L
k
, (23)

where the constant k is k = 4πσM. This is demonstrated
in Fig. 7, which shows the evolution of a 3 M� star in the
sHR diagram. We note that the Y-axis to the right gives directly
the stellar luminosity.

7. Blue supergiants in the spiral galaxy M 81:
an extragalactic application

Kudritzki et al. (2012) have recently carried out a quantita-
tive spectroscopic study of blue supergiant stars in the spiral
galaxy M 81 with the goal of determining stellar effective tem-
peratures, gravities, metallicities, and a new distance using the
flux-weighted gravity–luminosity relationship. Figure 8 shows
the sHR diagram obtained from their results (we have omitted
their object Z15, since its gravity is highly uncertain as discussed
in their paper). The comparison with evolutionary tracks nicely
reveals the evolutionary status of these objects and allows to read
their masses and ages off the sHR diagram without assuming a
distance to the galaxy. As can be seen from Fig. 8, the super-
giants investigated are objects between 15 M� and 40 M�, which
have left the main sequence and are evolving at almost constant
luminosity towards the red supergiant stage. For most objects the
error bars are small enough to distinguish between the masses of
the individual evolutionary tracks plotted. This is not possible for
most of the objects when plotted in the corresponding g−Teff di-
agram (shown in Fig. 13 of Kudritzki et al.) mostly because the
determination of flux-weighted gravity is more accurate than the
determination of gravity (see Kudritzki et al. 2008, for a detailed
discussion).

Since the distance to M 81 is well determined (d = 3.47 ±
0.16 Mpc), we can compare the information contained in the
sHR diagram with the one from the classical HR diagram, which
is also displayed in Fig. 8. Generally, the conclusions with re-
spect to stellar mass obtained from the two diagrams are consis-
tent within the error bars. However, there are also discrepancies.
The most striking example is the lowest luminosity object in the
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Fig. 8. Blue supergiants in the spiral galaxy M 81 at 3.47 Mpc dis-
tance. Top: sHR diagram; bottom: classical HR diagram. Spectroscopic
data from Kudritzki et al. (2012). Evolutionary tracks from Meynet &
Maeder (2003) for Milky Way metallicity and including the effects of
rotational mixing are shown (in increasing luminosity) for 12, 15, 20,
25, and 40 solar masses, respectively. The blue supergiant plotted in red
is discussed in the text.

sample shown in red in both diagrams (object Z7 in Kudritzki
et al.). While the HR diagram indicates a mass clearly below
15 M�, the sHR diagram hints at a mass above this value. The
reason for this discrepancy is that the spectroscopic mass of
this object as derived from Eq. (12) is only 9.2 M�, whereas the
mass one would assign to the object from its luminosity and
based on the evolutionary tracks shown is 12.8 M� (see Table 3
of Kudritzki et al.). Compared to a 9.2 M� track, its luminosity
is shifted by ∼0.55 dex in the HR diagram. Applying the test de-
rived in Sect. 4, we consider the shift of our star with respect to
a 9.2 M� track in the sHR diagram, and find it is practically the
same as that in the HR diagram. We can thus confidently con-
clude that the observed star most likely has a mass of about 9 M�,
and that it did not follow the ordinary single-star evolution, but is
overluminous with respect to its mass. As discussed by Kudritzki
et al., mass discrepancies of this kind, while not frequent, have
been encountered in many extragalactic blue supergiant studies
and may indicate an additional mass-loss process not accounted
for in the single-star evolutionary tracks, or for an unusual mix-
ing process inside the star.

8. Concluding remarks

We have shown above that the sHR diagram may be a useful tool
for deriving physical properties of observed stars, or for testing
stellar evolution models. The underlying reason is that when ef-
fective temperature and surface gravity are spectroscopically de-
termined, this provides a distance-independent measure of the
luminosity-to-mass ratio of the investigated star. The L/M-ratio
is useful to know in itself – e.g., to determine the mass of a
star cluster or a galaxy. On the other hand, many stars, partic-
ularly low- and intermediate-mass stars, evolve at roughly con-
stant mass, such that the L/M-ratio remains proportional to the
stellar luminosity. For high-mass stars, on the other hand, the
L/M-ratio is proportional to their Eddington factor, which is es-
sential for their stability and wind properties.

We have also demonstrated that for stars which are very close
to their Eddington limit, for which one can not determine the sur-
face gravity spectroscopically because of their strong and partly
optically thick stellar winds, it may be possible to consider a
derivate of the sHR diagram where the gravity is exchanged with
the effective gravity. While it is still a challenge to derive the ef-
fective gravity observationally, this may soon become possible
with a better understanding of optically thick stellar winds.

In summary, while we believe that the original HR diagram,
and the related color–magnitude diagram, will remain essential
in stellar astronomy, the sHR diagram provides an additional tool
for analysis that has not yet been widely explored and which may
have the potential to supersede the g−Teff diagram in its original
form, as it appears to be more convenient and brings additional
physical insight at the same time.
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