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ABSTRACT

The Fermi bubbles are two large structures in the gamma-ray sky extending to 55◦ above and below the Galactic
center. We analyze 50 months of Fermi Large Area Telescope data between 100 MeV and 500 GeV above 10◦

in Galactic latitude to derive the spectrum and morphology of the Fermi bubbles. We thoroughly explore the
systematic uncertainties that arise when modeling the Galactic diffuse emission through two separate approaches.
The gamma-ray spectrum is well described by either a log parabola or a power law with an exponential cutoff.
We exclude a simple power law with more than 7σ significance. The power law with an exponential cutoff has an
index of 1.9 ± 0.2 and a cutoff energy of 110 ± 50 GeV. We find that the gamma-ray luminosity of the bubbles is
4.4+2.4

−0.9 × 1037 erg s−1. We confirm a significant enhancement of gamma-ray emission in the southeastern part of
the bubbles, but we do not find significant evidence for a jet. No significant variation of the spectrum across the
bubbles is detected. The width of the boundary of the bubbles is estimated to be 3.4+3.7

−2.6 deg. Both inverse Compton
(IC) models and hadronic models including IC emission from secondary leptons fit the gamma-ray data well. In the
IC scenario, synchrotron emission from the same population of electrons can also explain the WMAP and Planck
microwave haze with a magnetic field between 5 and 20 μG.

Key words: astroparticle physics – cosmic rays – Galaxy: general – Galaxy: halo – gamma rays: diffuse
background – methods: data analysis

Online-only material: color figures

1. INTRODUCTION

Radio and X-ray lobes are often observed in galaxies with
significant accretion onto the central supermassive black hole
or with starburst activity in the vicinity of the galactic nucleus.
Similar features might therefore be expected in our own Galaxy.

Gamma-ray lobes, called the Fermi bubbles, were discovered
(Dobler et al. 2010; Su et al. 2010; Su & Finkbeiner 2012) in a
search for a gamma-ray counterpart to the Wilkinson Microwave
Anisotropy Probe (WMAP) haze (Finkbeiner 2004), which is
residual microwave emission around the Galactic center that
remains after subtracting synchrotron, free-free, thermal dust,
and cosmic microwave background (CMB) components from
the WMAP data. The Fermi bubbles are two large structures that
extend to 55◦ above and below the Galactic center. They were
reported to have an approximately E−2 gamma-ray spectrum
between 1 GeV and 100 GeV and well defined edges (Su
et al. 2010). Further analysis revealed an enhanced gamma-ray
emission in the southeast side of the bubbles with a cocoon-like
shape and a tentative identification of jet-like structures (Su &
Finkbeiner 2012).

62 Resident at Naval Research Laboratory, Washington, DC 20375, USA.
63 Royal Swedish Academy of Sciences Research Fellow, funded by a grant
from the K. A. Wallenberg Foundation.
64 NASA Postdoctoral Program Fellow, USA.
65 Funded by contract FIRB-2012-RBFR12PM1F from the Italian Ministry of
Education, University and Research (MIUR).
66 Resident at Naval Research Laboratory, Washington, DC 20375, USA.

Soon after the discovery of the Fermi bubbles, several models
of their formation as well as the acceleration of particles and
gamma-ray production were proposed. The formation of the
bubbles can be modeled by emission of a jet from the black
hole (Guo & Mathews 2012; Guo et al. 2012; Yang et al.
2012), a spherical outflow from the black hole (Zubovas et al.
2011), a wind from supernova (SN) explosions (Crocker &
Aharonian 2011), or a sequence of shocks from several accretion
events onto the black hole (Cheng et al. 2011). Observations of
anomalously high ionization in the Magellanic Stream can be
interpreted as due to active galactic nucleus (AGN) activity in
the Milky Way a few million years ago, which may have caused
the formation of the bubbles (Bland-Hawthorn et al. 2013). The
gamma-ray emission could be explained by hadronic production
through collisions of cosmic-ray (CR) protons with diffuse gas
in the bubbles (Crocker & Aharonian 2011) or through inverse
Compton (IC) scattering of high-energy electrons on radiation
fields (Su et al. 2010; Mertsch & Sarkar 2011).

Significant effort has gone into searching for counterparts of
the bubbles in X-rays, radio emission, and very high energy
gamma-rays. Radio and microwave emission is expected in
leptonic models of the Fermi bubbles due to synchrotron
radiation. The presence of the microwave haze was confirmed
with seven yr of the WMAP data (Pietrobon et al. 2012; Dobler
2012) and by the Planck collaboration (Ade et al. 2013). There is
a tentative association of the Fermi bubbles with some features
in the S-band Polarization All Sky Survey (S-PASS) radio data
(Carretti et al. 2013) and in WMAP polarization maps (Jones
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et al. 2012). In X-rays, one expects to see lower-density hot
gas inside the bubbles and higher-density colder gas outside.
There are features possibly associated with the Fermi bubbles
in Röntgensatellit (ROSAT) data (Su et al. 2010) and in Suzaku
data (Kataoka et al. 2013).

Although the Fermi bubbles appear to be aligned transverse
to the plane of the Galaxy and emanating from the region near
the GC, it is not certain that they are associated with the GC
region rather than from a region closer to the Earth. There are
nevertheless several indirect arguments that the Fermi bubbles
were created by a phenomenon in or around the Galactic center.
First, a symmetry argument: the bubbles appear to be directly
above and below the GC. Second, the hard energy spectrum
and the sharp edges favor a transient nature for the bubbles.
Locally the bubbles can be produced by an SN explosion, but in
this case one expects to find strong synchrotron emission, while
the bubbles, assuming that the association with the WMAP and
Planck haze is correct, have very weak synchrotron emission
at high latitudes and relatively strong synchrotron emission at
lower latitudes, which can be naturally explained by a decreasing
magnetic field at larger distances from the Galactic plane. Third,
a series of Suzaku X-ray observations across the edge of the
bubbles (Kataoka et al. 2013) reveal a spectral component
that has a drop in emission measure across the edge and a
characteristic absorption at lower X-ray energies that favors a
large distance to the X-ray emitting region.

The Fermi-LAT gamma-ray data are crucial for understanding
the physics of the bubbles and to guide future multiwavelength
observations. We use 50 months of Fermi-LAT data to study
the details of the energy spectrum and the morphology of the
bubbles. One of the main challenges is the spatial overlap
of the Fermi bubbles with the other components of Galactic
gamma-ray emission. We pay special attention to systematic
uncertainties associated with the modeling of the Galactic
diffuse gamma-ray emission and the definition of the spatial
extent of the bubbles.

In Section 2, we describe the gamma-ray data and our general
analysis strategy. In this paper, we use the method of template
fitting, where the emission components are modeled by their
distributions on the sky. In Section 3, we model the Galactic
foreground emission components by using maps generated with
the GALPROP67 (Moskalenko & Strong 1998; Strong et al.
2000, 2004, 2007; Ptuskin et al. 2006; Porter et al. 2008;
Vladimirov et al. 2011) CR propagation and interactions code
as templates. In Section 4 we present an alternative approach to
model the Galactic foreground emission that does not rely on
the GALPROP calculation of the CR distribution in the Milky
Way. In both Sections 3 and 4, we define the template of the
Fermi bubbles by applying a significance cut in the residual
maps obtained after subtraction of the other components of
gamma-ray emission from the data. The energy spectra of the
components are found by simultaneous fits of all the spatial
templates to the data. In Section 5, we fit different functions to
the energy spectrum of the bubbles and estimate the statistical
and systematic uncertainties in the fit parameters. In Section 6,
we address several questions on the morphology and spectral
variation across the projected area of the bubbles. In Section 7,
we fit the spectrum of the Fermi bubbles using hadronic and IC
models of gamma-ray production. We compare the synchrotron
radiation from the electrons in the IC scenario and from the
secondary electrons and positrons in the hadronic scenario with

67 http://galprop.stanford.edu

the WMAP and Planck haze data. We present our conclusions
in Section 8. Appendix A has technical details on the fitting
procedure, and Appendix B contains details on the IC and
hadronic models of the bubbles.

2. DATA SET AND ANALYSIS STRATEGY

In this analysis we use 50 months of Fermi LAT (Atwood et al.
2009) data recorded between 2008 August 4 and 2012 October 7
(Fermi Mission Elapsed Time 239557448 s - 371262668 s),
restricted to the Pass 7 reprocessed UltraClean class. We select
the standard good-time intervals, (e.g., when the satellite is not
passing through the South Atlantic Anomaly). The UltraClean
class provides the cleanest standard gamma-ray sample with
respect to the contamination from misclassified charged particle
interactions in the Fermi LAT (Ackermann et al. 2012). The
Pass 7 reprocessed data68 benefits from an updated calibration
that improves the energy measurement and event-direction
reconstruction accuracy at energies above 1 GeV. To minimize
the contamination from the Earth-limb emission, we select
events with a zenith angle <90◦. In addition, we require the
angle of the event with respect to the instrument axis to be
<72◦, because there is increased CR background leakage for
highly inclined events (Atwood et al. 2009). The exposure and
the effective point-spread function (PSF), which are functions
of the position in the sky and measured energy, as well
as the pointing history of the observations, were generated
using the standard Fermi LAT ScienceTools package version
9-28-00 available from the Fermi Science Support Center69

using the P7REP_ULTRACLEAN_V15 instrument response
functions. We mask the Galactic plane within |b| < 10◦,
using events with energies between 100 MeV and 500 GeV
separated in 25 logarithmic energy bins, and combine front-
and back-converting events. Spatial binning is performed using
HEALPix70 (Gorski et al. 2005) with a pixelization of order 6
(∼0.◦9 pixel size). The gamma-ray intensity integrated in three
broad energy bins is shown in Figure 1. The Fermi bubbles are
visible at energies >10 GeV without any detailed analysis. To
calculate the spectrum of the bubbles, the subtraction of the
foreground emission components is required.

The observed gamma-ray emission can be divided into re-
solved point sources (PS) and diffuse emission. Most of the
diffuse gamma-ray emission comes from interactions of CR
nuclei with interstellar gas. Another important component of
diffuse emission at high energies is due to IC emission from
leptonic CRs interacting with the low-energy interstellar radi-
ation field (ISRF). At energies below approximately 10 GeV,
bremsstrahlung emission from electrons and positrons interact-
ing with interstellar gas is also important. These three compo-
nents have a characteristic distribution on the sky that peaks near
the Galactic plane. An additional isotropic gamma-ray compo-
nent is made of several contributions, including residual CR
contamination, unresolved extragalactic PS, and extragalactic
diffuse background.

Another diffuse emission component is represented by Loop I,
a giant radio loop spanning 100◦ on the sky (Large et al. 1962),
that is also visible in the gamma-ray sky (Casandjian & Grenier
2009). The origin of Loop I is an open question. It could be of
local origin, produced either by a nearby SN explosion or by

68 http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Pass7REP_
usage.html
69 http://fermi.gsfc.nasa.gov/ssc/data/analysis/
70 http://sourceforge.net/projects/healpix/
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Figure 1. Gamma-ray intensity maps integrated in three large energy bins for the data set used in this paper. Throughout this paper we show sky maps in Galactic
coordinates centered on the Galactic center using the Mollweide projection. The pixel size is 0.◦9. The map on the right is smoothed with a σ = 1◦ Gaussian kernel.
The smoothing is for presentation only; we do not smooth the data maps when fitting the models.

(A color version of this figure is available in the online journal.)

the wind activity of the Scorpio-Centaurus OB association at
a distance of 170 pc (Wolleben 2007). Alternatively, it could
be interpreted as a large-scale outflow from the Galactic center
(Kataoka et al. 2013). In this paper, we consider Loop I only as
a foreground for the bubbles. A dedicated study of this feature
is beyond the scope of this paper and left for future work.

The hadronic, IC, bremsstrahlung, isotropic, and Loop I
components comprise the most important emission components
for an analysis of additional large-scale gamma-ray structures,
such as the Fermi bubbles. The general analysis strategy in the
evaluation of the gamma-ray emission from the Fermi bubbles
in this paper can be divided into the following steps.

1. Construct a foreground emission model that includes known
components. Note that the diffuse model provided by
the Fermi-LAT collaboration through the Fermi Science
Support Center cannot be used in this analysis because it
was developed for studies of point-like and small objects. In
particular, it already includes a simple model for the Fermi
bubbles, namely PS, hadronic emission from interactions
of CR nuclei and ions with interstellar gas, IC emission and
bremsstrahlung from CR electrons, isotropic emission, and
emission from Loop I (Section 3).

2. Use the residual maps obtained by fitting and subtracting
the known components from the data to find a template for
the Fermi bubbles (Section 3.2).

3. Find the spectrum of the Fermi bubbles using the template
derived in the previous step together with the templates for
the other components (Section 3.3).

3. CHARACTERIZATION OF THE FERMI BUBBLES
USING GALPROP TEMPLATES

In this section we use the GALPROP package v54.1 to gen-
erate templates for the Galactic IC emission component and for
the hadronic and the bremsstrahlung gamma-ray components.
The latter two components are correlated with the distribution
of interstellar gas. In the following, these components will be
referred to as gas-correlated. GALPROP calculates the prop-
agation and interaction of CRs in the Galaxy by numerically
solving the diffusion equation for a specified model of the CR
source distribution, a CR injection spectrum, and a model of the
transport in the Galaxy. Parameters of the model are constrained
by reproducing CR observables, including CR secondary abun-
dances and spectra obtained from direct measurements in the
solar system, and diffuse gamma-ray and synchrotron emission.
We assume diffusive reacceleration with a Kolmogorov spec-
trum of interstellar turbulence and no convection. The diffusion
coefficient is assumed to be isotropic. In the current version of

GALPROP, all calculations assume azimuthal symmetry of the
CR density with respect to the GC. Surveys of the 21 cm line
of H i and the 2.6 mm line of CO (a tracer of H2) are used
to evaluate the distribution of the target gas. The model of the
ionized gas is based on observations of the pulsar dispersion
measures and Hα emission (Gaensler et al. 2008). Dust maps
are used to correct for the dark gas distribution that refers to
the neutral interstellar gas unaccounted for by the H i and CO
surveys (Grenier et al. 2005; Ackermann et al. 2012).

From the GALPROP calculation, we obtain gamma-ray emis-
sivities corresponding to bremsstrahlung; hadronic interactions
with neutral (H i), ionized (H ii), and molecular (H2) hydrogen
in different Galactocentric rings; and IC emission. Because the
bremsstrahlung is correlated with the distribution of gas, it is
combined with the template of gamma-rays from hadronic in-
teractions. In the following, we also combine H i and H ii rings,
while keeping H2 rings independent. The gamma-ray intensity
is proportional to a product of the gas and CR densities. The in-
tegral CR density is not well constrained a priori. To reduce the
uncertainty related to the CR density, we use the gas-correlated
templates in Galactocentric rings. The local ring template (r =
8–10 kpc from the Galactic center) for H i accounts for the vast
majority of the gamma-rays at latitudes |b| > 10◦, and there-
fore its normalization is kept free in the fit while we fix the
other rings. The molecular hydrogen gas is mainly concentrated
in isolated clouds at low latitudes. Because this contribution is
small at high latitudes compared to the atomic hydrogen contri-
bution, it is fixed in the fit. An IC template is created taking into
account the anisotropy of the ISRF due to an anisotropic flux
of photons from the Galactic plane.71 Examples of hadronic
and IC templates are shown in Figure 2. A detailed study of
different GALPROP models and comparisons with Fermi LAT
data is presented in Ackermann et al. (2012). For this paper, we
consider a subset of models used in Ackermann et al. (2012)
with updated H i gas maps. Compared to the gas maps used in
Ackermann et al. (2012), the maps used here exclude the large
and small Magellanic clouds, M31 and M33, as well as the Mag-
ellanic Stream and other high velocity clouds. The choice of a
specific GALPROP model is a possible source of systematic un-
certainties in our results. We address the question of systematic
uncertainties in Section 3.3.

The following parameters describe our baseline GALPROP
model:72 the CR population is traced by the measured pulsar

71 We correct for the anisotropy of the cross section by multiplying the
generated IC maps with a map of the ratio between the predicted IC emission
from a full anisotropic calculation, and the prediction assuming an isotropic
cross section(Ackermann et al. 2014).
72 GALDEF file: galdef_54_Lorimer_z10kpc_R20kpc_Ts100000K_
EBV5mag
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Figure 2. Template intensities in the energy bin E = 6.4–9.1 GeV. Top left: gas-correlated template (sum of hadronic and bremsstrahlung for neutral and ionized
atomic and molecular hydrogen) obtained from GALPROP. Top right: IC map obtained from GALPROP. Bottom: Loop I template based on the geometrical model
(Wolleben 2007) (left) and on the Haslam map (right). The Loop I template normalizations are obtained by fitting to the Fermi LAT data.

(A color version of this figure is available in the online journal.)

distribution (Lorimer et al. 2006), the CR confinement volume
has a height of 10 kpc and a radius of 20 kpc, and H i column
densities are derived from the 21 cm line intensities in the
approximation of an optically thin medium, which is formally
modeled by setting the spin temperature to 100,000 K.

The emission of Loop I is not modeled by GALPROP. It is
a very important contribution because it overlaps the bubbles,
especially in the Northern Galactic hemisphere (see Figure 1).
Here we use two different approaches to model the emission
of Loop I. In the first approach (used for the baseline model),
we take a large elliptical region from the Haslam et al. (1982)
map at 408 MHz around the Galactic center as a template of
Loop I (Figure 2, bottom right). This approach is based on the
assumption that the features in the Haslam map are produced by
the synchrotron radiation from the same population of electrons
that emit IC gamma-rays. As an alternative way to model Loop I,
we use a geometric template based on a polarization survey at
1.4 GHz (Wolleben 2007). The geometric Loop I model assumes
synchrotron emission from two shells. Each shell is described
by five parameters: the center coordinates ℓ, b; the distance
to the center d; and the inner (rin) and outer (rout) radius of
the shell. The parameters are set to: ℓ1 = 341◦, b1 = 3◦,
d1 = 78 pc, rin,1 = 62 pc, rout,1 = 81 pc, ℓ2 = 332◦, b2 = 37◦,
d2 = 95 pc, rin,2 = 58 pc, rout,2 = 82 pc (Figure 2, bottom
left). Due to line of sight integration, the two uniform intensity
spherical shells appear non-uniform with diffuse edges. The
geometric Loop I template is included in the derivation of the
systematic uncertainties (see Section 3.3). An isotropic template
accounts for the extragalactic diffuse emission and the residual
CR contamination.

A template for the bubbles is defined from the residual maps
in Section 3.2. In the definition of the templates of the bubbles,
PS from the 2FGL catalog (Nolan et al. 2012) with a test statistic,
>25 are masked with a radius of 1.◦48, which corresponds to the
95% containment region of the PSF at 1 GeV. The test statistic
is defined as TS = 2 ∆ logL, where L is the likelihood. TS = 25

corresponds to a significance of just over 4σ . The 12 extended
sources in the 2FGL catalog are masked conservatively within
a circle of radius equal to the sum of the major semiaxis of
the source template and the 95% PSF containment radius. The
source mask is displayed in Figure 3 on the right. Since the
definition of the bubbles relies only on an analysis at high
energies (>6 GeV) where the PSF core is narrow (<0.◦2), the
masked PS cover about 18% of the area of the bubbles at
|b| > 10◦. The spectrum of the bubbles is calculated over a
broad energy range extending from 100 MeV to 500 GeV. The
broad PSF at low energies does not allow sufficient masking of
the sources without masking much of the area of the bubbles,
and therefore requires a more accurate modeling. Since the
2FGL catalog was obtained with only two years of data and
this analysis uses more than four years, we fit 472 bright PS
in the 2FGL catalog with TS > 200 using the full 50 month
data set in order to account for flares happening outside the
time window of the 2FGL analysis. For each source, we fit the
normalization in each energy bin. The remaining less significant
sources are merged into a single template with fluxes from the
2FGL catalog. The overall normalization of this template is
free in the fit. Individual sources fainter than the 2FGL limit
are effectively part of the isotropic background. Their effect
on the overall fit would be in the isotropic component and they
would not impact the results for the bubbles.

The templates listed above are fit to the data (see Table 1 for a
summary of the templates used in the derivation of the spectra).
The fit is performed in each energy bin individually (i.e., if a
template is kept free in the fit, its normalization in each energy
bin is a free parameter in the fit).

3.1. Fitting Algorithm

In order to extract the Fermi bubbles morphology and spec-
trum from the Fermi LAT data, we use the all-sky fitting tool
GaDGET (Ackermann et al. 2008), which simultaneously fits
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Signal/Background region
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Figure 3. Left: elliptical region that covers the bubbles (orange) and background region (black). The Galactic plane is masked at |b| < 10◦. Right: mask for point
sources (TS > 25) and extended sources from the 2FGL catalog (Nolan et al. 2012).

(A color version of this figure is available in the online journal.)

Table 1

Template Maps Used in All-sky Fit for Derivation of the Spectra

Template Description

Neutral and ionized atomic hydrogen GALPROP: bremsstrahlung and hadronic production

(sum of H i and H ii) local ring: 8–10 kpc (free)

Non-local component: 0–8 kpc and 10–50 kpc (fixed)

Molecular hydrogen (H2) GALPROP: bremsstrahlung and hadronic production

all Galactocentric rings combined (fixed)

Inverse Compton radiation GALPROP (free)

Bright 2FGL sources TS > 200, 472 sources: each fitted individually

Weak 2FGL sources One template obtained by adding 2FGL fluxes (free)

Isotropic Extragalactic diffuse and

residual CR contamination (free)

Loop I Haslam map or geometric template (free)

Bubble Template obtained from residuals (Section 3.2) (free)

the different components of the diffuse Galactic emission to the
Fermi LAT data in a maximum likelihood procedure based on
Poisson statistics. MINUIT (James & Roos 1975) was used as
the optimizer with a tolerance of 1.0 × 10−4.

The model is a linear combination of templates

μij (f ) =
∑

m

fimtmij , (1)

where tmij is the template of the component m in energy bin i

and in pixel j. Coefficients fim are the fitting parameters. The
model maps, which are in flux units, are multiplied with the
exposure and convolved with the instrument PSF to obtain
the corresponding count maps for comparison with the data
count maps.

3.2. Defining a Template for the Fermi Bubbles

In order to define a template for the Fermi bubbles, we perform
an all-sky fit with the templates listed above, except a template
of the bubbles. We define the template of the bubbles based on
the residuals at energies above 6.4 GeV, where the flux of the
bubbles becomes readily apparent.73 Since no template accounts
for the bubbles flux, the coefficients of the fit will partially
compensate for it, thus introducing a bias. To avoid this bias we
mask an elliptical region that approximately covers the Fermi
bubbles (Figure 3 on the left). PS are also masked (see above
for details). The PS mask is shown in Figure 3 on the right. In
the resulting residual map, the masked pixels are filled with the
average of the neighboring unmasked pixels.

73 Between 5 and 10 GeV the bubbles become clearly visible in the residuals
and the exact choice of the threshold does not affect the results.

The significance map of the residuals (defined as

(data−model)/
√

model) for the baseline model defined in
Section 3 integrated over energies 6.4 GeV < E < 290 GeV,
is shown in Figure 4 (left). The template of the bubbles is de-
termined by applying a threshold in the smoothed significance
map. To find the threshold we create a histogram (Figure 4,
right) with the smoothed significance in each pixel in the region
of interest and outside the region of interest (orange and black,
respectively, in Figure 3, left). We consider the outside region
to be the background region and fit a Gaussian to the histogram.
The width of the Gaussian is denoted as σBG. The threshold
in the definition of the template of the bubbles is set to 3σBG.
The results for a different threshold of 4σBG are included in the
systematic uncertainties (see Section 3.3). Figure 5 shows the
resulting templates of the bubbles. We distinguish between flat
and structured templates. In the flat template the value is one if
the significance of the residual is more than the threshold, and
zero otherwise, whereas the structured template is equal to the
residual flux if the significance of the residual is greater than
the threshold, and zero otherwise. In the baseline model, the
bubbles are modeled with a structured template created with a
significance threshold of 3σBG.

In the next step the template of the bubbles is included in
the all-sky fit. This time, since no PS mask is applied, the PS
are included in the fit and not masked as in the derivation of
the Fermi bubbles template. The integrated residual map after
including the structured template of the bubbles in the fit and
fitting the PS is shown in Figure 6 (left). The spectra for the
different components are presented in Figure 6 (right).

In the rest of the paper, the model of the foreground emission
components and the Fermi bubbles presented in this section will
be referred to as the baseline model.
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Figure 4. Left: significance of integrated residual map at energies 6.4 GeV < E < 290 GeV, defined as (data − model)/
√

model, smoothed with a 2◦ Gaussian
kernel. The large-scale residuals outside the bubbles are due to imperfect modeling of Loop I and the local gas. Right: histogram of values in the smoothed residual
significance map. Dashed (red): background region (Figure 3). Dash-dotted (green): the region of interest. Solid (blue): all sky. Dotted (cyan): Gaussian fit to the
background distribution, the width is σBG = 1.5. The threshold in the definition of the bubbles template is set to 3σBG and is shown as a vertical dashed black line.
All pixels inside the elliptical masking region and above |b| = 10◦ with the level of residual flux larger than the threshold are included in the template of the bubbles
(Figure 5).

(A color version of this figure is available in the online journal.)

Figure 5. Templates of the bubbles defined from the residual significance map using a threshold of 3σBG, where σBG is defined in Figure 4. Left: flat zero or one
template (the value is one if the significance of the residual is more than 3σBG, and zero otherwise). Right: structured template proportional to the residual flux.

(A color version of this figure is available in the online journal.)

Figure 6. Left: residual map after including the structured template of the bubbles in the fit integrated over energies 6.4 GeV < E < 290 GeV smoothed with a 2◦

Gaussian kernel. Remaining residuals to the northeast of the bubbles indicate an imperfect modeling of Loop I. Right: spectra of the bubbles and the other components
obtained from the fit. The arrows correspond to 2σ upper limits. The spectrum of the bubbles is computed as the mean over the points inside the bubbles template. The
lines show the spectra predicted by GALPROP. The drop in the extracted IC spectrum is due to a correlation between the IC template and Haslam map. The Haslam
map contains synchrotron radiation emitted by the same population of electrons that is emitting the IC emission.

(A color version of this figure is available in the online journal.)
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Figure 7. Spectra of the bubbles for different model configurations. The cases
differ by the significance threshold used to define the template of the bubbles
(3σBG or 4σBG), whether the CR source distribution is traced by pulsar or SNR
distributions, and the use of the geometric Loop I template or the Haslam map.

(A color version of this figure is available in the online journal.)

3.3. Systematic Uncertainties

To estimate the systematic uncertainties in the spectrum of
the Fermi bubbles due to uncertainty in the modeling of the
diffuse foregrounds and the bubbles, we study the variation of
our results when using different GALPROP configurations and
definitions of the templates of Loop I and the bubbles.

We tested two different tracers of the CR source distributions:
the measured distribution of supernova remnants (SNR; Case
& Bhattacharya 1998) and the measured pulsar distribution
(Lorimer et al. 2006). In addition, we varied the size of the
CR confinement volume. In GALPROP, the diffusion zone is
a cylinder with radius Rh and height zh above the Galactic
plane. Rh = 20 kpc, 30 kpc, zh = 4, and 10 kpc were tested.
Furthermore, two different spin temperature values (TS = 150 K
and 105 K) are used to correct for the H i opacity in order to
derive the H i column density. TS = 105 K corresponds to the
optically thin approximation. Loop I is either modeled by the
Haslam map or by the geometric template. We also use a flat
template of the bubbles instead of the structured template and
vary the significance threshold used to define the bubbles (3σBG

and 4σBG). Figure 7 shows some examples of the bubbles spectra
for different parameters of the model. Each case represents
the change of one parameter relative to the baseline model
configuration.

The all-sky fit and the extraction of the bubble spectrum was
repeated with the different GALPROP configurations, Loop I
models, and templates for the bubbles. The envelope of all
tested models defines the systematic error band. The final result
is shown in Section 5, where it is also compared to the spectrum
obtained from the local template analysis (Section 4).

4. CHARACTERIZATION OF THE BUBBLES USING
LOCAL TEMPLATES ANALYSIS

In this section we present an alternative approach for mod-
eling the Galactic foreground emission that does not rely on
the GALPROP modeling of CR propagation and interactions

in the Milky Way. For example, one of the assumptions in the
analysis presented in Section 3 is that the CR spectrum is in-
dependent of the azimuthal direction from the Galactic center.
In general, this assumption may be violated (e.g., in the spi-
ral arms). In this section, we relax this assumption by fitting
templates in small regions on the sky (which are called patches
in the following). Instead of using the gamma-ray emission
maps provided by GALPROP, we use gas maps to trace the
intensities of gamma-ray emission—H i and CO surveys un-
corrected for absorption and dark gas (for a description see
Ackermann et al. 2012), together with the Schlegel, Finkbeiner,
and Davis (SFD) dust map (Schlegel et al. 1998)—to account
for gas not traced by the H i or CO lines. The IC component is
modeled by a bivariate Gaussian; the parameters of the Gaus-
sians are found from fitting the model to the data (more details in
Section 4.2).

Models for the gamma-ray emission components are derived
one at a time. We start with the component with the brightest
integrated flux, namely the gas-correlated emission. After that
we subtract the gas-correlated emission from the data and de-
fine a template for the IC emission together with the isotropic
component. Then we subtract the IC and the isotropic compo-
nents, and determine the templates for Loop I and bubbles from
the residuals. At each step the components that have not yet
been determined are represented by proxy templates in order to
avoid a bias in the fluxes. In the end, all templates are fit to the
data simultaneously to determine the spectrum of the emission
components.

In this analysis, we subtract the 2FGL PS from the data using
the 2FGL fluxes. In addition we mask the cores of the bright PS
with fluxes above 1 GeV greater than 2×10−9 photons cm−2 s−1

(556 sources) within 1◦, which corresponds to the 68% radius
of the PSF at approximately 700 MeV. We test the influence of
PS on the determination of the spectrum of the Fermi bubbles
by refitting the PS with TS > 200 to take into account flaring
outside the 2FGL time window in Section 4.4.

4.1. Gas-correlated Components via Local template Fitting

Gamma-ray intensities from a given direction that arise from
hadronic interactions and bremsstrahlung are proportional to
the column density of gas. The normalization coefficient is
the emissivity, which can be given in terms of the gamma-
ray emission rate per atom. In this section, we assume that in
a limited region of the high-latitude sky (hereafter a patch),
the CR density is approximately constant. In this case, we can
determine the emissivity directly as the proportional constant
between gas column densities and gamma-ray intensities from
a fit to the data in each patch of the sky.

The other emission components (i.e., IC, isotropic, Loop I,
and the Fermi-bubbles) have to be modeled simultaneously with
the gas-correlated component. Otherwise the gas-correlated
contribution may be overestimated. We assume that the other
components either are sufficiently smooth, or have features
uncorrelated with the gas distribution, so they can be modeled
by a combination of some smooth functions in each patch. We
choose two-dimensional (2D) polynomials defined locally on
each patch as a linear basis for the smooth functions (determined
below).

In order to avoid sharp edges for the patches, which may lead
to artificial features in the residuals, we use a hyperbolic tangent
function to obtain patches with smooth boundaries. The all-sky
data and model maps are restricted to the patch by multiplication
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Figure 8. Example of the gas map (left) and a quadratic polynomial (right) in a local patch on the sky. The center of the patch is at b = −30◦, ℓ = 22.◦5, the radius
is 50◦, and the width of the boundary is 2/λ = 10◦. The left map is proportional to the H i column density integrated for R > 8 kpc, where R is the Galactocentric
radius. The data are fitted with a linear combination of gas maps and polynomials of different degrees.

(A color version of this figure is available in the online journal.)

with the following weight function:

w(θj ) =
1 + tanh λ(θ0 − θj )

2
, (2)

where θj is the angle from the center of the patch to the center
of pixel j, the radius of the patch is θ0, and the width of the
boundary is ∆θ = 2/λ. This function smoothly interpolates
between w(θ ) ≈ 1 for θ ≪ θ0 and w(θ ) ≈ 0 for θ ≫ θ0,
where the width of the edge is assumed to be much smaller than
the patch radius (i.e., λθ0 ≫ 1). In Figure 8 we show an example
of a patch with a gas template and a local polynomial template
multiplied with the weight function.

In the analysis, we separate the sky into 24 patches. Each
patch has a 50◦ radius and a 10◦ edge width. There are 16
patches centered at b = ±30◦ and at ℓ = 22.◦5 + 45◦n, where
n = 0, 1, 2, . . . , 7. There are eight patches centered at b = ±60◦

and at ℓ = 45◦ + 90◦n, where n = 0, 1, 2, 3. The radius of the
patches is chosen to be rather large so that the template fitting
procedure converges well. The centers of the patches are chosen
to cover the sky approximately uniformly with a significant
overlap among the patches.

The data in each patch are modeled by a combination of
gas templates and a combination of local polynomials up to a
maximal degree kmax that is determined in each patch from the
convergence of the fit (more details below). The model in the
patch α is

μα
ij =

∑

m

f α
imT m

j +
∑

n

kα
inPn(xj , yj ), (3)

where i labels the energy bins, j labels the pixels in the patch,
n labels the polynomials, and m labels the gas templates,
T m

j . In this analysis, we use four gas templates: H i summed
over Galactocentric rings with R < 8 kpc, H i summed over
rings with R > 8 kpc, H2 summed over all rings, and the
SFD dust template (Schlegel et al. 1998). We neglect the
contribution from ionized hydrogen (H ii) in this analysis.
(If the corresponding contribution is smooth, it becomes part
of the local polynomial term). The scaling coefficient f α

m is
proportional to the emissivity, corresponding to template m as
fitted in patch α. Some of the patches at high latitudes may
have little contribution from some gas templates, such as H i

in the inner Galaxy rings or H2. The template is included
in the fit if the scalar product between the template and the
weight function that determines the patch is sufficiently large:
∑Npix

j T m
j wα

j > 0.01|T m||wα| where the norm is defined as the
square root of the sum of the map values squared. The total
number of gas templates in each patch is �4.

The second term in the model describes components that are
not correlated with the gas distribution (isotropic, IC, Loop I,
bubbles). These components are modeled by a combination
of polynomials in local coordinates on the patch. We define
the local polynomials on the sphere by taking a polynomial
function on the plane tangent to the center of the patch and
projecting the values of the function from the plane to the
sphere using a stereographic projection. In terms of local
coordinates x and y on the tangent plane, the polynomials are
Pn = 1, x, y, x2, xy, y2, . . .. If k is the maximal degree, then the
total number of polynomials is nmax = 1 + 2 + 3 + · · · + (k + 1) =
((k + 1)(k + 2)/2). The maximal degree of the polynomials kmax

depends on the position of the patch and on the energy range.
We specify kmax at the end of this section in the discussion of
the stability of the fit.

In order to speed up the calculation, we use the quadratic
approximation to the log likelihood, which for all-sky fits takes
the form

− 2 logL ≈
E bins
∑

i

pixels
∑

j

(dij − μij )2

σ 2
ij

, (4)

where dij and μij are the number of gamma-rays in the data
and the model prediction for energy bin i in pixel j. We use

the smoothed counts map d̃ij as an estimator for the standard

deviation σ 2
ij , where the smoothing radius Ri depends on energy

bin i. For each energy bin, the radius is chosen such that there
are on average at least 100 photons inside the circle of radius
Ri. The minimal value of the radius is 2◦, which corresponds to
an average over about 15 pixels. As we discuss in Appendix A,
the choices σ 2

ij = dij or σ 2
ij = μij result in biased χ2 fitting,

whereas σ 2
ij = d̃ij reduces the bias.

The data fitting in a local patch α is performed with the
following weighted χ2

χ2 =
E bins
∑

i

pixels
∑

j

wα
j

2
(dij − μα

ij )2

σ 2
ij

. (5)

Notice that the weighted χ2 is equivalent to a multiplication
of the data dij and the model μα

ij , with the weight wα
j (without

changing σij ). The best-fit parameters and, hence, the model
μα

ij depend on the patch. In this part of the analysis we mask

|b| < 5◦, which is different from the Galactic plane mask
|b| < 10◦ adopted in the rest of the paper. This is because the
regions closer to the Galactic plane have more features in the gas
maps, especially for the inner Galaxy H i template and the H2
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Figure 9. Example of fitting a combination of gas-correlated templates and a local polynomial model to the data. Top left: gamma-ray intensity in the 6.4–9.1 GeV
energy bin. Bottom left: gas-correlated gamma-ray emission determined from the fit to the gamma-ray data. Bottom right: emission components not correlated with
the gas templates modeled by a combination of local polynomials. Top right: the residual map. The details of the fitting procedure are described in Section 4.1.

(A color version of this figure is available in the online journal.)

template. Including these regions improves the convergence of
the fits.

We use different fitting strategies at low and high energies.
At low energies (0.1–10 GeV), the statistics are high and the
normalization of the templates can be determined in every
energy bin independently. At high energies the statistics are
low. In order to avoid high statistical fluctuations among the
energy bins, we assume that a single power law is a good
approximation for the gas-correlated emission and find the best-
fit power-law index for the energy bins between 3 and 500 GeV.
In the intermediate region (i.e., between 3 and 10 GeV) we take
the mean of the spectra. The best-fit combinations of polynomial
templates are determined independently in each patch and in
each energy bin at low and at high energies.

The resulting contribution of the gas-correlated components
depends on the degree of the polynomials used to model the other
components. If the degree of the polynomial is too small, then the
contribution of gas-correlated components will be overestimated
due to the absorption of the flux from the other components.
For imperfect gas templates, a large degree of the polynomials
leads to more of the gas-correlated gamma-ray emission being
attributed to the polynomial templates. For a sufficiently high
degree, the polynomial templates start to respond to the noise,
thus, over-fitting the data. Different portions of the sky require a
different maximal degree of the polynomials. Near the Galactic
plane and close to local features, such as the Fermi bubbles,
the degree should be larger than at high latitudes where the
isotropic and the local IC emission can be described by smoother
templates.

In the following we describe the determination of the maxi-
mal degree of the polynomials for a particular patch. The con-
vergence of χ2 is not a good indicator: the χ2 value decreases
with larger degree polynomials as more and more features are
included in the model, but it does not reach the level of statis-
tical noise up until a very high degree, where we are already

likely to include some of the gas-correlated emission into the
local polynomials. One of the characteristics of a good model
of gas-correlated emission is the stability of the corresponding
spectrum as the degree increases—we stop increasing the degree
of the polynomials k when the differences between the photon
spectra of the gas-correlated component become smaller than
a certain threshold. In particular, we calculate the difference of
the spectra between k and k′ = k−1, k−2, that is, we compare
the last spectrum with the previous two spectra

t (k′) =
1

Nbins

E bins
∑

i

(

F
(k)
i − F

(k′)
i

)2

σ
(k)
i

2
, (6)

where F
(k)
i is the gas-correlated intensity for |b| > 5◦ in an

energy bin i derived with the maximal degree of polynomials k,

and σ
(k)
i is the statistical uncertainty of F

(k)
i . At energies below

10 GeV, we use the threshold t (k′) < 20. This is much larger
than the expected random fluctuations, but at low energies the
differences are dominated by the systematic uncertainties and
this level gives a good fit in Monte Carlo simulations. At energies

above 3 GeV, the stability condition is t (k′) < 1.5, which is
comparable to the statistical noise. In each case, if the stability
condition is not satisfied we stop at a maximal degree of 12,
which corresponds to an angular scale of about 9◦.

In each energy bin, all-sky models are obtained as a weighted
average of the models in the patches

μij =
∑

α wα
j μα

ij
∑

α wα
j

. (7)

Examples of gamma-ray counts, template maps, and residuals
are presented in Figure 9. Sharp features uncorrelated with the
gas templates remain in the residual map in Figure 9 (e.g.,
the left edge of the southern bubble). In the following, we
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Figure 10. Left: data minus gas-correlated emission residuals in the energy bin E = 6.4–9.1 GeV (smoothed with a 2◦ Gaussian kernel). Right: a model of the
residual with two Gaussian templates and an isotropic template. The Gaussian along the Galactic plane models the IC emission. The Gaussian that is more extended
perpendicular to the plane is a proxy template for Loop I and the bubbles.

(A color version of this figure is available in the online journal.)

use the weighted sum of the gas-correlated components as an
all-sky template to determine the templates and the spectrum of
the other components.

4.2. IC and Isotropic Components

The next step is to model the IC and isotropic components.
First, we subtract the PS and the gas-correlated component
found in the previous subsection from the data. Examples of
the polynomial models and the residuals after subtraction of the
gas-correlated components are shown in Figures 9 and 10. Note
the presence of two distinct components: a component along the
Galactic disk (mostly IC) and a halo component (mostly Loop I
and the Fermi bubbles).

We model both the disk and the halo components by bivariate
Gaussians with parameters σ disk

b , σ disk
ℓ , σ halo

b , and σ halo
ℓ , respec-

tively. The centers of the Gaussians are fixed at the GC. We fit
the two Gaussians together with the isotropic template to the
residuals obtained by subtracting the gas-correlated emission
components and the PS from the data. The Gaussian for the
halo is a proxy template for the bubbles and Loop I, and is
necessary to avoid a bias in the determination of the disk tem-
plate. The parameters of the Gaussians are fitted independently
in each energy bin below 30 GeV. At higher energies, the pa-
rameters of the Gaussians are determined from a fit to the flux
integrated above 30 GeV. The Gaussian model in the energy bin
(6.4–9.1) GeV is shown in Figure 10. In this section and the
following, we use the global χ2 fitting procedure described in
Equation (4) without the additional weight factors introduced
for the local template analysis in Equation (5) (i.e., we perform
an all-sky fit instead of the local fit in patches).

4.3. Bubbles and Loop I

We define the template of the bubbles from the residual flux
after subtracting the gas-correlated, isotropic, and disk compo-
nents from the data. We do not subtract the halo component,
which only served as a proxy for bubbles and Loop I in the
previous step. The template for the bubbles is derived from the
residual flux integrated above 10 GeV (Figure 11). Compared to
the derivation of the template of the bubbles in Section 3.2, here
we use the energy range above 10 GeV to test the uncertainty
related to the choice of the lower energy bound (compared to
6.4 GeV in Section 3.2). The histogram of pixel counts inside
and outside the bubbles region and the template of the bubbles
are shown in Figure 12. For the energy range above 10 GeV the
pixel counts in the background region intersect the distribution

Figure 11. Residuals after subtracting the gas-correlated, disk, and isotropic
components. The map shows the residuals integrated above 10 GeV in signifi-
cance units (data minus model over the standard deviation of the data). Dashed
ellipse: the region that includes the bubbles.

(A color version of this figure is available in the online journal.)

of pixel counts in the ellipse region around 2.5σBG, which we
use in the definition of the template of the bubbles.

In order to separate Loop I from the Fermi bubbles, we
determine these templates from a correlation with the spectra of
the two components between 0.7 GeV and 10 GeV, where the
contribution from both Loop I and the bubbles is significant.
The energy range is chosen to be relatively small so that the
spectra are well approximated by a simple power-law function.

The derivation of templates correlated with the known spectra
is similar to the derivation of the spectra for known templates. If
we represent the residuals after subtracting the gas-correlated,
IC, and isotropic components in k energy bins and in N pixels as a
k×N matrix D, then, assuming that we can neglect the statistical
uncertainty, the problem of separating this residual into m
components is equivalent to the following matrix separation
problem (e.g., Malyshev 2012)

D = F · T , (8)

where F is a k×m matrix of the spectra and T is an m×N matrix
of templates. If the spectra F are known, then the corresponding
templates are determined as

T = (F T · F )−1 · (F T · D). (9)

This solution also works in the case of uniform statistical
uncertainties. In the case of a non-uniform uncertainties, one
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Figure 12. Left: histogram of pixel counts. Solid blue line: total counts for the residual map in Figure 11. Green dash-dotted line: counts inside the elliptical region
including the bubbles. Red dashed line: counts outside the elliptical region. Cyan dotted line: Gaussian fit to the background counts in the outside region. The width
of the distribution is σBG = 1.6, which is larger than the Gaussian noise due to unresolved residual features on the map, such as faint point sources and structures in
the Galactic diffuse emission not included in the model. Black dashed vertical line: the threshold level of 2.5σBG used to determine the template of the bubbles. Right:
the template of the bubbles determined by applying the threshold to the residual significance map.

(A color version of this figure is available in the online journal.)

Figure 13. Soft and hard spectral components of the residuals between 700 MeV and 10 GeV. Left: soft component ∼E−2.4. Right: hard component ∼E−1.9. The
maps are in significance units. Dashed ellipses: regions that include Loop I and the bubbles.

(A color version of this figure is available in the online journal.)

has to minimize the χ2

χ2 =
E bins
∑

i

pixels
∑

j

(Dij −
∑

m FimTmj )2

σij
2

. (10)

The only effect of this more general derivation is an inclusion
of a factor (1/σij

2) in all sums over energy bins and over pixels
in Equation (9).

We assume that the residuals between 0.7 GeV and 10 GeV
are dominated by two components: hard and soft components
corresponding to the bubbles and Loop I, respectively. We
estimate the spectrum of the soft component from residuals
outside the region of the Fermi bubbles: 45◦ < b < 60◦ and
285◦ < ℓ < 330◦. A power-law fit in this region has a photon
index of 2.4. The spectrum of the hard component is determined
from the residuals near the southern edge of the Fermi bubbles:
−55◦ < b < −40◦ and −15◦ < ℓ < 15◦. A power-law fit
in this region has a photon index 1.9. Thus, to determine the
Loop I template we use Fsoft ∝ E−2.4, and for the template
of the bubbles we use Fhard ∝ E−1.9. The corresponding hard
and soft components are shown in Figure 13. To check the
systematic uncertainty we vary the indices in the definitions of
the templates in Section 4.4.

The templates in Equation (9) can be written as a linear
combination of the residual maps

Tmj =
∑

i

kmiDij , (11)

where i labels the energy bins, j labels the pixels, and m labels
the emission components (Loop I and the bubbles). kmi are linear
decomposition coefficients. The cuts are relative to the standard
deviation outside the regions containing the bubbles and Loop I.
The standard deviation of the linear combinations of maps in
Equation (11) is the root mean square of the standard deviations
of the terms in the linear combination

σmj (T ) =
√

∑

i

k2
miσ

2
ij , (12)

where σij is the statistical uncertainty of the data in energy bin
i in pixel j (derived from the square root of the observed photon
counts). The templates of the bubbles and Loop I are derived
by applying threshold cuts of 2σBG and σBG to the spectral
components maps, which are chosen from the comparison of
the background pixel counts to the pixel counts in the Loop I
and the bubbles regions (Figure 14). We note that both methods
considered in this work give comparable results for the template
of the Fermi bubbles (Figures 5, 12, and 14).
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Figure 14. Histograms of the pixel counts and the templates for the Loop I and the bubbles derived from the maps in Figure 13 analogous to the derivation of the
histogram and the template for the bubbles from the integrated residual flux in Figures 11 and 12. The threshold for the Loop I template is 1σBG. The threshold for the
bubbles is 2σBG.

(A color version of this figure is available in the online journal.)

The spectra obtained by fitting the five templates (gas-
correlated, isotropic, IC, bubbles, and Loop I) to the gamma-ray
data for |b| > 10◦ are shown in Figure 15. The following is a
summary of the characteristics of this model, as it will be used as
a reference model in the study of the systematic uncertainties in
the next subsection. We use the 2FGL spectra for PS; the local
patches have a radius of 50◦; gas-correlated components are
modeled by a combination of H i gas templates in two rings,
the H2 template, and the SFD dust template; the spectrum
of the gas-correlated components at high energies is a power
law; the template of the bubbles is obtained from the residual
above 10 GeV; and the Loop I template is obtained with the
spectral components analysis (SCA) method. We use structured
flux templates for the bubbles and Loop I. The significance of
the residuals for this fit is presented in Figure 16.

4.4. Systematic Uncertainties

In order to estimate the systematic uncertainties in the local
templates analysis, we take the model presented in the previous
subsection and vary some aspects of the fitting procedure. At
first, we vary the parameters relevant to the derivation of the
Galactic emission components (Figure 17 on the left).

1. We try different patch radii in the determination of the gas-
correlated components: 45◦ and 60◦.

2. To test the dependence on the assumption of a power-law
spectrum for the gas-correlated emission at high energy,
we use a log parabola function to model the gas-correlated
spectra at high energies.74

74 This test is motivated by possible deviations from a simple power law in the
gamma-ray spectrum due to features in the hadronic CR spectra (Adriani et al.
2011b). The log parabola function is the simplest generalization of a power
law.

Figure 15. Spectra of the gas-correlated, IC, isotropic, Loop I, and bubbles
components obtained by fitting the corresponding templates to the data. The
template of the bubbles is derived from the residuals integrated above 10 GeV
(Figure 12). The Loop I template is derived in the SCA, see Figure 14.

(A color version of this figure is available in the online journal.)

3. We also try to use three H i rings (R < 8 kpc, 8 kpc <
R < 10 kpc, and 10 kpc < R, see Table 1) as opposed to two
rings (R < 8 kpc and 8 kpc < R).

4. To test the dependence on the PS model, we refit bright
PS with TS > 200 (472 sources). We keep the positions
given in the 2FGL catalog and refit the spectra of the PS
assuming the same spectral function (e.g., power law, power
law with a cutoff, or log parabola). The fit is performed
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Figure 16. Residual significance maps for the analysis in Section 4.3. The units are data minus model over the standard deviation of the data. The maps are smoothed
with a 2◦ Gaussian kernel for display.

(A color version of this figure is available in the online journal.)

Figure 17. Determination of the spectrum of the bubbles for different choices of analysis parameters described in Section 4.4. Left: determination of the bubbles
spectrum for different choices of point source subtraction method and the local template fitting strategy. Right: systematic uncertainty related to the definition of
templates of Loop I and the Fermi bubbles. The template of the bubbles is determined either from the residuals integrated above 10 GeV, or from the SCA, where the
bubbles and Loop I spectra are described by power-law functions with indices nB and nL. For Loop I, we use either the template determined from the SCA or the
geometric template described in Section 3. The reference model (Figure 15) is shown by green circles in both plots.

(A color version of this figure is available in the online journal.)

in a small patch around each PS: the radius is either 2◦

or the 95% containment angle, whichever is larger. This
choice of the radius is motivated by the requirement that
there are a sufficient number of pixels to perform the fit,
but not too many pixels, so that a low order polynomial
model of the background is appropriate: the background is
modeled by a combination of local polynomials of degree
4 (the degree was found from Monte Carlo tests). During
a fit for a particular PS, all other 2FGL point sources with
TS < 200 are subtracted from the data with the 2FGL
fluxes.

5. We also mask the cores of the PS without subtracting them.
This has a relatively important effect at low energies, where
the PSF is large. Even in this case, however, the difference
in the spectrum of the bubbles is not significant compared

to the effect from modifying the definitions of the bubbles
and Loop I templates considered below.

In order to test the systematic uncertainty related to the
definition of the Fermi bubbles and the Loop I templates, we
consider the following definitions of the templates (Figure 17
on the right).

1. Bubbles template from residual maps above 10 GeV (we
tested two threshold levels: 2.5σBG and 3σBG).

2. Bubbles template from spectral components with indices
1.9, 1.8 (2σBG, and 2.5σBG).

3. Loop I template from spectral components with indices 2.4,
2.5 (1σBG, and 1.2σBG).

4. Geometric Loop I template (Section 3).
5. We use structured (proportional to flux) and flat (0–1)

templates for both the bubbles and Loop I.
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Figure 18. Left: SED of the bubbles for |b| > 10◦ obtained using the GALPROP template analysis (red squares) and local template analysis (green triangles). The
points with error bars represent the spectra obtained with the two methods (Figures 6 and 15). The shaded bands are the systematic uncertainties due to the analysis
procedure and Galactic foreground modeling as described in Sections 3.3 and 4.4. Right: combined bubble SED compared to the earlier result from Su & Finkbeiner
(2012) for |b| > 20◦. The baseline model is the same as the GALPROP curve in the left plot. The systematic uncertainties are the envelope of all possible spectra
obtained from the two methods. In the combined spectrum we include the uncertainties in the LAT effective area (Ackermann et al. 2012) by adding them in quadrature
to the envelope of the other systematic uncertainties. The curves show the functional forms fitted to the SED points. Solid blue line: log parabola. Dotted red line:
simple power law. Dash-dotted green line: power law with an exponential cutoff.

(A color version of this figure is available in the online journal.)

Table 2

Differential Energy Spectrum per Unit Solid Angle for the Fermi Bubbles

E Emin Emax E2F E2Fmin E2Fmax E2
∆Fstat

(GeV) (10−7 [ GeV

cm2 s sr
])

0.12 0.10 0.14 1.85 0.83 3.61 0.11

0.17 0.14 0.20 2.57 1.37 4.44 0.15

0.24 0.20 0.28 2.91 1.70 5.35 0.13

0.34 0.28 0.40 3.51 2.27 6.11 0.13

0.48 0.40 0.57 3.85 2.51 6.29 0.14

0.67 0.57 0.80 4.35 2.67 6.69 0.15

0.95 0.80 1.13 4.26 2.90 6.47 0.16

1.35 1.13 1.60 4.53 3.99 7.49 0.17

1.90 1.60 2.26 4.91 4.52 7.80 0.18

2.69 2.26 3.20 5.40 4.98 7.88 0.20

3.81 3.20 4.53 4.83 4.48 7.73 0.20

5.38 4.53 6.40 4.96 4.58 7.56 0.23

7.61 6.40 9.05 6.05 5.42 8.01 0.26

10.76 9.05 12.80 6.04 5.42 7.91 0.28

15.22 12.80 18.10 5.58 4.73 7.17 0.31

21.53 18.10 25.60 5.52 4.23 6.82 0.35

30.44 25.60 36.20 4.47 3.80 5.71 0.37

43.05 36.20 51.20 4.84 3.73 5.80 0.42

60.89 51.20 72.41 4.45 3.76 5.41 0.46

86.11 72.41 102.40 3.49 2.95 4.06 0.48

121.77 102.40 144.82 3.51 3.07 4.23 0.57

172.22 144.82 204.80 2.07 1.71 2.77 0.56

243.55 204.80 289.63 1.07 0.88 1.79 0.57

344.43 289.63 409.60 1.23 0.81 2.06 0.63

487.10 409.60 579.26 0.00 0.00 1.28 1.46

Notes. Emin and Emax are the boundaries of the energy bins, and E is the

geometric mean of the bin. Fmin and Fmax define the systematic error band, and

∆Fstat is the statistical error. The last entry is zero, which is the lowest value

allowed in the fit (we do not allow negative values).

The largest effect at low energies comes from assumptions
on the spectrum of the components in the SCA derivation of the
templates for the bubbles and for Loop I.

5. THE OVERALL SPECTRUM OF THE BUBBLES

The spectra of the bubbles derived with the two methods
presented in Sections 3 and 4 are shown in Figure 18, left. In

the following, we take the results from the GALPROP template
analysis as a baseline for the spectral energy distribution (SED)
and combine all the spectra obtained with the two methods to
get an envelope of the systematic uncertainties. The envelope
includes uncertainties introduced by the diffuse modeling and
uncertainties related to the analysis strategy (e.g., the threshold
to define the template of the bubbles or the size of the local
patches). We add the systematic error of the LAT effective area
(Ackermann et al. 2012) in quadrature to the envelope obtained
for different models. The systematic errors of the LAT PSF and
the effect of energy dispersion are negligible given the spatial
and energy binning chosen for this analysis. The uncertainties
due to the modeling of Galactic foregrounds and analysis
strategy (see Table 2) dominate the uncertainty compared to
the effective area, which has a relative flux error of �10%. The
baseline model with its statistical and systematic uncertainties
is presented in Figure 18 on the right and in Table 2. We also
compare our results with the Fermi bubbles SED derived by Su &
Finkbeiner (2012). Our intensity is significantly higher than the
spectrum of Su & Finkbeiner (2012), especially at low energies.
The difference is due to a combination of several effects, namely
a smaller Galactic plane mask (10◦ in this work, compared to 20◦

in Su & Finkbeiner 2012), a smaller area of the bubbles’ template
in this analysis resulting in larger intensities, the inclusion of
a separate template for the cocoon in Su & Finkbeiner (2012),
and different modeling of the Galactic foregrounds. Our results
agree with the spectrum in latitude strips at |b| > 20◦ reported
by Hooper & Slatyer (2013).

We fit the baseline SED with a log parabola function, a
power law with an exponential cutoff, and a simple power law
(Figure 18, right). The log parabola and the power law with an
exponential cutoff are defined, respectively, as

dN

dE
= I

(

E

10GeV

)−α−β log(E/1 GeV)

; (13)

dN

dE
= I

(

E

1 GeV

)−γ

e−E/Ecut . (14)

We repeat the fits for the bubbles spectrum for differ-
ent Galactic models and different definitions of the bubbles

15



The Astrophysical Journal, 793:64 (34pp), 2014 September 20 Ackermann et al.

Figure 19. Left: distribution of log parabola fit parameters (energy range of the fit: 100 MeV to 500 GeV). Right: distribution of the power law with exponential cutoff
fit parameters (energy range of the fit: 1 GeV to 500 GeV). Red crosses represent the baseline model values with their statistical uncertainties.

(A color version of this figure is available in the online journal.)

Figure 20. Distribution of χ2 per degree of freedom for all models fitted with a simple power law (green), a power law with exponential cutoff (red), and a log parabola
function (blue). All fits are performed in the energy range from 100 MeV to 500 GeV (left) and from 1 GeV to 500 GeV (right).

(A color version of this figure is available in the online journal.)

and Loop I templates. We obtain the following pa-
rameters for the log-parabola function in the fit range
100 MeV to 500 GeV: α = 1.77 ± 0.01[stat]+0.10

−0.22[syst], β =
0.063 ± 0.004[stat]+0.047

−0.018[syst]. The values are given for the
baseline model and the systematic uncertainties are estimated
from the SEDs obtained for different Galactic foreground mod-
els and choices in the analysis strategy. The systematic errors
include the uncertainties of the LAT effective area (Ackermann
et al. 2012). The distributions of the fit parameters α and β for
the log parabola fits are shown in Figure 19 on the left.

The power law with a cutoff fit above 100 MeV is dominated
by low and intermediate energies. In order to find a value
of the high-energy cutoff that is unbiased by low energies,
we fit the power law with a cutoff in the range 1 GeV to

500 GeV. We obtain Ecut = 113 ± 19[stat]+45
−53[syst] GeV and

γ = 1.87±0.02[stat]+0.14
−0.17[syst]. The distribution of indices and

cutoff energies of the power law with exponential cutoff fits are
shown in Figure 19 on the right. The corresponding distributions
of χ2 per number of degrees of freedom (NDF) are presented
in Figure 20. The log parabola gives a good description of the
data over the whole energy range. The simple power law does
not describe the data well, even above 1 GeV. The power law
with a cutoff is preferred over a power law with at least 7σ
significance.

We calculate the total luminosity of the bubbles for |b| > 10◦

for each determination of the spectrum in the energy range
from 100 MeV to 500 GeV. The bubbles are found to have
a luminosity of (4.4 ± 0.1[stat]+2.4

−0.9[syst]) × 1037 erg s−1. The

distribution of the solid angle subtended by the bubbles, and the
luminosity for the models considered, are shown in Figure 21.

6. MORPHOLOGY AND SPECTRAL VARIATIONS

The average spectrum of the bubbles is an important char-
acteristic, but it may be insufficient for distinguishing among
the models of the bubbles formation and the mechanisms of the
gamma-ray emission. In this section, we calculate the spectrum
of the bubbles in latitude strips and estimate the significance
and the spectrum of the enhanced gamma-ray emission in the
southeastern part of the bubbles, which is called the cocoon (Su
& Finkbeiner 2012). We search for a jet inside the bubbles and
determine the location and the width of the boundary of the
bubbles.

6.1. Longitude Profiles

To give a general idea about the morphology of the bubbles,
we present the profile plots of the residual intensity correspond-
ing to the Fermi bubbles at different latitudes integrated in three
energy bands: 1–3 GeV, 3–10 GeV, and 10–500 GeV. The resid-
ual intensity is shown in Figure 22. There is an L-shaped over-
subtraction at low energies in the GALPROP residuals in the
low latitude part of the northern bubble. This residual is spa-
tially correlated with the star forming region ρ Ophiuchi, which
might have a different CR spectrum compared to the average.
Notice that this feature is not present in the residuals obtained
from the local template analysis, which allows the adjustment
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Figure 21. 100 MeV–500 GeV bubble luminosity vs. the solid angle subtended
by the bubbles at |b| > 10◦ for different models of foreground emission and
definitions of bubble templates.

(A color version of this figure is available in the online journal.)

of the normalization of the CR density in local patches. The
profile plots in 10◦ latitude strips are shown in Figure 23.

An excess of emission in the southern bubble for latitudes
−40◦ < b < −20◦ and longitudes 0◦ < ℓ < 15◦ corresponds
to the cocoon proposed by Su & Finkbeiner (2012). There is also
a slight excess of emission for 20◦ < b < 40◦ around ℓ = 10◦.
At some latitudes, the width of the boundary of the bubbles is
approximately, or smaller than, 5◦. We study the width of the
edge in more detail in Section 6.3.

6.2. Substructures

In this section, we present an analysis of substructures within
the bubbles. In the residual maps we find an enhanced gamma-
ray emission mostly in the southeast side of the Fermi bubbles.

Following Su & Finkbeiner (2012), we will denote the region
of enhanced gamma-ray emission as the cocoon, although the
physical origin of this emission is not known. In order to study
the significance and the spectrum of the cocoon, we separate the
cocoon template from the bubbles and fit both the cocoon and
the bubbles templates together with the other diffuse foreground
templates to the data.

We derive the cocoon template from the same residual maps
that we use for the derivation of the Fermi bubbles by applying
a higher cut in significance. We take 6σBG in the GALPROP
templates analysis and 5σBG in the local templates analysis. The
difference is due to the difference in the energy ranges used to
define the templates in the two methods (see Section 4.3). The
cocoon template for the baseline model (defined in Section 3)
is shown in Figure 24 (left). Notice that in contrast to the
cocoon template in Su & Finkbeiner (2012), this template is not
restricted to the southern hemisphere and also includes excess
emission in the north. For the fits we use the flat template for the
bubbles; otherwise the structures in the template of the bubbles
can absorb a significant part of the cocoon emission. We also
use a flat cocoon template to get a conservative estimate of the
significance of the cocoon. Note that the cocoon template is
inside the template of the bubbles (i.e., the cocoon emission
is on top of the emission from the bubbles modeled by a flat
template). Using both the cocoon and the bubbles templates
improves the likelihood of the fit relative to the flat template
for the bubbles alone. We find that TS is between 95 and
975, depending on the foreground emission model, whereas
the number of additional free parameters in the fit is 25 (one
for each energy bin). Figure 25 shows the distribution of TS
for different foreground emission models. The probability that
the cocoon is a statistical fluctuation is <10−9. This probability
does not include the trials factor.

The intensity spectrum of the cocoon is compared to the spec-
trum of the bubbles in Figure 24 (right). We find that the spec-
trum of the cocoon is consistent with the spectrum of the rest
of the bubbles. However, due to large statistical uncertainties in
the cocoon spectrum, we cannot rule out a simple power-law

Figure 22. Residual intensity integrated in different energy bands for the baseline model derived with GALPROP templates in Section 3.2 (top) and for the example
model derived with the local templates analysis in Section 4.3 (bottom).

(A color version of this figure is available in the online journal.)
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Figure 23. Longitude profiles of the residual intensity including the bubbles integrated over different energy bands. The profile plots are obtained by dividing the sky
into 10◦ strips in latitude. Points correspond to the GALPROP residuals (baseline model defined in Section 3) in Figure 22. Shaded bands are computed as an envelope
of the residuals for different models of the foregrounds and different definitions of the templates for the bubbles and Loop I (Section 3.3 and 4.4). The width of the
longitude bins is 5◦.

(A color version of this figure is available in the online journal.)
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Figure 24. Left: cocoon template derived analogously to the template of the bubbles in Section 3.2. Right: the spectrum of the cocoon compared to the spectrum of
the bubbles. The points correspond to the baseline model from Section 3. The bands are the envelope resulting from different derivations of foreground models and
different definitions of the bubbles and Loop I templates.

(A color version of this figure is available in the online journal.)

Figure 25. TS of the cocoon template for different derivations of the foreground
emission models and different definitions of the templates of the bubbles and
Loop I.

(A color version of this figure is available in the online journal.)

spectrum of the cocoon emission. The absolute value of the in-
tensity of the gamma-ray emission from the cocoon detected on
top of the flat bubbles template is, by coincidence, very similar
to the gamma-ray intensity of the bubbles. In other words, the
intensity in the cocoon region is about two times larger than the
intensity inside the bubbles but outside the cocoon.

In a second step we apply an even higher significance
threshold of 9σBG to the residual map. We call the resulting
structure the sub-cocoon. The sub-cocoon template is displayed
in Figure 26 (left). We include this template in the all-sky
fit together with a flat bubbles and a flat cocoon template.
The resulting spectra are shown in Figure 26 (right). The
improvement of the fit obtained by including the additional
template is displayed in Figure 27. We find that TS for different
foreground models is between 30 and 360 (for 25 additional free
parameters). The probability that the sub-cocoon is a statistical
fluctuation is about 20%, considering the smallest TS value
among all models.

In the following we investigate the existence of jet-like emis-
sion as proposed by Su & Finkbeiner (2012), who tentatively
observed a pair of jets along the cocoon’s axis of symmetry
with a harder spectral index compared to the spectrum of the

bubbles. The existence of a jet within the bubbles would be an
important indication of an AGN-like activity of the black hole
in the Galactic center.

To test this hypothesis we use a generic jet template, which
is a strip of width 2.◦5 and length 40◦ originating in the Galactic
center. We rotate this template in 5◦ steps. Note, that the physical
distance corresponding to 5◦ at 40◦ is 5◦ sin(40◦) ≈ 3.◦2, that
is, the jets cover practically all pixels within 40◦ from the GC.
Figure 28 (left) shows an illustration of all jet templates. Note
that we include only one jet template at a time in each fit.
Because the emission of the sun could mimic a jet as the Sun
moves along the ecliptic, which passes near the Galactic center,
we also add a template for the gamma-ray emission from CR
interactions in the outer atmosphere and radiation field of the
Sun75 (Johannesson et al. 2013). For each position of the jet, we
calculate the improvement of the fit (compared to a fit with only
flat bubbles and flat cocoon template). Figure 28 (right) shows
the distribution of TS for the jet template in different orientations
for different diffuse models. There is a broad enhancement
toward several directions centered at ϕ ∼= 75◦, which covers
the cocoon. In those cases, the jet templates account for some
remaining excess emission on top of the cocoon that is not
modeled by the flat cocoon template. In summary, we do not
find significant residuals aligned along a specific direction that
could be interpreted as a jet.

6.3. Width of the Boundary of the Bubbles

The sharpness of the edge is one of the main arguments for
a transient process of bubble formation (Su et al. 2010). The
main difficulties in estimating the width of the edge are the
statistical error and the systematic uncertainty due to modeling
of the diffuse foreground gamma-ray emission. In order to get
maximal information from the available data, we have chosen to
perform a parametric fit of a smoothed step function (modeled
by a hyperbolic tangent) across the edge of the bubbles. The
algorithm has the following steps.

1. Choose a reference point approximately on the bubble edge
(by visual inspection of residuals above 10 GeV).

75 A description of the solar template can be found at the Fermi Science
Support Center: http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/solar_
template.html.
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Figure 26. Left: template for a high significance residual, the sub-cocoon, created from the residual map with threshold 9σBG. Right: spectrum of the sub-cocoon
compared to the spectrum of the cocoon and the bubbles.

(A color version of this figure is available in the online journal.)

2. Find the gradient of the residual by fitting a plane to the
residual intensity in pixels within 10◦ from the reference
point. The gradient is along the direction of maximal change
in the residual flux. We use it to define the direction
perpendicular to the edge.

3. In order to find the position of the edge and its width, we
choose a strip along the gradient and project the data onto
the gradient direction. This allows us to reduce the fitting
to a 1D fitting problem. We take the length of the strip to
be 40◦ (±20◦ from the reference point), and the width to
be 20◦ (±10◦ from the reference point). The size of the
bins in the projection is 1.◦3, which is larger than the pixel
size but small enough that resolving the sharp transitions is
possible.

4. Fit the data along the strip with a smoothed step function
modeled by the hyperbolic tangent plus a constant:

f (ϕ) = A tanh λ(ϕ − ϕ0) + C. (15)

In total we have the four parameters A, λ, ϕ0, and C. Two
of them are nonlinear (λ and ϕ0). The best-fit position of
the edge is determined by ϕ0, the width of the edge is
defined as ∆ϕ = 2/λ, and the constant C models the residual
background emission. During the fit to the data, the model
is convolved with the PSF for each energy range.

5. Test the systematic uncertainty by changing the length and
the width of the strip and the size of the bins. The lengths
are 40◦, 50◦, and 60◦; the widths are 10◦, 20◦, and 30◦; and
the bins are 1.◦3 and 1.◦5 wide.

6. Test the systematic uncertainty related to the derivation of
the foreground models and the templates of the bubbles and
Loop I.

We derive the width of the bubbles edge in three energy
ranges: 1–3 GeV, 3–10 GeV, and 10–500 GeV. The average PSF
is dominated by the events at the lower boundaries of the energy
ranges. The 68% PSF containment angles at 1 GeV, 3 GeV,
and 10 GeV are 0.◦5, 0.◦25, and 0.◦12, respectively. Examples
of fitting the hyperbolic tangent function across the bubble edge
for the residual maps above 10 GeV are shown in Figure 29.
In Figure 30 we show the location of the edge and the width
overplotted on the residual map. A summary of the edge widths,
including statistical and systematic uncertainties, is presented in
Figure 31. The values are reported in Table 3. Sometimes the fit

Figure 27. TS of the sub-cocoon template for different foreground models.

(A color version of this figure is available in the online journal.)

of the width does not converge, either due to oversubtractions in
the foreground modeling or due to lack of statistical significance.
In this table, we do not report values of the width that are
larger than 20◦, which is comparable to the size of the bubbles
themselves, or less than 0.◦5, which is smaller than the pixel size.
We find that in most locations along the bubbles edge, the width
of the boundary varies between 1◦ and 6◦. The value of 13.◦3 in
one location in the southern bubble is because the edge lies on
top of a local excess (see Figure 30). This high value is likely
due to poor convergence of the fit, rather than the actual width
of the boundary.

We do not detect a significant difference in the width of
the bubbles boundary for the three energy ranges. The median
width of the bubbles boundary among all locations along the
boundary and among all models of foreground emission and
templates of the bubbles is ∆ϕ = 3.4 ± 2.0[stat]+3.1

−1.7[syst] deg.
The systematic uncertainty boundaries are estimated as values
that enclose ±34% of the values above and below the median
value. We take the median instead of the mean in order to
avoid bias due to outliers with large values of the width, either
due to oversubtractions in the foreground modeling or poor
convergence of the width estimation.

6.4. Spectrum in Latitude Strips

The spectra for northern and southern bubbles are shown in
Figure 32. These spectra are derived similarly to the overall
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Figure 28. Left: jet templates and solar emission template. Each template has a width of 2.◦5 and a length of 40◦. Every second template is multiplied by two for better
visibility. We only include one template at a time in the all-sky fit. The yellow shaded region corresponds to the flat bubble template. Right: TS of the jet template as a
function of the counterclockwise jet angle ϕ defined with respect to the positive longitude direction, so that the 90◦ jet points to the south. Different points at the same
angle correspond to different foreground models and analysis strategy.

(A color version of this figure is available in the online journal.)

Figure 29. Examples of fitting the edges of the bubbles in the GALPROP residual map, integrated above 10 GeV (Figure 22).

(A color version of this figure is available in the online journal.)

spectrum of the bubbles, but instead of one template of the
bubbles, we fit two independent templates for the northern and
southern bubbles. We find that the spectra in the north and south
agree with each other within the uncertainties. The southern

bubble has a region of enhanced emission, the cocoon, whereas
the brightness in the northern bubbles is more uniform. The
overall intensities of the two bubbles are consistent with each
other.
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Figure 30. Residual map (Figure 22, top right) overplotted with the edge of
the bubbles. The direction of the bars perpendicular to the edge corresponds to
the local gradient in the residual map, and the length of the bars represents the
width of the edge. The location of the curve along the edge corresponds to the
locus of the best-fit values of ϕ0 (Equation (15)).

(A color version of this figure is available in the online journal.)

The spectra in the latitude strips are shown in Figure 33.
For the derivation of the spectra in strips, we separated the
template of the bubbles into six independent templates according
to latitude. The latitude boundaries of the stripes are −60◦ to
−40◦, −40◦ to −20◦, and −20◦ to −10◦ in the south, and 10◦

to 20◦, 20◦ to 40◦, and 40◦ to 60◦ in the north. With the current
level of statistical and systematic uncertainties, we cannot detect
a variation of the spectrum with latitude. Our results agree with
Hooper & Slatyer (2013) at latitudes |b| > 20◦, but we do
not find a significant variation of the spectrum of the bubbles
for 10◦ < |b| < 20◦ compared to higher latitudes. There is a
large systematic uncertainty in the energy spectrum at latitudes
10◦ < b < 20◦, which is mostly due to the uncertainties of the
model of the foreground gamma-ray emission produced in the
interactions of CR with interstellar gas. Manifestation of this
uncertainty can be seen in the residual maps in Figure 22 and in
the profile plots in Figure 23.

Table 3

Position and Width of the Bubbles Boundary for the Baseline
Model Residuals Above 10 GeV (Figures 30 and 31)

Lat Lon Width Stat Min Width Max Width

North

17.4 345.1 2.4 2.0 0.9 4.0

25.5 342.0 1.7 1.3 0.7 3.4

35.3 339.1 2.9 1.5 2.0 6.3

44.8 342.5 6.3 2.5 1.2 9.4

47.7 3.1 1.2 1.5 0.7 5.3

37.5 14.9 2.5 2.4 0.5 10.6

30.0 18.3 5.8 3.8 0.6 19.8

16.8 16.8 0.9 2.2 0.5 15.7

South

−17.1 11.7 1.4 2.3 1.0 3.6

−25.0 13.4 3.0 1.2 1.0 6.3

−35.0 15.1 4.5 1.4 2.4 13.3

−51.1 5.6 3.1 1.4 1.8 6.7

−50.3 347.8 4.0 1.6 1.6 6.8

−39.5 337.1 5.6 1.8 3.6 8.8

−30.9 337.1 13.3 3.4 4.7 19.7

−23.3 340.3 5.8 2.2 0.8 18.3

Notes. The position and the width are determined from Equation (15). All values

are in degrees. The Lat and Lon columns give the positions at the center of the

boundary in Galactic coordinates. The Stat column is the statistical error. Min

and Max Widths correspond to the envelope of the systematic uncertainties.

Values larger than 20◦ or smaller than 0.◦5 are not reported (see the text for

explanation).

7. IC AND HADRONIC MODELS OF THE BUBBLES

In this section we fit the spectrum of the bubbles with IC
and hadronic models of gamma-ray production. In addition,
we calculate the synchrotron emission from the population of
electrons in the IC model and from the secondary electrons and
positrons in the hadronic model. The details of the calculations
are presented in Appendix B.

7.1. IC Model of the Bubbles

The IC scattering is calculated with the cross sections pre-
sented by Blumenthal & Gould (1970). The ISRF is taken

Figure 31. Width of the edge for residual maps integrated in three energy ranges for the baseline model. The angle on the x-axis is determined relative to the centers
of the bubbles, which we choose to be at b = ±25◦, ℓ = 0◦. The angle is in the clockwise (counterclockwise) direction starting from the Galactic center for the
northern (southern) bubble. The points with the error bars correspond to the baseline model and its statistical uncertainties derived in Section 3. The shaded areas give
the systematic uncertainty due to different binning of the data perpendicular to the edge and different derivations of the foregrounds.

(A color version of this figure is available in the online journal.)
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Figure 32. SED for the northern and southern bubbles. The points with statistical
error bars correspond to the baseline SED. The bands represent an envelope of
the SEDs for different derivations of the Galactic foreground emission and the
definitions of the template of the bubbles. The uncertainty of the effective area
is added in quadrature to the other systematic uncertainties.

(A color version of this figure is available in the online journal.)

from the GALPROP v54 distribution (Porter & Strong 2005;
Moskalenko et al. 2006). Because no significant variation of
the gamma-ray spectrum across the bubbles has been found,
we will use the spectrum averaged over the area of the bubbles
(Figure 18, right, and Table 2).

As a benchmark model for the spectrum of electrons, we take
the spectrum derived using the ISRF at 5 kpc above the GC. We
also compare it with the electron spectrum obtained for CMB
photons only.

The gamma-ray spectrum of the Fermi bubbles has a signif-
icant cutoff at high energies, so we model the electron spec-
trum by a power law with an exponential cutoff ∝ E−ne−E/Ecut .
The best-fit parameters are n = 2.17 ± 0.05[stat]+0.33

−0.89[syst] and

Ecut = 1.25 ± 0.13[stat]+1.73
−0.68[syst] TeV. The corresponding IC

spectra are shown in Figure 34 on the left. The details of the
calculation can be found in Appendix B.1. The indices and the

cutoff values for different foreground models and definitions of
the templates of Loop I and the bubbles are shown in Figure 34
on the right. The bremsstrahlung emission is at least two orders
of magnitude smaller than the IC emission for a characteris-
tic gas density nH � 0.01 cm−3 at a few kiloparsecs from the
Galactic plane (Snowden et al. 1997), and can be neglected.

We will assume that the center of the bubbles is at b = 25◦,
that is, the distance to the center of the bubbles is R =
R⊙/ cos b = 9.4 kpc, where R⊙ = 8.5 kpc is the distance to the
GC. The total energy contained in the electron population inside
the bubbles above 1 GeV is (1.0 ± 0.2[stat]+6.0

−1.0[syst]) × 1052

erg, where the value corresponds to the baseline model; the
statistical uncertainty is calculated by marginalizing over the
index and cutoff of the electron spectrum. The systematic
uncertainty is estimated by calculating the electron spectrum
for different models of the foreground emission and definitions
of the templates of the bubbles and Loop I.

The synchrotron emission from the benchmark population of
electrons for different values of the magnetic field is shown in
Figure 35, together with the IC signal. On the same plot we
also include the Planck and WMAP microwave haze spectrum
(Pietrobon et al. 2012; Ade et al. 2013). The index of the mi-
crowave haze emission is harder than the synchrotron emission
for a stationary population of electrons in the Galaxy. The mi-
crowave haze spatially overlaps with the gamma-ray bubbles
at |b| < 35◦. We confirm that the population of electrons that
produces the gamma-ray emission of the Fermi bubbles via IC
scattering can also produce the microwave haze (Dobler et al.
2010; Su et al. 2010; Su & Finkbeiner 2012; Dobler 2012; Ade
et al. 2013).

The range of spectra of the synchrotron emission corre-
sponding to the systematic uncertainty in the electron spectrum
(Figure 34) is shown in Figure 35 on the right. For each electron
spectrum, we find the magnetic field that gives the best fit to
the microwave data. We find B = 8.4 ± 0.2[stat]+11.2

−3.5 [syst] μG,
where the value is for the baseline model, the statistical uncer-
tainty is calculated using the statistical errors of the WMAP and
Planck haze spectra, and the systematic uncertainty is due to the
modeling of the gamma-ray foregrounds and the definition of
the template of the bubbles. The allowed magnetic fields range
approximately from 5 to 20 μG. A larger index (softer spectrum)
corresponds to a greater number density of electrons at lower
energies; in this case the magnetic field is ∼5 μG. A harder

Figure 33. SED of the Fermi bubbles in latitude strips. Left: northern bubble. Right: southern bubble. For a description of the points and bands, see caption of Figure 32.

(A color version of this figure is available in the online journal.)
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Figure 34. Left: IC model fit to the baseline gamma-ray spectrum of the Fermi bubbles (Section 5). The spectrum of electrons for the ISRF at 5 kpc is a power law
with an index 2.2 and an exponential cutoff at 1.25 TeV (Section 7.1). If we take into account only IC scattering on CMB photons, then the electron spectrum has an
index of 2.3 and a cutoff at 2.0 TeV. Right: index and cutoff energy for electron spectra determined for different derivations of gamma-ray foregrounds and different
definitions of the Fermi bubbles templates (for the ISRF at 5 kpc above the Galactic center). The red cross corresponds to the baseline model values with the statistical
errors.

(A color version of this figure is available in the online journal.)

Figure 35. Left: IC and synchrotron emission from the same benchmark population of electrons. The electron energy density is derived from fitting the IC model to
the gamma-ray data. We use the synchrotron emission from the same population of electrons to fit the Planck microwave haze data (Ade et al. 2013) by optimizing
the value of the magnetic field. The best-fit magnetic field is about 8.4 μG. Right: microwave haze spectrum compared to the synchrotron emission from the electrons
in the IC model of the Fermi bubbles. The green band shows the systematic uncertainties introduced by the systematic uncertainty in the gamma-ray spectrum of the
bubbles.

(A color version of this figure is available in the online journal.)

index requires a magnetic field of ∼20 μG. The uncertainties
of the index and magnetic field are due to large uncertainties
in the distribution of electrons around 10–30 GeV. We note that
the spectrum of the microwave haze was obtained for latitudes
−35◦ < b < −10◦ (Pietrobon et al. 2012), that is, the derived
magnetic field corresponds to the region of the bubbles encom-
passed by these latitudes. At higher latitudes the microwave
haze emission has smaller intensity, which can be explained
if the magnetic field decreases with height above the Galactic
plane.

The main contribution to the IC signal comes from electrons
at energies >100 GeV. We show in Appendix B that the main
contribution to the WMAP and Planck frequencies, where the
microwave haze is detected, comes from electrons between
10 GeV and 30 GeV. Thus, although the gamma-ray bubbles and
the microwave haze can be produced by the same population of
electrons, the presence of two populations of electrons cannot be
excluded—one population producing the gamma-ray signal and
the other producing the microwave signal. In this scenario, the

magnetic field can have a lower value. As a result, the electron
cooling time can be longer than in the case of a single population
of electrons.

The cooling time for 1 TeV electrons in a 5 μG magnetic
field and in the ISRF at 5 kpc is only 500 kyr, whereas taking
into account only the IC losses gives a cooling time of ∼1 Myr
(Appendix B.2). If the bubbles were formed by a jet or an
outflow from the Galactic center, where most of the acceleration
happened during the initial stages of the expansion, then the
expansion velocity should be greater than 10,000 km s−1, so
that the bubbles formation time is smaller than the cooling
time of the 1 TeV electrons. The lower bound on the expansion
velocity becomes 20,000 km s−1 if the magnetic field is 5 μG. In
scenarios with electron reacceleration inside the volume of the
bubbles (Mertsch & Sarkar 2011), the characteristic acceleration
time for 1 TeV electrons should be shorter than 1 Myr for IC
losses only, or 500 kyr for IC and synchrotron losses in a 5 μG
magnetic field. Since the synchrotron losses at these energies
are about the same as the IC losses, the electron injection rate
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Figure 36. Primary gamma-ray emission of the hadronic model of the Fermi

bubbles spectrum using a simple power law or a power law with an exponential
cutoff for the spectrum of protons.

(A color version of this figure is available in the online journal.)

should be about two times larger than the gamma-ray luminosity
of the bubbles (i.e., around 1038 erg s−1) in the case for a steady
injection.

7.2. Hadronic Model of the Bubbles

For the calculation of the spectrum of gamma-rays produced
in hadronic interactions we use the cross sections described in
Kamae et al. (2006) and Karlsson & Kamae (2008), which are
implemented in the cparamlib package.76 In this analysis we
consider only proton CRs in the hadronic model of the gamma-
ray emission in the bubbles. We parameterize the spectrum of
the protons as a function of momentum. A power law with an
exponential cutoff spectrum of the CR protons,

dn(p)

dp
∝ p−ne−pc/Ecut , (16)

gives a better fit at high energies than a simple power-law
spectrum (Figure 36). The parameters of the power law with

a cutoff function are n = 2.13 ± 0.01[stat]+0.15
−0.52[syst] and

Ecut = 14 ± 7[stat]+6
−13[syst] TeV. In order to estimate the

amount of energy in hadronic CRs that is required to produce
the gamma-ray signal one needs to know the density of gas
inside the bubbles. We take into account only ionized hydrogen
and use nH = 0.01 cm−3 as a reference value for the density.77

It is of the same order of magnitude as the plasma density
nH ∼ 0.0035 cm−3 at 2 kpc above the Galactic center (Snowden
et al. 1997).

The total energy in hadronic CRs above 1 GeV that is required
to produce the gamma-rays is (3.5 ± 0.1[stat]+4.7

−3.0[syst]) ×
1055(0.01 cm−3/nH) erg. Including heavier nuclei may change
this estimate. However, the evaluation of this effect depends on
the uncertain composition of CRs and gas in the bubbles, hence it
is beyond the scope of the modeling in this paper. In the relevant
energy range of the proton kinetic energy Ep ∼ 0.1–10 TeV,

76 https://github.com/niklask/cparamlib
77 Note, that the gamma-ray emissivity integrated along the line of sight,
which is relevant for the template fitting, is dominated by H i from the local
ring, whereas the emissivity a few kiloparsecs above the Galactic plane is
dominated by ionized hydrogen.

the center of mass energy is ECM ∼ 10–100 GeV and the
inelastic cross section is σpp ≈ 30 mb. The average time for

a collision is tp = (nH c σpp)−1 ≈ 3.5 × 109(0.01 cm−3/nH) yr.
In a steady state the minimal injection rate of CR protons is
Lp ∼ Wp/tp ≈ 3.1 × 1038 erg s−1. This calculation assumes
that the main energy loss process is inelastic proton–proton
collisions. The injection rate actually required may be an order
of magnitude higher due to, for example, adiabatic losses.

The proton spectrum at high energies inside the bubbles must
be much harder than the spectrum of CR protons in the Galactic
plane (e.g., Adriani et al. 2011b; Ackermann et al. 2012; Dermer
et al. 2013). If we assume that the proton spectrum injected
in the interstellar medium by the SN explosions is the same
everywhere in the Galaxy and is ∝E−2.0−2.2, then the softening
of the spectrum in the Galactic plane can be explained by an
energy-dependent escape, whereas the hard proton spectrum
inside the bubbles can be explained if the escape time from
the bubbles is longer than the interaction time (Crocker &
Aharonian 2011). In other words, protons escape from the
Galactic plane before they interact, but the protons inside the
bubbles should interact before they can escape, which means
that they have to remain inside the bubbles for several Gyr.

In addition to producing gamma-rays, interactions of high-
energy protons also produce electrons, positrons, and several
species of neutrinos. The flux of neutrinos from the hadronic
interactions in the Fermi bubbles has been previously considered
by Lunardini & Razzaque (2012), Adrián-Martı́nez et al. (2014),
Ahlers & Murase (2013), and Lunardini et al. (2013). We present
our calculation of the fluxes of all particles produced in the
hadronic interactions in Figure 37 on the left. As previously
stated, in this calculation the cross sections are taken from the
cparamlib package. The electrons and positrons are included
in this plot only formally to show their relative production
cross sections compared to the cross sections of neutrinos and
gamma-rays. In reality, the secondary leptons are assumed to
be trapped inside the bubbles together with the protons. Note
that we calculate the neutrino spectrum based on the average
gamma-ray spectrum of the bubbles. However, we cannot rule
out that the cocoon spectrum follows a simple power law, which
might produce neutrinos at higher energies.

We now calculate the synchrotron emission from the sec-
ondary e± produced in the hadronic collisions inside the bub-
bles. The secondary electrons and positrons undergo cooling due
to IC and synchrotron losses. We denote the energy loss function
as Ė = −b(E), where b(E) ∝ E2 for the synchrotron and the
IC energy loss in the Thomson approximation (Appendix B).
Assuming that the high-energy leptons lose their energy inside
the bubbles, the stationary energy density of secondary electrons
and positrons is

dQe± (E)

dE
=

1

b(E)

∫ ∞

E

dJe± (Ẽ)

dẼ
dẼ, (17)

where dJe±/dE is the spectrum of the electrons or positrons
produced in interactions of the hadronic CR with interstellar gas.
We compare the energy density of secondary e± to the energy
density of the electrons necessary to produce the gamma-ray
flux of the bubbles by IC scattering in Figure 37 on the right.

In the range of energies relevant for the WMAP and Planck
haze, the density of the secondary electrons and positrons is
comparable to the electrons producing the IC. Above the pion
cutoff at ∼100 MeV, the injection spectrum for the secondary
leptons is proportional to the proton spectrum ∝E−2. There is
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Figure 37. Left: flux of neutrinos and gamma-rays produced in the hadronic model of the gamma-ray emission in the bubbles. We also formally include the flux
of secondary electrons and positrons as it would be observed if charged particles could propagate in straight lines and were not trapped inside the bubbles. Right:
stationary energy density of secondary electrons and positrons (taking into account energy losses) produced in the hadronic interactions as compared to the energy
density of the electrons necessary for the IC production of the Fermi bubbles gamma-ray flux. The shaded region is an approximate range of energies relevant for the
production of synchrotron emission at the WMAP and Planck microwave haze frequencies.

(A color version of this figure is available in the online journal.)

Figure 38. Left: synchrotron radiation produced by the secondary leptons in the hadronic model of the bubbles emission in comparison with the microwave haze
(Ade et al. 2013). Right: the range of spectra for the synchrotron radiation from secondary leptons that corresponds to different models of the foreground gamma-ray
emission and different definitions of the bubbles template.

(A color version of this figure is available in the online journal.)

an additional softening by one power of E due to cooling. As a
result, the spectrum of the secondary leptons above 100 MeV is
proportional to E−3.

Below the pion cutoff, the spectrum of secondary leptons is
harder than E−1 and the integral in Equation (17) is insensitive
to the lower energy bound. As a result, the stationary spectrum of
the secondary leptons below 100 MeV is simply proportional to
b(E)−1 ∝ E−2. For the benchmark gas density nH ∼ 0.01 cm−3,
the bremsstrahlung emission from the secondary leptons is at
least an order of magnitude smaller than the gamma-ray signal
for all energies above 100 MeV and we neglect it in our analysis.

The IC and synchrotron spectra from the secondary leptons
produced in the hadronic model for different magnetic fields are
shown in Figure 38 on the left. We note that the synchrotron
intensity is a factor of three to four lower than the WMAP and
Planck points, and this offset cannot be corrected by tuning the
magnetic field. This is because for electrons with a spectrum
∝E−3 the synchrotron radiation scales as B2, but in the case
of large B, the synchrotron energy losses dominate and the
normalization of the secondary electrons is proportional to

Ė−1 ∝ B−2. Consequently the dependence on the magnetic field
cancels out. This is why the synchrotron intensity is saturated
for B � 10 μG. The IC flux is proportional to the stationary
energy density of the secondary leptons and it decreases with
increasing magnetic field.

The synchrotron radiation produced by E−3 electrons is
Iν ∝ ν−1, which is significantly softer than the microwave
haze spectrum Iν ∝ ν−0.55 (Ade et al. 2013). The distribution
of indices for the synchrotron radiation from the secondary
leptons is shown in Figure 38 on the right. The lines on this plot
are obtained by calculating the synchrotron radiation from the
secondary leptons in a 10 μG magnetic field with a subsequent
rescaling (for illustration) by an overall normalization factor to
fit the WMAP and Planck points.

The range of indices and the renormalization factors that we
use to rescale the synchrotron radiation from the secondary
leptons to fit the microwave haze are shown in Figure 39.
Both the index and the rescaling factor have a relatively
small range of values because both the leptons around 10 GeV,
which are responsible for the synchrotron radiation, and the
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Figure 39. Distribution of synchrotron indices and rescaling factor, f, for
synchrotron emission from the secondary leptons in the hadronic models in
a B = 10 μG field necessary to fit the microwave haze intensities.

gamma-rays around 10 GeV, where the Fermi bubbles spectrum
has small statistical and systematic errors, are produced by the
same protons with energies around 100 GeV. As a result in this
scenario, the synchrotron radiation at the WMAP and Planck
haze frequencies is directly linked to the gamma-ray radiation
around 10 GeV. Thus there should be either an additional
source of primary electrons or a reacceleration of the secondary
leptons inside the bubbles to increase the overall normalization
by a factor of three and to produce the spectrum ∝E−2 of
electrons and positrons around 10 GeV that are required to fit
the microwave haze data. The timescale of this reacceleration
should be smaller than the cooling time of the electrons around
10 GeV, which is about 10 Myr for a 10 μG magnetic field
(Appendix B.2). Another possibility in the hadronic scenario
of the Fermi bubbles is transporting the electrons from the
Galactic plane in the wind from SNe together with the hadronic
CR (Crocker & Aharonian 2011). The timescale of 10 Myr is
sufficient to bring the electrons to 10 kpc above the Galactic
plane with a wind of about 1000 km s−1. These electrons can
produce the microwave haze by synchrotron radiation. They may

also contribute to the gamma-ray spectrum at energies �10 GeV
by IC scattering off starlight.

Including emission from secondary leptons (Equation (17))
in the hadronic models can improve the fit. The secondary
gamma-ray spectrum depends on the value of the magnetic
field—for magnetic fields larger than approximately 5 μG, most
of the power injected in secondary leptons is dissipated into
synchrotron emission and the gamma-ray spectrum is similar
to the primary-only emission. The total primary and secondary
gamma-ray spectrum for a 2 μG magnetic field is shown in
Figure 40 on the left. A sample of proton spectral indices and
cutoffs for the energy spectra of the Fermi bubbles derived for
different foreground models and definitions of the bubbles and
Loop I templates is shown in Figure 40 on the right.

In Figure 41 we compare the reduced χ2 for the IC and
hadronic models of the Fermi bubbles. In general, we find that
the IC models fit the spectrum of the bubbles better than the
primary gamma-ray spectrum in the hadronic models, with a
significance of at least 4.9σ (Figure 41, left). The distribution of
the difference between the χ2 in leptonic and hadronic models
including secondary emission is presented in Figure 41 on
the right. For some cases, the hadronic model including the
secondary gamma-ray emission has a χ2 comparable to the
IC model. Therefore we cannot discriminate between hadronic
and IC models based on the current gamma-ray data alone.
This calculation does not include uncertainties in the nuclear
production models, which could affect the gamma-ray spectrum
at low energies up to 30% (Dermer 2012).78

8. SUMMARY AND CONCLUSIONS

In this paper, we analyze 50 months of Fermi-LAT data in
order to determine the morphology and spectrum of the Fermi
bubbles. The main challenge is the spatial overlap with the other
components of diffuse gamma-ray emission due to collisions of
hadronic CRs with the interstellar gas, IC production of gamma-
rays, bremsstrahlung, extragalactic gamma-ray emission, and
contamination from CRs.

We model the foreground gamma-ray emission with two
independent methods. In the first method we use maps generated

78 Note that the microwave haze is produced by electrons at energies above
10 GeV, where the uncertainties in the nuclear production cross sections are
lower ∼10% (Dermer 2012), hence, they are subordinate to the systematic
uncertainties related to the modeling of the foreground diffuse emission.

Figure 40. Left: same as Figure 36 (left), but including the IC gamma-ray emission from secondary leptons assuming a 2μG magnetic field. Right: index and cutoff
energy for proton spectra determined for different derivations of gamma-ray foregrounds and different definitions of the Fermi bubbles templates. The red cross
corresponds to the baseline model values with the statistical errors.

(A color version of this figure is available in the online journal.)
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Figure 41. Difference of χ2 values obtained from fits with IC models and primary emission of hadronic models (left), and including the secondary emission in the
hadronic scenario (right).

(A color version of this figure is available in the online journal.)

by the GALPROP CR propagation and interaction code as
templates of the emission components. Fitting these templates
to the data makes this method less sensitive to the distribution of
CR sources and to the propagation model. In the second method
we develop a more general data-driven model of diffuse gamma-
ray foregrounds. We use gas maps derived from the 21 cm, CO,
and dust surveys as tracers of the gamma-rays produced by the
interactions of hadronic CRs and by bremsstrahlung. We fit the
gas-correlated templates on small patches of the sky, together
with a combination of 2D polynomial functions that model
components of emission not correlated with the distribution
of the gas. In this method no assumptions are made on CR
sources or propagation, except for an assumption that the CR
density inside each patch can be approximated by a constant.
After subtracting the gas-correlated component from the data,
we model the IC component as a bivariate Gaussian along the
Galactic plane.

One of the largest systematic uncertainties is the definition
of the template for Loop I, which is a large structure in the
sky, overlapping the Fermi bubbles mostly in the northern
hemisphere. In the paper we use three different definitions of the
Loop I template: a template based on the radio data at 408 MHz
(Haslam et al. 1982), a geometrical model based on the 1.4 GHz
polarization data (Wolleben 2007), and a template derived from
the gamma-ray residuals based on a correlation with the gamma-
ray spectrum in the residuals outside the Fermi bubbles. We
determine templates for the bubbles from the residuals obtained
after subtracting the foreground emission components.

We find that the gamma-ray spectra of the Fermi bubbles
derived with the two methods agree with each other. At energies
above approximately 10 GeV the uncertainty in the spectrum
is dominated by statistics, whereas below 10 GeV systematic
uncertainties are dominant. The total luminosity of the bubbles
between 100 MeV and 500 GeV is (4.4 ± 0.1[stat]+2.4

−0.9[syst]) ×
1037 erg s−1 (assuming that they are located at the distance
of the Galactic center). The spectrum of the bubbles is well
described either by a log parabola function or by a power law
with an exponential cutoff. The fit of the photon spectrum
above 1 GeV by a power law with an exponential cutoff has
an index γ = (1.87 ± 0.02[stat]+0.14

−0.17[syst]) and a cutoff Ecut =
(113 ± 19[stat]+45

−53[syst]) GeV. A simple power-law spectrum
is excluded with very high confidence (Figure 20). The log
parabola and a power law with an exponential cutoff both fit the
spectrum of the Fermi bubbles with ∆χ2/NDF ≈ 1 for some
models of gamma-ray diffuse foregrounds and the definition of

the bubbles and Loop I templates. In the energy range between
100 MeV and 500 GeV, a log parabola gives a slightly better fit
than a power law with a cutoff. The reported spectrum has a
higher normalization and a softer spectrum at energies below
1 GeV, compared to previous results (Su & Finkbeiner 2012).
For the first time we show that a significant cutoff exists at high
energies.

The brightness of the emission is not uniform across the-
bubbles—we confirm the previously reported (Su & Finkbeiner
2012) excess of emission on the southeastern side of the bubbles
(referred to as the cocoon). We define a template for the cocoon
in a similar way to the definition of the bubbles template by ap-
plying a higher cut in significance to the residual maps. We find
that fitting a flat cocoon template together with a flat bubbles
template improves the fit compared to the flat bubbles template
case by 2∆ logL/NDF > 3.7 for NDF = 25 (Figure 25). The
probability that the cocoon is a statistical fluctuation is <10−9

for some models of foreground emission that we have tested,
and for all definitions of the bubbles and Loop I templates. The
energy spectrum of the cocoon is consistent with the spectrum
of the Fermi bubbles.

We search for a jet-like structure inside the bubbles using two
different techniques. First, we apply a higher cut in the residual
significance map than in the definition of the cocoon (Figure 26).
This structure is not significant, with a probability of statistical
fluctuation of 20% for all models of foreground emission. We
also searched for a narrow linear feature emanating from the
Galactic center (Figure 28). We did not find any significant
linear jet (in contrast to tentative claims by Su & Finkbeiner
2012) within our systematic uncertainty, although the scatter in
significance for the different foreground models is very high.

The spectra of the northern bubble and the southern bubble
are consistent with each other (Figure 32). We find no variation
of the spectrum with latitude within the statistical and systematic
uncertainties in contrast to claims by Hooper & Slatyer (2013)
and Yang et al. (2014). The systematic uncertainties are espe-
cially high for the strips in the north, which are due to strong
contamination from the gamma-rays produced in hadronic in-
teractions and a significant overlap with Loop I.

We estimate the position and the width of the boundary of
the bubbles by fitting a hyperbolic tangent function across the
edge of the bubbles. The width is calculated for residuals in
three energy ranges: 1–3 GeV, 3–10 GeV, and 10–500 GeV. We
find that, on average, the width is smaller than ∼6◦. We do not
find a significant variation of the width with energy, but the

28



The Astrophysical Journal, 793:64 (34pp), 2014 September 20 Ackermann et al.

width changes with position along the boundary of the bubbles
(Figure 30).

We fit the spatially integrated spectrum of the bubbles with IC
and hadronic models of gamma-ray production. The spectrum
of the electrons in the IC model is well described by a power law
with an exponential cutoff with n = 2.17±0.05[stat]+0.33

−0.89[syst]

and Ecut = 1.25 ± 0.13[stat]+1.73
−0.68[syst] TeV, and the total en-

ergy in electrons above 1 GeV is (1.0±0.2[stat]+6.0
−1.0[syst])×1052

erg. The spectrum of the protons in the hadronic scenario is
expressed as a function of the proton momentum dn/dp ∝
p−ne−pc/Ecut with n = 2.13 ± 0.01[stat]+0.15

−0.52[syst] and Ecut =
14±7[stat]+6

−13[syst] TeV. The total energy in proton CRs above

1 GeV is (3.5 ± 0.1[stat]+4.7
−3.0[syst]) × 1055(0.01 cm−3/nH) erg.

The IC model fits the energy spectrum of the Fermi bubbles
better than the primary gamma-ray emission in the hadronic
model, with a significance of at least 4.9σ without taking into
account the uncertainties in the nuclear cross-sections of Kamae
et al. (2006). If we include gamma-ray emission from secondary
leptons and assume a magnetic field that is weaker than approx-
imately 5 μG, then the quality of the fits of the hadronic models
to the gamma-ray data becomes comparable to the IC models
(Figure 40). The derived spectra of CRs in the leptonic and
hadronic models of the Fermi bubbles agree with the previous
results (e.g., Crocker & Aharonian 2011; Mertsch & Sarkar
2011).

For IC models of the bubbles, the homogeneous energy spec-
trum within the area of the bubbles and the rather sharp edges
may favor a transient bubble formation scenario with either fast
transport of leptonic CRs to high latitudes or continuous reaccel-
eration of leptons within the volume of the bubbles. The cutoff
in the energy spectrum can be explained by the cooling of elec-
trons due to IC and synchrotron energy losses. The presence
of a cutoff in the proton spectrum for the hadronic model of
gamma-ray production (Crocker & Aharonian 2011) would in-
dicate that either the mechanism of proton acceleration becomes
less efficient around a few TeV, or that the protons with higher
energies can escape from the bubbles.

We find that the electrons in the IC scenario can also explain
the WMAP and Planck microwave haze data for a magnetic
field in the range between 5 μG and 20 μG (Figure 35). The
secondary electrons and positrons in the hadronic scenario
produce synchrotron radiation with a spectrum that is too soft
compared to the microwave haze spectrum, whereas the overall
normalization of the synchrotron radiation from the secondary
particles is at least a factor three to four smaller than the
microwave haze level (Figures 38 and 39). A simultaneous
explanation of the gamma-ray and the microwave data in
a hadronic model requires an additional source of primary
electrons or a reacceleration of the secondary leptons.
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APPENDIX A

χ2 APPROXIMATION TO THE LIKELIHOOD

In Section 4, we use the quadratic approximation to the log
likelihood

logL ≈
E bins
∑

i

pixels
∑

j

dij log
μij

dij

− (μij − dij )

≈ −
1

2

E bins
∑

i

pixels
∑

j

(dij − μij )2

σ 2
ij

, (A1)

where dij is the gamma-ray data and μij is the model in an
energy bin i and a pixel j. For a large number of counts the
statistical uncertainty in the denominator is σ 2

ij ≈ dij ≈ μij . For

both choices σ 2
ij = dij and σ 2

ij = μij the fit has a statistically
significant bias. For example, consider an energy bin i (in the
following argument we omit the energy index i for brevity). If
the underlying distribution of photons is isotropic (for example,
in a high latitude patch), then the best estimate of the model

μj = μ is the arithmetic mean μ∗ = d̄ = 1/Npix

∑Npix

i=1 dj . If,

however, one takes σ 2
j = dj , then the χ2 minimization gives the

harmonic mean

μ∗ =
Npix

∑Npix

i=1
1
dj

< d̄. (A2)

The reason for this bias is that the fluctuations above the
true model dj > μ are underweighted in the χ2, while the
fluctuations below the true model dj < μ are overweighted.

In the second case, if we take σ 2
j = μ and minimize χ2 with

respect to μ, then we get the quadratic mean

μ∗ =

√

√

√

√

1

Npix

Npix
∑

i=1

d2
j > d̄. (A3)

This bias occurs because models with larger μ have smaller χ2

due to the presence of μ in the denominator.
In order to get an unbiased μ∗ from a χ2 minimization, one

can take σ 2
j = d̄ . In this case both the best-fit parameter μ∗ and

the standard deviation found from the χ2 minimization coincide
with the best estimators in the true Poisson distribution. Indeed,
the estimators of the mean and the standard deviation of the
mean in a Poisson distribution are

μ = d̄, σ 2
μ =

d̄

N
. (A4)

The same values are obtained by minimizing

χ2(μ) =
∑

j

(dj − μ)2

d̄
(A5)
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Figure 42. Left: energy density of the ISRF (including CMB) at different heights above the Galactic center z = 2, 5, 10 kpc (Porter & Strong 2005; Moskalenko et al.
2006). For comparison we also plot the energy density of 5, 10, and 20 μG magnetic fields. Right: Klein–Nishina transition energies Ee = m2

ec
2/EISRF for the peaks

of the ISRF energy density fields at z = 5 kpc. The peaks of the ISRF at 5 kpc are ECMB = 9.2 × 10−4 eV, EIR = 9.6 × 10−3 eV, and ESL = 1.5 eV.

(A color version of this figure is available in the online journal.)

with respect to μ. In particular, the standard deviation of the
mean is

1

σ 2
μ

=
1

2

d2χ2

dμ2
=

N

d̄
. (A6)

The observed gamma-ray flux is not uniform (i.e., we cannot
average over the whole sky to get an estimate of σ 2). The
gamma-ray flux can be approximated as a constant only locally.
We find the value of the local average by smoothing the data with
a Gaussian kernel. At low energies the radius of the kernel is 2◦,
which corresponds to averaging over approximately 15 pixels in
the pixelation scheme chosen for the paper. At energies where
on average there are fewer than 100 photons within a 2◦ radius,
we take the smoothing radius r such that there are on average
100 photons within r. The radius stays at 2◦ up to 5 GeV, and
then grows to about 20◦ at 100 GeV, and 100◦ at 500 GeV. Thus
the estimate of the σ 2

ij that we use in the χ2 definition is given

by the smoothed counts map d̃ij , where the smoothing radius
depends on energy bin i. There is still a small bias due to using
the smoothed data counts instead of the true but unknown model.
This bias manifests itself in a small underestimation of the total
gamma-ray flux. The difference is less than 1% below 2 GeV,
it increases up to 2%–3% around 10 GeV, and above 10 GeV
it is smaller than the statistical uncertainty. This bias is much
smaller than the other sources of the systematic uncertainty.

APPENDIX B

IC AND HADRONIC MODELS OF THE BUBBLES

Here we present details about the calculation of IC and
hadronic gamma-ray emission to model the spectrum of the
Fermi bubbles. As in Section 7, we use the baseline model in
Figure 18 as an example of the gamma-ray spectrum of the
bubbles, while the other determinations of the Fermi bubbles
spectra are used to estimate the systematic uncertainties.

B.1. IC Model of the Fermi Bubbles

The IC emission is produced by the scattering of high-energy
electrons on the ISRF photons. The density of the ISRF photons
(Porter & Strong 2005; Moskalenko et al. 2006) that we use to
calculate the IC emission is presented in Figure 42 on the left.
The three large bumps (going from left to right) correspond to

CMB, IR, and starlight (SL) photons. In this analysis we use the
ISRF distribution at z = 5 kpc.

The energy spectrum of the IC photons is found from the
convolution of the electron and the ISRF densities

dQγ

dEγ

= c

∫

dσIC(Eγ , Ee, Eph)

dEγ

dne

dEe

dEe

dnph

dEph

dEph, (B1)

where c is the speed of light, dQγ /dEγ is in units of

(GeV−1 cm−3 s−1), and dne/dEe and dnph/dEph are in units

of (GeV−1 cm−3). For completeness we present the scattering
cross section (Blumenthal & Gould 1970)

dσIC

dEγ

=
3σT

Ee

1

Γǫ

×
(

2q ln q + (1 + 2q)(1 − q) +
1

2

(Γǫq)2

1 + Γǫq
(1 − q)

)

,

(B2)

where σT is the Thomson cross section and

Γǫ =
4EphEe

m2
ec

4
, q =

Eγ

Γ(Ee − Eγ )
. (B3)

The transition between the non-relativistic (Thomson) and
relativistic (Klein–Nishina) scattering happens when the energy
of the ISRF photon in the center of mass is comparable to the
mass of the electron hνγ ∼ mec

2. The maxima of the CMB,
IR, and starlight components of the ISRF at 5 kpc are ECMB =
9.2 × 10−4 eV, EIR = 9.6 × 10−3 eV, and ESL = 1.5 eV. The
characteristic electron energies for the maxima of the ISRF
components are shown in Figure 42 on the left. For starlight
photons the Klein–Nishina transition is around 100 GeV.

The gamma-ray flux is determined from the source energy
density as a line of sight integral

dNγ

dEγ

=
1

4π

∫

dQγ

dEγ

dR. (B4)

If we assume a spatially uniform ISRF distribution, then the flux
of gamma-rays can be expressed in terms of the column density
of the electrons

fe =
1

4π

∫

dne

dEe

dR. (B5)
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Figure 43. Left: contribution to the IC model of the Fermi bubbles from different components of the ISRF. Right: contribution to the IC model of the Fermi bubbles
from electrons of different energies.

(A color version of this figure is available in the online journal.)

Figure 44. Left: synchrotron emission from electrons of different energies. The points correspond to the WMAP and Planck microwave haze intensities. Right:
synchrotron critical frequency as a function of electron energy for the different magnetic fields at α = 90◦. The band corresponds to the WMAP and Planck haze
frequencies (Ade et al. 2013).

(A color version of this figure is available in the online journal.)

Then
dNγ

dEγ

= c

∫

dσIC

dEγ

fe(Ee)dEe

dnph

dEph

dEph. (B6)

The best-fit electron spectrum is fe(Ee) = 3.6 × 108 ·
E−2.2

e e−Ee/1.3 TeV in units of (GeV−1 cm−2 sr−1). The total en-
ergy in electrons above 1 GeV is

We = Ω4πR2

∫ ∞

1 GeV

Eefe(Ee)dEe ≈ 1.0 × 1052 erg (B7)

where Ω ≈ 0.66 sr is the surface area of the bubbles (for
|b| > 10◦) and R ≈ 9.4 kpc is the distance to the center of
the bubbles at |b| = 25◦.

The contribution of different ISRF fields and the contribution
of electrons of different energies to the gamma-ray flux is
presented in Figure 43. Most of the contribution below 100 GeV
comes from the CMB, which is the most abundant source
of photons in terms of the number density. Above 100 GeV
the IC signal is dominated by starlight and IR photons. In
this calculation we assume an isotropic IC scattering cross
section. The anisotropy of the starlight and IR photon flux at
high latitudes may introduce a correction to the calculations
(Moskalenko & Strong 2000) at energies above 100 GeV where
the IR and starlight contribution is significant. The magnitude
of the change is not expected to be large, as shown in Figure 34

where we compare the full ISRF model with CMB-only IC
emission.

B.2. Microwave Haze

In this subsection, we calculate the synchrotron emission
from the same population of electrons derived in the previous
subsection. We find that this population of electrons can also
explain the WMAP and Planck microwave haze data (Finkbeiner
2004; Ade et al. 2013).

The power emitted by an electron with an energy E = γmc2

in a magnetic field B with an angle α between the electron
velocity and the magnetic field is (Blumenthal & Gould 1970)

Pemitted(ν, α,E,B) =
√

3e3B sin α

mc2

ν

νc

∫

ν/νc

dξK5/3(ξ ), (B8)

where K5/3(ξ ) is the modified Bessel function of the second
kind and νc is the critical frequency

νc =
3eBγ 2

4πmc
sin α. (B9)

The electron distribution can be expressed as a product of a
distribution related to pitch angle α, N (α), and the energy
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Figure 45. Left: IC and synchrotron characteristic cooling time for CR electrons, which is defined as tcool = −E/Ė. Right: the IC energy loss rate for different ISRF
fields. The solid line represents the loss rate, including the Klein–Nishina transition. Horizontal lines correspond to the Thomson approximation of the energy loss for
different densities of the ISRF fields (CMB only, CMB+IR, and CMB+IR+starlight). Vertical lines correspond to the Klein–Nishina transition energy for starlight, IR,
and CMB (left to right, respectively). The characteristic transition energies are the same as in Figure 42.

(A color version of this figure is available in the online journal.)

Figure 46. Contributions to the gamma-ray spectrum from protons at different
momenta. The overall spectrum of CR protons is derived from fitting to the
Fermi bubbles spectrum in Section 7.2.

(A color version of this figure is available in the online journal.)

spectrum dne/dE

dN

dEdΩαdV
=

N (α)

4π

dne

dE
. (B10)

The power emitted from a volume element is

dW

dνdt
=

∫

dE

∫

dΩα

N (α)

4π

dne

dE
Pemitted(ν, α,E,B). (B11)

The intensity of microwave flux is derived analogously to
Equations (B4) and (B6)

dI

dν
=

∫

dE

∫

dΩα

N (α)

4π
fe(E)Pemitted(ν, α,E,B), (B12)

Figure 47. Comparison of the energy density of CRs in the leptonic and hadronic
models of the Fermi bubbles, and the energy density of an 8.4 μG magnetic field.
The CR energy densities are obtained from Equations (B5) and (B16), assuming
that the distance to the center of the bubbles is 9.4 kpc.

(A color version of this figure is available in the online journal.)

where fe(E) is the same distribution of electrons as in
Equation (B5). We assume that there is no dependence on the
pitch angle (i.e., N (α) = 1).

In Figure 44 on the left we show the contribution of electrons
at different energies to the total synchrotron spectrum. The
curves are derived from Equation (B12) by only integrating over
the pitch angle α. For a given electron energy E, most of the
emitted power is concentrated around the critical frequency. In
Figure 44 on the right we show the critical frequency for a range
of magnetic fields relevant to the problem (we assume sin α = 1
on this plot). The electrons at energies between 5 and 30 GeV
contribute most of the power in the synchrotron emission at
the WMAP and Planck frequencies. From Figure 43 we find
that most of the contribution to the gamma-ray emission of the
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Figure 48. Left: comparison of leptonic CR spectra in the IC model of the Fermi bubbles to the local CR spectra: PAMELA electron only spectrum (Adriani et al.
2011a), HESS 2008 (Aharonian et al. 2008), HESS 2009 (Aharonian et al. 2009), and Fermi-LAT 2010 (Ackermann et al. 2010). Right: comparison of proton CR
spectra in the hadronic model of the Fermi bubbles to the local proton CR spectrum: PAMELA (Adriani et al. 2011b), ATIC-2 (Panov et al. 2007), and CREAM (Yoon
et al. 2011). In both cases, the band represents an envelope of the CR spectra fitted to the gamma-ray spectra of the bubbles for different models of the foreground
emission and definitions of the bubbles templates. We do the comparison at energies above 10 GeV because this is the energy range relevant for the production of the
gamma-rays from the bubbles and the microwave haze. Below ∼10 GeV the local CR spectra are affected by solar modulation.

(A color version of this figure is available in the online journal.)

bubbles comes from electrons with energies above 100 GeV,
that is the gamma-ray spectrum of the Fermi bubbles and
the microwave haze signal in the WMAP and Planck data are
produced by electrons in different energy ranges.

In Figure 45 we show the cooling time for electrons in
different magnetic fields. In the case of zero magnetic field, all
energy losses in this figure are due to IC scattering. The starlight
photons do not contribute significantly to the energy loss above
100 GeV. Above 100 TeV the IR and the CMB photons must
also be considered in the Klein–Nishina regime. As a result, the
IC cooling time above 100 TeV is leveling out (top curve on the
left plot).

B.3. Hadronic Model of the Fermi Bubbles

The gamma-rays can be produced as a result of an interaction
of high-energy CR protons with interstellar gas. The rate of
gamma-ray production per unit volume and unit energy is

dQ

dEγ dt
=

∫

dσ (Tp, Eγ )

dEγ

nHvp

dnp

dTp

dTp, (B13)

where np and nH are the densities of CR protons and hydrogen
atoms per unit volume, vp is the velocity of the CR, and
dσ (Tp, Eγ )/dEγ is the differential cross section to produce a
gamma-ray with energy Eγ in an interaction of a CR proton with
kinetic energy Tp = Ep−mp and the nucleus of a hydrogen atom
at rest.

We assume that the hadronic CR spectrum can be described
as a power law in momentum at low energies. The derivative
with respect to Tp is transformed to the derivative with respect
to the momentum pp through the expression

vp

dnp

dTp

= c
dnp

dpp

. (B14)

The gamma-ray flux in the vicinity of Earth is

dNγ

dEγ

=
∫

dσ (Tp, Eγ )

dEγ

nHcfp(pp)dTp, (B15)

where we assume a constant gas density nH throughout the
bubbles, and denote the line-of-sight integral of the CR

density as

fp(pp) =
1

4π

∫

dnp

dpp

dR. (B16)

In Figure 46 we show examples of fitting the gamma-ray data
assuming a power law or a power law with a cutoff form of fp.
We also show the contribution from different proton momenta in
the power law with an exponential cutoff case. The parameters
are fp ∝ p−2.1e−pc/13.7 TeV. In order to find the normalization
and the total energy in protons, we need to make an assumption
on the number density of hydrogen atoms inside the bubbles.
We take nH = 0.01 cm−3 as a reference value.

The source function for the secondary particles is

dQs

dEs

=
∫

dσpp→s(Tp, Es)

dEs

nHc
dnp

dpp

dTp, (B17)

where s denotes the particle species. The flux of neutrinos can be
calculated similarly to the flux of gamma-rays in Equation (B15)

dNν

dEν

=
∫

dσ (Tp, Eν)

dEν

nHcfp(pp)dTp. (B18)

The flux of neutrinos from the bubbles was presented in
Figure 37 on the left.

We compare the CR energy density in the leptonic and
hadronic models to the energy density of an 8.4 μG magnetic
field in Figure 47. We find that the energy density of CR in
the hadronic model of the Fermi bubbles is approximately in
equipartition with the magnetic field. In the IC model of the
Fermi bubbles the energy density in the leptonic CR is much
lower than the magnetic field energy density.

In Figure 48 we compare the CR energy density in the leptonic
and hadronic models of the Fermi bubbles to the local CR energy
density. In the hadronic model of the bubbles, the energy density
of the CR is about an order of magnitude larger than the energy
density of the local CR. In the leptonic model, the energy density
of the leptonic CR inside the bubbles is comparable to the local
energy density of the leptonic CR. The spectrum of the leptonic
CR in the bubbles is harder. As a result, above (below) 100 GeV
the spectrum of the leptonic CR inside the bubbles is larger
(smaller) than the local CR spectrum.
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