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1 Introduction

The Sachdev-Ye-Kitaev model (SYK) [1, 2] is a 0+1 dimensional model of N � 1 fermions

with an all-to-all random quartic interaction. SYK has three notable features:

Solvable at strong coupling. At large N one can sum all Feynman diagrams, and

thereby compute correlation functions at strong coupling.

Maximally chaotic. Chaos is quantified by the Lyapunov exponent, which is defined by

an out-of-time-order four-point function [3, 4]. The Lyapunov exponent of a black

hole in Einstein gravity is 2π/β [4–6], where β is the inverse temperature. This is

the maximal allowed Lyapunov exponent [7], and SYK saturates the bound [1].

Emergent conformal symmetry. In the context of the two-point function, there is

emergent conformal symmetry at low energies [1, 8–10].

Due the scarcity of nontrivial systems which can be solved at strong coupling, the first

item is already enough to make the model worthy of study. The combination of the first

and the second items is remarkable and surprising. In the context of classical systems, solv-

ability usually means integrability, which is mutually exclusive from chaos. For a quantum

system, there is no such restriction, as SYK demonstrates. The third item implies that the
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model has some kind of holographic dual. The second item strongly suggests this dual is

Einstein gravity in some form. The combination of all three items would appear to poten-

tially place the model in the unique class of constituting a solvable model of holography.

SYK is a variant of the Sachdev-Ye model (SY) [2] that was introduced by Kitaev

in a series of seminars [1]. Kitaev made significant advances in understanding the model,

connected the holographic study of chaos of Shenker and Stanford [5, 6, 11] to Lyapunov

exponents [3], and proposed SYK as a model of holography.

The main goal of this paper is to study the four-point function. This is also being

considered in [12, 13]. In section 2 we review the model, its two-point function, and

the emergent conformal symmetry. In section 3 we first review the setup of the four-

point function introduced in [1]. We then proceed to solve the Schwinger-Dyson equation

to compute the spectrum of two-particle states. We find both a discrete tower and a

continuous tower. In section 4 the four-point function is expressed as a sum over the

spectrum. The discrete part of the sum is explicitly evaluated. Some comments are made

on the breaking of conformal invariance.

2 Two-point function

The SYK model is given by the Hamiltonian [1],

H =
1

4!

N∑
i,j,k,l=1

Jijkl χiχjχkχl , (2.1)

where χj are Majorana fermions {χi, χj} = δij , and the model has quenched disorder with

the couplings Jijkl drawn from the distribution,

P (Jijkl) ∼ exp
(
−N3J2

ijkl/12J2
)
, (2.2)

leading to a disorder average of,

J2
ijkl =

3!J2

N3
, Jijkl = 0 . (2.3)

The expressions for the correlation functions that will follow will always be the result

after the disorder average has been performed. The Lagrangian trivially follows from the

Hamiltonian and is,

L = −1

2
χj

d

dt
χj −H . (2.4)

The couplings Jijkl have dimension 1, while the fermions χi have dimension 0. The free

two-point function for the fermions is,

G0(t)δij ≡ −〈Tχi(t)χj(0)〉 = −1

2
sgn(t)δij . (2.5)

As a result of the disorder average, the anticommutation of the fermions, and large N , the

Feynman diagrams for the full (zero temperature) two-point function take a remarkably
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simple form. The self energy Σ(t1, t2) (1PI) is expressed in terms of the two-point function

G(t1, t2) (see figure 1a)

Σ(t1, t2) = J2G(t1, t2)3 . (2.6)

Expressing the two-point function as a sum of the 1PI diagrams,

G(iω)−1 = iω − Σ(iω) . (2.7)

The equations (2.6) and (2.7) fully determine the two-point function. Their solution is only

known in the limit of low energies. In this limit, one may drop the iω in (2.7), leading the

Fourier transform of (2.7) to become∫
dt G(t1, t)Σ(t, t2) = −δ(t1 − t2) . (2.8)

Combining (2.8) with (2.6) gives an integral equation for G(t1, t2),

J2

∫
dt G(t1, t)G(t, t2)3 = −δ(t1 − t2) , (2.9)

which one can check is solved by [2],

G(t) = −
(

1

4πJ2

)1/4 1√
|t|

sgn(t) . (2.10)

The solution (2.10) for the Euclidean two-point function is valid at low energies, or equiva-

lently, at strong coupling: the time separation t should satisfy J |t| � 1. On the basis of the

two-point function, it appears that the theory flows to an IR conformal fixed point, with

the fermions acquiring an anomalous dimension ∆ = 1/4. The above equations (2.6), (2.7)

determining the two-point function can either be found from the Feynman diagrams, as

has been done here following ref. [1], or equivalently by performing the disorder average

via the replica trick and evaluating the saddle point of the action [2, 14].

An equivalent way to find the two-point function is from the Schwinger-Dyson equation

in the form (see figure 1c),

G(t) = G0(t) + J2

∫
dt1dt2 G0(t1)G(t1, t2)3G(t2, t) . (2.11)

In the IR, one may drop the left-hand side, and find the solution (2.10). The late time

decay of G(t), as compared to the constant behavior of G0(t), demonstrates that dropping

that left-hand side in (2.11) was self-consistent.

To go to finite temperature one uses the conformal invariance of the Schwinger-Dyson

equation (2.9) [1, 8]. Suppose G(σ1, σ2) solves (2.9),

J2

∫
dσ G(σ1, σ)G(σ, σ2)3 = −δ(σ1 − σ2) . (2.12)

Consider an arbitrary time reparameterization, σ = f(t). One can check that (2.12)

transforms into (2.9) provided one lets

G(t1, t2) = |∂1f(t1)∂2f(t2)|1/4G(σ1, σ2) . (2.13)

– 3 –
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Figure 1. The line with a box is the full two-point function, while the solid line is the free two-

point function. (a) The self-energy Σ(t1, t2) in terms of the two-point function G(t1, t2). (b) Some

of the Feynman diagrams making up the two-point function. (c) The Schwinger-Dyson equation

for the two-point function. Iterating generates the sum in (b).

Choosing f(t) = e2πit/β maps the line into a circle, transforming the zero-temperature

two-point function into a finite-temperature two-point function [8],

Gβ(t) = − π1/4

√
2βJ

1√
sin(πt/β)

, (2.14)

where the temperature is β−1. Analytically continuing to real time t = −itr turns

sin(πtr/β) into sinh(πtr/β), giving an exponential late time decay of the thermal two-

point function, as is expected for a strongly coupled CFT.

Sachdev-Ye. The SYK model is closely related to the Sachdev-Ye model (SY), which

we now review. SY involves N � 1 spins with Gaussian-random, infinite-range exchange

interactions [2],

H =
1√
M

N∑
j,k=1

Jjk ~Sj · ~Sk , (2.15)

where the Jij are drawn from the distribution,

P (Jij) ∼ exp(−J2
ij/2J

2) , (2.16)
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and the spins are in some representation of SU(M). The choice of SU(2) was studied

by Bray and Moore [15], and it was numerically found to have spin-glass order at zero

temperature. Sachdev and Ye [2] considered (2.15) in an arbitrary representation of SU(M),

obtaining analytic control over (2.15) in the limit M � 1. The correlators in SY are

obtained by representing the spins in terms of fermions [2],

Sνµ = c†µc
ν ,

∑
µ

c†µc
µ = nb , (2.17)

where nb denotes the number of columns in the Young tableaux characterizing the repre-

sentation of SU(M), and (2.17) holds at each site. Under the mapping (2.17) the Hamil-

tonian (2.15) is transformed into,

H =
1√
M

N∑
i,j=1

M∑
µ,ν=1

Jij c
†
iµc
†
jνc

ν
i c
µ
j , (2.18)

which, like the SYK Hamiltonian (2.1), is quartic in the fermions. Depending on the

representation of SU(M), the ground state may or may not be a spin glass. One choice

of representation which was shown in [16] to avoid a spin glass phase is one with a Young

tableaux that has nb = O(1) columns and O(M) rows, where M � 1 [2]. In order to a

have a system that can serve as a model of holography, it is important that there not be

a spin-glass phase [4].1 For SYK, a spin glass phase is manifestly avoided, as the fermions

can not condense at a site (unlike the case of SY where the the fermions have an additional

gauge index µ) [14]. SYK is simpler than SY, in that it only requires a single scaling limit

N →∞, while SY also requires M →∞. On the other hand, it may be useful to study SY

as well, as it has a 2-index coupling, which may fit better with a bulk string theory than

the 4-index coupling Jijkl in SYK.

3 Spectrum

In this section we turn to the study of the four-point function,

〈χi(t1)χi(t2)χj(t3)χj(t4)〉 . (3.1)

The leading order connected piece scales as 1/N . As with the two-point function, the large

N structure of the four-point function is remarkably simple. At leading order, it is given

entirely by the ladder diagrams shown in figure 2 [1].

The 1PI four-point function satisfies the Schwinger-Dyson equation (figure 2b),

Γ(t1, t2, t3, t4) = Γ0(t1, t2, t3, t4) +

∫
dtadtb Γ(t1, t2, ta, tb)K(ta, tb, t3, t4) , (3.2)

where

K(ta, tb, t3, t4) = −3J2G(ta, t3)G(tb, t4)G(t3, t4)2 ,

Γ0(t1, t2, t3, t4) = 3J2δ(t13)δ(t24)G(t1, t2)2 , (3.3)

1A maximal Lyapunov exponent [7] could potentially occur in the highly quantum regime, at low temper-

atures. It is therefore important that the system not freeze into a spin glass as the temperature is lowered.
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Figure 2. (a) The four-point function is given by a sum of ladder diagrams, such as the one

shown. (b) These ladder diagrams are generated by iterating the Schwinger-Dyson equation (note:

the propagators are really the dressed propagators; we have suppressed the box on the line that it

is meant to indicate this).

and G(t1, t2) is the two-point function (2.10), and we sometimes use the notation tij =

ti − tj . Finding the four-point function amounts to solving the integral equation (3.2).

Regarding the kernel K(ta, tb, t3, t4) as a matrix 〈ta tb|K|t3 t4〉, a straightforward way to

solve (3.2) is by diagonalizing the kernel. The goal of this section will be to compute the

eigenvectors v(ta, tb) of the kernel. The four-point function will then follow, and will be

discussed in section 4.

Some of the eigenvectors can be found by assuming a form that is a power of the

time separation tab. In section 3.1 we review Kitaev’s calculation of the eigenvalues of the

kernel for this set. Surprisingly, there is an SL(2,R) symmetry in the ta, tb space. This

was recognized by Kitaev, and is a hint of the holographic nature of SYK: the bulk AdS2

is a hyperboloid in embedding coordinates, having the symmetry SO(2, 1) ∼ SL(2,R).

In section 3.2 we exploit this insight and use the SL(2,R) symmetry to generate all the

eigenvectors. Subtleties associated with boundary terms are discussed in appendix B. In

section 3.3 we directly verify that these are eigenvectors of the kernel. In section 3.4 we

find the basis of eigenvectors that span the ta, tb space.

3.1 Eigenvalues

To find the spectrum of the theory, we must solve for the eigenvalues g(α) and eigenvectors

vα(ta, tb) of the kernel,

∫
dtadtb vα(ta, tb) K(ta, tb, t3, t4) = g(α) vα(t3, t4) . (3.4)

– 6 –
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Schematically, we can write (3.4) as,

Kvα = g(α)vα . (3.5)

One set of eigenvectors that satisfy (3.4) are [1],

vα(ta, tb) =
1

|ta − tb|2α
sgn(ta − tb) . (3.6)

The corresponding eigenvalues g(α) are found by plugging vα into the equation (3.4). The

integral on the left-hand side of (3.4) is,∫
dta

∫
dtb

sgn(ta − tb)
|ta − tb|2α

sgn(ta − t3)

|ta − t3|1/2
sgn(tb − t4)

|tb − t4|1/2
. (3.7)

There are 8 regions of integration, arising from each of the sgn’s being positive or negative,

which must be done separately; the computation is performed in appendix A. The result

is [1],

g(α) = −3

2

1

(1− 2α) tan(πα)
. (3.8)

In fact, the integral (3.4) is divergent for all α, and the result (3.8) implicitly involved

analytic continuation.2 We will have a better understanding of this divergence once we

find the complete set of eigenvectors.

3.2 SL(2,R) and all eigenvectors

We now use the eigenvectors (3.6) and the SL(2,R) algebra to generate all the eigenvectors.

Consider the SL(2,R) algebra with the standard generators Lp ,

Lp = tp1∂t1 + tp2∂t2 , p = 0, 1, 2 ,

[Lp, Lq] = (q − p)Lp+q−1 . (3.9)

One can perform a similarity transform to find new generators which also satisfy the same

SL(2,R) algebra. It will be useful to define L̃p = |t12|−3/2Lp|t12|3/2, so that

L̃0 = L0 , L̃1 = L1 +
3

2
, L̃2 = L2 +

3

2
(t1 + t2) . (3.10)

The advantage of the L̃p is that, at least naively, one finds they commute with the kernel,

L̃pK = KL̃p , (3.11)

in the notation of (3.5). So, the L̃p take solutions of (3.5) to new solutions with the same

eigenvalue. In fact, this statement is subtle and requires a careful treatment of boundary

terms, and we elaborate more on it in appendix B.

2For instance, one of the regions of integration, region 7 in the notation of appendix A, which is for

ta < tb, ta < t3, tb > t4 , gives a result which is zero. This is for an integral of a manifestly positive quantity.

A result of zero arises because the contributions to this integral, (A.10) and (A.11), precisely cancel.

– 7 –
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We can generate new solutions with L̃2,

∂λvαλ(t1, t2) = (t1t2)−3/2L̃2(t1t2)3/2vαλ(t1, t2) . (3.12)

Integrating this with the initial condition (3.6) gives [1],

vαλ(t1, t2) = |1− λt1|2α−3/2|1− λt2|2α−3/2 sgn(t12)

|t12|2α
. (3.13)

This would be an acceptable set, but it is better to take a set of definite frequency (which

are distinguished by their subscript),

vαω(t1, t2) =

∫ ∞
−∞

dτe−iωτvαλ(t1 − τ, t2 − τ) . (3.14)

The constant λ scales away, as it must or else there would be too many solutions, and vαω
becomes,

vαω(t1, t2) =
sgn(t12)

|t12|2α

∫ ∞
−∞

dτe−iωτ |1− t1 + τ |2α−3/2|1− t2 + τ |2α−3/2 . (3.15)

Splitting the integral into three regions, depending on how τ compares with 1 − t1 and

1− t2, and recalling the integral definition of the Bessel functions,

Kν(z) =
(2z)ν

√
π

Γ(ν + 1/2)
e−z

∫ ∞
0

dt e−2zttν−1/2(1 + t)ν−1/2 , (3.16)

Iν(z) =
(2z)ν√

πΓ(ν + 1/2)
ez
∫ 1

0
dt e−2zt (t(1− t))ν−1/2 , (3.17)

we find,

vαω(t1, t2)=
sgn(t12)

|t12|
e−iω(t1+t2)/2

(
cos(2πα)J1−2α(|ωt12|/2)+(1+sin(2πα))J2α−1(|ωt12|/2)

)
,

(3.18)

where in going from (3.15) to (3.18) we have dropped overall factors.3

3.3 Directly finding the eigenvectors

In the previous section, we used the SL(2,R) symmetry to find the eigenvectors (3.18). It

is useful to directly check that (3.18) are in fact eigenvectors of the kernel, which is what

we do in this section. Aside from being a consistency check, this will also help to establish

for which choices of α the claimed eigenvectors in (3.18) are in fact eigenvectors.

We take the eigenvectors to be of the form,

vνω(ta, tb) =
sgn(ta − tb)
|ta − tb|

e−iω(ta+tb)/2Zν(|ω(ta − tb)|/2) , (3.19)

3It is important that in (3.18) the argument of the Bessel function has |ω| rather than ω. We are

grateful to J. Maldacena and D. Stanford for noticing this error in the draft through comparison with their

four-point function results [12].
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where at this stage Zν(ω|ta − tb|/2) is taken to be an arbitrary function. We will now

insert (3.19) into the eigenvector equation (3.4) and perform the integral over ta + tb. The

integral appearing in (3.4) is,∫
dta

∫
dtb

sgn(ta − tb)
|ta − tb|

e−iω(ta+tb)/2Zν(|ω(ta − tb)|/2)
sgn(ta − t3)

|ta − t3|1/2
sgn(tb − t4)

|tb − t4|1/2
. (3.20)

We let t = ta − tb, t+ = ta + tb, τ = t3 − t4, τ+ = t3 + t4, and take τ > 0. This transforms

the integral into∫
dt

sgn(t)

|t|
Zν(|ωt|/2)

∫
dt+ e−iωt+/2

sgn(t+ − τ+ − τ + t)sgn(t+ − τ+ + τ − t)√
|t+ t+ − τ − τ+||t+ − t− τ+ + τ |

. (3.21)

For the t+ integral we change variables to t̃+ = t+−τ+
|t−τ | giving,

e−iωτ+/2
∫
dt

sgn(t)

|t|
Zν(|ωt|/2)

∫
dt̃+ e−iω|t−τ |t̃+/2

sgn(t̃+ − 1)sgn(t̃+ + 1)

|t̃2+ − 1|1/2
. (3.22)

Splitting the t̃+ integral into three regions and evaluating gives

− πe−iωτ+/2
∫
dt

sgn(t)

|t|
Zν(|ωt|/2)

(
J0(|ω(t− τ)|/2) + Y0(|ω(t− τ)|/2)

)
. (3.23)

Since the eigenfunctions of the SL(2,R) Casimir (B.3) are Bessel functions, the function Zν
should be some combination of Bessel functions. While any Bessel function is an eigenfunc-

tion of the Casimir, as a result of possible boundary terms (as discussed in appendix B),

it is only for eigenvectors that are an appropriate combination of Bessel functions that

the kernel actually commutes with the SL(2,R) generators. In addition, inspection of the

Bessel addition formula (D.3) also suggests Zν is composed of Bessel functions. In any

case, using the hint that the Zν are composed of Bessel functions, we take the Zν to be

some combination of Bessel functions Jν and J−ν and fix the relative coefficient so as to

ensure it is an eigenvector. In appendix. C we evaluate the integral (3.23) and find that

the Zν in the eigenfunctions are given by,

Zν(x) = Jν(x) + ξνJ−ν(x), ξν =
tan(νπ/2) + 1

tan(νπ/2)− 1
, (3.24)

and that the corresponding eigenvalues for the eigenvectors (3.19) are,

g(ν) = − 3

2ν
tan

νπ

2
. (3.25)

Setting ν = 2α− 1 gives back (3.8). Moreover, the eigenfunctions (3.19), (3.24) agree with

the eigenfunctions (3.18) found previously through use of the SL(2,R) generators.

3.4 A complete set of eigenvectors

In the previous section we established that the eigenvectors of the kernel (3.4) are given

by (3.19), (3.24). In this section, we find the appropriate range of ν so as to have a set of

– 9 –
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eigenvectors vνω(t1, t2) that form a complete basis over t1, t2.4 We will do this by appealing

to the standard fact in quantum mechanics that the full set of continuous and bound states

forms a complete basis.

We start with the Bessel equation,

t2J ′′ν (t) + tJ ′ν(t) + (t2 − ν2)J(t) = 0 , (3.26)

which, upon substituting x = log t becomes,

− d2Jν(x)

dx2
− e2xJν(x) = −ν2Jν(x) . (3.27)

The Bessel equation looks like a Schrödinger equation in a potential

V (x) = −e2x , (3.28)

with an energy of −ν2.

Now notice that the eigenfunction (3.24) has a term J−ν(|ωt12|/2), which diverges at

small |t12| for Re(ν) > 0. In terms of the x coordinate, this is a divergence at large negative

x for the states with negative energy.5 We get rid of these states by placing boundary

conditions at large positive x that force these solutions to vanish. With the presence of

these boundary conditions, we have a quantum mechanics problem in a potential that has

both bound states and scattering states. The bound states are characterized by ν = 3/2+2n

for nonnegative integer n, as these are the only choices of ν that force ξν (the coefficient of

J−ν) to vanish. The scattering states are given by ν = ir with 0 < r < ∞. The complete

set of eigenfunctions is therefore given by ν = ir with 0 < r < ∞ and ν = 3/2 + 2n for

nonnegative integer n.6

This mixing of UV and IR is strange, but it is a recurrent theme in AdS2/CFT1. It

will appear again when we find in section 4 that there is a divergent piece in the four-point

function which must be regulated by physics coming from the UV.

Normalization. Finally, we need to normalize the eigenfunctions. It will be helpful to

use the following indefinite integral Bessel identity,∫
dt

t
JνJµ = t

Jν−1Jµ − JνJµ−1

ν2 − µ2
− JνJµ
µ+ ν

. (3.29)

First, we normalize the discrete eigenfunctions, with νn = 3/2 + 2n. For Re(α),Re(β) > 0,

∫ ∞
0

dt

t
JαJβ =

2

π

sin
(
π
2 (α− β)

)
α2 − β2

. (3.30)

4The eigenvectors have the antisymmetry vνω(t1, t2) = −vνω(t2, t1), consistent with the antisymmetry

of fermions. So, the eigenvectors will form a complete basis for antisymmetric functions of t1, t2.
5In fact, recall that in the calculation of appendix C, to demonstrate that (3.24) is an eigenfunction

requires that |Re(ν)| < 1, as otherwise various integral identities involving J−ν are not valid. If, however,

ξν is chosen to vanish, so that J−ν is absent, then the eigenfunctions are valid as long as Re(ν) > −1.
6In fact, this set of choices of ν was known to Kitaev to be a complete set, based on considerations of

the representation theory of SL(2,R) [17].
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This is the contribution at t = ∞ of the right-hand side of (3.29); the piece at t = 0

vanishes for Re(α),Re(β) > 0. Thus,∫ ∞
0

dt

t
JνnJνm =

δn,m
2νn

. (3.31)

Now consider the continuous ones, Zν with ν = ir (3.24). This set of eigenfunctions will

be delta-function normalizable. Computing their inner product∫ ∞
0

dt

t
Z∗irZis , (3.32)

by using (3.29) and evaluating at t = 0 and t =∞, we find that the contribution at t =∞
vanishes. We regulate the contribution from t = 0 by evaluating it at t = e−1/ε. Noting that

Jν(e−1/ε) =
e−ν/ε

2νΓ(ν + 1)
+ · · · (3.33)

as well as

δ(x) = limε→0
sin(x/ε)

πx
, (3.34)

we find, ∫ ∞
0

dt

t
Z∗irZis =

2π

Γ(1 + ir)Γ(1− ir)
δ(r − s) = 2

sinhπr

r
δ(r − s) , (3.35)

where we have used ξ∗irξir = 1 and dropped terms that oscillate rapidly as ε→ 0.

Summary. We have found that the complete set of eigenfunctions are,

vνω(ta, tb)=
sgn(ta−tb)√

4π|ta−tb|
e−iω(ta+tb)/2

(
Jν(|ω(ta−tb)|/2)+

tan(νπ/2)+1

tan(νπ/2)−1
J−ν(|ω(ta−tb)|/2)

)
,

(3.36)

where ν pure imaginary, ν = ir with r > 0, make up the continuous family, and ν = 3/2+2n

with integer n ≥ 0 make up the discrete family. The eigenfunctions have an inner product

(vνω, vν′ω′) ≡
∫ ∞

0
|t1− t2| d|t1− t2|

∫ ∞
−∞

d(t1 + t2) v∗νωvν′ω′ = Nνδ(ν−ν ′)δ(ω−ω′) (3.37)

where δ(ν − ν ′) denotes the Kronecker δnm for ν discrete, and the Dirac δ(r − s) for ν

continuous, and

Nν =

{
(2ν)−1 for ν = 3/2 + 2n

2ν−1 sinπν for ν = ir .
(3.38)

4 Four-point function

Equipped with the eigenvectors of the kernel, we now find the four-point function (3.1).

Since the eigenvectors vνω(t3, t4) (3.36) form a complete set, we can expand the four-point

function in terms of them,

Γ(t1, t2, t3, t4) =

∫
dνdω γνω(t1, t2)vνω(t3, t4) , (4.1)
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where the integral over ν denotes an integral over the imaginary ν (ν = ir, r > 0) and a

sum over the discrete real ν (νn = 3/2 + 2n, n ≥ 0), and there are some coefficients γνω.

We may similarly expand Γ0(t1, t2, t3, t4) appearing in the Schwinger-Dyson equation (3.3),

Γ0(t1, t2, t3, t4) =

∫
dνdω γ0νω(t1, t2)vνω(t3, t4) . (4.2)

Recalling Γ0 in (3.2) we get for γ0νω,

γ0νω(t1, t2) =
3J√
4πNν

v∗νω(t1, t2) , (4.3)

where Nν is the normalization factor (3.38) for the eigenvectors. From the Schwinger-Dyson

equation (3.2) we therefore have,

Γ(t1, t2, t3, t4) =
3J√
4π

∫
dνdω

v∗νω(t1, t2) vνω(t3, t4)

(1− g(ν))Nν
, (4.4)

where g(ν) are the eigenvalues (3.25). This is our result for the four-point function. The

integral over ν is to signify an integral over the imaginary ν and a sum over the discrete

ν = 3/2 + 2n. Eq. (4.4) can be viewed as expressing the four-point function as a sum over

all intermediate two-particle states. It is reminiscent of a conformal block decomposition.

If one sets the eigenvalue g(ν) = 1, then the eigenvector equation (3.4) turns into the

Bethe-Salpeter equation for two-particle bound states. This is not the decomposition of

the four-point function used in (4.4). However, the eigenvectors v(ta, tb) of the kernel for

general eigenvalue g(ν) are perhaps also in themselves of interest.

There are three pieces appearing in (4.4). The first is a pole occurring at ν = 3/2, as

a result of g(3/2) = 1. The second is a sum over the remaining discrete ν, νn = 3/2 + 2n

with n ≥ 1. The third is an integral over ν = ir with r > 0.

Divergence

Since g(3/2) = 1, the four-point function (4.4) is divergent. The true four-point function

should be finite, so this divergence must be an artifact of taking the IR limit. Indeed, in

computations of the four-point function, we made use of the two-point function given by

(dropping overall constants) (2.10),

G(t) =
sgn(t)√
J |t|

, (4.5)

and used this for integrals ranging over all times. However, (4.5) is only valid in the IR: for

time separations Jt� 1, as is clear from the derivation of (2.10) in going from (2.7) to (2.8).

To see how the divergence goes away in the full theory, note that the two-point function

in the UV is given by sgn(t) (2.5), and so the true two-point function interpolates between

this and the IR form (4.5). An example of such a function is

G(t) =
sgn(t)√
|Jt|+ 1

, (4.6)
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though of course (4.6) is not the real two-point function; for this one must actually solve

the Schwinger-Dyson equation (2.6), (2.7) for all Jt.7 A correction to the form of the

IR two-point function (4.5) is already enough to remove the divergence in the four-point

function. For instance, Taylor expanding (4.6) about Jt� 1 gives,

G(t) =
sgn(t)√
J |t|

(
1− 1

2J |t|
+ . . .

)
. (4.7)

One can then use first order perturbation theory in quantum mechanics, regarding the

kernel as a Hamiltonian, to compute the change in the eigenvalues, under the change δG

in G going from (4.5) to (4.7),

δgνδ(ω − ω′) =

∫
dt1dt2dt3dt4 v

∗
νω′(t1, t2) δK vνω(t3, t4) . (4.8)

The shift in the eigenvalue δgν will be a power of ω/J (depending on the power of (Jt)−1

used in δG). This shift δgν removes the divergence of the four-point function and, in

addition, removes the degeneracy of the eigenvalues by having them acquire ω dependance.8

The need to break conformal symmetry is in some sense surprising. In the spirit of

effective field theory, one may have thought that the conformal IR theory should in itself

be consistent. Instead, we see that the UV does not truly decouple. In fact, this behavior

should have been expected from holographic studies in AdS2/CFT1. Gravity in AdS2 is

known to be problematic, as the backreaction of any finite energy excitation is so strong

that it destroys the boundary [18]. This was studied in [19] by embedding AdS2 in a higher

dimensional space: with Poincare coordinate z = 0 denoting the boundary, there was a

transition at z = a from conformal Lifshitz (small z) to AdS2 times a compact space (large

z). On the boundary, this corresponds to an RG flow with a CFT1 in the IR. From bulk

computations, [19] found breaking of conformal invariance in the four-point function, along

with a divergence as the regulator a was removed.

This suggests that it is not the IR fixed point of SYK that should be thought of as

dual to AdS2. Rather, one should consider an AdS2 embedded in a higher dimensional

space: for instance, as the near-horizon limit of an extremal charged Reisnner-Nordström

black hole in asymptotic AdS. While the dual of this bulk is certainly not SYK, it may be

that the IR limit is SYK.

Chaos

Building on semiclassical intuition, quantum chaos can be diagnosed by the exponential

growth of an out-of-time-order four-point function [3, 4]. For recent work, see [7, 20–25].

In the context of SYK, one can consider the thermal out-of-time-order four-point function,

〈χi(0)χj(t)χi(0)χj(t)〉β ∼
1

N
eκt , (4.9)

7In fact, a careful study of the Schwinger-Dyson equation shows that the first subleading term one may

naively expect is absent. We thank D. Stanford for sharing his result with us.
8The connection between ν = 3/2 and breaking of conformal symmetry was recognized by Kitaev [1].
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where κ is identified with the Lyapunov exponent.9 Kitaev found that SYK, at strong

coupling βJ � 1, has a Lyapunov exponent κ = 2π/β [1]. This was done by considering

the Schwinger-Dyson equation for the out-of-time-order four-point function, as defined on

the Keldysh contour, and plugging in an ansatz of the form (4.9).

One can also compute (4.9) from the zero-temperature Euclidean four-point func-

tion (3.1). We begin by noting that the finite temperature four-point function

can be obtained by a conformal mapping of the zero-temperature four-point func-

tion. The Schwinger-Dyson equation for the two-point function (2.12) had the invari-

ance (2.13), G′(t1, t2) = [∂1f(t1)∂2f(t2)]1/4G(f(t1), f(t2)). Similarly, one can check that

if Γ(t1, t2, t3, t4) satisfies the Schwinger-Dyson equation for the four-point function (3.2),

then so does

Γ′(t1, t2, t3, t4) = [∂1f(t1)∂2f(t2)∂3f(t3)∂4f(t4)]3/4 Γ(f(t1), f(t2), f(t3), f(t4)) , (4.10)

while the eigenvectors transform as,

v′νω(t1, t2) = [∂1f(t1)∂2f(t2)]3/4 vνω(f(t1), f(t2)) . (4.11)

The finite temperature four-point function therefore follows from the zero-temperature one

through the mapping f(t) = exp(2πit/β).

Finally, the Euclidean correlator is transformed into a Lorentzian out-of-time-order

correlator by assigning small Euclidean time εj to tj (the desired ordering of the Lorentzian

correlator determines the relative magnitude of the εj), then adding some Lorentzian time,

and finally sending εj to zero (see e.g [20, 26, 27]). In particular, for (4.9) one chooses,

f(t1) = e
2π
β
iε
, f(t3) = e

2π
β

2iε
e2πt/β , f(t2) = e

2π
β

3iε
, f(t4) = e

2π
β

4iε
e2πt/β . (4.12)

Discrete sum

We now return to the expression for the four-point function, (4.4), and evaluate the sum

over the discrete νn = 3/2 + 2n with n ≥ 1. Denoting this by Γd, we get from (4.4),

Γd(t1, t2, t3, t4) (4.13)

=
3J

π3/2

sgn(t12)sgn(t34)

|t12||t34|

∞∑
n=1

(n+ 3/4)2

n

∫ ∞
0
dω cos(ωs/2) J3/2+2n(ω|t12|/2)J3/2+2n(ω|t34|/2) ,

where we have defined,

s ≡ t3 + t4 − t1 − t2 . (4.14)

Using eq. 6.612 of [28] (see appendix D), one has that,∫ ∞
0
dx Jν(ax)Jν(bx) cos(sx)=

1

2

[
Qν−1/2

(
b2+a2−s2

2ab
+iε

)
+Qν−1/2

(
b2+a2−s2

2ab
−iε
)]

.

(4.15)

9Eq. 4.9 is valid for times longer than the dissipation time and shorter than the scrambling time,

κ−1 � t� κ−1 logN .
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The Legendre function of the second kind, Qν(z), has a branch cut along a portion of the

real axis, z ∈ (−∞, 1). As discussed in appendix D, we define Qν(z) through a hypergeo-

metric function (D.9). For arguments z > 1, one has that 1
2(Qν(z+iε)+Qν(z−iε)) = Qν(z).

For z < −1, one finds that 1
2(Qν(z + iε) +Qν(z − iε)) = − cos(νπ)Qν(z). (see eq. (D.18)).

An alternative way to define Qn(z) is as a Hilbert transform of the Legendre function of

the first kind, Pn(z),

Qn(x) =
1

2

∫ 1

−1
dz
Pn(z)

x− z
, (4.16)

where for x ∈ (−1, 1), the integral is interpreted as a Cauchy principal value integral. For

x ∈ (−1, 1), the definition (4.16) of Qν(z) is equal to 1
2(Qν(z + iε) + Qν(z − ε)), where in

the latter Qν denotes the definition through the hypergeometric function (D.9). With this

understanding, we have from (4.13) and (4.15),

Γd(t1, t2, t3, t4) =
3J

π3/2

sgn(t12)sgn(t34)

|t12|3/2|t34|3/2
∞∑
n=1

(n+ 3/4)2

n
Q2n+1

(
t212 + t234 − s2

2|t12||t34|

)
. (4.17)

We have written (4.17) for the case when the argument of the Legendre function Q2n+1(x)

is in the range x ∈ (−1,∞) (where for x ∈ (−1, 1) the definition (4.16) is implied). For

x ∈ (−∞,−1), one should replace Q2n+1(x) with Q2n+1(−x).

We note that the first several Legendre functions are given by,10

P0(x) = 1 Q0(x) =
1

2
log

1 + x

1− x

P1(x) = x Q1(x) = −1 +
x

2
log

1 + x

1− x

P2(x) =
1

2
(3x2 − 1) Q2(x) = −3x

2
+

1

4
(3x2 − 1) log

1 + x

1− x
.

The form of the discrete tower contribution to the four-point function, expressed as

the sum (4.17), is already an interesting expression and should be studied further.11 We

will now evaluate the sum over n in (4.17). We first evaluate the same sum as in (4.17),

but with the P2n+1 instead of the Q2n+1. Recall that the Legendre functions Pn(x) can be

found from the generating function h(v, x),12

h(v, x) =
1√

1− 2xv + v2
≡
∞∑
k=0

Pk(x)vk . (4.18)

We will evaluate our sum by taking derivatives and integrals of the generating function, so

as to appropriately form the rational function of n appearing in the sum. Letting

H̄(v, x) =

∫
dv
h(v, x)

v2
(4.19)

10This is for x ∈ (−1, 1). For x > 1, the argument of the log should get an extra minus sign.
11For instance, one can study the themal out-of-time-order four-point function, through the conformal

mapping specified in (4.10) and (4.12). The contribution of the ν0 = 3/2 block (not included in the

sum, since it is the one with a divergent coefficient) gives exponential growth with the exponent 2π/β,

while simply from the leading scaling of Q2n+1, one can anticipate that the νn = 3/2 + 2n block gives an

exponent that has an additional factor of 2n+ 1 (of course, the overly rapid growth of the individual terms

is not a problem, as the full sum over all n ≥ 1 cures this).
12The Qn(x) also have a generating function, which is just the Hilbert transform of h(v, x).
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so that

H(v, x) ≡ H̄(v, x)− P1(x) log v +
P0(x)

v
=

∞∑
k=2

Pk(x)
vk−1

k − 1
(4.20)

and

h2(v, x) ≡ v1/2∂v

(
v∂v(v

3/2H(v, x))
)

=
∞∑
k=2

Pk(x)
(k + 1/2)2

k − 1
vk (4.21)

and

h3(x) ≡ h2(1, x)− h2(−1, x) , (4.22)

We thus get,

h3(x) = 4

∞∑
n=1

(n+ 3/4)2

n
P2n+1(x) . (4.23)

where performing the above operations we find,

h3(x)=−6x+
3√
2

(1+3x/2)√
1+x

− 3√
2

(1−3x/2)√
1−x

−9

4
x log

(
(1−x+

√
2
√

1−x)(1+x+
√

2
√

1+x)
)
.

(4.24)

Since the Legendre Qn are defined in terms of Pn by a Hilbert transform (4.16), we can

get the sum

h̃3(x) = 4

∞∑
n=1

(n+ 3/4)2

n
Q2n+1(x) , (4.25)

by performing a Hilbert transform of (4.24),

h̃3(x) =
1

2

∫ 1

−1
dz
h3(z)

x− z
. (4.26)

This Hilbert transform is straightforward to evaluate and contains, for instance, the dilog-

arithm function. We thus finally get,

Γd(t1, t2, t3, t4) =
3J

4π3/2

sgn(t12)

|t12|3/2
sgn(t34)

|t34|3/2
h̃3

(
t212 + t234 − s2

2|t12||t34|

)
. (4.27)

Continuous sum. Finally, the four-point function Γ (4.4) also has a contribution com-

ing from an integral over ν = ir. Denoting this piece by Γc, and inserting the eigenfunc-

tions (3.36), eigenvalues (3.25), and normalization (3.38) into (4.4),

Γc(t1, t2, t3, t4) =
3J

(4π)3/2

1

t12t34

∫ ∞
0

dr

∫ ∞
−∞

dω r2e−iωs/2
Z∗ir(|ωt12|/2) Zir(|ωt34|/2)

2r sinh(πr) + 3 cosh(πr)− 3
,

where Zν is given by (3.24) and s is defined by (4.14). In appendix D we perform the

integral over ω; the remaining integral over r is left to future work.
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A Integrals in eigenvalue computation

In this appendix we evaluate the integral appearing in the computation of the eigenvalues

of the kernel in section 3.1.

We will need to evaluate the integral on the left-hand side of (3.4),∫
dta

∫
dtb

sgn(ta − tb)
|ta − tb|2α

sgn(ta − t3)

|ta − t3|2∆

sgn(tb − t4)

|tb − t4|2∆
. (A.1)

There are 8 regions of integration which must be done separately. Without loss of generality,

we let t3 > t4. The following representations of the β function will be useful,

β(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(A.2)∫ τ

−∞
dt

1

(s−t)x
1

(τ−t)y
=

∫ ∞
s
dt

1

(t−s)y
1

(t−τ)x
=

1

(s−τ)x+y−1
β(1−y, x+y−1) (A.3)∫ τ

s
dt

1

(t−s)x
1

(τ−t)y
=

1

(τ − s)x+y−1
β(1− x, 1− y) . (A.4)

We label the ranges by indicating if the sgn is positive or negative.

1. + + +.∫ ∞
t3

dta

∫ ta

t4

dtb
1

(ta − tb)2α

1

(ta − t3)2∆

1

(tb − t4)2∆

= β(1− 2α, 1− 2∆)

∫ ∞
t3

dta
1

(ta − t3)2∆

1

(ta − t4)2α+2∆−1

= β(1− 2α, 1− 2∆)β(1− 2∆, 2α+ 4∆− 2)
1

(t3 − t4)2α+4∆−2
(A.5)

From now on we will not write the time dependance of the result of integrals, and use

notation tij = ti − tj .

2. + +−.

−
∫ t4

−∞
dtb

∫ ∞
t3

dta
1

t2αab

1

t2∆
a3

1

t2∆
4b

= −β(1− 2∆, 2α+ 2∆− 1)β(1− 2∆, 2α+ 4∆− 2) (A.6)

3. +−+.

−
∫ t3

t4

dta

∫ ta

t4

dtb
1

t2αab

1

t2∆
3a

1

t2∆
b4

= −β(1− 2α, 1− 2∆)β(1− 2∆, 2− 2α− 2∆) (A.7)

4. +−−.∫ t4

−∞
dtb

∫ t3

tb

dta
1

t2αab

1

t2∆
3a

1

t2∆
4b

= β(1− 2α, 1− 2∆)β(1− 2∆, 2α+ 4∆− 2) (A.8)

5. −+ +.

−
∫ ∞
t3

dtb

∫ tb

t3

dta
1

t2αba

1

t2∆
a3

1

t2∆
b4

= −β(1− 2α, 1− 2∆)β(2− 2α− 2∆, 2α+ 4∆− 2) (A.9)
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6. −+−. Doesn’t exist, since we assumed t3 > t4.

7. −−+. We need to split the integral into two regions,∫ t4

−∞
dta

∫ ∞
t4

dtb
1

t2αba

1

t2∆
3a

1

t2∆
b4

= β(1−2∆, 2α+2∆−1)β(2−2α−2∆, 2α+4∆−2) (A.10)

and∫ t3

t4

dta

∫ ∞
ta

dtb
1

t2αba

1

t2∆
3a

1

t2∆
b4

= β(1− 2α, 2α+ 2∆− 1)β(1− 2∆, 2− 2α− 2∆) (A.11)

8. −−−.

−
∫ t4

−∞
dta

∫ t4

ta

dtb
1

t2αba

1

t2∆
3a

1

t2∆
4b

= −β(1− 2α, 1− 2∆)β(2− 2α− 2∆, 2α+ 4∆− 2) (A.12)

Summing the results (A.5)–(A.12) and recalling ∆ = 1/4 gives g(α),

g(α) = −3

2

1

(1− 2α) tan(πα)
. (A.13)

B Eigenvectors and boundary terms

In this appendix, we elaborate on the statement made in section 3.2 that care must be

taken in arguing that the SL(2,R) generators commute with the kernel.

In particular, to show that L̃2vαω is an eigenvector if vαω is an eigenvector, one must

integrate by parts∫
dtadtb (t2a∂a + t2b∂b)ṽαωK(ta, tb, t3, t4) = −

∫
dtadtb ṽαω

(
∂a(t

2
aK) + ∂b(t

2
bK)

)
+

∫
dtb (ṽαωt

2
aK)

∣∣∣ta=∞

ta=−∞
+

∫
dta (ṽαωt

2
bK)

∣∣∣tb=∞
tb=−∞

(B.1)

We will need to drop the boundary term on the second line. As we will see, this assumption

will only be true in certain cases.

To find the eigenvectors, we use the naive commutativity (3.11) to conclude that the

eigenfunctions of the kernel are the same as those of the SL(2,R) Casimir. The latter is

2L̃2 = 2L̃2
1 − L0L̃2 − L̃2L0 . (B.2)

We find

L̃2 = t2−∂
2
− + 3t−∂− − t2−∂2

+

= t
−3/2
−

(
t2−(∂2

− − ∂2
+) +

3

4

)
t
3/2
−

= t−1
−
(
t2−∂

2
− + t−∂− + t2−ω

2 + 1
)
t− . (B.3)
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Here t± = 1
2(t1±t2). In the second line we see that the Casimir is the Lorentzian Laplacian,

even for Euclidean four-point functions. In the third, we have gone to frequency space,

and we see that the Casimir is conjugate to the Bessel operator, plus a constant. Thus,

sgn(t1 − t2)

|t1 − t2|
e−iω(t1+t2)/2J2α−1(|ω(t1 − t2)|/2) (B.4)

is an eigenfunction of L̃2, and hence would seem to be an eigenvector of the kernel K as

well. Note that Y2α−1 would also seem to be an eigenvector. The important point is that

to drop the boundary term appearing in (B.1) requires a particular combination of the

Bessel functions, such that this term actually vanishes. The eigenvectors that we found in

the main text formed the correct combination so that this boundary term vanishes.

C Integral in eigenvector computation

In this appendix we perform the integral appearing in the direct calculation of the eigen-

vectors in section 3.3.

We need to evaluate the integral (3.23),

− πe−iωτ+/2
∫
dt

sgn(t)

|t|
Zν(|ωt|/2)

(
J0(|ω(t− τ)|/2) + Y0(|ω(t− τ)|/2)

)
. (C.1)

We can rewrite the integral as,∫ ∞
−∞

dt

t
Zν(|t|)

(
J0(|ωτ/2− t|) + Y0(|ωτ/2− t|)

)
(C.2)

=

∫
dp

2π
e−ipωτ/2Z̃ ′ν(p)

(
J̃0(p) + Ỹ0(p)

)
, (C.3)

where

J̃0(p) =

∫
dt eipt J0(|t|) =

2√
1− p2

θ(1− |p|) (C.4)

Ỹ0(p) =

∫
dt eipt Y0(|t|) = − 2√

p2 − 1
θ(|p| − 1) . (C.5)

Also,

J̃ ′ν(p) =

∫
dt

t
eiptJν(|t|) =

2i sgn(p)

ν

(
sin(ν sin−1 |p|)θ(1−|p|)+

sin(νπ/2)

(|p|+
√
p2 − 1)ν

θ(|p|−1)

)
(C.6)

and similarly for Y ′ν(p) (eq. 6.693 of [28]). One should note that the above formula for

J ′ν(p) is only valid for Re ν > −1, and the one for Y ′ν(p) is valid for |Re(ν)| < 1.

Let the eigenvector be a combination of Bessel functions,

Zν = cJJν + cY Yν . (C.7)

The Fourier transform of (C.3) becomes,

4i

ν
√

1− p2
θ(1− |p|) sin(ν sin−1 |p|)

(
cJ − cY tan νπ/2

)
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− 2i

ν
√
p2 − 1

θ(|p| − 1)(|p| −
√
p2 − 1)ν

cos(νπ)

cos(νπ/2)
cY

− 4i

ν
√
p2 − 1

θ(|p| − 1)

(
cJ sin(νπ/2)

(|p|+
√
p2 − 1)ν

− 1

2

cY

cos(νπ/2)(|p| −
√
p2 − 1)ν

)
(C.8)

The Fourier transform of Zνsgn(τ) is

2i sin(ν sin−1 |p|)√
1− p2

θ(1− |p|)
(
cJ +

cY
tan(νπ/2)

)
+

i cos(πν)

sin(νπ/2)
√
p2 − 1

(|p| −
√
p2 − 1)νθ(|p| − 1)cY

+
i√

p2 − 1
θ(|p| − 1)

(
2

cJ cos νπ/2

(|p|+
√
p2 − 1)ν

− cY

sin(νπ/2)(|p| −
√
p2 − 1)ν

)
, (C.9)

which has the range of validity of Re(ν) > −2 coming from the Jν integral, and |Re ν| < 2

from the Yν integral. Equating (C.8) and (C.9), the eigenfunction is therefore,

Z̄ν = (tan νπ/2− 1) Jν + (1 + tan νπ/2)Yν , (C.10)

with eigenvalues 2π
ν tan νπ/2 (recall the factor of −π in (C.1)). We can rewrite this as

Z ′ν ≡ −Z̄ν sin νπ =
(
Jν(tan νπ/2− 1) + J−ν(tan νπ/2 + 1)

)
(C.11)

Finally, let us rescale the eigenfunctions, writing them as

Zν = Jν + ξνJ−ν , ξν =
tan νπ/2 + 1

tan νπ/2− 1
, (C.12)

where we are reusing notation for Zν ; this Zν is a multiple of the one in (C.7). Now

recall that in the integral (3.20) there should be a factor of − 3
4π : the 3 is due to Feynman

diagram combinatorics, and the 1/4π is from the normalization of the 2-pt function. The

eigenvalues are thus,

g(ν) = − 3

2ν
tan

νπ

2
. (C.13)

Setting ν = 2α − 1 gives (3.8). Moreover, the eigenfunctions (C.12) agree with (3.18).

Finally, it will be useful for later to note that

ξir = − 1

cosh(πr)
(1 + i sinhπr) , (C.14)

and so Z∗ir = Z−ir.

D Integrals of products of Bessel functions

In this appendix we review some integral identities involving products of Bessel functions.
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Laplace transform of JνJν and JνJ−ν

We would like to evaluate integrals of the form∫ ∞
0

dt e−αtJν(βt)Jν(γt) , (D.1)

where the cylindrical function Jν is defined as

Jν = a(ν)Jν + b(ν)Yν , (D.2)

where a(ν), b(ν) are arbitrary functions of ν with period one, and Jν , Yν are the Bessel

functions.

From the Bessel addition formula,

Jν

(√
Z2 + z2 − 2Zz cosφ

)(Z − ze−iφ
Z − zeiφ

)ν/2
=

∞∑
m=−∞

Jν+m(Z)Jm(z)eimφ , (D.3)

where |ze±iφ| < |Z|, one finds [29],∫ π

0
dφ
Jν(
√
Z2 + z2 − 2Zz cosφ)

(Z2 + z2 − 2Zz cosφ)ν/2
sin2ν φ = 2νΓ(ν + 1/2)Γ(1/2)

Jν(Z)

Zν
Jν(z)

zν
. (D.4)

Next, following the same procedure as in [29], and defining ω̄ =
√
β2 + γ2 − 2βγ cosφ, one

has that,∫ ∞
0

dt e−αtJν(βt)Jν(γt) =
(1

2βγ)ν

Γ(ν + 1
2)Γ(1

2)

∫ ∞
0

dt

∫ π

0
dφ e−αt

Jν(ω̄t)

ω̄ν
tν sin2ν φ , (D.5)

where |β| < |γ|. Now using eq. 13-2 (2) of [29]:∫ ∞
0

dt e−αt Jν(ω̄t)tρ−1 =
(ω̄/2α)νΓ(ρ+ ν)

αρΓ(ν + 1)
2F1

(
ρ+ ν

2
,
ρ+ ν + 1

2
, ν + 1,− ω̄

2

α2

)
. (D.6)

Combing the previous several lines, and taking Jν = Jν in (D.5) gives,∫ ∞
0
dt e−αtJν(βt)Jν(γt) =

(βγ)ν

πα2ν+1

∫ π

0
dπ sin2ν φ 2F1

(
ν + 1/2, ν + 1, ν + 1,− ω̄

2

α2

)
=

(βγ)ν

πα2ν+1

∫ π

0
dφ sin2ν φ

(
1 +

ω̄2

α2

)−1/2−ν

=
1

π
√
βγ

2ν−1/2

(1+z)1/2+ν

Γ(1/2+ν)2

Γ(1+2ν)
2F1

(
ν+1/2, ν+1/2, 2ν+1,

2

1+z

)
=

1

π
√
βγ
Qν−1/2(z) , (D.7)

where in the last line we used the relation,

2F1(a, b, 2b, x) = (1− x/2)−a 2F1

(
a

2
,
a+ 1

2
, b+

1

2
,

x2

(2− x)2

)
, (D.8)

– 21 –



J
H
E
P
0
4
(
2
0
1
6
)
0
0
1

and the definition of Qν ,

Qν(z) =

√
π Γ(ν + 1)

Γ(ν + 3/2)(2z)ν+1
F

(
ν

2
+ 1,

ν

2
+

1

2
, ν +

3

2
, z−2

)
. (D.9)

The result (D.7) reproduces (13-22, 2) of [29].

Now, we would like to consider the choice of Jν in (D.2) with coefficients aν =

−bν/ tan νπ and bν = 1, which gives,

Jν =
1

sin νπ
J−ν . (D.10)

Taking this choice of Jν in (D.10) gives∫ ∞
0

dt e−αtJν(βt)J−ν(γt)

=
(βγ)ν

Γ(ν + 1
2)Γ(1

2)Γ(1− ν)α

∫ π

0
dφ sin2ν φ 2F1

(
1

2
, 1, 1− ν,− ω̄

2

α2

)
(D.11)

This integral can be evaluated to yield a combination of hypergeometric functions of the

type 3F2.

Fourier sine and cosine transform of JνJν

Our starting point is (D.7), (see also eq. 6.612 of [28]),∫ ∞
0

dx e−αxJν(βx)Jν(γx) =
1

π
√
γβ
Qν−1/2

(
α2 + β2 + γ2

2βγ

)
, (D.12)

where Re(α± iβ ± iγ) > 0, γ > 0, Re ν > −1
2 .

The Legendre function Qν(z) has a branch cut on the real axis running from −∞ <

z < 1. We would like to start with α real and continue it to imaginary values. We write

α = |α|eiθ, and we will have θ evolve from 0 to π/2. Alternatively, we will also evolve θ

from 0 to −π/2. Also, we will assume β, γ are real.

We define

z =
−a2 + β2 + γ2

2βγ
, (D.13)

and let a = |α|. We have that∫ ∞
0

dx sin(ax)Jν(βx)Jν(γx) =
i

2π
√
γβ

(
Qν−1/2(z + iε)−Qν−1/2(z − iε)

)
. (D.14)

Consider first 0 < a < γ−β; this corresponds to z > 1, which is away from the branch

cut. As a result, the right hand side of (D.14) vanishes. Next, consider γ − β < a < γ + β,

which corresponds to −1 < z < 1. For this range of z, from (8.13) of [30],

Qν(z + iε)−Qν(z − iε) = −iπPν(z) . (D.15)
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Finally, for γ + β < a, which corresponds to z < −1, we use the definition of Qν in (D.9).

Since the hypergeometric function F (a, b, c, x) has a branch cut for x > 1, the only jump

in (D.9) comes from the z−ν−1 term. Thus,

Qν(z + iε)−Qν(z − iε) = 2i sinπν Qν(−z) , (D.16)

for z < −1. Collecting everything, we get

∫ ∞
0

dx sin(ax)Jν(βx)Jν(γx) =


0 z > 1

1
2
√
βγ
Pν−1/2(z), −1 < z < 1,

− cos(νπ)

π
√
βγ
Qν−1/2(−z), z < −1

(D.17)

which matches eq. 6.672 of [28]. Also, we find that

∫ ∞
0

dx cos(ax)Jν(βx)Jν(γx) =
1

π
√
γβ


Qν−1/2(z) z > 1

Q̃ν−1/2(z) −1 < z < 1

− sin(νπ)Qν−1/2(−z), z < −1

(D.18)

where Q̃ν−1/2(z) ≡ 1
2

(
Qν−1/2(z + iε) +Qν−1/2(z − iε)

)
(eq. 8.14 of [30]) and is simply

Qν−1/2(z) (as defined by eq. (4.16)).
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