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Abstract. The spectrum of the eigenvalues, the conditioning, and other related properties
of circulant-like matrices used to build up block preconditioners for the nonsymmetric algebraic
linear equations of time-step integrators for linear boundary value problems are analyzed. Moreover,
results concerning the entries of a class of Toeplitz matrices related to the latter are proposed.
Generalizations of implicit linear multistep formulas in boundary value form are considered in more
detail.

It is proven that there exists a new class of approximations which are well conditioned and whose
eigenvalues have positive and bounded real and bounded imaginary part. Moreover, it is observed
that preconditioners based on other circulant-like approximations, which are well suited for Hermitian
linear systems, can be severely ill conditioned even if the matrices of the nonpreconditioned system
are well conditioned.
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1. Introduction. In this paper we investigate the properties of some classes
of circulant approximations and some generalizations used in the preconditioners for
(small rank perturbations of) block nonsymmetric Toeplitz matrices introduced in
[4]. These matrices arise in the numerical approximation of time-dependent partial
differential equations by means of generalizations of implicit linear multistep formulas.

An n× n matrix An = (aj,k) is said to be Toeplitz if aj,k = aj−k, j, k = 1, . . . , n,
i.e., An is constant along its diagonals, quasi Toeplitz if it is a small rank perturbation
of a Toeplitz matrix. An n × n matrix Ăn is said to be circulant if it is Toeplitz and
its diagonals satisfy ăn−j = ă−j , j = 1, . . . , n − 1. The circulant matrices Ăn are
diagonalized by the Fourier matrix F = (Fj,k), Fj,k = e2πijk/n/

√
n, j, k = 0, . . . , n−1,

i is the imaginary unit; see [13]. From the previous arguments, it follows that such
matrices are easily and efficiently invertible using the fast Fourier transform (FFT);
see, e.g., [11]. Other circulant-like matrices will be mentioned in section 4.

The matrices of the underlying linear systems can be written as follows:

M = A ⊗ I − hB ⊗ J,(1.1)

where A and B are n×n (small rank perturbations of) band Toeplitz matrices whose
entries are given by the coefficients of the scheme involved, I is the identity, and J is
an m × m matrix which can be large and sparse. More precisely, J is the Jacobian
matrix of a system of ordinary or partial differential equations discretized in space by
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finite differences; see [4] for details. It is worth noting that J can have a (multilevel)
structure as well. For example, J can be block-banded, block-Toeplitz, etc.

Unfortunately, when m and/or n are (even moderately) large, iterative solvers for
(1.1), used without preconditioners or with general purpose preconditioners such as
those based on incomplete factorizations, often converge very slowly or do not converge
at all; see [4, section 5]. Moreover, direct methods are not appropriate because they
cannot exploit the block structure of (1.1). On the other hand, the preconditioners
we consider here take into account the block structure in (1.1). More precisely, they
are block-circulant and, in matrix form, can be written as

P = Ă ⊗ I − h B̆ ⊗ J̃ ,(1.2)

where Ă and B̆ are circulant-like approximations for A, B, respectively, and J̃ is a
suitable approximation for J .

In [4] we have observed that P−1M , the preconditioned matrix, can be written
as a perturbation of the identity matrix (see also section 5.3), which can result in
fast convergence of Krylov subspace methods for nonsymmetric linear systems such
as GMRES and BiCG-like methods such as BiCGstab. The computational cost for
a possible implementation has been considered in detail in [4, section 4.1], showing
that the cost per iteration is of the order of O(mn log n) if J is banded, say.

Here we will prove that there exists a class of circulant approximations, introduced
in [4], which have a moderate 2-norm condition number increasing at most linearly
with their size n. Moreover, the spectrum of the eigenvalues of several of the possible
approximations for the nonsymmetric matrices A, B in (1.1) will be investigated as
well, showing that it lies in the right half plane. It is worth noting that this holds
true for the original matrices A, B in (1.1) considered here; see [6].

We stress that the condition number and the spectrum of the component matrices
Ă and B̆ of the preconditioner (1.2) are very important to have fast convergence.
Indeed, as observed in [4, 5, 6], the matrix J in (1.1) can have very small (and/or
very large) singular values in different subintervals of integration (see [5]), and this is
difficult (if not impossible) to know in advance. Recall that J is the Jacobian matrix
of the given continuous time-dependent problem; see [15, 19]. Thus, if Ă or B̆ are ill
conditioned, we can have an ill conditioned preconditioner even if the original matrix
M is well conditioned; see, e.g., the end of section 5.2 and Figure 5.3. As observed
in [4, 5], this can slow down the convergence process (see [14]), giving unacceptably
slowly convergent (or even divergent!) preconditioned iterations.

We observe that, in the case of nonsymmetric linear systems, solved by Krylov
accelerators, the condition number of the preconditioned matrix P−1M (say), assumed
to be not too large, is much less important for the convergence than the clustering of
the spectrum of its eigenvalues; see, e.g., [18, 14]. On the other hand, the condition
number of the matrix M in (1.1) is crucial for the rate of convergence of conjugate
gradients preconditioned iterations for the normal linear system; see [6].

Here we will consider certain general linear multistep methods (or GLMs, see [19])
used in boundary value form and called boundary value methods. These methods are
used to solve continuous boundary value problems for differential equations (see [2, 9]
and references therein). However, the asymptotic techniques considered here could
be adapted, at least in principle, to other discretization schemes.

Notice that, in this paper, we will consider multistep formulas of arbitrarily high
order merely to state bounds and the asymptotic behavior of the spectrum of the
underlying circulant(-like) approximations involved in (1.2). In practice, the best
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performance of the underlying preconditioners seems to be achieved for formulas (2.3)
whose number of steps k is not too large (typically 3 to 9, say). On the other hand,
we have observed in [4, 5] that the preconditioners (1.2) can be effective for any order
of magnitude of n, either if it is small (4 to 8, say) or (very) large (n > 1024, say) as
well.

In section 2 we summarize some information on numerical integrators based on
linear multistep formulas in boundary value form. Section 3 contains some intro-
ductory lemmas. In section 4 we recall some circulant approximations. Section 5 is
devoted to the investigation on the spectrum and the conditioning of the underlying
matrices. Finally, some remarks on the convergence of preconditioned iterations and
the use of different approximations in (1.2) are given in section 5.3.

2. Families of numerical integrators.

2.1. Formulas in boundary value form. The boundary value methods for
differential equations are a generalization of implicit linear multistep formulas; see
[2, 9] and references therein. They approximate the solution of a continuous differ-
ential boundary value problem by means of a discrete boundary value problem. For
simplicity, let us consider the linear boundary value problem{

y′(t) = f(t, y(t)) := J y(t) + g(t), t ∈ (t0, T ],
y(t0) = η1, y(T ) = η2,

(2.1)

where y(t), g(t) : R → R
m, J ∈ R

m×m, ηj ∈ R
m, j = 1, 2. The continuous problem

(2.1) can be reduced to a discrete boundary value problem by the following k-step
linear multistep formula of order p used with ν > 0 initial and k−ν > 0 final conditions
over a uniform mesh tj = t0 + j h, j = 0, . . . , s:

k∑
i=0

αiyn+i = h

k∑
i=0

βifn+i, n = 0, . . . , s − k,(2.2)

where yn is the discrete approximation to y(tn), fn = f(tn, yn) ≡ J yn+gn, gn = g(tn),
while the values y0, . . . , yν−1, ys−k+ν+1, . . . , ys of the approximation computed in the
mesh points t0, . . . , tν−1, ts−k+ν+1, . . . , ts, respectively, are assumed to be given. We
observe that the boundary value problem (2.1) provides only the initial and final values
y0 and ys, respectively. The missing values are supplied by coupling the method (2.2)
with other difference schemes of order p, sometimes called additional methods, which
provide an additional set of equations, independent of those in (2.2). For simplicity,
we can assume that these formulas have the same number of steps as (2.2) but different

coefficients α
(r)
j , β

(r)
j , r = 1, . . . , ν − 1, s − k + ν + 1, . . . , s − 1, j = 0, . . . , k > ν; see

[4] for details.
In order to stress the dependence of the formula on the ν initial and k − ν final

values, it is useful to rewrite (2.2) in the following shifted form:

k−ν∑
i=−ν

αi+νyn+i = h

k−ν∑
i=−ν

βi+νfn+i, n = ν, . . . , s − k + ν.(2.3)

To have order p ≥ 1, the coefficients αj , βj in (2.3) should satisfy the order conditions
(see, e.g., [19])

k∑
j=0

(
jiαj − iji−1βj

)
= 0, i = 0, . . . , p,(2.4)
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where the first two equations of (2.4) (i = 0, 1) are usually called consistency condi-
tions. By rewriting (2.4) in shifted form we have

k−ν∑
j=−ν

(
jrαj+ν − rjr−1βj+ν

)
= 0, r = 0, . . . , p,(2.5)

where we assume, as is customary, that 0j−1 = 0, j0 = 1 for all j.
For practical implementation, we cast the above discrete problem in matrix form:

MY = b, Y =
(
yT
0 , yT

1 , . . . , yT
s

)T
, M = A ⊗ Im − hB ⊗ J,

b = e1 ⊗ η1 + es+1 ⊗ η2 + h(B ⊗ Im)g, g = (g(t0) · · · g(ts))
T ,(2.6)

where ei ∈ R
s+1, i = 1, . . . , s + 1, is the ith column of the identity matrix and A,

B ∈ R
(s+1)×(s+1) are quasi-Toeplitz matrices whose pattern is

A =




1 · · · 0

α
(1)
0 · · · α

(1)
k

...
...

...

α
(ν−1)
0 · · · α

(ν−1)
k

α0 · · · αk

α0 · · · αk

. . .
. . .

. . .

α0 · · · αk

α
(s−k+ν+1)
0 · · · α

(s−k+ν+1)
k

...
...

...

α
(s−1)
0 · · · α

(s−1)
k

0 · · · 1




,(2.7)

where α
(r)
j , j = 0, . . . , k, are the coefficients of the additional formulas. The matrix

B is similarly defined, but with βj (β
(r)
j ) instead of αj (α

(r)
j ) and with the entries of

the first and last rows set to zero; see [4] for details. We stress that the matrix M in
(2.6) is usually nonsymmetric, nondiagonally dominant, and large and sparse if, e.g.,
n or m are large and J is sparse.

2.2. Some linear multistep schemes. Let us recall some families of formulas
(2.3) that will be considered in subsequent sections.

A minimal requirement for a multistep formula (2.3) is consistency, see, e.g., [19],
i.e., they must satisfy the conditions ρ(1) = 0, ρ′(1) = σ(1), where ρ(z) and σ(z)
denote the two characteristic polynomials associated with the given method, i.e.,

ρ(z) =

k∑
j=0

αj zj , σ(z) =

k∑
j=0

βj zj

or, in shifted form,

ρ(z) = zν
k−ν∑
j=−ν

αj+ν zj , σ(z) = zν
k−ν∑
j=−ν

βj+ν zj .(2.8)
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The backward differentiation formulas are a class of well-known initial value methods
for the numerical integration of stiff problems (see, e.g., [15, 19]). A generalization of
these as a boundary value scheme, called generalized backward differentiation formu-
las, has been proposed in [9] and can be written in the form

k−ν∑
i=−ν

αi+ν yn+i = h fn, n = ν, . . . , s − k + ν,(2.9)

where ν = (k + 2)/2 if k is even, and ν = (k + 1)/2 if k is odd; see [9]. Notice
that backward differentiation formulas have ν = k in (2.9). The coefficients {αi} are
determined by imposing maximum order for (2.9), i.e., order k, k ≥ 1.

Another popular class of initial value methods is the Adams–Moulton formulas;
see, e.g., [15, 19]. Let us consider their generalization in the boundary value form,
proposed in [9], called generalized Adams–Moulton methods, that can be written in
the following form:

yn − yn−1 = h

k−ν∑
i=−ν

βi+ν fn+i, n = ν, . . . , s − k + ν,(2.10)

i.e., the only nonzero coefficients in the first characteristic polynomial are αν = 1 and
αν−1 = −1, ν = k/2 if k is even, and ν = (k + 1)/2 if k is odd. The coefficients {αi}
are determined by imposing that the method has maximum order, i.e., k + 1. Notice
that the classical Adams–Moulton methods have ν = k; see, e.g., [19]. When k is odd,
the scheme shares the same stability properties of the trapezoidal rule. Such methods
can be suitable for approximating Hamiltonian problems and continuous boundary
value problems.

Another generalization of the trapezoidal rule proposed in [9] is given by the
following formula:

ν−1∑
i=−ν

αi+ν yn+i =
h

2
(fn + fn−1), n = ν, . . . , s − k + ν,(2.11)

where ν = (k + 1)/2 if k is odd and ν = k/2 if k is even. The coefficients {αi} are
determined by imposing that the above formula has maximum order, i.e., k + 1. Such
methods can be suitable for approximating Hamiltonian problems and continuous
boundary value problems.

It will be useful in the following sections to have some of the order conditions
(2.4) for the above mentioned schemes written in a different form. For the formulas
(2.11), we consider (2.4) with βν = βν−1 = 1/2. Therefore, we have

ν−1∑
j=−ν

jrαj+ν = (−1)r+1 r

2
, r = 0, 2, . . . , k + 1,

ν−1∑
j=−ν

jαj+ν = 1.(2.12)

Similarly, for (2.9), βν = 1, βj = 0 for j �= ν. Thus, the αj , j = 0 . . . , k, satisfy
consistency conditions and

k−ν∑
j=−ν

jrαj+ν = 0, r = 0, 2, . . . , k.(2.13)
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Finally, for (2.10), αν = −αν−1 = 1 while the coefficients βj , j = 0 . . . , k, satisfy

k−ν∑
j=−ν

jrβj+ν = (−1)r
1

r + 1
, r = 0, 1, . . . , k.(2.14)

3. The entries of a class of Toeplitz matrices. Let us consider the n × n
band Toeplitz matrix Ân = (αj), n > k,

Ân =




αν . . . αk−1 αk 0 . . . 0
... αν

. . . αk−1 αk
. . .

...

α0
. . .

. . .
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . . αk−1 αk

...
. . .

. . .
. . .

. . .
. . . αk−1

...
. . .

. . .
. . .

. . .
. . .

...
0 . . . . . . 0 α0 . . . αν




,(3.1)

and B̂n = (βj) having similar pattern, but with βj instead of αj , j = 0, . . . , k. If

αj , βj , j = 0, . . . , k, are the coefficients of (2.3), E
(A)
n = An − Ân, E

(B)
n = Bn − B̂n

are small rank matrices if n  k, where A ≡ An is defined in (2.7) and similarly for
B ≡ Bn.

It can be checked that all such matrices are, in general, nonsymmetric, nondiag-
onally dominant, with real entries of nonconstant sign. Moreover, let us associate to
the matrices Ân, B̂n (An and Bn) as above the functions gA(z), gB(z), respectively.
It is customary to call gA(z) the symbol of the matrix An, see, e.g., [8], where

gA(z) = z−νρ(z) =

k−ν∑
j=−ν

αj+νz
j , z ∈ C,(3.2)

and ρ(z) is the characteristic polynomial of Ân while gB(z) is defined similarly for B̂n

from σ(z) in (2.8). The set {q ∈ C : q = gA(eiθ), 0 ≤ θ < 2π} is called the boundary
locus of the Toeplitz matrix Ân. It is worth noting that gA(eijθ), gB(eijθ) are the
generating functions of the band Toeplitz matrices Ân, B̂n, respectively; see, e.g.,
[8, 11].

The Toeplitz matrices related to the linear multistep formulas considered in sec-
tion 2.2 have the boundary locus and their spectrum of eigenvalues in the right half
plane; see [9]. We recall that the families of matrices {Ân}, {B̂n} are such that their
entries αj , βj , j = 0, . . . , k, satisfy the system of linear equations (2.4), where p in
(2.4) is the largest integer such that those equations are independent. Notice that
the choice of ν is strictly related to the condition number of the underlying Toeplitz
matrices; see [6, 8, 9]. For example, with the choice suggested in section 2.2, the
matrices {Ân}, {B̂n} related to the formulas (2.9), (2.10), (2.11) have a condition
number which increases at most linearly with their size; see [6]. On the other hand,
the boundary locus and the spectrum of the eigenvalues of the matrices related to
linear multistep formulas are not necessarily contained in one half plane for all k. For
example, one can consider the matrices associated with well-known families of formu-
las used as initial value methods for a sufficiently large value of k in (2.3). This is the
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case of the backward differentiation formulas for k > 2 and of the Adams–Moulton
methods for k > 1. However, if ν is chosen differently from the choice suggested in
section 2.2, the eigenvalues of {Ân}, {B̂n} can have both positive and negative (or
zero!) real part. Indeed, it is easy to check that this is the case of formulas (2.10)
used with k = 5 but with ν = 4 instead of ν = (k + 1)/2 = 3.

We will assume, as is the case in practice for the methods described in section 2.2,

that the influence of the small rank perturbations E
(A)
n = An−Ân, E

(B)
n = Bn−B̂n on

the spectral properties of Ân, B̂n is moderate. More precisely, here we refer to suitably
chosen additional schemes such that their related matrices An, Bn have the spectrum
of eigenvalues in the right half plane, and the condition number of these is still of the
order of O(n), where n is their size. These hypotheses are usually reasonable; see [6].
On the other hand, notice that, in general, the influence of low rank modifications
in the non-Hermitian case can very much change the spectral properties of a given
matrix; see [22]. However, in this paper we will focus mainly on the preconditioner
and on the spectrum of the component matrices of the preconditioner (1.2), which
are normal and defined by using the coefficients of (2.3), i.e., by the entries of Ân, B̂n

only.
We will need an explicit expression of the coefficients of the formulas (2.9) and

(2.10). To this end, there are at least two (equivalent) strategies. In the first one, the
coefficients can be computed by writing the formula of the GLM in backward difference
form; see, e.g., [19, chapter 3]. Thus, expanding the backward differences of yn+j for
the formulas (2.9) and of fn+j for the formulas (2.10), equating the coefficients of yn+j

and of fn+j , j = 0, . . . , k, to the corresponding expressions, and using an induction
argument gives the coefficients αj , βj , j = 0, . . . , k.

Proposition 3.1. The coefficients of the formulas (2.9) are given by

αi = (−1)k−i
k∑

j=k−i

(
j

k − i

)
δj , i = 0, . . . , k,(3.3)

where

δi =




0, i = 0;
1, i = 1;

1

i!

i−1∑
s=0

i−1∏
j=0,
j �=s

(−(k − ν) + j), i ≤ k − ν, i ≥ 1;

1

i!

i−1∏
j=0,

j �=k−ν

(−(k − ν) + j), i > (k − ν) ≥ 1.

The coefficients of the formulas (2.10) are given by

βi =
(−1)k−i

(k − i)!

k∑
j=k−i

1

(j − (k − i))!

∫ −(k−ν)

−(k−ν)−1

j−1∏
m=0

(r + m) dr, i = 0, . . . , k.(3.4)

Proof. The expression (3.3) is derived by writing (2.9) in backward difference
form (see [19, chapter 3]), i.e.,

k∑
j=0

δi∇iyn+k−ν = h fn,



CIRCULANT-LIKE PRECONDITIONERS FOR GLMS 1805

where

δi = (−1)i
d

dr

(−r

i

)
,

and the above derivative is computed at r = k − ν. Thus, by observing that(−r

j

)
=

(−r − j + 1) · · · (−r)

j!
=

(−1)j

j!

j−1∏
m=0

(r + m),(3.5)

we have (3.3). The other expression, i.e., (3.4), is derived by observing that (2.10)
can be written as (see [19, chapter 3])

yn+1 − yn = h

k∑
j=0

γi∇ifn+k−ν+1,(3.6)

where

γj = (−1)j
∫ −(k−ν)

−(k−ν)−1

(−r

j

)
dr.

Thus, from (3.5), we have (3.4).
The other strategy is based on the explicit solution of linear equations in the

unknowns αj , βj , j = 0, . . . , k, by writing (2.4) in matrix form. Thus, we have to solve
a linear system whose matrix is a Vandermonde-like one, and several combinatorial
identities can be used. The coefficients of (2.9) and of (2.10) were computed following
this strategy in [3]. We stress that the derivation of a useful expression can be rather
lengthy. Full details can be found in [3, pp. 46–50, 66–69].

Proposition 3.2. The coefficients of the formula (2.9) are given by

αi =
(−1)ν−i

ν − i

ν!(k − ν)!

i!(k − i)!
, i �= ν, i = 0, . . . , k,

=
1

ν
=

2

k + 1
, i ≡ ν, k odd,

=
2ν − 1

ν(ν − 1)
=

4(k + 1)

k(k + 2)
, i ≡ ν, k even, k ≥ 1.(3.7)

The coefficients of the formula (2.10) are given by

βi =
(−1)k−i

i! (k − i)!

∫ ν+1

ν

k∏
m=0,
m�=i

(t − m) dt, i = 0, . . . , k.(3.8)

Proof. The proof follows after some manipulations of the results in Theorem 4.1.1
for (3.7) and in Remark 4.2.2 for (3.8) in [3] by recalling that ν = (k + 1)/2 if k is
odd, while ν = (k + 2)/2 for (2.9), ν = k/2 for (2.10) if k is even.

We remark that there is a third approach to derive the coefficients of the formulas
(2.9) and (2.10) that is simpler than the other two. It is based on generating functions
and symbolic operators; see, e.g., [19, sections 3.9–3.12]. Using that approach, we have
that the generating function for δi in (3.3) is given by

G1(z) = −(1 − z)k−ν log(1 − z) =

∞∑
i=0

δiz
i.
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Therefore,

δi =

i−1∑
s=0

(−1)s
(

k − ν

s

)
1

i − s
.

Similarly, the generating function for γi in (3.6) is given by

G2(z) =
−z(1 − z)k−ν

log(1 − z)
=

∞∑
i=0

γiz
i,

and an explicit expression for γi can be derived accordingly.
Obviously, suitably manipulating the expressions derived by one strategy (e.g.,

(3.3), (3.4)) gives the expressions derived by the others (see, e.g., (3.7), (3.8), respec-
tively).

Corollary 3.3. The coefficients of the formulas (2.9) are uniformly bounded by
2 for all k ≥ 1. Moreover, |αi+1| < |αi| for i = ν + 1, . . . , k − 1; |αi+1| > |αi| for
i = 0, . . . , ν − 2; |αν | < |αν+1|; |αν−1| > |αν |; and limk→∞ αj = 0, j = 0, k, ν.

Proof. By considering the expression (3.7) we have that |αi+1| < |αi| for i =
ν + 1, . . . , k − 1 and |αi+1| > |αi| for i = 0, . . . , ν − 2. For k odd, ν = (k + 1)/2, and,

by (3.7), we have αν−1 = − (k+1)/2
k−(k+1)/2+1 = −1 while, for k even, ν = (k + 2)/2 and

αν−1 = k+2
k ≤ 2 for k ≥ 2. Similarly, for k odd, we have αν+1 = (k − 1)/(k + 4) < 1,

otherwise αν+1 = (k − 2)/(k + 4) < 1, k ≥ 2, and the proof is complete by recalling
(3.7) again for i = 0, ν, k.

On the other hand, we can observe that for many families of linear multistep for-
mulas the above results do not hold. This is the case of popular initial value methods
such as the backward differentiation formula and the Adams–Moulton methods or of
the schemes in section 2.2 with some choices of ν different from those suggested there.
More precisely, some of the coefficients αj and βj , j = 0, . . . , k, for the methods
above, can grow boundlessly very fast for k → ∞.

4. Circulant approximations for general linear multistep formulas. Let
us consider the block preconditioners in (1.2) for the linear systems in (2.6) based on
circulant-like matrices introduced in [4, 5, 7]. The approximating operators Ă, B̆ in
(1.2) are computed by taking into account the coefficients of the formula (2.3), i.e.,
they are defined for the Toeplitz matrices Ân, B̂n.

In what follows, we will recall in brief the main trigonometric approximations for
the nonsymmetric matrices Ân, B̂n (and for A, B in (1.1)) we have found effective for
the preconditioner (1.2); see also section 5.3. To this end, let Tn = (tj) be an n × n
Toeplitz matrix whose diagonal entries are tj , j = −(n − 1), . . . , n − 1.

Strang’s s(Tn) (see [21]), sometimes called simple circulant approximation, is
such that if s0, . . . , sn−1 are the entries of the first row of the corresponding n × n
preconditioner for Tn, we have

sj =




tj , 0 < j ≤
⌊n

2

⌋
,

tj−n,
⌊n

2

⌋
< j < n, j = 0, . . . , n − 1.

(4.1)

The spectrum of the Hermitian Toeplitz matrices preconditioned using Strang’s pre-
conditioner was analyzed in [10]. Notice that s(Tn) is singular for the Toeplitz matrices
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Tn whose generating function f(θ) is zero in θ = 0, as observed, e.g., in [5, 24]. Unfor-
tunately, the generating function of the matrix Ân always has a zero of multiplicity one
in θ = 0 because of the consistency condition 0 = ρ(1) =

∑k
j=0 αj . Thus, as observed

in [5], the approximation (4.1) cannot be safely used in the preconditioner (1.2), e.g.,
when the Jacobian matrix J in (2.6) has some very small or zero eigenvalues; see [5]
for more details.

T. Chan’s circulant preconditioner for the Toeplitz matrix Tn, denoted by c(Tn),
is defined such that ‖c(Tn) − Tn‖F is minimum, where c(Tn) is chosen in the set of
n × n circulant matrices and ‖ · ‖F is the Frobenius norm. If c0, . . . , cn−1 are the
entries of the first row of c(Tn) and tj , j = −(n − 1), . . . , n − 1, are the elements on
the diagonals of the Toeplitz matrix Tn, we have (see [12])

cj =
(n − j)tj + jtj−n

n
, j = 0, . . . , n − 1.(4.2)

If the Toeplitz matrix Tn is Hermitian and positive definite, then these properties
hold true for c(Tn) as well; see [23]. Unfortunately, if Tn is nonsymmetric, s(Tn) and
c(Tn) can have eigenvalues in the right and left half plane or zero as well, even for
those matrices Tn whose eigenvalues have strictly positive real part. For example,
this holds true for the underlying linear systems based on the formulas in section 2.
Moreover, there are families of formulas (2.3) such that the circulant approximation
(4.2) can be ill conditioned or even singular (e.g., those based on the midpoint method
in boundary value form; see at the end of section 5.2).

Let us consider the P-circulant approximation introduced in [4]. Again, if Tn is
a Toeplitz matrix whose entries of the diagonals are t−(n−1), . . . , tn−1, we have that
the entries p0, . . . , pn−1 of the first row of the P-circulant preconditioner p(Tn) for Tn

are given by

pj =
(n + j)tj + jtj−n

n
, j = 0, . . . , n − 1.(4.3)

Notice that the P-circulant and simple and T. Chan’s circulants are equivalent in the
sense of the linear approximation processes; see [20]. In practice, P-circulant matrices
come from using the Frobenius norm weight (n − j)/n for the lower and the weight
(n + j)/n for the upper diagonals, respectively. The circulant matrices, whose entries
are defined in (4.3), have been called P-circulant in [4] because, for some classes of
Toeplitz matrices (and thus for formulas (2.3)), their eigenvalues have positive real
part; see section 5.2. This property can speed up the convergence process with respect
to the other basic approximations described here; see section 5.3. We stress that P-
circulants neither preserve symmetry (but for our purpose this is not essential) nor
minimize the “distance” with the original Toeplitz matrix. More precisely, ||p(Tn) −
Tn|| is not minimized with respect to the p-norms (e.g., p = 1, 2,∞) nor the Frobenius
norm.

The MS-circulant approximation for Tn is given by a rank-one perturbation of
the simple circulant preconditioner whose zero eigenvalue in (5.1) is set to a suitable
nonzero value c for those Toeplitz matrices Tn whose generating functions have a zero.
We achieved interesting results in [5] by setting c = 1/n and c = minr{Re(φr)} > 0,
where φr, r = 1, . . . , n, are the eigenvalues of s(Tn).

Finally, the {ω}-circulant approximation can be considered as another extension
of the simple circulant approximation. Let Tn be a n1-band Toeplitz matrix, n1 <
�n/2�. The {ω}-circulant matrix s̃(tn) differs from the simple circulant s(Tn) because
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the entries outside the diagonals −n1, . . . , n1 of s̃(tn) are given by those of s(Tn)
multiplied by ω = exp(iθ), 0 < θ ≤ π, and s̃(Tn) is nonsingular even if the generating
function of Tn has a zero for θ = 0; see [7].

We observe that some combinations of the above approximations can give further
useful preconditioners as well. For example, it is straightforward to define {ω}–P-
circulant preconditioners by using (4.3) and {ω}-circulant matrices instead of circulant
matrices. The arguments used in the following sections can be adapted for these pre-
conditioners as well, in general, and we will focus only on the “basic” approximations
above.

5. The spectrum of the circulant approximations. The Toeplitz matrices
Ân, B̂n in (3.1) are positive stable for the linear multistep formulas (2.9), (2.10),
(2.11); see [9, chapter 11]. We recall that a square matrix is said to be (semi)positive
stable if its eigenvalues have positive (nonnegative) real part; see, e.g., [16]. It is
straightforward to note that positive stable matrices are nonsingular.

Let us consider n = s + 1 and the (s + 1) × (s + 1) P-circulant matrix p(A)
defined in (4.3) for the Toeplitz matrix A in (2.7) (and then for Âs+1 in (3.1)). The
eigenvalues φj , j = 0, . . . , s, of p(A) can be computed by a linear combination of the
entries of the first row (see Davis [13]):

φl =

s∑
j=0

pjε
jl, l = 0, . . . , s, ε = e2π i/(s+1).(5.1)

From (4.3) we have

φl =

s∑
j=0

αj+ν

(
1 +

j

s + 1

)
εjl +

s∑
j=0

(
j

s + 1
αj+ν−(s+1)

)
εjl, l = 0, . . . , s.

Therefore,

φl =

k−ν∑
j=−ν

αj+ν

(
1 +

j

s + 1

)
εjl, l = 0, . . . , s.(5.2)

A similar expression holds for the eigenvalues ψ0, . . . , ψs of p(B):

ψl =

k−ν∑
j=−ν

βj+ν

(
1 +

j

s + 1

)
εjl, l = 0, . . . , s.(5.3)

Notice that (5.2) and (5.3) are trigonometric sums. Let us define

Φ̂k(x) =

k−ν∑
j=−ν

αj+ν

(
1 +

j

s + 1

)
cos (j x) , x ∈ R,(5.4)

Ψ̂k(x) =

k−ν∑
j=−ν

βj+ν

(
1 +

j

s + 1

)
cos (j x) , x ∈ R.(5.5)

We observe that (5.4) and (5.5) are analytic functions (for k < ∞). From (5.2), we
have that

Φ̂k

(
2πl

s + 1

)
= Re(φl), Ψ̂k

(
2πl

s + 1

)
= Re(ψl), l = 0, . . . , s.
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Thus, it is straightforward to see that if Φ̂k(x), Ψ̂k(x) are positive for real values of
x, then p(A) and p(B) are positive stable.

By using similar arguments, we can derive the expression of the eigenvalues of
s(As+1), s(Bs+1) and c(As+1), c(Bs+1), respectively:

γl =

k−ν∑
j=−ν

αj+νε
jl, δl =

k−ν∑
j=−ν

βj+νε
jl, l = 0, . . . , s,(5.6)

and

k−ν∑
j=−ν

αj+ν

(
1 − |j|

s + 1

)
εjl,

k−ν∑
j=−ν

βj+ν

(
1 − |j|

s + 1

)
εjl, l = 0, . . . , s.(5.7)

Notice that the eigenvalues of s(As+1), s(Bs+1) lie on the boundary locus of As+1,
Bs+1, respectively.

5.1. Preliminary results. First, let us give some properties of the trigonomet-
ric sums (5.4), (5.5).

We recall that a sequence {cj} is of bounded variation (see [25]) if the series∑∞
j=0 |cj+1−cj | converges. If {cj} tends monotonically to zero, then {cj} is of bounded

variation. It is useful to simplify the expressions (5.4) and (5.5) by observing that
cos(x) is an even function.

Lemma 5.1. The function Φ̂k(x) in (5.4) can be expressed for (2.9) as

Φ̂k(x) =
a0

2
+

k−ν∑
n=1

(−1)nan cos(nx),(5.8)

where a0 = 2αν , ν = (k+1)/2 if k is odd, ν = (k+2)/2 if k is even, and an = (−1)nãn,

ãn = αn+ν

(
1 +

n

s + 1

)
+ α−n+ν

(
1 − n

s + 1

)
, n = 1, . . . , k − ν.(5.9)

It is intended that αj is zero if j < 0 or j > k. The sequence {an} has the following
properties:

(1) an ≥ 0, n ≥ 0;
(2) an tends to zero if n → ∞;
(3) an is uniformly bounded (i.e., 0 ≤ an < 2, n ≥ 0);
(4) {an} is monotonic decreasing;
(5) {an} is of bounded variation.

Proof. The expression (5.8) follows by observing that from (3.7), (5.4), and (5.9)
we have

ãn =
(−1)n

n


−

(
k

ν + n

)
(

k

ν

) (
1 +

n

s + 1

)
+

(
k

ν − n

)
(

k

ν

) (
1 − n

s + 1

)
 = (−1)n · an.

(1) Let us check for first that an > 0 for n ≥ 1, n ≤ k − ν (recall that a0 = 2αν

is positive; see (3.7)). From here on, it is intended that an = 0 if n > k − ν. Again,
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from the expression (3.7), we have

n ·an =

(
k

ν − n

)
(

k

ν

) (
1 − n

s + 1

)
−

(
k

ν + n

)
(

k

ν

) (
1 +

n

s + 1

)

=

[
ν − 1

ν + 1
· . . . · ν − (n − 1)

ν + (n − 1)
·
(

1 − n

s + 1

)]
−
[
ν − 1

ν + 1
· . . . · ν − n

ν + n
·
(

1 +
n

s + 1

)]

=

[
ν − 1

ν + 1
· . . . · ν − (n − 1)

ν + (n − 1)

]
·
[(

1 − n

s + 1

)
− ν − n

ν + n

(
1 +

n

s + 1

)]

=

[
ν − 1

ν + 1
· . . . · ν − (n − 1)

ν + (n − 1)

]
· 2n

(ν + n)(s + 1)
· (s + 1 − ν) > 0.

Indeed, notice that the term in square brackets above can assume values in (0, 1), and
(s + 1 − ν) is greater than zero because s ≥ k ≥ ν ≥ 1 by hypothesis; see section 2.2.

(2) Now, let us check that an converges to zero for n → ∞. From the last
expression, we have

an =

[
ν − 1

ν + 1
· . . . · ν − (n − 1)

ν + (n − 1)

]
· 2(s + 1 − ν)

(ν + n)(s + 1)

=

[
ν − 1

ν + 1
· . . . · ν − (n − 1)

ν + (n − 1)

]
· 2

ν + n
·
(

1 − ν

s + 1

)

≤
[
ν − 1

ν + 1
· . . . · ν − (n − 1)

ν + (n − 1)

]
· 2

n
≤ 2

n
(5.10)

because the term in square brackets above assumes values in (0, 1), n ≤ ν, and
0 < 1 − ν/(s + 1) < 1 because s ≥ k ≥ ν ≥ 1.

(3) It is an immediate consequence of the bound in (5.10).
(4) {an} is monotonic (decreasing). Indeed,

an+1−an

=

[
ν − 1

ν + 1
· . . . · ν − (n − 1)

ν + (n − 1)

]
·
[

2ν(ν − n)

(ν + n + 1)(s + 1)(ν + n)
− 2ν

(ν + n)(s + 1)

]

=

[
ν − 1

ν + 1
· . . . · ν − (n − 1)

ν + (n − 1)

]
· − 2ν

s + 1
· 2n + 1

(ν + n + 1)(ν + n)
< 0

by using similar arguments as in (1) and (2).
(5) Finally, for (1)–(4), {an} is of bounded variation.
We recall that a sequence of functions is said to converge locally uniformly on a

set S if it converges uniformly on every compact subset of S; see, e.g., [17, p. 160].
Proposition 5.2. The sequence of functions {Φ̂k(x)} for (2.9) converges locally

uniformly with respect to k (and then with respect to ν = O(k), see section 2) in
(−π, π).

Proof. It is a consequence of Lemma 5.1 and of [25, Theorem 2.7, p. 4].
Corollary 5.3. Under the hypotheses of Proposition 5.2, the function

Φ̂(x) = lim
k→∞

Φ̂k(x)(5.11)

is an analytic function for x ∈ (−π, π) and continuous for x ∈ R.



CIRCULANT-LIKE PRECONDITIONERS FOR GLMS 1811

Proof. It is a consequence of Proposition 5.2 and of [17, Corollary 3.4c, p. 161].
The continuity over the whole real axis derives from Abel’s limit theorem applied in
x = ±π and considering that, for n integer, we have

Φ̂k(±x + 2nπ) = Φ̂k(x), Φ̂k(2π − x)′ = −Φ̂k(x)′,(5.12)

Ψ̂k(±x + 2nπ) = Ψ̂k(x), Ψ̂k(2π − x)′ = −Ψ̂k(x)′, x ∈ [0, 2π], k ≥ 1.(5.13)

Similar expressions hold true for Φ̂(x) and Ψ̂(x).
Lemma 5.4. Let k be an integer and ν = �(k + 1)/2� (k even or odd) or ν =

(k + 2)/2 (k even). For −(k − ν) ≤ n ≤ (k − ν), we have

(ν + n)! (k − ν − n)! ≥ (ν − n)! (k − ν + n)!,(5.14)

ν! (k − ν)! ≤ (ν + n)! (k − ν − n)!.(5.15)

Proof. Let us consider (5.14). We have

(ν − n)!(k − ν + n)!

(ν + n)!(k − ν − n)!
=

(ν − n)!(k − (ν − n))!

k!
· k!

(ν + n)!(k − (ν + n))!
=

(
k

ν + n

)
(

k

ν − n

) ,

where the ratio above is equal to 1 if k is even and it is less than 1 otherwise. Indeed,

(
k

ν − n

)
=

(
k

k − (ν − n)

)
=




(
k

ν + n

)
if k − ν = ν (and k is even),(

k

ν + n − 1

)
if k − ν = ν − 1 (and k is odd) .

Thus, for k odd, we have

(
k

ν + n − 1

)
=

(
k + 1

ν + n

)
−
(

k

ν + n

)
⇒

(
k

ν + n

)
(

k

ν − n

) =
1

ν+n−1
ν−n

< 1, 1 ≤ n ≤ (k − ν).

Using similar arguments, we can see that (5.14) holds true for ν = (k + 2)/2 and k
even as well. Now, let us consider (5.15) for n ≥ 1 (for negative values of n a similar
argument can be used). We have

ν! (k − ν)!

(ν + n)! (k − ν − n)!
=

k − ν

ν + 1
· k − ν − 1

ν + 2
· · · k − ν − (n − 1)

ν + n
,

where we have that the above expression is equal to


ν − 1

ν + 1
· · · ν − n

ν + n
< 1 if k − ν = ν and k is odd,

ν

ν + 1
· · · ν − (n − 1)

ν + n
< 1 if k − ν = ν − 1 and k is even .
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Using similar arguments, we can see that (5.15) holds true for ν = (k + 2)/2 and k
even as well.

Lemma 5.5. The function Ψ̂k(x) can be expressed for (2.10) as

Ψ̂k(x) =
b0

2
+

k−ν∑
n=1

(−1)n+1bn cos(nx),(5.16)

where b0 = 2βν , ν = �(k + 1)/2�, and bn = (−1)n+1b̃n, n ≥ 1,

b̃n = βn+ν

(
1 +

n

s + 1

)
+ β−n+ν

(
1 − n

s + 1

)
, n = 1, . . . , k − ν.(5.17)

It is intended that βj is zero if j < 0 or j > k. The sequence {bn} has the following
properties:

(1) bn ≥ 0, n ≥ 0;
(2) bn tends to zero if n → ∞;
(3) bn is uniformly bounded (i.e., 0 ≤ bn < 2, n ≥ 0);
(4) {bn} is monotonic decreasing;
(5) {bn} is of bounded variation.
Proof. (1) By expanding (5.17), we have

b̃n =


 (−1)k−ν−n

(ν + n)!(k − ν − n)!

∫ ν+1

ν

k∏
m=0,

m�=ν+n

(t − m) dt



(

1 +
n

s + 1

)

+


 (−1)k−ν+n

(ν − n)!(k − ν + n)!

∫ ν+1

ν

k∏
m=0,

m�=ν−n

(t − m) dt



(

1 − n

s + 1

)
.

(5.18)

Thus, for n ≥ 1, we have

b̃n = (−1)n+1

∫ ν+1

ν

[
1 + n/(s + 1)

(ν + n)!(k − ν − n)!

1

|t − ν − n|

− 1 − n/(s + 1)

(ν − n)!(k − ν + n)!

1

(t − ν + n)

] k∏
m=0

|t − m| dt = (−1)n+1 · bn,(5.19)

while, by observing that t − m, m = 0, . . . , k, do not change sign for t ∈ (ν, ν + 1),

b̃0 ≡ b0 = 2βν =
2(−1)k−ν

ν!(k − ν)!

∫ ν+1

ν

k∏
m=0,
m�=ν

(t − m) dt =
2

ν!(k − ν)!

∫ ν+1

ν

k∏
m=0,
m�=ν

|t − m| dt,

(5.20)

therefore (5.20) is positive. To check that bn > 0, n ≥ 1, and n ≤ k−ν (it is intended
that bn = 0 for n > k−ν), it is enough to see that the part in square bracket in (5.19)
is positive or zero. For brevity, let us consider k even. By Lemma 5.4, the part in
square brackets in (5.19) can be rewritten as

1

(ν + n)!(k − ν − n)!

(
1 + n/(s + 1)

n − (t − ν)
− 1 − n/(s + 1)

n + (t − ν)

)
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=
(s + 1 + n) (n + (t − ν)) − (s + 1 − n) (n − (t − ν))

(ν + n)! (k − ν − n)! (n − (t − ν)) (n + (t − ν)) (s + 1)
.

Then, we can observe that the ratio above is positive because the denominator of the
related expression is positive, s + 1 + n > 0, n + (t − ν) > 0, and

(s + 1 − n)(n − (t − ν))

(s + 1 + n)(n + (t − ν))
< 1, n ≥ 1, 0 ≤ t ≤ ν + 1.

For k odd a similar argument can be used, and (1) and the expression (5.16) are
verified.

(2) Let us check first that b0 is bounded. We observe that, for t = t∗ = ν + ε(ν),
0 < ε(ν) → 0 for k, ν → ∞ (recall that ν = O(k)), the following function

f(t) =

k∏
m=0,
m�=ν

|t − m|, ν ≤ t ≤ (ν + 1),(5.21)

reaches its (unique) maximum in the segment ν ≤ t ≤ (ν + 1). This can be checked
by considering the derivative df/dt of (5.21) in (ν, ν + 1) and applying an induction
argument on k. Thus, f(t∗) = c ·ν! (k−ν)!, where c = c(ν) is a parameter of the order
of 1 that converges fast to 1 as ν → ∞ and, by (5.20), b0 is uniformly bounded above
by 2. As a corollary of the above result, by (3.8), βν is uniformly bounded above by
1. Now, to check that bn is bounded for n ≥ 1, it is enough to observe that both the
following factors in (5.19)

1

(ν + n)!(k − ν − n)!

∫ ν+1

ν

k∏
m=0

|t − m| dt,
1

(ν − n)!(k − ν + n)!

∫ ν+1

ν

k∏
m=0

|t − m| dt

are positive and bounded by a constant of the order of unity. To this end, notice that

G(t) =

k∏
m=0

(t − m) =

{
(−1)k+1 · Γ(k + 1 − t)

Γ(−t)
, ν < t < ν + 1,

0, t = ν or t = ν + 1,
(5.22)

where Γ(z) is the Gamma function (see [1] for definitions and some properties). The
equality (5.22) can be derived by using arguments in [1, pp. 12–13]. It is straightfor-
ward to observe that

∫ ν+1

ν

k∏
m=0

|t − m| ≤ sup
ν<t<ν+1

k∏
m=0

|t − m|.

Let us denote by t∗ the maximum of the function |G(t)| in ν ≤ t ≤ ν + 1; G(t) is
defined in (5.22). By considering dG/dt in (ν, ν +1) and using an induction argument
on k, we have that t∗ = ν + 1/2 + ε(ν), where ε(ν) → 0 as ν → ∞ (k → ∞). By
using the definition of Γ(z), we have Γ(x + 1) = x Γ(x) ⇒ Γ(x) = Γ(x + 1)/x, where
x cannot be a negative integer or zero. Applying repeatedly Γ(x) = Γ(x + 1)/x, we
have

|Γ(−t)|−1 ≤ ν! (t∗ − ν)
1

|Γ(−t∗ + ν + 1)| .(5.23)
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By observing that

(k−ν−1)! < Γ(k + 1− t∗) < (k−ν)!, 0 < c ≡ Γ(−t∗ +ν + 1) < 1, 1 < 1/(t∗−ν) < 2

and by recalling Lemma 5.4, we can write

|G(t)| ≤ c · (t∗ − ν)−1 · ν! · (k − ν)!;

thus, bn is bounded above by 2.
(3) To check that {bn} converges to zero as n → ∞, arguments similar to those

used to prove (1), (2) give that bn in (5.19) can be written as bn = 1
n ·hn, where {hn}

is a uniformly bounded sequence.
(4) To check that {bn} is a monotonic nonnegative decreasing sequence, we observe

that the expression (5.19) for n > 1 and for k even gives

bn − bn+1 =
1

(ν + n)!(k − ν − n)!

∫ ν+1

ν

{[
1 + n/(s + 1)

n − (t − ν)
− 1 − n/(s + 1)

n + (t − ν)

]

−
[

1 + (n + 1)/(s + 1)

(n + 1) − (t − ν)
− 1 − (n + 1)/(s + 1)

(n + 1) + (t − ν)

]} k∏
m=0

|t − m| dt.(5.24)

Let us consider the expression in curly brackets in (5.24). We have the following lower
bound:

{·} >
1 + n/(s + 1)

n − 1
− 1 + (n + 1)/(s + 1)

n + 1
− 1 − n/(s + 1)

n − 1
+

1 − (n + 1)/(s + 1)

n + 1

=
2n

(s + 1)(n − 1)
− 2(n + 1)

(s + 1)(n + 1)
=

2

s + 1

(
n

n − 1
− 1

)
> 0,(5.25)

and thus, by (5.24), bn − bn+1 > 0 and the sequence {bn} is monotonic decreasing.
(5) For (1)–(4), {bn} is of bounded variation.
Finally, by using similar arguments such as in the Proposition 5.2 and Corollary

5.3, we have the following results.
Proposition 5.6. The sequence of functions {Ψ̂k(x)} for (2.10) converges locally

uniformly with respect to k (and thus with respect to ν = O(k)) in (−π, π).
Proof. It is a consequence of Lemma 5.5 and of [25, Theorem 2.7, p. 4].
Corollary 5.7. Under the hypotheses of Proposition 5.6, the function

Ψ̂(x) = lim
k→∞

Ψ̂k(x)(5.26)

is analytic for x ∈ (−π, π) and continuous for x ∈ R.

5.2. Main results. As a consequence of the results in the previous section, we
can give bounds for the eigenvalues for some of the underlying approximations.

Theorem 5.8. The P-circulant matrices p(As+1), p(Bs+1) related to the formu-
las (2.9), (2.10) are positive stable and, if φj, ψj, j = 0, . . . , s, are the eigenvalues of
p(As+1), p(Bs+1), respectively, we have

1

s + 1
≤ Re(φj) < 2, Re(ψj) = 1 for (2.9),(5.27)

1

s + 1
≤ Re(φj) <

2s + 1

s + 1
< 2,

2

π2(s + 1)
< Re(ψj) < 1 for (2.10).(5.28)
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Proof. Let us observe that, from (4.3) and (5.2), considering the scaling and
consistency conditions ρ(1) = 0, σ(1) = 1, we have

k−ν∑
j=−ν

αj+ν = 0,

k−ν∑
j=−ν

jαj+ν = 1.(5.29)

Thus, the expression (5.2) gives φ0 = Φ̂(0) = 1/(s + 1) for the formulas (2.3).

Let us check (5.27). To this end, we consider formulas (2.9) and expand cos(jx)
in the right-hand side of (5.4) using power series in a neighborhood of the origin. If
P(f) is the formal power series expansion of a function f , we can write

P
(

Φ̂k(x)
)

=
1

s + 1
+

∞∑
n=1


(−1)n

x2n

(2n)!

k−ν∑
j=−ν

j2nαj+ν

(
1 +

j

s + 1

)
 .(5.30)

For brevity, we consider k odd (⇒ ν = (k + 1)/2). From (2.13), it is worth noting
that (5.30) is equivalent to the following expression:

P
(

Φ̂k(x)
)

=
1

s + 1
+

∞∑
n=ν


(−1)n

x2n

(2n)!

k−ν∑
j=−ν

j2nαj+ν

(
1 +

j

s + 1

)
 .(5.31)

However, in Proposition 5.2, we observed that {Φ̂k(x)} converges locally uniformly in
S = (−π, π) with respect to k (i.e., to ν because k = 2ν − 1) for (2.9). Moreover, the
functions fn(x) = (−1)n an cos(nx) in (5.8) are analytic in S. Then, by [17, Corollary
3.4c, p. 161], we have that

∑
fn(x), i.e., Φ̂(x) in (5.11), is analytic in S and that the

sequence {Φ̂k(x)} converges in S and the series related to (5.30) (and (5.31)) is the
Taylor series of Φ̂(x). However, by Abel’s limit theorem for the power expansions, we
have that the Taylor expansion in (5.30) (and (5.31)) converges for x = ±π as well,

Φ̂(x) := lim
k→+∞

Φ̂k(x) = lim
k→+∞

P(Φ̂k(x)), x ∈ [−π, π],(5.32)

and thus, by (5.12), for x ∈ R. To conclude the first part of the proof, we observe
that the quantity in the curly brackets in (5.31) is positive for n = ν (i.e., the first
term of the sum), vanishes fast for k → ∞ (recall (2.4) and (2.13)), and we can see
that (see Figure 5.1, right)

1

s + 1
≤ Φk(x) ≤ Φ1(x) ≤ 2, k ≥ 1, −π ≤ x ≤ π.

Let us now check (5.28). We can expand cos(jx) in the expression (5.5) in Taylor
series in a neighborhood of the origin, and, for k < ∞, we have

Ψ̂k(x) =

∞∑
n=0


(−1)n

x2n

(2n)!

k−ν∑
j=−ν

j2nβj+ν

(
1 +

j

s + 1

)
 .(5.33)

By considering the order conditions (2.14), recalling the power series expansion of
sin(x) and of cos(x) in a neighborhood of the origin and arguments similar to those
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Fig. 5.1. Φ̂k(x), k = 1, 7, 15, 27, s = 30 for formula (2.11) (left) and for formula (2.9) (right).

The dashed curves give Φ̂(x).

used to prove (5.27), we have that, for k → ∞ (i.e., ν → ∞ because ν = O(k)),

lim
k→∞

Ψ̂k(x) = Ψ̂(x) =




sin(x)
x − 1

s + 1

(
sin(x)

x − 1
2

sin2(x/2)
(x/2)2

)
,

x ∈ (−π, 0) ∪ (0, π),

1 − 1
2(s + 1)

, x = 0.

Thus, by using similar arguments as before, the expressions (5.12), (5.13), and Abel’s
limit theorem, we see that the following inequalities hold true for (2.10):

Ψ̂k(x) ≥ Ψ̂(π) =
2

π2(s + 1)
> 0, x ∈ R,

1

s + 1
≤ Φ̂k(x) ≡ Φ̂1(x) ≤ 2s + 1

s + 1
< 2, x ∈ R, k ≥ 1.

The behavior of Ψ̂k(x) for some values of k is displayed in Figure 5.2.
We observe that the imaginary parts of the eigenvalues of the circulant approxi-

mations (4.1) and (4.3) for the matrices A and B in (2.6) for the formulas (2.9) and
(2.10) are uniformly bounded by constants of the order of unity.

Theorem 5.9. If φj, ψj, j = 0, . . . , s, are the eigenvalues of p(As+1), p(Bs+1),
respectively, we have

−π < Im(φj) < π, Im(ψj) = 0 for (2.9),(5.34)

− s

s + 1
≤ Im(φj) <

s

s + 1
, −c < Im(ψj) < c for (2.10), j = 0, . . . , s,

(5.35)
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Fig. 5.2. Left: Ψ̂k(x), k = 2, 6, 14, 28 (k even); right: Ψ̂k(x), k = 1, 7, 15, 27 (k odd) for

formula (2.10), s = 28. The dashed curve gives Ψ̂(x).

where

c = max
0<x<π

∣∣∣∣cos(x) − 1

x

∣∣∣∣ (⇒ 0.7246 < c < 0.7247).

Proof. The proof uses arguments similar to those in the proof of Theorem
5.8.

Again, as a corollary of Theorem 5.8, we have the following results.
Theorem 5.10. The preconditioners s(As+1), s(Bs+1) defined in (4.1) and re-

lated to the formulas (2.9), (2.10) are semipositive stable. If γj, δj, j = 0, . . . , s, are
the eigenvalues of s(As+1), s(Bs+1), respectively, we have

0 ≤ Re(γj) ≤ 2, Re(δj) = 1 for (2.9),(5.36)

0 ≤ Re(γj) ≤ 2, 0 ≤ Re(δj) ≤ 1 for (2.10), j = 0, . . . , s.(5.37)

Theorem 5.11. The {ω}-circulant preconditioners s̃(As+1), s̃(Bs+1) for ω =
exp (iθ), 0 < θ ≤ π, and the MS-circulant preconditioners defined in section 4, related
to the formulas (2.9), (2.10), are positive stable. If γ̃j, δ̃j, j = 0, . . . , s, are the
eigenvalues of s̃(As+1), s̃(Bs+1), respectively, we have

0 < Re(γ̃j) ≤ 2, Re(δ̃j) = 1 for (2.9),(5.38)

0 < Re(γ̃j) ≤ 2, 0 ≤ Re(δ̃j) ≤ 1 for (2.10), j = 0, . . . , s.(5.39)

The bounds (5.38), (5.39) hold true for the eigenvalues of the MS-circulant approxi-
mations as well.

Similarly, it is straightforward to derive a result analogous to Theorem 5.9 for
simple {ω}-circulant and MS-circulant preconditioners by using the results in [7, 5].
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It is worth noting that Theorems 5.8 and 5.10 can give results beyond linear
algebra. The following corollary suggests a proof for the A-stability of formulas (2.9)
using different tools, shorter than in [3, pp. 50–65].

Corollary 5.12. The formulas (2.9), used in boundary value form with ν initial
and k − ν final conditions, are A-stable.

Proof. As observed in [9], a linear multistep formula used in boundary value form
is A-stable if its boundary locus is in the right half plane. In fact, the expression of
the real part of the boundary locus of the formulas (2.9) is given by

k−ν∑
j=−ν

αj+ν cos(j x), x ∈ R, k ≥ 1;

see (5.6). Thus, by using the bound (5.36), we have that the boundary locus of
formulas (2.9) is in the right half plane.

Notice that the condition number of the underlying P-circulant approximations
has a favorable behavior, e.g., for the methods based on formulas (2.9) and (2.10).

Corollary 5.13. Consider the sequences {K2(p(As+1))}, {K2(p(Bs+1))}. We
have that

K2(p(As+1)) < (s + 1)
√

π2 + 1, K2(p(Bs+1)) = 1 for (2.9),

and

K2(p(As+1)) < 2(s + 1), K2(p(Bs+1)) < (s + 1)
π2

2
for (2.10),

where K2(·) is the 2-norm condition number.
Proof. The proof follows from Theorems 5.8 and 5.9 by considering that circulant

matrices are normal (see [13]), and thus the singular values are given by the modulus
of the eigenvalues.

We observe that the bounds in the Corollary 5.13 could be not very tight for
all values of k and s. However, for our purposes, it is enough to stress the linear
dependence of the condition number from the size of the underlying matrices. Again,
recall that K2(As+1) = O(s) and K2(Bs+1) = O(s) as well; see [6].

On the other hand, we cannot give an upper bound for K2(p(As+1)) for the
matrices related to the formulas in (2.11). Indeed, applying arguments similar to those
used in the proofs of Theorem 5.8 and of Corollary 5.13, we would have Φ̂(nπ) = 0,
n �= 0 integer (see Figure 5.1, left). Therefore, K2(p(As+1)) cannot be bounded,
and we have not considered in detail formulas (2.11). Moreover, we experienced
that the methods based on formulas (2.9) and (2.10) can perform better than those
based on (2.11) with the underlying preconditioners. For example, less preconditioned
iterations are often required to solve the linear systems (2.6) for (2.9) and (2.10).

Notice that, for several families of non-Hermitian Toeplitz matrices, the real parts
of the eigenvalues of their circulant approximations can be positive, negative, or zero
even when the nonpreconditioned matrix is positive stable. For example, this is
the case of backward differentiation formulas, Adams–Moulton methods, formulas
in section 2.2 for choices of ν different from those suggested there. Moreover, for
non-Hermitian matrices, the circulant approximation in (4.2) may give ill conditioned
preconditioners as well. For example, the condition number of c(As+1) can grow
fast with k, e.g., for the families of k-step formulas in section 2.2; see Figure 5.3.
Moreover, the block preconditioners using the approximations (4.2) can be singular
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Fig. 5.3. Condition number of the P-circulant and of the circulant approximation based on
(4.2) for the matrices A as in (2.7) related to k-step formulas (2.9).

for stable multistep formulas in boundary value form whose component matrices are
nonsingular. This is the case of the midpoint method using with one initial and one
final condition (k = 2, ν = 1 in (2.3)) introduced in [2]. Indeed, by using (5.7), and
by recalling that α2 = 1 = −α0 in (2.3), we have the expression of the eigenvalues of
c(As+1) for the above-mentioned method:(

1 − 1

s + 1

)
(εl − ε−l) = 2i

(
1 − 1

s + 1

)
sin

(
2πil

s + 1

)
, l = 0, . . . , s,

which is zero for l = 0 for any s ≥ 2 and, if s is odd, for l = (s + 1)/2 as well. On the
other hand, by (5.2), the eigenvalues of the corresponding P-circulant matrix p(As+1)
are given by

1

s + 1
cos

(
2πl

s + 1

)
+ i sin

(
2πl

s + 1

)
, l = 0, . . . , s,

which cannot be zero. However, we have experienced that, for low order formulas in
section 2.2, both the preconditioners based on P-circulants and on T. Chan’s circulants
(4.2) can be effective to solve (2.6) with Krylov subspace accelerators; see [4, 5].

5.3. How to choose the approximations and convergence of precondi-
tioned iterations. In the previous sections, we have considered the spectrum of the
component matrices of the block preconditioners in (1.2). Further information on
the spectrum of the matrix M in (2.6) and its component matrices can be found in
[2, 6, 9]. On the other hand, the convergence of preconditioned iterations using, e.g.,
GMRES, BiCGstab, and some other BiCG-like methods, is essentially decided by the
distribution of the spectrum of the eigenvalues and by the eigenvectors of the precon-
ditioned matrix; see, e.g., [18]. Notice that the analysis of the preconditioned linear
system, in the nonsymmetric case, cannot be performed by using the arguments in
the previous sections. In fact, one should explicitly manipulate the related character-
istic polynomial. For example, if we consider the preconditioner (1.2) and the linear



1820 DANIELE BERTACCINI

systems (2.6), we need to derive an analytic expression for λ from

det((1 − λ)Im(s+1) + P−1E) = 0, E = (A − Ă) ⊗ Im − h(B − B̆) ⊗ J,(5.40)

where we recall that Im(s+1) + P−1E = P−1M ; see [4, Theorem 4.1] for details.
Unfortunately, the above approach can fail to give complete and useful information on
the convergence process. Indeed, the above analysis must consider a specific Jacobian
matrix J and a formula (2.3) with k fixed. Moreover, the derivation of λ from (5.40)
is usually rather lengthy even for low order schemes and sometimes it is difficult to
handle in view of the behavior of the eigenvalues.

Therefore, in what follows, we will give some general suggestions in order to decide
whether approximation could be more suitable to precondition the underlying linear
system. These hints could be adapted for the solution of other problems based on
nonsymmetric (block-)Toeplitz-like matrices.

Recall that, for Krylov subspace methods, we expect fast convergence of precondi-
tioned iterations if the spectrum of the eigenvalues of the block preconditioned matrix
is clustered around (1, 0) ∈ C. Let Tn be a nonsymmetric band Toeplitz matrix, p(Tn)
the P-circulant approximation for Tn, and l(Tn) a trigonometric approximation, e.g.,
one of those described in section 4. Defining Ep = Tn − p(Tn), El = Tn − l(Tn), and
using similar arguments as in [4], we can write

p(Tn)−1Tn = I + p(Tn)−1Ep = I + p(Tn)−1(E(1)
p + E(2)

p ),(5.41)

l(Tn)−1Tn = I + l(Tn)−1El = I + l(Tn)−1(E
(1)
l + E

(2)
l ),(5.42)

where E
(2)
p , E

(2)
l have small rank with respect to n and E

(1)
p , E

(1)
l have small norm

(with respect to Tn, say). From (5.41), (5.42), we expect that the P-circulant-based
approximation will perform better than the other if, e.g.,

(C1) ||p(Tn)−1||2 < ||l(Tn)−1||2;

(C2) ||p(Tn)−1E
(1)
p ||2 < ||l(Tn)−1E

(1)
l ||2 (if the underlying approximation l(Tn) is

such that ||E(1)
l || �= 0; otherwise we require that ||p(Tn)−1E

(1)
p ||2 is moderate);

(C3) the outlying eigenvalues of p(Tn)−1Tn (i.e., the eigenvalues outside the cluster
in (1, 0) ∈ C) have positive real part whereas some of l(Tn)−1Tn have negative
real part.

Notice that condition (C1) is equivalent to, say, that of K2(p(Tn)) < K2(l(Tn)) be-
cause ||p(Tn)||2, ||l(Tn)||2 are uniformly bounded with n. (We assume, as is custom-
ary, that the entries of Tn are uniformly bounded with respect to n.) By condition
(C2) alone and (5.41), (5.42), it would appear that preconditioners based on simple
circulant-like approximations such as Strang’s, MS-circulant, and {ω}-circulant will
perform definitively better than a P-circulant based one (or, e.g., better than (4.2))

because they have E
(1)
l = 0 in (5.42), i.e., no small norm perturbation. Unfortunately,

this is false in general. Finally, the third condition (C3) can be very important for
the convergence of GMRES and BiCG-like Krylov methods. Indeed, as observed in
[18], if the convex hull of the eigenvalues includes the origin of the complex plane,
then the convergence can be slow.

Let us consider some examples in which P-circulant-like block preconditioners
in (1.2) can outperform preconditioners based on other approximations for the lin-
ear systems (2.6). For simplicity, we assume J = V DV −1 diagonalizable, D =



CIRCULANT-LIKE PRECONDITIONERS FOR GLMS 1821

diag(µ1, . . . , µm), and Re(µr) ≤ 0. By using the notation of the previous sections,
we have the following decomposition for P as in (1.2):

P = (F ∗ ⊗ V ) diag (φ0 − hψ0µ1, . . . , φ0 − hψ0µm, . . .

. . . , φs − hψsµ1, . . . , φs − hψsµm)
(
F ⊗ V −1

)
.(5.43)

Then, the eigenvalues of the block preconditioner are given by φj−hψjµr, j = 0, . . . , s,
r = 1, . . . ,m, and

||P−1||2 ≤ K2(V ) min
j,r

{|φj − hψjµr|}−1,

where K2(V ) does not depend on s. If we consider the matrices related to the schemes
(2.9), we have ψj ≡ 1, j = 0, . . . , s, and using P-circulant approximations for Ă, B̆ in
(1.2) gives

||P−1||2 ≤ K2(V )
s + 1

1 + (T − t0)µ̃
= O(s), µ̃ = min

r
{|µr|}.

On the other hand, similar bounds cannot be stated for non-P-circulant-like approx-
imations because, in general, we have

||P−1||2 ≤ K2(V )
s + 1

(T − t0)µ̃
, µ̃ = min

r
{|µr|},

which can be unbounded if some eigenvalues of J are very small or zero in modulus.
A similar effect can be observed for some classes of matrices J with purely imaginary
eigenvalues and other matrices A, B in (2.6), Tn in (5.41), (5.42) as well.

Notice that, by using similar arguments as before, we can write P−1M = I +
P−1(E(1) + E(2)); see, [4, Theorem 4.1]. Therefore, if we take the 2-norm of the
perturbation of the identity in the right-hand side above, we get

||P−1(E(1) + E(2))|| ≤ ||P−1|| · (||E(1)|| + ||E(2)||).

By the above arguments, ||P−1|| can be larger for the preconditioner not based on
P-circulant matrices. As a result, the amplification of the perturbations E(1) + E(2)

given by the multiplication by P−1 can give (C3); see (5.41), (5.42). Moreover, recall
that the spectrum of the eigenvalues can be much more sensitive to perturbations
with respect to the Hermitian case; see, e.g., [22].

On the other hand, if the eigenvalues µr, r = 1, . . . ,m, are, e.g., negative and
bounded from below by a constant c < 0, then preconditioners based on simple
circulant-like approximations (i.e., based on Strang’s, {ω}-circulant, and MS-circulant
matrices) may give better performances for large s as well. For numerical examples,
see [4, 5, 7].
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