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Abstract: Take Xy to be a symmetric matrix with real independent (modulo the symmetry
constraint) equidistributed entries with law P and denote (Aq,---,An) its eigenvalues. Then,
Wigner [14] has shown that, if [22dP(z) is finite, N~! Zf\il 0y,/yN converges in expectation
towards the semi-circle distribution. In this paper, we consider the case where P has a heavy tail
and belong to the domain of attraction of an a-stable law for o €]0, 2[. We show the convergence
of N1 Zf\i 1 5/\./N 1 towards a law .. We characterize and study p,, showing in particular that
itisa Symmetrilc measure with heavy tail.

1 Introduction

We study the asymptotic behavior of the spectral measure of large random real symmetric matrices
with independent identically distributed heavy tailed entries. Let (x;;,1 < i < j < 0o) be an infinite
array of i.i.d real variables in a probability space (€2,P), with common marginal distribution P.
Denote by Xy the N x N symmetric matrix given by:

XN(’i,j) = Tjj; if 4 <y, Zji otherwise.
If the entries have a finite second moment o? = E[:EZQJ] = [2?dP(z), and if (A1,---,An) are
the eigenvalues of X\/—% then Wigner’s theorem (see [14] and generalizations in [9, 1]) asserts that

the empirical spectral measure % Zf\i 1 0y, of the matrix X\/—% converges weakly almost surely to the

o(dz) = ﬁ\/ 402 — x2dz.

We will consider here the case of heavy tailed entries, when the second moment ¢ is infinite.
We will assume that the common distribution of the absolute values of the x;;’s is in the domain
of attraction of an a-stable law, for o €]0, 2, i.e that there exists a slowly varying function L such
that

semi-circle distribution

P} > ) = P(Jay) > u) = 2. )

We introduce the normalizing constant ay by:

ay = inf(u, Blloy) > u] < %). 2)
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It is clear that ap is roughly of order NV %, indeed there exists another slowly varying function Lg
such that
1
any = Lo(N)N=. 3)

We then consider the matrix Ay := a]_le N, its eigenvalues (A1, -+, Ay), and its spectral measure
fiay = Zf\il dy,. Our main result is

Theorem 1.1. Let o €]0, 2 and assume (1).

1. There exists a probability measure po, on R such that the mean spectral measure Elfia,]
converges weakly to .

2. fia, converges weakly in probability to jio. More precisely, for any bounded continuous func-
tion f, [ f(z)dfiay () converges in probability to [ f(z)dua(z).

3. Let (Ny)k>1 be an increasing sequence of integers such that > ;- N,/ ¢ < co for some € <1,
then the subsequence ,&ANk converges almost surely weakly to pg,.

Remark 1.2. We note that the hypothesis (1) concerns only the tail behavior of the distribution of
the absolute values of the entries. We make no assumption about the skewness of the distribution
of the entries, i.e about their right or left tails.

Remark 1.3. It would be useful to control better the fluctuations in Theorem 1.1 and establish
almost sure convergence for the whole sequence fia, .

Our approach is classical. It consists in proving the convergence of the resolvent, i.e of the mean
of the Stieltjes transform of the spectral measure, by proving tightness and characterizing uniquely
the possible limit points. We first prove, in section 2, that it is possible , for all later purposes,
to truncate the large values of the entries at appropriate levels. We then proceed, in section 3,
to show tightness for the spectral measures of the truncated and original matrices Ay . We then
introduce, in section 4, the following important quantity: for z € C\R, we define the probability
measure L3, on C by

LN
O
NTN ;5<z—AN)k£
=1

i.e the empirical measure of the diagonal elements of the resolvent of Ay at z € C\R. The
classical Schur complement formula is our basic linear algebraic tool to study L3 recursively on
the dimension, as is usual when the resolvent method is used (see e.g [9] or [1]). In section 5, using
an argument of concentration of measure and borrowing classical techniques from the theory of
triangular arrays of i.i.d random variables, we show that the limit points p* of L3, satisfy a fixed
point equation in the space of probability measures on C. Even though we cannot prove uniqueness
of the solution to this equation, we manage in section 6 to prove the uniqueness of the solution to
the resulting equation for [ 22 dp? (), which in turn gives the uniqueness of [ @dp?(z). This is
enough to characterize uniquely the limit points of E[/i4, ] and thus the convergence of E[fi4,] to
Ha-

Once the question of convergence is settled by Theorem 1.1, the next question is to describe
the limiting measure p,. We will discuss in this article three different characterizations of y,. Our
approach leads directly to the following first characterization of u, through its Stieltjes transform,
defined for z € C\R by:



Galz) = / (2 — 2) " dpua(). (4)

Define the entire function g on C by

2 [® 2
dalp) == [ ey (%)
@ Jo
We will also need the constants C(«) = % and c(a) = cos("f).
2

Theorem 1.4. 1. There exists a unique function Y,, analytic on the half plane CT = {z €
C,Imz > 0}, tending to zero at infinity, and such that

Cla)ga(c(@)Yz) = Yo (—2)"

2. The probability measure po of Theorem 1.1 is uniquely described by its Stieltjes transform
given, for z € CT, by
1 [ Sy
Gol) = -1 / ete—eln Y gy (6)
ZJo
Using the characterization given in Theorem 1.4, we prove in section 7 the following properties
of pq.

Theorem 1.5. The probability measure pn of Theorem 1.1 satisfies
1. pq 18 symmetric.
2. pe has unbounded support.

3. There exists a (possibly empty) compact subset of the real line K, of capacity zero, such that
the measure 1, has a smooth density p, on the open complement U, = R\ K, .

4. la has heavy tails. There exists a constant Lo, > 0 such that, when |z| — oo

La
pa(x) ~ |$|T+1

A second and different characterization of u, is proposed in the physics literature by Cizeau-
Bouchaud [3]. This description has been controversial (see [4] for a discussion and numerical
simulations). The strategy used in [3] is also based on the convergence of the resolvent, but on
the real axis as opposed to our proof of convergence away from the real axis. We unfortunately
cannot make sense of the strategy used in [3]. We discuss in section 8 the link between our
characterization given in Theorem 1.4 and the Bouchaud-Cizeau characterization (after correction
of a small typographical error in [3] already noted by [4]).

Remark 1.6. We are not able to prove in general that the exceptional set K, of Theorem 1.} is
empty, or reduced to zero, even though we conjecture this is true. Recent work in progress with A.
Dembo indicates that K, is at most the origin for a < 1. This would say that e has a smooth
density everywhere (except may be at zero) as suggested by numerical simulations and accepted by
the physics literature. This question is discussed further in Section 7.



We also describe below (in section 9) a third characterization of p,, more combinatorial in
nature. It is based on an extension (due to I.Zakharevich, [15] ) of the classical moment method
rather than the resolvent approach used both by [3] and us. Obviously because of the heavy tails
and thus of the absence of moments, one would have to do it first for truncated matrices and then
try to lift the truncation. More precisely if one truncates the entries at the level Bay, for a fixed
B > 0 and define 2 = Tij1i4, | <Bay ONE can compute the moments of the empirical measures i AL

j
of the truncated matrix A% (ij) = a]_vlznf;

1
/:EkdﬂAﬁ(:E) = Ntr ((Aﬁ)k> .
and study their convergence when N tends to infinity. We establish in section 9 that

Theorem 1.7. With the above notations,and under the hypothesis of Theorem (1.1)and the addi-
tional hypothesis:
Pla(ii
L B(alig) > u)

2 Bl > w €Y ™)

1. IE[,&A%] converges weakly to a probability measure p2 uniquely determined by its moments and

independent of the parameter 6. This measure p2 has unbounded support and is symmetric.
2. 1B converges weakly to p, as B tends to infinity.

The moments of uZ are described combinatorially in Section 9. Thus Theorem 1.7 gives a
third, independent, description of the limiting measure p,. As we will see in Section 9, the first
part of Theorem (1.7) is a direct consequence of a general combinatorial result of I.Zakharevich
and its proof is essentially given in [15]. The convergence of these Zakharevich measures to our
1o, establishes a link between this combinatorial description and the one we have given in terms of
Stieltjes transforms in Theorem 1.4. This link is far from transparent.

Remark 1.8. We note that the limiting measure pZ is in fact independent of the skewness param-
eter 6. Thus it is insensitive to the hypothesis (7) about the upper and lower tails of the distribution
of the entries. This is coherent with Remark 1.2.

Remark 1.9. The case o = 2 is covered neither by the classical Wigner theorem (which asks for a
second moment) nor by our results so far. In fact it is easy to see, using the combinatorial approach
of Theorem 1.7 that the limit law is then the semi-circle, even though the normalization differs from
the usual one.

Finally, let us mention that the behavior of the edge of the spectrum of heavy tailed matrices
(when « €]0, 2[) has been established by Soshnikov [13]. The largest eigenvalues are asymptotically,
in the scale a?\,, distributed as a Poisson point process with intensity a~'z=*1dx. This is in sharp
contrast with the Airy determinantal process description of top eigenvalues for the case of light
tailed entries [12] but in perfect agreement with our result about the tail of u, given in Theorem
1.5.



2 Truncating the entries

Since the entries of our random matrices have very few moments, it will be of importance later
to truncate them. We introduce the appropriate truncated matrices in this section and show how
their spectral measure approximate the spectral measure of the original matrices.

Let us consider Xﬁ (resp. X§ ) the Wigner matrix with entries Tijliy,;|<Bay for B > 0,
respectively @ijl,, |<nrqy for £ > 0. Also define

-1 B —1yB -1
Ay =ay Xy, Ay =ay Xy, N=ay Xy

Let us remark here that the threshold ay is precisely the scale of the largest entry in a row (or a
column) of the random matrix X, while the scale of the largest entry (or of the largest eigenvalue)

of the whole matrix is a3 i.e roughly Nz,
We want to state that the spectral measures of the matrices Ay, Aﬁ and A% are very close
in a well chosen distance, compatible with the weak topology. The standard Dudley distance d is

defined on P(R) by
[ 0= [ sa

where the supremum is taken over all Lipschitz functions f on R such that || f]|z < 1, where the
norm || f||z is defined by
[f(z) = f(y)]

| fll 2 := sup “——=—=== + sup | f(x)].
T#yY |z — y| x

d(p,v) = sup
17]le<1

We will use the following variant d; of the Dudley distance.

d(pv) = sup | [t | fdul

Ifle<1.f1

where the supremum is taken over non-decreasing Lipschitz functions such that || f||z < 1. The
Dudley distance d is well known to be a metric compatible with the weak topology and the following
Lemma shows that so is the variant d;.

Lemma 2.1. dy is compatible with the weak topology on P(R), i.e if p is a positive measure on R
such that there exists u" € P(R) so that

lim dq(u", p) =0,

n—oQ

then p™ converges weakly to p and p € P(R). Reciprocally, if p, converges to p weakly, dy(fin, 1)
goes to zero. If a sequence p, € P(R) is Cauchy for di, it converges weakly.

Proof. A compactly supported Lipschitz function f can be written as

where ¢ is a borelian function bounded by the Lipschitz norm of f. Writing

f(x) — £(0) = /0 09 ()dy — /0 19| Ly <oy



we see that f can be written as the difference of two non-decreasing Lipschitz functions. Hence, if
di(p™, p) goes to zero as n goes to infinity, [ fdu, converges to [ fdu for all Lipschitz compactly
supported functions. Hence, p, converges to u for the vague topology. On the other hand, if u™
converges to u for di, we must have, taking f =1,
p(1) = lim p"(1) =1

n—oo
which is enough to guarantee also the weak convergence. Indeed, if we now take f € C3(R), and g
compactly supported with values in [0, 1],

() = (O] < N flloo (#(1) + pn (1) — p1(g) = 1n(9)) + | (fg) — p(f9)|

Letting first n going to infinity and then taking g approximating the unit, we obtain the result. The
second statement is clear since dy < d with d the standard Dudley distance (obtained by taking the
supremum over all Lipschitz functions with norm bounded by one) and the result is well known to
hold for d. Finally, if a sequence pu,, is Cauchy for dy, it converges for the vague topology (as it is
tight for the vague topology, and the property of being Cauchy uniquely prescribes the limit) and
then for the weak topology by the mass property.

O

We next show that truncation does not affect much the spectral measures in the d; distance.

Theorem 2.2. 1. For every ¢ > 0 there exists B(e) < oo and (e, B) > 0 when B > B(e) such
that, for N large enough

p (dl(ﬂAmﬂAg) > 6) < e OB,

2. Fork >0, and a €]1 — ak, 1], there exists a finite constant C(a, k, a) such that for all N € N,
P (di(fay frag,) > NO71) < e OVl

Remark 2.3. This result depends crucially on the proper choice of the truncation level. Had
we truncated the entries at a lower level, say N%ayn with x < 0, then the limit law would be the
semi-circle. Thus the effect of the heavy tails would have been completely canceled by the truncation.

Proof. Let X and Y be two N x N Hermitian matrices, and ix and fiy be their spectral measures.
Then Lidskii’s theorem implies (see e.g [8] p. 500) that, if d is the rank of X — Y then

o 2d
di(fix, fry) < N (8)
Consequently, the following Lemma implies Theorem (2.2). O

Lemma 2.4. 1. For every € > 0, there exists B(e) > 0 and d(e, B) > 0 when B > B(e€) such
that
P(rank(Xy — XE) > eN) < ¢ 90BN

2. For k >0, and a €|1 — ak, 1] there exists a finite constant C(«, k, a) such that for all N € N,

P(rank(Xy — X5) > N9) < ¢ ON"logN (9)



Proof. (of Lemma 2.4.)
Let M, =1 (resp. M;" = 1) if there exists a j <4 (resp. j > i such that |zi;| > Ban, and
M, =0 (resp. M;" = 0) otherwise. Define
N N
M~ =) M; and M* =) M.
i=1 i=1

Now let M be the number of non zero rows of the matrix Xy — X ﬁ, obviously
rank(Xy — X)) <M <M~ +MT, (10)

so that N N
P(rank(Xy — XF) = eN) S P(M~ = =) + P(MT > ),

But if we denote by p; = P(M, = 1), we have

. . L(B(IN) . C ;
=P(d5 < i B =1-(1-—)<1—-(1- ¢
pi ( ]—Zv|$w|> an) ( (B(IN)O‘) = ( NBO‘)
where the later inequality holds for ¢ > 1 when N is large enough since
NL(B
lim M = 1. (11)
N—oo Ay
As a consequence we can estimate the sum
N 1— (1 _ _c )N—l—l
D op<N- VB ~ NC(B) (12)
i=1 1 -1~ xp=)
where we denoted Ay ~ By if Ay/By goes to one as N goes to infinity and
B~ c
CB)=1——(1—¢eB7). (13)

c
For any A > 0, the independence of the M, ’s gives

N N
E(expAM ™) = [[(1 +pi(e* = 1)) < expl(e* = 1)(D_ pi)]

i=1 i=1
So that we get the exponential upper bound, for N large enough

[P)(M_ > %) < G_A%E(QXPAM_) < eXp[_NQS—(Av €, B)]v
with A
6-(\ e B) =5 — (" = 1)C(B).

Obviously, since limp_., C(B) = 0, for any € > 0, there exists a B(e) > 0 (of order e‘é) such that
when B > B(e),

d_(e,B) :=supop_(\,e,B) >0
A>0

7



and N
P(M™ = ©5) < exp[-No_(c, B)]

The analogous result for M
N
P(M* > =) < exp[-N3(c, B)

is obtained similarly. Using the crude rank estimate (10) proves the first claim of Lemma (2.4).
In order to prove the second claim of Lemma (2.4), we simply replace B by B(N) = N* and €
by €(N) = N®! in the proof above.We get then that

5_(e(N), B(N)) ~ %(a “ 1+ ar)(N"log N)

and similarly for §; (e(N), B(N), which proves our second claim.
U

Remark 2.5. We now let A% = ay'X%. We note that centering the entries of the matriz A%,
defines a perturbation of rank one.Hence, Lidskii’s theorem (see (8)) shows that

N . 2
di(fxsy, ag -Elaz) < 5

Thus we may assume that A% is centered without changing its limiting spectral distribution.

3 Tightness

We prove in this section that the mean of the spectral measures of the random matrices Ay and
of their truncated versions Aﬁ or A%, are tight.

Lemma 3.1. 1. The sequence (Eljia,]; N € N) is tight for the weak topology on P(R).

2. For every B < oo, and k > 0, the sequences (IE[,&A%]; N € N) and (E[fiag,]); N € N) are tight
for the weak topology on P(R).

Proof. We will use the following classical result about truncated moments (Theorem VIII.9.2 of
[6]): For any ( > «

Jim EHZiEEZ;kt] _ gfa' (14)
Therefore, using (11), we have
o a$
El|24 L, 1< Ban] ~ e OZBC_QWN (15)
or equivalently:
BIARGI ~ B (16)



The version for the truncated matrix A%, will also be useful:

& pyic-a)-t, (17

B[l AR (i)[] ~ c

-«
Using these estimates with ( = 2, one sees that

(07

1
sup E[—tr((AZ)?)] ~ B* @ 18
sup Bl tr((45)2)] ~ 52 (18)
and that
1 Q
sup E[—tr((A%)2)] ~ —— N#(2-a) 19
sup B[tr((45)%)] ~ 7 (19)

(18) shows that E[,&Aﬁ] belongs to the compact set K¢ := {u € P(R); u(z?) < C} for any C >
72-B* and N large enough. Hence, the sequence (E[[LA%]);N € N) is tight, and thus any
subsequence of E[fi A%] has converging subsequences. We denote by pup a limit point, i.e the limit
of a converging subsequence. By a diagonal procedure, we can insure that this subsequence is the
same for all B € N, and in particular, since d; is compatible with the weak topology, we can find
an increasing function ¢ so that for any 6 > 0, By < oo, there exists Ny < oo so that for N > N,
and all B < By,

< 0.
di(Elpaz 1 pp) <0

By Lemma 2.4, and Lidskii’s estimate (8), we have for all € > 0,

) ) i —6(e,B)$(N)
dl(E[lu’A¢(N)]7 E[/‘Ag(N)]) < E[dl(/‘AMN) ) ﬂAg(N) )] <2 +e (20)
with d(e, B) > 0 if B > B(e).
These two inequalities imply that (up, B € N) is a Cauchy sequence for the modified Dudley

metric di; and thus converges when B tends to oco. Indeed, if we choose €,¢,5 > 0 and By >
B(e) V B(€'), we find that for B, B’ € [B(¢) V B(¢'), Bo] and N > Ny

di(Elfia, x|, pB) <0+ 2e+ e (BN and di(Elfia, oy, ppr) <0+ 2¢ + ¢ 0B (91)

and therefore
di (B, ppr) < 26 4 2¢ + 26 4 e70(EBIAWN) 4 =0, B)E(N) (22)

Letting N going to infinity, and then § to zero and By to infinity we finally deduce that
di(pp, up) < 2e+ 2€

provided that B and B’ are greater than B(e) V B(¢'). Hence, up is a Cauchy sequence for d;

and thus converges weakly by Lemma 2.1 as B goes to infinity. As a consequence of (21) we also

find that E[fia, ] converges to this limit as N goes to infinity. The same holds for the truncated
RO(N)

versions IE[,uAK( )]. Thus, we have proved that (E[fiay], Efiag]) ven are tight. O
S(N
This lemma (3.1) can be strengthened into a partial almost-sure tightness result. Consider an
increasing function ¢ : N — N such that ZNzo ﬁ < 0o, then

Lemma 3.2. The sequences (ﬂAg(N )NeN, (ﬂA¢<N))NeNa (ﬂAg(N))NeN are almost surely tight.

)



Proof. We note that the truncated moments bound given in (16) can be strengthened into a bound
in probability as follows. Let M > 0 and C' > ﬁBz_a, Chebychev’s inequality reads

r 2
P (%tr((Aﬁ)z) > M +C> < MQE (%u((/xﬁ)?) — E[%H(Mﬁ)%]) ]
1 : 1 g 2

= —HE| | 57 2 (AR .)? ~ ElARG.4)Y)
i,j=1

IN

4 - -
e O B [(4R (. 5)* - E148 G, 5)7)°]
i<j
T AN (11)]
2aB4 1
4—a M2N

IN

where we used the independence of the entries at the third step and the truncated moments estimate
(16) for ¢ = 4 at the last step. Then Borel Cantelli’s lemma implies that for any C' > 5% B~

1
lim sup ——tr((AZ )3 < C  a.s
which insures the almost sure tightness of (,ui(B ) )Nen. From this point, all the above arguments
#(N)
apply to show the almost sure tightness of (,uﬁ( (1\),))NGN and (,uﬁ(,{ ) )NeN- O

4 Induction over the dimension of the matrices

We borrow the following idea from [3]: in order to prove the vague convergence of (E[fia,])nen

we study the asymptotic behavior, for z a complex number, of the probability measure L3, on C
given, for f € Cy(C), by

Ly (f)=E NZf (2 — AN)"Mir)

L% is thus the empirical measure of the diagonal entries of the resolvent of Ayx. In contrast
to [3], we will only consider these measures when z € C\R, where everything is well defined since
z — Ap 1s invertible.

Note that for z € CT* = {z# € C : Sz > 0}, and for k € {1,---, N}, the diagonal term
((z — An) 1)k belongs to the set D := C~ N{x € C: |z| < [S(2)|7'}. L3 is thus a probability
measure on the compact subset D of C.

If we choose the function f(x) = x then

LA () = Elgptr((z — 4)7)

is the Stieltjes transform of E[fia,].

10



Thus, the weak convergence of L%, for all z € Ct (or even for all z in a set with accumula-
tion points) would be enough to prove the vague convergence of E[fi4,]. Indeed the latter is a
consequence of the convergence of its Stieltjes transform, which, as an analytic function on C*, is
uniquely determined by its values on a set with accumulation points.

In the following, given a z € C*, we will prove an equation on the limit points of L% (more
precisely of its analogue where Ay is replaced by its truncation A% for some well chosen x > 0).
Our main tool will be a recursion on the dimension N, and the Schur complement formula. We
first investigate how these measures depend on the dimension.

We let Ax 1 be the (N + 1) x (N 4+ 1) matrix obtained by adding to Ay a ﬁrst row and a first
column Ay (0, k) = An(k,0) = N‘éznok. Hence, Ax,1 has the same law as (N+1) ANg1.

We then let Ay be the (N + 1) x (N + 1) matrix obtained by adding as first row and column
the zero vector.

We also define for z € C\R,

Gna1(2) = (2 = Ana1) ™' Gn(2) = (2= An)™" Gn(2) = (2 = Ay) ™!

We finally denote by .® all quantities where Ay has been replaced by its truncated version A%;.
Thus for z € C\R we define

N N
1 .
- N Z‘SG?V(Z)kkv L?\}H Z G% (2)kk N+1 = E :5GN+1(2
k=1 k:

Lemma 4.1. 1. G%(2)x is equal to G%(2)kx for k > 1 and to 2= for k = 0.
2.

lim —ZE |GN+1 kk_GN( )kkH =0

N—ooco N

3. Fork €]0, 5= and 0 <n < 1(1— k(2 — o)),
]\}Enoo P(A(LY, LY) > N7") =0
Here,as above, d is the Dudley distance on P(C).

Proof. We note that

which immediately yields the first point. For the second, let us write
Choa (i = X (e = (G (A1 — ARG ()
= ZGN—I—I 2ii(Ax1 — ARG (2)ok

Z%HWMHAMMWk

= GRua(z kOZAN (0GR (2)uk
]

11



where we noticed above that é’fv(z)ok is null for k£ # 0 by (23). Therefore, we find that

E(IGR 41 (2)ik =GR (2)ml® < EllGFia(2)nol*|E IZA“ (0GR (2)uel?]

by Cauchy-Schwartz’s inequality. We recall that we have seen in remark 2.5 that we can assume
that the entries of the matrix A%, are centered. Using then the independence of Af; and G (z),
summing over k € {1,---, N} and with a further use of Cauchy-Schwartz’s inequality, we find that,

,\)|,_.

N
Z (|G iq (D) — G (2)kk]] < E[(A%(00))

( f: E[|GN 11 (2)kol’] )l ZI (=)l _

k=1 lk 1

We now note that the entries of the resolvent Gy (z) are uniformly bounded in modulus. Indeed
observe that, if U is a basis of eigenvectors of Ax N> with associated eigenvalues (A\;,1 <i < N) € RY,
for any £k, lG{O -, N}?,

GR Gl = 1D wr(z = A un

IN

DEQunf? < el (24)

and the same holds for G%_,(z). Moreover, since the spectral radius of Gn(z) is bounded above
by 1/|3(z)], we also have

1 . ) N +1
- K K *) < )
Hence, we deduce
N
- N+1 1 o o1
¥ L ElGK (2 = Cx@ull € |5 Ty ElAR 00,

k:

But we know how to control the truncated moments E[( A% (00))?]. Indeed by the estimate (17) we
see that

K (7 o —€
EAR) ~ 52N

with € = 1 — k(2 — ) > 0. The proof of the second point is complete.
We finally deduce the last result simply by

N

S BG4 (2 — G5 (Dl A1)

T 2,K T 2,K
Eld(Ly, Lyl < N—Hk—o

1 N+1 1

< N~
S N1 VTN BoP

woln
—~
[\]
(@)
S~—

12



and since Gn(z) and Gx(z) differ at most by a rank one perturbation,

2 N 1

_ 2,k 5.
N N+1N+N+121

implies that
d(Lz,H iz,ﬁ) < 2
NoEN= N 41
This shows by Chebychev’s inequality that for all n < §

lim P(d(LY*, LY5,) > N7") =0.

N—oo

O

To derive an equation for L3, our tool will be the Schur complement formula, which we now
recall. Let Any11 and Ax be as above.

Lemma 4.2. For any z € C,

-1
N

(Ansr— 2D o = | An(00) — 2= Y An(0k)An(10) (Ax — 2I)7H),,
k=1

Proof. The proof is a direct consequence of Cramer’s inversion formula:

) - det(Ay — zIn—1)
1 _
((AN+1 —2I) )00 ~ det(Ang —2I)

To get a more explicit formula for this ratio, write

. ~( An(00) — 2z ap
AN+1 ZI - ( a(j; AN —

with ag = (A(01),---, A(ON)), and use the representation

I —BD! | A B | _ A—BD7'C 0
-0 I C D | C D

with A = A(00) — 2z, B = ag, C = al and D = Ay — 2. Therefore, as det(AB) = det(A) det(B),
we conclude that

det(Ani1 —2I) = det(Ay — 2I)det [A(00) — z — (ao, (AN — zI)_la()}] .

This proves the lemma. O

We now show that, in the Schur complement formula above, the off-diagonal terms in the sum
in the right hand side are negligible.

13



Lemma 4.3. For z with |3(2)| >d>0,0< k < m, and R >0

1

P() A% (0k) A% (01) (A% — 2)71),, | > R) < TENaigE

k£l

withe=1— k(2 —a) >

D=

Proof. As above we can always assume that the entries of A%, are centered. By independence of
AR (0k) and Ay, we find that the first moment of the off-diagonal term vanishes:

E[ ) A% (0k)A%(10) (A% — 21)71),] =0
S

and that the second moment is small:

E[| ) AR (0k)AR(10) (A% — 2)7"), 7] < CE[(AKOD)PEDY | (A% —2)7")y 7]
k£l k.l

< NTElt((Af - )7 AR - )T S NP e,

Chebychev’s inequality concludes the proof. O

We finally derive from the previous considerations a first approximation result for L%". This
will be our first step to obtain a closed equation for the limit points of the spectral measure (such
an equation will be derived in the next section).

Lemma 4.4. For 0 < k < m, lete=1-k(2—a) > % There exists a constant ¢ such that,

for any Lipschitz function f,

clflle
2e—1

19(2)|5N ™3

N -1
E[LY ()] -E|f (z - ZA%(Ok)szv(Z)kk> | <

k=1

Proof. 1t is clear, by Lemma 4.1, that it is sufficient to prove that, for a constant ¢’,and every
Lipschitz function f

N -1
T2,k K K c f L
ELY (D =E || | 2= D ANOR)’GR () | < % (26)
k=1 IS(2)[3 N3
We have proved above that, for z € C\R, there exists a random variable ey(z),
Pllen(2)| 2 R) € g
NEN = S NS ()2
such that
N -1
G1(2)o0 = (Z = A0k G (2 + €N(Z)>
k=1

14



In particular we have for any Lipschitz function f,

N

-1
E[f(GN41(2)00)] =E | f (z = A0k GR (2 + 5N(Z)> : (27)

k=0

Observe that with A% = Udiag(A\)U™,

N
GR (e =Y lunil*(z = X))~
i=1
is such that
3()S (Glo(2)wr) <0, [GR (2l < [S(2)[ "
In particular, we always have

S (= - X4l AR(0R)2C ()

3(2)

> 1.

Thus, on |en(z)] < |S(2)|/2, we obtain the control

N -t N -1
(z - ZAIJQ\/(OICPGTV(»Z)% + z—:N(z)) — (z — ZAI]QV(Ok)zGIfV(Z)kk> < M

k=0 s 3(2)]

Hence, if f is Lipschitz,

N

-1
LS (5 41(2)oo)] = ELf ( 3 Amom%fv(z)kk) |+ Ol 1B 2 A1)

k=0

Now, the right hand side does not depend on the choice of the indices and so we have the same
estimate for all E[f(G'%, (2)kx)], for & € {0,1,---, N}. Summing the resulting equalities we find
that

N —1
BN (DI =E |/ (z—ZAﬁ“vwk)zG?v(z)kk) + O(IF 1B )

k=0 1S(2)]

This proves the estimate (26) and thus the lemma.

5 The limiting equation

We prove in this section that the limit points of the sequence of measures E[L] satisfy an implicit
equation. This section will rely heavily on a result about the convergence of sums of triangular
arrays to complex stable laws. We have deferred to Appendix 10 the statements and proofs of
these convergence results. We also refer to the same Appendix for notations and references about
complex stable laws.
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Hereafter z € CT will be fixed. We have seen that E[L] is a compactly supported probability
measure on C (since its support lies in the open ball with radius 1/|S(z)|). Therefore,(E[LY]) nen
is tight, and we denote by p* a limit point. Recall that for 2 € C*, p* is a probability measure on
C™n{lyl < 1/1S(2)[}-

In order to state the main result of this section we will need the following notations. For ¢, z € C,
we denote by (¢, z) the scalar product of t and z seen as vectors in R?, i.e (t, 2) = R(t)R(2)+3I(t)3(2).
For a probability measure p on C, and t € C, we define the numbers o (¢t) and S**(t) by:

Tual®) = - [t 2 dn(2)? (28)
and
_ [l<t,z>|sign <t,z>du(z)
Puelt) = [l1<t,z>|*du(z) (29)
where

dx = (30)

o1 _/°° sinz I'(2 — ) cos(75*)
R 1-a

Definition 5.1. For a probability measure p on C, we define the probability measure P* on C by
its Fourier transform

/ei<t,m>dp,u($) — eXp[—Up,%(t)%(l — ’iﬁ“,%(t) tan(%))]

P* is well defined by this Fourier transform, indeed P* is a complex stable distribution. For
this description of P see the appendix 10.
We can now state the main result of this section.

Theorem 5.2. For 0 < k < 55—, the limit points * of E[L%"] satisfy the equation
2(2—a) N

[ taw = [ 1 (Z - $> 4P" ()

for every bounded continuous function f.

Proof. We consider a subsequence of (E[L%"]) converging to x?, i.e an increasing function ¢(N)

such that (E[L;(HN)]) converges weakly to 1%, We denote by P the law of S0 (A% (0k))2G% (2) k-
For z € C*, P is a probability measure on C~ since then Gy (z)r, € C™ for all k. If f is Lispchitz,
Theorem 5.2 is a direct consequence of the main result of the preceding section, i.e Lemma 4.4,
and of the next crucial Lemma 5.3.

Lemma 5.3. IfIE[L;’fN)] converges weakly to u* as N goes to infinity, then Pg(N) converges weakly
to P* as N goes to infinity.

It is then easy to see that the statement of Theorem 5.2 extends to any bounded continuous
function. ]

We now have to prove Lemma (5.3).

Proof. We apply first the following concentration result for L.

16



Lemma 5.4. For k € (0,52-), let e = 1 — (2 — ) > 0. There ezists a finite constant ¢ so that
for z € C\R and any Lispchitz function f on C

c
(3 () - B ()] 2 ) < ey

This Lemma shows that since E[L;iv | converges weakly to p*, then L;(ﬁ ) also converges almost
surely to the non random probability p®. From there, one can apply Theorem 10.3 of Appendix
10 or more precisely its extension Theorem 10.4 which has been built to fit exactly our needs here,
when applied to the variables Xz = A(0,k)%. One must simply notice that the exponent a in
Theorem 10.4 must be replaced here by 5. This concludes the proof of Lemma 5.3.
Proof of Lemma (5.4) . We prove this concentration lemma using standard martingales decompo-
sition. We assume that f is continuously differentiable, the generalization to any Lipschitz function
being deduced by density. We put

1 N
Fx(Afy k<1) = DGy

k:l

Let n = N(N —1)/2+ N and index the A}, by Af, 1 <1i < n for some lexicographic order. Then,
if we let F; = U(A;”, 1 < j <), the independence and identical distribution of the A’s shows that,
if Py denotes the law of Af (i.e the properly truncated and normalized version of P),

E[(Fy — E[FN])’]

n—1

= Y E[(E[Fw|Fis] — E[Fy|F])?]
=0
-1

2
= /(/FN(fEh  Tit1s Yit2, s Yn) AP (y) — /FN(SEL',$i,yi+1,'ayn)dpf§n(y)> AP (z)

< Z/(FN($17 y Li1y " 7$n) - /FN($17 7$17y7$l+2$n)dPN(y))2dP]Q\me($)
=0
n—1

< Y o Bl [ - PR ay) (31)
=0

In our case, for all k € {1,--- , N}, allm,l e {1,--- N},
4, F(GN(2)kk) = [ (GN(2)kk) (GN(2) G N (2)mk + GN (2)km G (2)1n)

which yields
N
04, Fn(A) = Z TGN (D)) (GN(2) G N (2)mk + GN(2)kmG N (2)1k)
k=
(G

FIGN ()i + [Gn(2)D(f) G (2)]m)

ZIH ZI
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with D(f’) the diagonal matrix with entries (f'(Gn(2)kk))1<k<n- Note that the spectral radius of
Gn(2)D(f)Gn(z) is bounded by || f||e/|S(2)|? and so since for all I,m € {1,---, N}?

|[GN () D(f)G N (2)lim| < IGN(2)D(f)GN(2)loo < I1f llo/I1S(2) 2

we conclude that for all I,m € {1,---, N}?,

2l
|8AmlF(A)| S N|%(Z)|2
Thus, (31) shows that
E(Fy —EF)Y <~ Mg _mran)?
N N =~ N2|%(Z)|4 2 11 11
L2
N
= B

where we used the truncated moment estimate(17). Chebychev’s inequality then provides the
announced bound. O
O

We now apply Theorem 5.2 for a particular choice of the function f. To this end, we need to
define, for any a > 0, the proper branch of the power function z — z® defined as the analytic
function on C\R* such that (i)* = ¢z . This amounts to choosing, if 2 = re’ with 6 €]0, 2x],

& = ,r,aezoﬂ'

This function is analytic on C\R* and extends by continuity to z = re®® with 6 decreasing to zero;

lim(re)® = r©

010
the usual power function on R (for z € R™, 2 will denote this classical real valued power function
in the sequel). When 2 = re? is on the other side of the cut RT, i.e when 6 slightly exceeds 27, the

function jumps by a multiplicative factor e**™. We want to choose in (5.2) the analytic function
f(z) =%,

Theorem 5.5. For(0 < k < 2(2 L let p* be a limit point of E[LY"] and define X = = f:n%d,uz(:n).
Then

1. X,= is analytic in CT and | X,| <

°<z>|%

2. X,z 1s a solution of the following equation:
X, = iC(a) /0 (it) 516 exp{—c(a) (it)§ X .- Vdt. (32)

with C(a) = lej(T and c(a) =T'(1 - ).
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Proof. The first point is obvious. Indeed, for some increasing function ¢,

N

1
X = Jim X200, XN m B[ 3 (2 - AR
—© k=1

o
2

].

For each N, XV is an analytic function on CT. Moreover, | X| < —L for all N. This entails

Ok
that any limit point X,- must also be analytic in C™.
In order to prove the second point and obtain the closed equation (32) we will need the following
classical identity:

Lemma 5.6. For all z € CT,

1

with C(a) = 16“(

NE‘

<3>2 — iC(a) / (it) 5 Leit=ay
z 0
)

This Lemma is proven by a simple contour integration, it is also a consequence of Lemma 6.2 ,
proven in the next section ( plug y=0 in the statement of Lemma 6.2).
By Theorem (5.2), and since p* and P** are supported in C~, we can write

X, = /(zi:E)%dP“z(:n).

Applying Lemma 5.6 to z — z — 2 € Ct for P*" almost all z, and integrating over the z’s we
have, by Fubini’s theorem,

wIQ)

X, = iC(a) / (it) 3¢t / e~ A PI () 1. (33)
0

We now use Theorem 10.5 in the appendix, with v = p* here, and replacing a in Theorem 10.5 by
5 here. We see that:

/ eIt AP (1) = exp{—c(a)(it) § / 25y (2))

Plugging this equality into (33) yields

X, = iC(a) /0 (i) 3716 exp{—c(a) (it) 3 / 25y (2) }dt. (34)

We have obtained the announced closed equation

X,z = iC(a) /0 oo(z't)%—leitz exp{—c(a)(it)? X = }dt. (35)
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6 Proofs of Theorem 1.1 and of Theorem 1.4

In this section we gather the preceding arguments and prove Theorem 1.1 and Theorem 1.4. This
proof will be based on the following uniqueness result for the closed equation (32). We recall the

notation
2

00 2 o0 [e% «@
9a(y) == —/ e e Wdv = / t2 et exp{—t2yldt
@ Jo 0

Theorem 6.1. 1. There exists a unique analytic function X, of z € C*, such that |X,| =
O(|Im(z)|”2) at infinity, satisfying the equation

X, =iC(a) /0 oo(it)%_leitz exp{ —c(a)(it)z X, }dt. (36)

2. This solution in fact also satisfies: | X.| = O(|z|2).
3. If one defines Y, := (—%)%Xz, then Y, is the unique solution of the equation
(=2)*Y, = C(a)ga(c(@)Yz).
analytic on CT and tending to zero at infinity. In fact |Y,| = O(|z]~%)

Proof. We already know that there exists such an analytic solution X,. Indeed we have seen in
the preceding section that, if y* is a limit point, then X - is such a solution. In order to prove
uniqueness, we will use that:

Lemma 6.2. For all z € CT, and any y € C

_l% = ooi 2162 exp[—(—2) 2 (i
(~)20a(0) /0<t> pl—(~2)% (it)

Proof. We first remark that with our choice of the branch for the power function,we always
have, for t real positive and x € C\R™,

[N][e)

yldt

(tr)? =t2a22

Note that the equality also holds for all t € C\R™ such that tz € C\R™ (these identities can be
checked by analytic continuation from R™).

We then write z = rei? with some 6 €]0, 7[. Since f(u) = (u)2z te*?e%2[(=2)24] ig analytic in
C\RT, for all R > 0 finite, its integral over the contour

P ={it.e<t< R}U{"Rne [T, m— 0} U{e™ "t R<t < epU{eMene[r—0, 7]}

vanishes. Note that n+ 6 € [5 + 0, 7] so that R(Re”z) = Rrcos(n +6) < 0 for all n € (5,7 — 0]
and 0 €]0, 7[. This shows that

R—o0

lim Rf(eR)=0 Vne [z,w — 6] = lim R/ f(eR)dn = 0.
R—o0 2 ne(Z m—0)

Similarly,
lim sup | / f(eMe)dn| < 0o = lime/ f(ee)dn =0
776[%771—_9] 776[%771—_9]

e—0 e—0
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Hence, letting R — oo and € — 0, we find
00 0 ) )
i / f(it)dt + F(em e gt = 0.
0 +oo
In other words,
,L-/oo(it)%—leitze—(it)%[(—z)%y]dt _ /oo(_e_wt)g_1e_t|z|e_(_ei%)%[(_z)%y]e_wdt
0 0
= —z71 /m(—z_lt)%_le_te_(_z1t)%[(_z)%y]dt
0
where we finally did the change of variable t' = |z|t. Now, we note that, since z~! and —t belong

to C\R™
(_z—lt)%—l _ (Z—l)%—l(_t)%—l _ (z_l)%_le”(%_l)(t)%_l.

We thus have proved that

i/oo(it)%_leitz exp{—(—2)
0

[N][e}
—~
~.
~
N—
NI
<
—
U
~
Il
—
|
t\zl
—
N—
)
~
N]])
|
—
[
L
ml
<
&
R
U
~

which proves the claim. [J

By Lemma 6.2 we remark that, if X, is a solution of the equation (36) and if z = |z|e®,

X, = —"C(a) /0 oo(_e—wt)%—le—tlzlexp{—c(a)(e—i%)%xz}dt (37)

o

- Lo /0 ThE et el ela) (- D) T Xt

_ (%)%C(a) /0 oot%_le_texp{—c(oz)t%(—é)%Xz}dt- (38)

Hence, if Y, := (—%)%Xz, we obtain

(—2)°Y. = C(a) /0 T e expl—c(a)t3 Y. dt. (39)

This equation for Y, can be written simply as
(=2)?Y; = Cla)g(c()Yz).

We recall that we have assumed that there exists a constant C such that | X.| < C13¥(2)72.

Now, consider the function of two complex variables F'(u, y) = ug.(y)—y. Obviously F(0,0) =0
and 0,F(0,0) = —1. By the local implicit function theorem, there exists ¢; > 0 and ez > 0, such
that for every u € C with |u| < €; there exists a unique y(u) € C with |y(u)| < e satisfying the
equation F'(u,y(u)) =0, i.e ugs(y(u)) = y(u). Moreover

ly(u)] < Clul. (40)
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For any z € C*, such that §(z) > L, with L® > C(Olé)q v C(a) , then |X.| < C1L™% so that

Y| < Cl < 06(2 Thus for z € C*, such that 3(z) > L we have that

1
— | <e c(@)Y,| <e
|C(OZ)(—Z)Q|_ 1 |( ) Z|— 2
Thus the uniqueness in the local implicit function theorem shows that Y, is given by Y, =
ﬁy(m) and thus that X, = ﬁYz Since X, is analytic on z € CT and uniquely
determined on the set of z € C* such that $(z) > L it is uniquely determined. This proves the
claim of uniqueness for X,. Using the bound (40) now proves the improved bound at infinity, i.e

|X.| = O(]z|~2). These arguments prove the second and third statements of the theorem. O

We can now deduce from this last uniqueness result the convergence of the mean of the nor-
malized trace of the resolvent.

Theorem 6.3. For any k €]0, m[, any z € C*, E[% Zévzl G% (2)kk]) converges as N goes to
infinity to
Ga(z) =1 /OO itz o=@ F Xz gy = /OO e~te—cl@t Yz gy (41)
0 = Jo

Proof. For any z € C* and any limit point p?

[ v (a) —»L/2%_$dP“< )
/ /Z“”dpﬂ x)dt

_ / etz e —c(a)(zt)?_XZ dt
0

The uniqueness of X, implies that the mean of the resolvent E[N 1tr(z — A%)~!] has a unique
limit point which is given by

Galz) =1 [ el gy
0

This shows that E[N~!tr(z — A%,) 7] converges to G,(z). In order to finish the proof, observe that
for z € C*, we can use the same arguments than in the proof of Lemma 6.2 to see that

Ga(z) = ’L/ eitze_c(it)%XZdt
0

_ _l/ e—te—c( tz— )%det
ZJo

_ 1 / o te—eBY: g (42)
0

z
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This last result enables us to conclude the proof of Theorem 1.1 and Theorem 1.4.
Proof of Theorem 1.1 and Theorem 1.4

By Lemma 3.1, E[ A | is tight for the weak topology. Taking any subsequence, we see that
any limit point p is such that its Stieltjes transform must be equal to G,(2) for all z € C*. This
prescribes uniquely the limit point x4 and thus insures the convergence of E[f A | towards 1 € P(R)
so that

/(z —x) Mdu(z) = Guo(z), 2 € CT.

By Corollary 2.2, and the fact that

di(Elfiag ], E[fay]) < Eldi(Aag,, fay)]

we also conclude that E[fia, ] converges weakly towards p. By Lemma 5.4, for any z € C\R,
Ly (z) = [(z —z)~ i A, (z) converges in probability towards G, (z). This convergence holds as
well for finite dimensional vectors ( [(z; — :L")_ld,&Af;V (x),1 <4 <n). Since {(z —2)71, 2 € C\R} is
dense in the set Co(R) of functions on R going to zero at infinity, we conclude that [ f(z)df A, (2)
converges in probability towards [ f(z)du(x) for all f € Co(R). But also jiax (1) = p(1) = 1 and so
this vague convergence can be strengthened in a weak convergence (see the proof of Lemma 2.1).
We finally can remove the truncation by by using Corollary 2.2. Again by Lemma 5.4, Ly (z) =
[(z — )" *dfia, (z) converges almost surely along subsequences ¢(N) so that > ¢(N)™¢ < oo

by Borel-Cantelli Lemma. As e = 2 — 2_70‘ is as close to one as wished, for any sequence ¢(INV)

«
Z,K

so that > ¢(N)™° < oo for some € < 1, we can choose k close enough to one so that L¢(N)(:E)

converges almost surely to G(z). This entails the almost sure weak convergence of ﬂﬁg}i) by the

same arguments as above.

Remark 6.4. If we could prove that the equation given in Theorem 5.2 admits a unique solution
w?, at least for z in a set large enough, the convergence of E[Lf\’,ﬁ] to this solution would be assured.
We cannot prove this uniqueness result. But as we have seen we do not really need such a strong
uniqueness statement either. We rather have proved a weaker statement, i.e the uniqueness of
[ xdp?(z), which already entails the uniqueness of the limit points for E[ [ zdLy" ()], i.e the mean
Stieltjes transform of the spectral measure of A%,. This is sufficient for our needs but the question

of the uniqueness of solutions to the equation given in Theorem (5.2) remains intriguing.

7 Study of the limiting measure. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. First, the fact that the limit measure p, is symmetric is
obvious. It suffices to consider the case where the entries have symmetric distributions. To prove
the other statements, we need to consider the limit of G, (z) as z tends to a positive real number x.
We first remark that the analytic function Y, defined on C™ is univalent (i.e one-to-one). Indeed
this is an obvious consequence of the equation, valid for z € C*:

(=2)7Y: = Cla)ga(c(@)Yz).

In order to study the boundary behavior of G, (z), we thus have to study the boundary behavior
of the univalent function Y,. For x € R, the cluster set Cl(x) is defined as the set of limit points of
Y., when z tends to x (see [5] or [10]). It is easy to see that for any non zero x € R the cluster set
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Cl(x) is reduced to one point in C U {oc}. Indeed, assuming w.l.o.g that z > 0 we have, for any
finite v € Cl(x), the equality go(v) = (—x)%. If Cl(x) contains two points it is a continuum, i.e a
compact connected set with more that one point (see [5]). By analytic continuation we would then
get the equality g, (v) = (—x)%v for every v € C which is false. The only remaining possibility for
Cl(x) is to be reduced to one finite point or to the point at infinity. We define

K ={x € R,Cl(z) = {o0}}

We first prove that K/, is bounded. The proof of Theorem 6.1, using the local implicit function
theorem at infinity, shows that Y, admits and analytic extension to the set{z € C, |z| > L} for L
large enough, and that this extension satisfies |Y,| = O(|z|~%). This obviously proves that, when
|x| > L, the cluster set Cl(x) is reduced to one finite point and thus that K/, is bounded.

We consider the complement U/, of K/, . Let x € U/, and Y, the unique point in the cluster set
Cl(z). By continuity, for x > 0, Y, satisfies the equation

ey, = Cla)g(c(a)Yy).

The local implicit function theorem can be applied to this equation at (z,Y,), except for the
subset say F' of R where the derivative vanishes. The exceptional set F' must be bounded, since the
derivative does not vanish at infinity, and its points must all be isolated. Thus F' is finite. For any
x € U, \F, the implicit function theorem shows that Y, can be extended analytically on a complex
neighborhood of x. Hence U, := U.\F is open and its complement K, = K/, U F U {0} is closed.
K, is also bounded and thus compact.

Finally we use Beurling’s Theorem which states that the set K/, has capacity zero, and thus
also the set K, (see [5] or [10]).

For any point x in the open set U, the function Y, admits an analytic extension to a complex
neighborhood of x, and thus the Stieltjes transform G,(z) admits a smooth extension, which proves
that o has a smooth density p, on the open set U,. Indeed, for z € U,

lim G (2) = Hpe(x) — impa(x) = _l/ e—te—c(a)t%—det

In particular the density of the measure s, is given, if Y, = r,e'®=, by

1 & g a
palz) = — e~temel@)tZ Iracos(de)] gine(a)t2 1y sin ¢y )] dt. (43)
T Jo
Note that we now know that Y, is well defined and smooth for = large enough. We also have
seen that Y, = O(|z|~®) and thus that Y, ~ e "*C(a)ga(0)z~* . Hence, when ¥ — oo, the
following asymptotic behavior holds for G,(z) = lim,_,, G4(z) :

8=

Ga(x) ~ - /000 e M1 —ct2Y, (14 0(1)))dt ~

(1- C/Ooo et dtY, (1 + o(1)))

Identifying the imaginary parts of both sides we get:

3(¥)

palz) ~ 7 el () .

Which proves the last statement of Theorem 1.5.
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8 Cizeau and Bouchaud’s characterization

In [3], the authors propose the following argument; they look at G'x(z)go for z on the real line. By
arguments similar to those we used (but with no a priori bounds on the G x(2)gx) they argue that
Gn(2)oo converges in law as N goes to infinity. The limit law, that we will denote Pg to follow
their notations (but which is p* in ours) is then given by the implicit equation (11) in [3]

[ twarew = [ 1~ )dPs(y / F@APs(z = ).

Py =1L (2):8() 1 now a real-valued stable law with parameters C(z) and (3(z) given self-consistently
(see (12a) and (12b) in [3]) by

Cz) = / 1yl % dPa(y / Iyl 2dPSSU——)
B(x) = / 1yl sign(y)dPo(y)

where there was a typographical error in the definition of 4 in [3]. 12b which was already noticed
n [4]. We in fact have that for any real ¢,

/e—itydps(y) L Ot (C()—itan(Z2)B())

— o Ta-1)(n)? [(2)2dPs(z) (44)

_ima

where we used that K, := f(:E)%dpg(:E) =e~ 4 [cos(T)C(z) —isin(Tf)B(2)]. So, we see that the
description of the limit law is very similar to ours, except that z is supposed to belong to R. Let
us assume (as seems to be the case in [3]) that C(z) and [((z) are finite. Then, also K, is finite
and we see that for non negative real z’s

K. — / (z— )~ $dPs(y)

= —C’(a)/ t%_le_tze_r(a_l)(it)%szt. (45)
0

Hence, K, and the X, introduced in section 7 satisfy formally the same equation, except that
X, satisfies it for z € CT and K, for real z’s. Moreover, we have seen that X, can be extended
continuously to z real in (K/)¢ and then this extension X, satisfies the same equation that K.
This indicates that we expect K, and X, to be equal, at least on (K)¢. In fact, X, is the unique
solution of this equation with an analytic extension to C* and going to zero at infinity. In [3],
under (12a-12b), it is claimed that the equations defining C(z), 3(z) have a unique solution, and so
that K, is also determined uniquely by (45). We could not prove the uniqueness of the solutions to
this equation on the real line. In any case, if we beleive either that K, extends analytically on C*
and goes to zero at infinity or that the above equation has a unique solution for z € R, we must
have X, = K, at least for z € (K/)°.
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The second claim of [3] is that the density of the limiting spectral measure p(z)dz = du(z) is
given, see [3] (14), by
dPs
p(z) = —=(2).
z
Note that by Fourier inversion, if K, = X, for z > 0, since Pg is a probability measure on R with

Fourier transform given by (44),

dPg 1 —itz_—T(a—1)(it)$ X
i - 2dt
p (2) 27T/Re e d
_ 14 (/OO e—itze—F(a—l)(it)%XZdt>
™ 0
_ 1 (l / > e—te—wa—l)(t)%ndt)
Y Z Jo

and therefore we miraculously recover our result (43). Hence, at least for z € (K,)¢, the prediction
of [3] coincides with our result if we beleive that (45) has a unique solution.

9 The moment method. Proof of Theorem 1.7

We prove here Theorem 1.7 using the moment method developed by I. Zakharevich [15]. For any

B > 0, we consider the matrix X ﬁ with truncated entries :Ef;» = 2j14,,|<Bay and the normalized

matrix AR = a3 X&. Recall that work here under the additional hypothesis (7):

P
lim M:@e [0, 1]
we PlJa] > u)
We begin by the following estimate on moments of the entries of Aﬁ.
Lemma 9.1. For any integer m > 1, the following limit exists
o= i ARG
N—co N2 E[AR (i5)]

m
2

Moreover, if m = 2k is even
2—a 2—«a m

Cm— ( Ba);—l
m—-—oa
If m =2k — 1 is odd
2—a 2—« m
C=(20—-1 Bz 1
(26 )m—oz( « )

Proof. Tt is a simple application of the classical result about truncated moments (Theorem VIII.9.2
of [6]) already used in Section 3.1, (15) : For any ¢ > «
a BC—aﬁ
- N

The first item of the Lemma is a direct consequence of this estimate for ( = 2 and { = 2k. The
second is also a consequence of this estimate, used for z(ij)* and z(ij)~, and of the additional
skewness hypothesis (7).

B[z (i5)|Lju (i) < Bay) ~ c

O
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This lemma enables us to get the main result of this section, i.e the convergence of the moments
of the spectral measure of the matrix Aﬁ. We will need some more notations that we take verbatim
from Zakharevich. For any integer k > 1, we define Vj, as the set of all (e, ..., ¢;)such that 2221 €; =
k and ey > es < ... > ¢ > 0. For any (eq,...,¢e;) € Vi, define T'(eq, ..., ;) as the number of colored
rooted trees with k + 1 vertices and [ + 1 distinct colors, say (cq,...c;) satisfying the following
conditions:

1. There are exactly e; nodes of color ¢;. The root node is the only node colored ¢

2. If nodes a and b are the same color then the distance from a to the root is the same as the
distance from b to the root

3. If nodes a and b have the same color then their parents also have the same color

With these notations we have the following convergence result, directly implied by Zakharevich’s
results.

Lemma 9.2. 1. For every integer k > 1, the following limit exists
. kg~ B
i B[ a¥dj g (@) = m (16)

2. mf =0 if k is odd, and mfk = Z(el,...,el)er T(eq, ..., €]) Hé:l Cae, -

3. There exists a probability measure uB uniquely determined by its moments mf. uB is inde-

pendent of the skewness parameter 6.
4. pB has unbounded support and is symmetric.
5. The mean spectral measure E[,&Aﬁ] converges weakly to puZ.

Proof. In order to prove the first and second items, it is enough to use the preceding Lemma,
Corollary 6 and Theorem 2 in [15], plus the fact that

(01

lim NE[A¥(ij)?] = B>
Jlim NE[AR (i) = 5
. The third item is a consequence of the estimate

C(m) < Cp™

with p = (ijaBa)% and of Proposition 10 in [15]. The fact that uZ is independent of the skewness
parameter 6 is obvious since its moments only depend on the C,, for even m’s, which are insensitive
to the parameter #. The fourth item is a consequence of Proposition 9 and Proposition 12 of [15].
The fifth one is a consequence of Theorem 1 of [15]. O

This lemma proves the first part of Theorem 1.7. In order to prove the second part we simply
remark that we have already done so, since we have seen, in the proof of Lemma 3.1, that u%
converges and that its limit is the weak limit of E[f14,].
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10 Appendix: Convergence to stable distributions for triangular
arrays

We begin here by recalling the notations for stable distributions, see for instance [11]. A real
random variable Y has a stable distribution with exponent a € (0,2), o # 1, scale parameter
o > 0, skewness parameter 5 € [—1, 1], and shift parameter u € R (in short Stable, (o, 3, p) ) iff
its characteristic function is given by:

Elexp(itY)] = exp [—o®[t|*(1 — iBsign(t) tan(?)) +ipd]

We will consider here only the case where o < 1.

A complex random variable Y has an a-stable distribution with spectral representation (T, p) if
I is a finite measure on the unit circle S', and y is a complex number such that the characteristic
function of Y is given by:

Elexp(i(t,Y))] = exp [— . [(, 8)|*(1 —isign((t, s)) tan(?))F(dS) + i, 1)]

We will need the constant

dr =

1 /°° sinz I'(2 — a) cos(7)
c, = -
0o l1-a

Throughout this section, we consider a sequence of i.i.d non negative random variables (X)x>1 and
assume that their common distribution is in the domain of attraction of an a-stable distribution,
with a € (0, 1), i.e that the tail is regularly varying;:

P[XZu]:%

We introduce the normalizing constant ay by:

1

any = inf(u, P[X > u] < N) (47)

We consider a triangular array of real or complex numbers (Gn, 1 < k < N) and give sufficient
conditions for the normalized sum:

1 N
SN = — g GN ka
aN =

to converge in distribution to a (real or complex) stable distribution. We will always assume that
the triangular array is bounded, i.e that

M :=sup(|Gyg|,N >1,1<k<N)<o0

We begin with the case where the numbers Gy ;. are real.
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Theorem 10.1. Assume that the triangular array of real numbers (Gyg, N > 1,1 < k < N) is
bounded. Furthermore assume that the empirical measure

1 N

converges weakly to a probability measure v on the real line. Then the distribution of the normalized
sum Sy = % Zévzl GN X} converges to a Stabley (o, 3,0) distribution, with

1
=5 / 2| du(x),

5= [ |z|*sign(x)v(dx)

[ lzlov(da)
If c* =0, i.eif v = §y, the above statement should of course be understood as: Sy = % Zévzl G N Xk
converges in distribution to zero.

Proof of theorem 10.1. We begin with the particular case where the numbers Gy j are positive and
bonded below. We assume that there exists an 6 > 0 such that forany N > 1and 1<k <N

5§GN71€§M. (48)

In this context we will be able to apply directly classical theorems to the array of non negative
independent random variables

1
UN,k = —GN’/CAX]C
anN

For instance, we could apply the theorem in section XVIL.7 of [6]. We rather choose to apply Theo-
rem 8, chapter 5 of [7]. According to this last result, Theorem 10.1 will be proved in this restricted
case if we can check the following three conditions. First the Uniform Asymptotic Negligibility
(UAN) condition, for every ¢ > 0

li P =0. 4
Nim max (Ungk>¢€) =0 (49)

Second we must check that:

lim lim Y VarlUnxlwy,<o) =0, (50)

e—0 N—oo
1<k<N

and finally we must check that, for x > 0

C,o®
lim P <zx)= — 1
Am (IIST}%XN Unk < ) = exp( o ), (51)
and that
lim P( min Uyy <z)=1. (52)

N—ooo 1<k<N
We first note that

ay , _ UG%)
P(UN71€>6):P(X1€>E ) < AN \o
Gva (GN,k)

which shows that (49) is thus a direct consequence of our assumption (48) and of the following
lemma.
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Lemma 10.2. Let L be a slowly varying function and define ay as in (47):
1
any = inf(u, P[|X| > u] < N) (53)

Then , for any 0 < a <b and anya <y <b

L(yan) 11
= ——(1+4e€(x, N 54
an)® Nya( (z,N)) (54)
with
lim sup e(z,N)=0 (55)
N_’°°a<y<b

Proof of Lemma 10.2. Writing
L(yan) _ L(yan) NL(an) 1

= 56
Won)* ~ Llaw) a§ Ny (%9
this lemma is clearly a direct consequence of the classical fact:
NL
fim YEAN) (57)

N—oo ((IN)a

and of the uniform convergence theorem for slowly varying functions ([2], Theorem 1.2.1), which
asserts that the convergence

. L(tx)
ATy L (58)
is uniform for x’s in a compact subset of (0, co). O

Next, in order to control the variance Var[Un gl (v , <¢)) and prove the validity of (50), we must
use Karamata’s theorem, or more directly Theorem VIII.9.2 of [6]which shows that

tL(t) (-«

li = .
e E[XCxa] |« (59)
Using this for ( = 1,2, we see that
a o HEE)
VaT[UN7k1(UN’k<E)] - 9 _ Oée [( can )a] (60)
GN.&

Lemma (10.2) then shows that Var[Un k1l <] is of order %, and thus that

lim lim Y VarlUnxlwy <o) =0 (61)

e—0 N—oo
1<k<N
In order to complete the proof of Theorem 10.1 in the particular case where the numbers Gy are
positive and bounded below, we now only have to check (51) since (52) is obvious, the variables
un,; being non negative. For x > 0

N L(&25)
N,k
log P( s, U <) = D logl1 — s
1 Nk
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Using again Lemma(10.2) we see that

C’aaa
hm log P( max Uy < x) =
N—oco 1<k<N r®
since
lim — = x|*v(dx)

This checks the condition (51) and finishes the proof in the particular case where the numbers
G N, are positive and bounded below. Now it is easy to prove theorem 10.1 in full generality. It is
enough to split the sum into the three independent summands

N N

1 +,€ —,€
Sy = — GN Xy = Unrp=5Syv —Sy +SNe
N aNEZ: N,kXk Z N,k N N T ON,

with
N
+,€
SN = Z UN,k16<GN,k
k=1
N
—,€
SN = _ZUNyk]‘GN,k<_E
k=1
N
SN,E = Z UN,IC1|GN’]€|SE
k=1

We now know that, if € and —e are not atoms of v, then S;\}’E (resp Sy'°) converges in distribution
to a Stableq (0., 1,0) (resp Stableq(oy ,1,0)) with

L€

Cac, - | lalevts)
Catze = J 75 alow(dn)

So that the sum S;\}’E + Sy’¢ converges in distribution, when N tends to oo to a Stableq(0q,e, Bae, 0)
with
Caaa,e = / |$|ay(d$)
|z|>€

Jizse [2|%sign(a)v(dx)

e O P

It is clear that, since lim¢_,g 04 ¢ = 04 and that lime .o Bq,c = Ba, the distribution Stabley (o a,e, Bae; 0)
converge to Stabley(oq, Ba,0), when € tends to zero. Thus there exists a sequence ey tending to
zero such that the sum S;\}’EN + SN converges in distribution to a Stabley(oq, Ba, 0) variable.
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But Sy, converges to zero in probability when N — oo. Indeed, for any = > 0,

N
1 T
P(|SNey| > @) S P(— > X > —)
an el EN

so that
]\}im P(|SNey| >2) =0 (62)

These two facts show that Sy = % Zévzl G N X}, converge in distribution to a Stabley (0w, Ba, 0)
variable as announced in Theorem 10.1. O

This result implies easily the following analogous result in the complex case.

Theorem 10.3. Assume that the triangular array of complex numbers (Gyg, N > 1,1 < k < N)
18 bounded. Furthermore assume that the empirical measure

1 N

converges weakly to a probability measure v on the complex plane. Then Sy = % Zévzl GN Xk
converges in distribution to a complex stable distribution with spectral representation (I',,0) where
', is the measure on S' obtained as the image of the measure Cia|z|°‘1/(dz) on the complex plane
by the map z — ﬁ Again if v = §y the above statement should be understood as: Sy converges in
distribution to zero.

Proof. For any fixed t € C, a direct application of Theorem 10.1 to the array of real numbers
((t, Gn k) shows that (¢, Sn) converges in distribution to a Stable,(o(t), 5(t),0) variable, where

o0 = o [ 1t 2)dv(z)
and
f [(t, z)|*sign(t, z)dv(z)
It 2)edv(z)

Bt) =

As a consequence, we obtain that

uye?

i Elexp(i(t, Sn))] = exp [o(8)*(1 — iB(¢) tan( )]
Note that, by definition of I',:
o()*(1 = if(t) tan( 7)) = |l )1 = dsign(t, ) tan(=-))L, (ds)

These two last facts prove that the distribution of Sy converges to a complex a-stable distribution
with spectral representation (I',,0).
O
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In Section 5 we need a slight variation of Theorem 10.3. We want to extend it to the case
where the random variables X are truncated at a high enough level. More precisely, keeping the
notations and hypothesis of Theorem 10.3, we define, for any § > 0, the truncated variables

5
Xi = Xklx, <nNoay

We then consider the normalized sum
N
S} =—> GniX}
N an p s k

Theorem 10.4. Assume that the triangular array of complex numbers (Gy g, N > 1,1 <k < N)
1s bounded. Furthermore assume that the empirical measure

1 N
N = > Sy, (63)
k=1

converges weakly to a probability measure von the complex plane . Then S?V converges in distribution
to a complex stable distribution with spectral representation (T, 0) where T, is the measure on S*
obtained as the image of the measure Cia|z|al/(dz) on the complex plane by the map z — ﬁ Again
if v = &g the above statement should be understood as: Sy converges in distribution to zero.

The proof of this variant is identical verbatim to the proof of Theorem 10.3, we omit it.

Finally we also need in Section 5 an information about the Fourier-Laplace transform of certain
complex stable distributions. Consider a probability measure v on C and define as above the
measure I',. Let us denote by P¥ the complex Stable,(I',,0) distribution.

Theorem 10.5. Assume that the measure v is compactly supported in the closure of C~. Then,
for any t > 0:

/ =it qPY (3) = exp(—T(1 — ) (it)° / 2 (z)) (64)

Proof. This is a simple consequence of the analogous result for real Stable, (o, 1) distributions. If
X is a random variable with Stable, (o, 1) distribution, and if v € C with %(v) > 0, then

—_— o-a @

B(eX) = ¢ =057 (65)

This result is classical when + is real positive (see Proposition 1.2.12 of [11] for instance). The
statement (65) is obtained by an easy analytic extension from the real case.

Consider now a sequence of i.i.d.r.v (Xj)g>1, with common distribution Stable, (o, 1). Further-
more consider a bounded array of complex numbers (G %) € C7, such that the empirical measure
+ Zévzl 06, converges to v when N — oo. As above define the normalized sum

LN
Sy =—> GnNiXk
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e TSN E(exp(—yN kX))

||,’:]2

Noting that R(yn ) > 0, it is then possible to use (65):

N

(e}
cos Z 'Vk,N

Using the classical tail estimate for real Stabley (o, 1) distributions, when u tends to oo:

E(e75N) = exp(—

C,o%

P(X >u) ~ o

1
one sees that ay ~ Cg Na.
Thus, we get the estimate

E(e™9%) ~ exp(— C’ o cos(%2) ZG
2

But % Zévzl G% . converges to [2*dv(z). Using now the convergence theorem 10.3 we see
that,

. . 1
/e_mﬂdPV(:E) — ]\}gnoo E(e—ZtSN) = eXp(_C’aTs(%)(it)a /:Eady(:n))-
Noting that

T l-—« 1

2= r2—a) I(l-a)
proves Theorem 10.5. O

C,, cos(
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