THE SPECTRUM OF THE EDGE CORONA OF TWO GRAPHS*

YAOPING HOU^{\dagger} AND WAI-CHEE SHIU ${ }^{\ddagger}$

Abstract

Given two graphs G_{1}, with vertices $1,2, \ldots, n$ and edges $e_{1}, e_{2}, \ldots, e_{m}$, and G_{2}, the edge corona $G_{1} \diamond G_{2}$ of G_{1} and G_{2} is defined as the graph obtained by taking m copies of G_{2} and for each edge $e_{k}=i j$ of G, joining edges between the two end-vertices i, j of e_{k} and each vertex of the k-copy of G_{2}. In this paper, the adjacency spectrum and Laplacian spectrum of $G_{1} \diamond G_{2}$ are given in terms of the spectrum and Laplacian spectrum of G_{1} and G_{2}, respectively. As an application of these results, the number of spanning trees of the edge corona is also considered.

Key words. Spectrum, Adjacency matrix, Laplacian matrix, Corona of graphs.

AMS subject classifications. $05 \mathrm{C} 05,05 \mathrm{C} 50$.

1. Introduction. Throughout this paper, we consider only simple graphs. Let $G=(V, E)$ be a graph with vertex set $V=\{1,2, \ldots, n\}$. The adjacency matrix of G denoted by $A(G)$ is defined as $A(G)=\left(a_{i j}\right)$, where $a_{i j}=1$ if i and j are adjacent in $G, 0$ otherwise. The spectrum of G is defined as

$$
\sigma(G)=\left(\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)\right)
$$

where $\lambda_{1}(G) \leq \lambda_{2}(G) \leq \ldots \leq \lambda_{n}(G)$ are the eigenvalues of $A(G)$. The Laplacian matrix of G, denoted by $L(G)$ is defined as $D(G)-A(G)$, where $D(G)$ is the diagonal degree matrix of G. The Laplacian spectrum of G is defined as

$$
S(G)=\left(\theta_{1}(G), \theta_{2}(G), \ldots, \theta_{n}(G)\right)
$$

where $0=\theta_{1}(G) \leq \theta_{2}(G) \leq \ldots \leq \theta_{n}(G)$ are the eigenvalues of $L(G)$. We call $\lambda_{n}(G)$ and $\theta_{n}(G)$ the spectral radius and Laplacian spectral radius, respectively. There is extensive literature available on works related to spectrum and Laplacian spectrum of a graph. See $[2,5,6]$ and the references therein to know more.

The corona of two graphs is defined in [4] and there have been some results on the corona of two graphs [3]. The complete information about the spectrum of the corona of two graphs G, H in terms of the spectrum of G, H are given in [1]. In this

[^0]paper, we consider a variation of the corona of two graphs and discuss its spectrum and the number of spanning trees.

Definition 1.1. Let G_{1} and G_{2} be two graphs on disjoint sets of n_{1} and n_{2} vertices, m_{1} and m_{2} edges, respectively. The edge corona $G_{1} \diamond G_{2}$ of G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} and m_{1} copies of G_{2}, and then joining two end-vertices of the i-th edge of G_{1} to every vertex in the i-th copy of G_{2}.

Note that the edge corona $G_{1} \diamond G_{2}$ of G_{1} and G_{2} has $n_{1}+m_{1} n_{2}$ vertices and $m_{1}+2 m_{1} n_{2}+m_{1} m_{2}$ edges.

Example 1.2. Let G_{1} be the cycle of order 4 and G_{2} be the complete graph K_{2} of order 2. The two edge coronas $G_{1} \diamond G_{2}$ and $G_{2} \diamond G_{1}$ are depicted in Figure 1.

Figure 1: An example of edge corona graphs
Throughout this paper, G_{1} is assumed to be a connected graph with at least one edge. In this paper, we give a complete description of the eigenvalues and the corresponding eigenvectors of the adjacency matrix of $G_{1} \diamond G_{2}$ when G_{1} and G_{2} are both regular graphs and give a complete description of the eigenvalues and the corresponding eigenvectors of the Laplacian matrix of $G_{1} \diamond G_{2}$ for a regular graph G_{1} and arbitrary graph G_{2}. As an application of these results, we also consider the number of spanning trees of the edge corona.
2. The spectrum of the graph $G_{1} \diamond G_{2}$. Let the vertex set and edge set of a graph G be $V=\{1,2, \ldots, n\}$ and $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, respectively. The vertex-edge incidence matrix $R(G)=\left(r_{i j}\right)$ is an $n \times m$ matrix with entry $r_{i j}=1$ if the vertex i is incident the edge e_{j} and 0 otherwise.

Lemma 2.1. [2, P. 114] Let G be a connected graph with n vertices and R be the vertex-edge incident matrix. Then $\operatorname{rank}(R)=n-1$ if G is bipartite and n otherwise.

Lemma 2.2. [2] Let G be a connected graph with spectral radius ρ. Then $-\rho$ is also an eigenvalue of $A(G)$ if and only if G is bipartite. Moreover, if G is a
connected bipartite graph with vertex partition $V=V_{1} \cup V_{2}$ and $X=\left(X_{1}, X_{2}\right)^{T}$ is an eigenvector corresponding eigenvalue λ of $A(G)$ then $X=\left(X_{1},-X_{2}\right)^{T}$ is an eigenvector corresponding eigenvalue $-\lambda$ of $A(G)$.

Let $A=\left(a_{i j}\right), B$ be matrices. Then the Kronecker product of A and B is defined the partition matrix $\left(a_{i j} B\right)$ and is denoted by $A \otimes B$. The row vector of size n with all entries equal to one is denoted by \mathbf{j}_{n} and the identity matrix of order n is denoted by \mathbf{I}_{n}.

Let G_{1} and G_{2} be graphs with n_{1}, n_{2} vertices and m_{1}, m_{2} edges,respectively. Then the adjacency matrix of $G=G_{1} \diamond G_{2}$ can be written as

$$
A(G)=\left(\begin{array}{c|c}
A\left(G_{1}\right) & R\left(G_{1}\right) \otimes \mathbf{j}_{n_{2}} \\
\hline & \\
\left(R\left(G_{1}\right) \otimes \mathbf{j}_{n_{2}}\right)^{T} & \mathbf{I}_{m_{1}} \otimes A\left(G_{2}\right)
\end{array}\right)
$$

where $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$ are the adjacency matrices of the graphs G_{1} and G_{2}, respectively, and $R\left(G_{1}\right)$ is the vertex-edge incidence matrix of G_{1}. A complete characterization of the eigenvalues and eigenvectors of $G_{1} \diamond G_{2}$ will be given when both G_{1} and G_{2} are regular.

Let G_{1} be an r_{1}-regular graph and G_{2} be an r_{2}-regular graph and

$$
\begin{equation*}
\sigma\left(G_{1}\right)=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n_{1}}\right), \quad \sigma\left(G_{2}\right)=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n_{2}}\right) \tag{2.1}
\end{equation*}
$$

be their adjacency spectrum, respectively. If G_{1} is 1-regular then $G_{1}=K_{2}$ as G_{1} is connected. In this case, $G_{1} \diamond G_{2}$ is the complete product of K_{2} and G_{2}. By Theorem 2.8 of [2], or by some direct computations, we can obtain the spectrum of $G=G_{1} \diamond G_{2}$ as $\left(\eta_{1}, \ldots, \eta_{n_{2}-1}, \mu_{1}=\frac{r_{2}+\mu_{1}-\sqrt{\left(r_{2}-\mu_{1}\right)^{2}+4\left(r_{1}+\mu_{1}\right) n_{2}}}{2}, \frac{r_{2}+\mu_{2} \pm \sqrt{\left(r_{2}-\mu_{2}\right)^{2}+4\left(r_{1}+\mu_{2}\right) n_{2}}}{2}\right)$, where $\mu_{1}=-1, \mu_{2}=1$ are the spectrum of K_{2}.

Theorem 2.3. Let G_{1} be an r_{1}-regular $\left(r_{1} \geq 2\right)$ graph and G_{2} be an r_{2}-regular graph and their spectra are as in (2.1). Then the spectrum $\sigma(G)$ of G is

$$
\left(\begin{array}{ccccc}
\eta_{1} & \eta_{2} & \cdots & \eta_{n_{2}}=r_{2} & \frac{r_{2}+\mu_{1} \pm \sqrt{\left(r_{2}-\mu_{1}\right)^{2}+4\left(r_{1}+\mu_{1}\right) n_{2}}}{2} \\
m_{1} & m_{1} & \cdots & m_{1}-n_{1} & 1
\end{array}\right]
$$

where entries in the first row are the eigenvalues with the number of repetitions written below, respectively.

Figure 2: Description of adjacency eigenvectors
Proof. Let $Z_{1}, Z_{2}, \ldots, Z_{n_{2}}$ be the orthogonal eigenvectors of $A\left(G_{2}\right)$ corresponding to the eigenvalue $\eta_{1}, \eta_{2}, \ldots, \eta_{n_{2}}=r_{2}$, respectively. Note that G_{2} is r_{2}-regular and $Z_{j} \perp \mathbf{j}$ for $j=1,2, \ldots, n_{2}-1$. Then for $i=1,2, \ldots, m_{1}$ and for $j=1,2, \ldots, n_{2}-1$, we have (see Figure 2, picture on the left) that $\left(n_{1}+m_{1} n_{2}\right)$-dimension vectors $\left(0,0, \ldots, 0, Z_{j}, 0, \ldots, 0\right)^{T}$, where $(i+1)$-th block is Z_{j} are eigenvectors of G corresponding to eigenvalue η_{j}. Thus we obtain $m_{1}\left(n_{2}-1\right)$ eigenvalues and corresponding eigenvectors of G.

Let $X_{1}, X_{2}, \ldots, X_{n_{1}}$ be the orthogonal eigenvectors of $A\left(G_{1}\right)$ corresponding to the eigenvalues $\mu_{1}, \mu_{2}, \ldots \mu_{n_{1}}$, respectively. For $i=1,2, \ldots, n_{1}$, let

$$
\lambda_{i}=\frac{r_{2}+\mu_{n_{i}}+\sqrt{\left(r_{2}-\mu_{n_{i}}\right)^{2}+4\left(r_{1}+\mu_{n_{i}}\right) n_{2}}}{2}
$$

and

$$
\bar{\lambda}_{i}=\frac{r_{2}+\mu_{n_{i}}-\sqrt{\left(r_{2}-\mu_{n_{i}}\right)^{2}+4\left(r_{1}+\mu_{n_{-}}\right) n_{2}}}{2}
$$

Note that $\frac{r_{2}+\mu_{n_{i}} \pm \sqrt{\left(r_{2}-\mu_{n_{i}}\right)^{2}+4\left(r_{1}+\mu_{n_{i}}\right) n_{2}}}{2}=r_{2}$ if and only if $\mu_{i}=-r_{1}$. So λ_{i} or $\bar{\lambda}_{i}$ is r_{2} if and only if G_{1} is bipartite (note that at most one of λ_{i} is r_{2}). If G_{1} is bipartite and the bipartition of its vertex set is $V_{1} \cup V_{2}$, then by Lemma 2.2 and some computations, we obtain that $(\mathbf{j},-\mathbf{j}, 0, \ldots, 0)^{T}$ (1 on $V_{1},-1$ on V_{2}, and 0 on all copies of G_{2}) is an eigenvector of G corresponding the eigenvalue $-r_{1}$.

Observe that if λ_{i} and $\bar{\lambda}_{i}$ are not equal to r_{2} then λ_{i} and $\bar{\lambda}_{i}$ are eigenvalues of G corresponding to the eigenvectors $F_{i}=\left(X_{i}, \ldots, \frac{X_{i}(s)+X_{i}(t)}{\lambda_{i}-r_{2}}, \ldots\right)^{T}$ and $\bar{F}_{i}=$ $\left(X_{i}, \ldots, \frac{X_{i}(s)+X_{i}(t)}{\bar{\lambda}_{i}-r_{2}}, \ldots\right)^{T}$, respectively (see Figure 2, picture in the middle). In fact, it needs only to be checked that characteristic equations $\sum_{v \sim u} F_{i}(v)=\lambda_{i} F_{i}(u)$ (resp. $\left.\sum_{v \sim u} \bar{F}_{i}(v)=\bar{\lambda}_{i} \bar{F}_{i}(u)\right)$ hold for every vertex u in G.

For any vertex u in k-copy of G_{2}, let edge $e_{k}=s t$, then $F_{i}(u)=\frac{X_{i}(s)+X_{i}(t)}{\lambda_{i}-r_{2}}$. Furthermore,

$$
\sum_{v \sim u} F_{i}(v)=r_{2} F_{i}(u)+X_{i}(s)+X_{i}(t)=\lambda_{i} F_{i}(u)
$$

For any vertex u in G_{1},

$$
\begin{aligned}
\sum_{v \sim u} F_{i}(v) & =\sum_{v \sim u, v \in V\left(G_{1}\right)} F_{i}(v)+\sum_{v \sim u, v \notin V\left(G_{1}\right)} F_{i}(v) \\
& =\mu_{i} X_{i}(u)+\frac{r_{1} n_{2} X_{i}(u)}{\lambda_{i}-r_{2}}+\frac{n_{2}}{\lambda_{i}-r_{2}} \sum_{v \sim u, v \in V\left(G_{1}\right)} F_{i}(v) \\
& =\lambda_{i} X_{i}(u)=\lambda_{i} F_{i}(u)
\end{aligned}
$$

Therefore we obtain $2 n_{1}$ eigenvalues and corresponding eigenvectors of G if G_{1} is not bipartite and $2 n_{1}-1$ eigenvalues and corresponding eigenvectors of G if G_{1} is bipartite.

Let $Y_{1}, Y_{2}, \ldots, Y_{b}$ be a maximal set of independent solution vectors of linear system $R\left(G_{1}\right) Y=0$. Then $b=m_{1}-n_{1}$ if G_{1} is not bipartite and $b=m_{1}-n_{1}+1$ if G_{1} is bipartite. For $i=1,2, \ldots, b$, let $H_{i}=\left(0, Y_{i}\left(e_{1}\right) \mathbf{j}, \ldots, Y_{i}\left(e_{m}\right) \mathbf{j}\right)^{T}$ (see Figure 2, picture on the right). We can obtain that H_{i} is an eigenvector of G corresponding to eigenvalues $r_{2}=\eta_{n_{2}}$. Thus these $Y_{i}^{\prime} s$ provide b eigenvalues and corresponding eigenvectors of G.

Therefore we obtain $n_{1}+m_{1} n_{2}$ eigenvalues and corresponding eigenvectors of G and it is easy to see that these eigenvectors of G are linearly independent. Hence the proof is completed.

Next we consider the Laplacian spectrum of $G_{1} \diamond G_{2}$.
Let $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ be the Laplacian matrices of the graphs G_{1} and G_{2}, respectively, and $R\left(G_{1}\right)$ be the vertex-edge incidence matrix of G_{1}. Then the Laplacian matrix of $G=G_{1} \diamond G_{2}$ is

$$
L(G)=\left(\begin{array}{c|c}
L\left(G_{1}\right)+r_{1} n_{2} I_{n_{1}} & -R\left(G_{1}\right) \otimes \mathbf{j}_{n_{2}} \\
\hline-\left(R\left(G_{1}\right) \otimes \mathbf{j}_{n_{2}}\right)^{T} & \mathbf{I}_{m_{1}} \otimes\left(2 \mathbf{I}_{n_{2}}+L\left(G_{2}\right)\right)
\end{array}\right)
$$

In the following, we give a complete characterization of the Laplacian eigenvalues and eigenvectors of $G_{1} \diamond G_{2}$.

Let G_{1} be an r_{1}-regular graph and G_{2} be any graph and

$$
\begin{equation*}
S\left(G_{1}\right)=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n_{1}}\right), \quad S\left(G_{2}\right)=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n_{2}}\right) \tag{2.2}
\end{equation*}
$$

be their Laplacian spectra, respectively. If G_{1} is 1-regular then $G_{1}=K_{2}$ as G_{1} is connected. In this case, $G_{1} \diamond G_{2}$ is the complete product of K_{2} and G_{2} (by [5]), or by some direct computations, we can obtain that the Laplacian spectrum of $G=G_{1} \diamond G_{2}$
is

$$
S(G)=\left(0, \tau_{2}+2, \ldots, \tau_{n_{2}}+2, n_{2}+2, n_{2}+2\right)
$$

THEOREM 2.4. Let G_{1} be an r_{1}-regular $\left(r_{1} \geq 2\right)$ graph and G_{2} be any graph and their Laplacian spectra are written as in (2.2). Let

$$
\beta_{i}, \bar{\beta}_{i}=\frac{r_{1} n_{2}+\theta_{i}+2 \pm \sqrt{\left(r_{1} n_{2}+\theta_{i}+2\right)^{2}-4\left(n_{2}+2\right) \theta_{i}}}{2}
$$

for every θ_{i}. Then the Laplacian spectrum $S(G)$ of G is

$$
\left(\begin{array}{ccccccccc}
\tau_{1}+2, & \tau_{2}+2, & \cdots, & \tau_{n_{2}}+2, & \beta_{1}, & \bar{\beta}_{1}, & \cdots, & \beta_{n_{1}}, & \bar{\beta}_{n_{1}} \\
m_{1}-n_{1} & m_{1} & \cdots & m_{1} & 1 & 1 & \cdots & 1 & 1
\end{array}\right)
$$

where entries in the first row are the eigenvalues with the number of repetitions written below, respectively.

Figure 3: Description of Laplacian eigenvectors
Proof. Let $Z_{1}, Z_{2}, \ldots, Z_{n_{2}}$ be the eigenvectors of $L\left(G_{2}\right)$ corresponding to the eigenvalues $0=\tau_{1}, \tau_{2}, \ldots, \tau_{n_{2}}$. Note that $Z_{j} \perp \mathbf{j}$ for $j=2, \ldots, n_{2}$. Then for $i=1,2, \ldots, m_{1}$ and for $j=2,3, \ldots, n_{2}$, we have that $\left(n_{1}+m_{1} n_{2}\right)$-dimension vectors $\left(0,0, \ldots, 0, Z_{j}, 0, \ldots, 0\right)^{T}$, where $(i+1)$-th block is Z_{j} are eigenvectors of $L(G)$ corresponding to eigenvalue $\tau_{j}+2$ (see Figure 3, picture on the left). Thus we obtain $m_{1}\left(n_{2}-1\right)$ eigenvalues and corresponding eigenvectors of $L(G)$.

Let $X_{1}, X_{2}, \ldots, X_{n_{1}}$ be the orthogonal eigenvectors of $L\left(G_{1}\right)$ corresponding to the eigenvalues $\theta_{1}, \theta_{2}, \ldots, \theta_{n_{1}}$, respectively. For $i=1,2, \ldots, n_{1}$, note that:

$$
\beta_{i}, \bar{\beta}_{i}=\frac{r_{1} n_{2}+\theta_{i}+2 \pm \sqrt{\left(r_{1} n_{2}+\theta_{i}+2\right)^{2}-4\left(n_{2}+2\right) \theta_{i}}}{2}=\frac{r_{1} n_{2}+\theta_{i}+2 \pm \sqrt{\left(r_{1} n_{2}+\theta_{i}-2\right)^{2}+4 n_{2}\left(2 r_{1}-\theta_{i}\right)}}{2}
$$

since $r_{1} \geq 2, n_{2} \geq 1, \beta_{i} \neq 2$. Note that $\theta_{i} \leq 2 r_{1}$ and the equality holds if and only if G_{1} is bipartite. Note that $\bar{\beta}_{i}=2$ implies that $\theta_{i}=2 r_{1}$. That is, $\bar{\beta}_{i}=2$ appears only if G_{1} is bipartite and $i=n_{1}$. Moreover, if G_{1} is bipartite and the bipartition of its vertex set is $V_{1} \cup V_{2}$, then it is easy to check that $(\mathbf{j},-\mathbf{j}, 0, \ldots, 0)^{T}\left(1\right.$ on V_{1},
-1 on V_{2}, and 0 on all copies of G_{2}) is an eigenvector corresponding the eigenvalue $\left(n_{1}+2\right) r_{1}=\beta_{n_{1}}$ of $L(G)$.

Observe that if β_{i} and $\bar{\beta}_{i}$ are not equal to 2 , then β_{i} and $\bar{\beta}_{i}$ are eigenvalues of $L(G)$ and $F_{i}=\left(X_{i}, \ldots, \frac{X_{i}(s)+X_{i}(t)}{2-\beta_{i}}, \ldots\right)^{T}$ and $\bar{F}_{i}=\left(X_{i}, \ldots, \frac{X_{i}(s)+X_{i}(t)}{2-\bar{\beta}_{i}}, \ldots\right)^{T}$ are eigenvectors of β_{i} and $\bar{\beta}_{i}$ respectively (see Figure 3, picture in the middle). In fact, it needs only to be checked that characteristic equations $d_{G}(u) F_{i}(u)-\sum_{v \sim u} F_{i}(v)=\beta_{i} F_{i}(u)$ (resp. $\left.d_{G}(u) \bar{F}_{i}(u)-\sum_{v \sim u} \bar{F}_{i}(v)=\bar{\beta}_{i} \bar{F}_{i}(u)\right)$ hold for every vertex u in G, where $d_{G}(u)$ is the degree of the vertex u in G.

For every vertex u in k-copy of G_{2}, let the edge $e_{k}=s t$, then $d_{G}(u)=d_{G_{2}}(u)+2$ and $F_{i}(u)=\frac{X_{i}(s)+X_{i}(t)}{2-\beta_{i}}$. Further,

$$
\begin{aligned}
d_{G}(u) F_{i}(u)-\sum_{v \sim u} F_{i}(v) & \left.=d_{G_{2}}(u)+2\right) F_{i}(u)-d_{G_{2}}(u) \frac{X_{i}(s)+X_{i}(t)}{2-\beta_{i}}-\left(X_{i}(s)+X_{i}(t)\right) \\
& =\beta_{i} F_{i}(u)
\end{aligned}
$$

For every vertex u in G_{1}, note that

$$
r_{1} X_{i}(u)-\sum_{\substack{v \sim u \\ v \in V\left(G_{1}\right)}} X_{i}(v)=\theta_{i} X_{i}(u)
$$

We have

$$
\begin{aligned}
& d_{G}(u) F_{i}(u)-\sum_{v \sim u} F_{i}(v)=\left(r_{1}+r_{1} n_{2}\right) F_{i}(u)-\sum_{v \sim u, v \in V\left(G_{1}\right)} F_{i}(v)+\sum_{v \sim u, v \notin V\left(G_{1}\right)} F_{i}(v) \\
= & \left(r_{1}+r_{1} n_{2}\right) X_{i}(u)-\sum_{v \sim u, v \in V\left(G_{1}\right)} X_{i}(v)-\sum_{v \sim u, v \in V\left(G_{1}\right)} \frac{n_{2}}{2-\beta_{i}}\left(X_{i}(u)+X_{i}(v)\right) \\
= & \frac{\left(r_{1}+r_{1} n_{2}\right)\left(2-\beta_{i}\right)-2 n_{2} r_{1}+n_{2} \theta_{i}}{2-\beta_{i}} X_{i}(u)+\left(\theta_{i}-r_{1}\right) X_{i}(u) \\
= & \beta_{i} X_{i}(u)=\beta_{i} F_{i}(u) .
\end{aligned}
$$

Therefore we obtain $2 n_{1}$ eigenvalues and corresponding eigenvectors of $L(G)$ if G_{1} is not bipartite, and $2 n_{1}-1$ eigenvalues and corresponding eigenvectors of $L(G)$ if G_{1} is bipartite.

Let $Y_{1}, Y_{2}, \ldots, Y_{b}$ be a maximal set of independent solution vectors of the linear system $R\left(G_{1}\right) Y=0$. Then $b=m_{1}-n_{1}$ if G_{1} is not bipartite, and $b=m_{1}-n_{1}+1$ if G_{1} is bipartite. For $i=1,2, \ldots, b$, let $H_{i}=\left(0, Y_{i}\left(e_{1}\right) \mathbf{j}, \ldots, Y_{i}\left(e_{m}\right) \mathbf{j}\right)^{T}$ (see Figure 3, picture on the right). We can obtain that H_{i} is an eigenvector corresponding the eigenvalue $2\left(=\tau_{1}+2\right)$ of $L(G)$. Thus these $Y_{i}^{\prime} s$ provide b eigenvalues and corresponding eigenvectors of $L(G)$.

Therefore we obtain $n_{1}+m_{1} n_{2}$ eigenvalues and corresponding eigenvectors of $L(G)$ and it is easy to see that these eigenvectors of $L(G)$ are linearly independent. Hence the proof is completed.

As an application of the above results, we give the number of spanning trees of the edge corona of two graphs.

Let G be a connected graph with n vertices and Laplacian eigenvalues $0=\theta_{1}<$ $\theta_{2} \leq \cdots \leq \theta_{n}$. Then the number of spanning trees of G is

$$
t(G)=\frac{\theta_{2} \theta_{3} \cdots \theta_{n}}{n}
$$

By Theorem 2.4 we have
Proposition 2.5. For a connected r_{1}-regular graph G_{1} and arbitrary graph G_{2}, let the number of spanning trees of G_{1} be $t\left(G_{1}\right)$ and the Laplacian spectra of G_{2} be $0=\tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{n_{2}}$. Then the number of spanning trees of $G_{1} \diamond G_{2}$ is

$$
t\left(G_{1} \diamond G_{2}\right)=2^{m_{1}-n_{1}+1}\left(n_{2}+2\right)^{n_{1}-1} t\left(G_{1}\right)\left(\tau_{2}+2\right)^{m_{1}} \cdots\left(\tau_{n_{2}}+2\right)^{m_{1}}
$$

Proof. Following the notions in Theorem 2.4, note that $\beta_{i} \bar{\beta}_{i}=\left(n_{2}+2\right) \theta_{i}$ for $i=1,2, \ldots, n_{1}$ and $\beta_{1}=r_{1} n_{2}+2, \bar{\beta}_{1}=0$. Thus

$$
\begin{aligned}
t\left(G_{1} \diamond G_{2}\right) & =\frac{2^{m_{1}-n_{1}}\left(r_{1} n_{2}+2\right)\left(n_{2}+2\right)^{n_{1}-1} \prod_{i=2}^{n_{2}}\left(\tau_{i}+2\right)^{m_{1}} \prod_{j=2}^{n_{1}} \theta_{j}}{n_{1}+m_{1} n_{2}} \\
& =\frac{n_{1} 2^{m_{1}-n_{1}}\left(r_{1} n_{2}+2\right)\left(n_{2}+2\right)^{n_{1}-1} t\left(G_{1}\right) \prod_{i=2}^{n_{2}}\left(\tau_{i}+2\right)^{m_{1}}}{n_{1}+m_{1} n_{2}} \\
& =2^{m_{1}-n_{1}+1}\left(n_{2}+2\right)^{n_{1}-1} t\left(G_{1}\right)\left(\tau_{2}+2\right)^{m_{1}} \cdots\left(\tau_{n_{2}}+2\right)^{m_{1}}
\end{aligned}
$$

The last equality follows from $n_{1}+m_{1} n_{2}=\frac{n_{1}\left(2+r_{1} n_{2}\right)}{2}$.
By Proposition 2.5, we have $t\left(G \diamond K_{1}\right)=2^{m-n+1} 3^{n-1} t(G)$ for a regular graph G. In fact $t\left(G \diamond K_{1}\right)=2^{m-n+1} 3^{n-1} t(G)$ holds for arbitrary graph G by the following proposition.

Proposition 2.6. Let G be a connected graph with n vertices and m edges. Then the number of spanning trees of $G \diamond K_{1}$ is $2^{m-n+1} 3^{n-1} t(G)$, where $t(G)$ is the number of spanning trees of G.

Proof. Note that the Laplacian matrix of $G \diamond K_{1}$ is

$$
L\left(G \diamond K_{1}\right)=\left(\begin{array}{cc}
L(G)+D(G) & -R \\
-R^{T} & 2 I_{m}
\end{array}\right)
$$

Let $(L(G))_{11}$ be the reduced Laplacian matrix of G obtained by removing the first row and first column of $L(G)$ and R_{1} be the matrix obtained by removing the first row of the vertex-edge incidence matrix R. By the Matrix-Tree theorem [2], we have

$$
\begin{aligned}
t\left(G \diamond K_{1}\right) & =\operatorname{det}\left(L\left(G \diamond K_{1}\right)\right)_{11}=\operatorname{det}\left(\begin{array}{cc}
(L(G)+D(G))_{11} & -R_{1} \\
-R_{1}^{T} & 2 I_{m}
\end{array}\right) \\
& =2^{m} \operatorname{det}\left[(L(G)+D(G))_{11}-\frac{1}{2} R_{1} R_{1}^{T}\right]
\end{aligned}
$$

since $R R^{T}=D(G)+A(G), R_{1} R_{1}^{T}=(D(G)+A(G))_{11}$. Thus

$$
t\left(G \diamond K_{1}\right)=2^{m} \operatorname{det}\left(\frac{3}{2}(D(G)-A(G))_{11}=2^{m-n+1} 3^{n-1} t(G)\right.
$$

Acknowledgments. The authors would like to express their sincere gratitude to the referee for a very careful reading of the paper and for all his or her insightful comments and valuable suggestions, which made a number of improvements on this paper

REFERENCES

[1] S. Barik, S. Pati, and B. K. Sarma. The spectrum of the corona of two graphs. SIAM. J. Discrete Math., 24:47-56, 2007.
[2] D. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs: Theory and Application, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995.
[3] R. Frucht and F. Harary. On the corona two graphs. Aequationes Math., 4:322-325, 1970.
[4] F. Harary. Graph Theory. Addition-Wesley Publishing Co., Reading, MA/Menlo Park, CA/London, 1969.
[5] R. Merris. Laplacian matrices of graphs: a survey. Linear Algebra Appl., 197/198:143-176, 1994.
[6] B. Mohar. The Laplacian spectrum of graphs, Graph Theory, Combinatorics and Applications. John Wiley, New York, pp. 871-898, 1991.

[^0]: * Received by the editors September 11, 2009. Accepted for publication August 22, 2010. Handling Editor: Richard A. Brualdi.
 ${ }^{\dagger}$ Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, China (yphou@hunnu.edu.cn). Research supported by NSFC(10771061).
 \ddagger Department of Mathematics, Hong Kong Baptist University, Hong Kong, China. (wcshiu@hkbu.edu.hk).

