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Abstract

An important factor contributing to the success of deep learning has been the
remarkable ability to optimize large neural networks using simple first-order op-
timization algorithms like stochastic gradient descent. While the efficiency of
such methods depends crucially on the local curvature of the loss surface, very
little is actually known about how this geometry depends on network architecture
and hyperparameters. In this work, we extend a recently-developed framework
for studying spectra of nonlinear random matrices to characterize an important
measure of curvature, namely the eigenvalues of the Fisher information matrix.
We focus on a single-hidden-layer neural network with Gaussian data and weights
and provide an exact expression for the spectrum in the limit of infinite width.
We find that linear networks suffer worse conditioning than nonlinear networks
and that nonlinear networks are generically non-degenerate. We also predict and
demonstrate empirically that by adjusting the nonlinearity, the spectrum can be
tuned so as to improve the efficiency of first-order optimization methods.

1 Introduction

In recent years, the success of deep learning has spread from classical problems in image recogni-
tion [1], audio synthesis [2], translation [3], and speech recognition [4] to more diverse applications
in unexpected areas such as protein structure prediction [5], quantum chemistry [5] and drug discov-
ery [6]. These empirical successes continue to outpace the development of a concrete theoretical
understanding of how and in what contexts deep learning works. A central difficulty in analyzing
deep learning systems stems from the complexity of neural network loss surfaces, which are highly
non-convex functions, often of millions or even billions [7] of parameters.

Optimization in such high-dimensional spaces poses many challenges. For most problems in deep
learning, second-order methods are too costly to perform exactly. Despite recent developments on
efficient approximations of these methods, such as the Neumann optimizer [8] and K-FAC [9], most
practitioners use gradient descent and its variants [10], [11]. Despite their widespread use, it is not
obvious why first-order methods are often successful in deep learning since it is known that first-order
methods perform poorly in the presence of pathological curvature. An important open question in this
direction is to what extent pathological curvature pervades deep learning and how it can be mitigated.
More broadly, in order to continue improving neural network models and performance, we aim to
better understand the conditions under which first-order methods will work well, and how those
conditions depend on model design choices and hyperparameters.

Among the variety of objects that may be used to quantify the geometry of the loss surface, two
matrices have elevated importance: the Hessian matrix and the Fisher information matrix. From the
perspective of Euclidean coordinate space, the Hessian matrix is the natural object with which to
quantify the local geometry of the loss surface. It is also the fundamental object underlying many
second-order optimization schemes and its spectrum provides insights as to the nature of critical
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points. From the perspective of information geometry, distances are measured in model space rather
than in coordinate space, and the Fisher information matrix defines the metric and determines the
update directions in natural gradient descent [12]. In contrast to the standard gradient, the natural
gradient defines the direction in the parameter space which gives the largest change in the objective
per unit change in the model, as measured by Kullback-Leibler divergence. As we discuss in Section 2,
the Hessian and the Fisher are related; for the squared error loss functions that we consider in this
work, it turns out that the Fisher equals the Gauss-Newton approximation of the Hessian, so the
connection is concrete.

A central difficulty in building up a robust understanding of the properties of these curvature matrices
stems from the fact that they are high-dimensional and the empirical estimation of their spectra
is limited by memory and computational constraints. These limitations typically prevent direct
calculations for models with more than a few tens of thousands of parameters and it is difficult
to know whether conclusions drawn from such small models would generalize to the mega- or
giga-dimensional networks used in practice.

It is therefore important to develop theoretical tools to analyze the spectra of these matrices. In
general, the spectra will depend in intimate ways on the specific parameter values of the weights and
the distribution of input data to the network. It is not feasible to precisely capture all of these details,
and even if a theory were developed that did so, it would not be clear how to derive generalizable
conclusions from it. We therefore focus on a simplified configuration in which the weights and inputs
are taken to be random variables. The analysis then becomes a well-defined computation in random
matrix theory.

The Fisher is a nonlinear function of the weights and data. To compute its spectrum, we extend
the framework developed by Pennington and Worah [13] to study random matrices with nonlinear
dependencies. As we describe in Section 2.4, the Fisher also has an internal block structure that
complicates the resulting combinatorial analysis. The main technical contribution of this work is to
extend the nonlinear random matrix theory of [13] to matrices with nontrivial internal structure.

The result of our analysis is an explicit characterization of the spectrum of the Fisher information
matrix of a single-hidden-layer neural network with squared loss, random Gaussian weights and
random Gaussian input data in the limit of large width. We draw several nontrivial and potentially
surprising conclusions about the spectrum. For example, linear networks suffer worse conditioning
than any nonlinear network, and although nonlinear networks may have many small eigenvalues they
are generically non-degenerate. Our results also suggest precise ways to tune the nonlinearity in order
to improve conditioning of the spectrum, and our empirical simulations show improvements in the
speed of first-order optimization as a result.

2 Preliminaries

2.1 Notation and problem statement

Consider a single-hidden-layer neural network with weight matrices W), W (2 ¢ R™*" and
pointwise activation function f : R — R. For input X € R"™, the output of the network Y (X) € R™

is given by Y (X) = W® f(W ™ X). For concreteness, we focus our analysis on the case of squared
loss, in which case,

1 .
L) =Exy [V =Y (X3, (D
where Y € R are the regression targets and € denotes the vector of all parameters {I/V(l)7 W(2)}.
The matrix of second derivatives or Hessian of the loss with respect to the parameters can be written

as,

H=H9 4+ gW 2)
where,
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In this work we focus on the positive-semi-definite matrix H () which is known as the Gauss-Newton
. . 2, . . » .
matrix. It can also be written as H(©) = JT.J, where J € R"*2"" is the Jacobian matrix of Y with



respect to the parameters 6. For models with squared loss, it is known that the Gauss-Newton matrix
is equal to the Fisher information matrix of the model distribution with respect to its parameters [14].
As such, by studying H(®) we simultaneously examine the Gauss-Newton matrix and the Fisher
information matrix.

The distribution of eigenvalues or spectrum of curvature matrices like H(®) plays an important role in
optimization, as it characterizes the local geometry of the loss surface and the efficiency of first-order
optimization methods. In this work, we seek to build a detailed understanding of this spectrum and
how the architectural components of the neural network influence it. In order to isolate these factors
from idiosyncratic behavior related to the specifics of the data and weight configurations, we focus
on the a vanilla baseline configuration in which the data and the weights are both taken to be iid
Gaussian random variables.

Concretely, we take X ~ AN (0, I,), Wi(;) ~ N(0, %), and we will be interested in computing the

expected distribution of eigenvalues H () for large n. From this perspective, the problem can be
framed as a computation in random matrix theory, the principles behind which we now review.

2.2 Spectral density and the Stieltjes transform

The empirical spectral density of a matrix M is defined as,

S|

prr(N) = Zé(AfAj(M)), @)

where the ); (M), j=1,...,n, denote the n eigenvalues of M, including multiplicity, and § is the
Dirac delta function. The limiting spectral density is the limit of eqn. (4) as n — oo, if it exists.

For z € C\ supp(pas) the Stieltjes transform G of pyy is defined as,

t 1
G(z) = / )y L= ar) (5)
z—1 n
where the expectation is with respect to the random variables W and X . The quantity (M — z1,,, )~}
is the resolvent of M. The spectral density can be recovered from the Stieltjes transform using the
inversion formula,
1
prm(A) = —— lim Im G(\ + ie) . 6)

T e—0t

2.3 Moment method

One of the main tools for computing the limiting spectral distributions of random matrices is the
moment method, which, as the name suggests, is based on computations of the moments of py;. The
asymptotic expansion of eqn. (5) for large z gives the Laurent series,

(oo}
G(z) = Z Sk+1 7 ™)
k=0
where my is the kth moment of the distribution p,y,
1
my = /dt par(H)tF = ﬁEter. (8)

If one can compute my, then the density pp; can be obtained via eqns. (7) and (6). The idea behind
the moment method is to compute my by expanding out powers of M inside the trace as,

1 1
~EtrM" =~ > M, Miyiy - Miy_ i, My, ©)

i1,...,ix €[]

and evaluating the leading contributions to the sum as n — oo. We will use the moment method
in order to compute the limiting spectral density of the Fisher. As a first step in that direction, we
focus on the properties of the layer-wise block structure in the Fisher induced by the neural network
architecture.



2.4 Block structure of the Fisher

As described above, in our single-hidden-layer setting with squared loss, the Fisher is given by
oY,
HO =Ex [JTT], Ju=—~.
x 7] a0,
Because the parameters of the model are organized into two layers, it is convenient to partition the
Fisher into a 2 x 2 block matrix,

0 0

H(O) o Hl(l) HI(Z)
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(10)

Furthermore, because the parameters of each layer are matrices, it is useful to regard each block of
the Fisher as a four-index tensor. In particular,

0 (1 (1

[H£1)]a1b1,a2b2 = EX Z J7. a)1b1 [ a)gbg ’
(0) _ (1) (2)

[Hu ]lhbl,c‘ldl = Ex Z JZ ,a1by l ,e1dy | 0
(0) _

[H22 ]Cldl,cgdz - EX Z Jz ,e1dy z Cng .

The Jacobian entries Ji(lgb equal the derivatives of Y; with respect to the weight variables Wéb),
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where J.; denotes the Kronecker delta function i.e., it is 1 if ¢ = j, and 0 otherwise.

In order to proceed by the method of moments, we will need to compute the normalized trace of
powers of the Fisher, i.e. % tr[H (0)]d, for any d. The block structure of the Fisher makes the explicit
representation of these traces somewhat complicated. The following proposition helps simplify the
expressions.

Proposition 1. Let A; € Rk, Ay € R™**2 gnd A = [A1, As] € Rx(k1tk2) Then,

d—1

tr[(ATA) ] = H trHA,, AL = > wAl A, [[ AL A, (12)
be{1,2}¢ =1 be{1,2}4 i=1
Using Proposition 1 with A; = JM) and A, = J®), we have,
d-1
wl(HO)Y ) = 3" trEx [7007 700 T Ex [0 0] (13)

be{1,2}4 i=1
which expresses the traces of the block Fisher entirely in terms of products of its constituent blocks.

In order to carry out the moment method to completion, we need the expected normalized traces my,
1

m, = —Ew tr[(H(O))k] , (14)
n

in the limit of large n. Because the nonlinearity significantly complicates the analysis, we first
illustrate the basics of the methodology in the linear case before moving on to the general case.

2.5 An lllustrative Example: The Linear Case
Let us assume that f is the identity function i.e., f(z) = z. In this case, eqn. (11) can be written as,

JO=w® ex, JO=TeWOX. (15)
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Figure 1: Empirical spectra of Fisher for single-hidden-layer networks of width 128 (orange) and
theoretical prediction of spectra (black) for (a) linear and (b) erf; (see eqn. 30) networks. Insets show
logarithmic scale.

Using the fact that Ex[X XT] = I,,, eqn. (13) gives,

d
[(H(O — Ew Z ( ) 2)W(2) )dfk tr(w(l)W(l)T)k _ Z (Z) Cq_rCr, (16)

k=0

where C, is the nth Catalan number. The series can be summed to obtain the Stieltjes transform,
whose imaginary part gives the following explicit form for the spectrum,

o =30+ [ (s 0) AR (e,

where K and FE are the complete elliptic integrals of the first- and second-kind,

Ky = [ dp—1 E(k):/2d9 V1~ ksin?0. (18)
0 V1 — Eksin® 6 0

Notice that the spectrum is highly degenerate, with half of the eigenvalues equaling zero. This degen-

eracy can be attributed to the G'L(n?) symmetry of the product W W) under {W M W2} —

{GW(l), W(Q)G_l}. Fig. 1a shows excellent agreement between the predicted spectral density and

finite-width empirical simulations.

3 The Stieltjes transform of H (¥

3.1 Main Result

If f : R — R is an activation function with zero Gaussian mean and finite Gaussian moments,

dzx 2

—z a2
2 2

e |f et

then the Stieltjes transform of the limiting spectral density of H(°) is given by the following theorem.

Fl< oo, for k>1, (19)

Theorem 1. The Stieltjes transform of the spectral density of the Fisher information matrix of
a single-hidden-layer neural network with squared loss, activation function f, weight matrices

WO W e R™ " with iid entries Wl(j ~ N(0,1), no biases, and iid inputs X ~ N(0,1,,) is
given by the following integral as n — o0:

— )\1 +)\2 — 2z
) /R/R 2= =)+ MiE—n+) +Xlz—1n+() - ZQ)dul()‘l)d/”L?()‘i)zé))

z2/2 2
dz | , (@D

where the constants 1, /', and ( are determined by the nonlinearity,

n—/f i da, 77’=/Rf’(w)26:/9;2—fdw7 (= (/Rf’(x)e_
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(a) Spectra for various nonlinearities (b) f(x) = erfy(z) for various widths

Figure 2: (a) Theoretical predictions for spectra of various nonlinearities; see eqns. (28) and (30).
The linear case is degenerate and more poorly conditioned than the nonlinear cases. (b) Theoretical
prediction of spectrum for erf; compared with empirical simulations. Practical constraints restrict
the width to small values, but slow convergence toward the asymptotic prediction can be observed.

and the measures dj1 and duo are given by,

1 /7 +3C—X\ 1 [n+30— A
i) = ooy e e dia(Ae) = ooy [T e g - (22)

Remark 1. A straightforward application of Carlson’s algorithm [15] can reduce the integral in
eqn. (20) to a combination of three standard elliptic integrals.

Remark 2. The spectral density can be recovered from eqn. (20) through the inversion formula,
eqn. (6).

Remark 3. Although the result in Theorem 1 is written in terms of [, it is not necessary that f be
differentiable. In fact, the weak derivative can be used in place of the derivative, as the proof of the
reduction (see also [13]) to final form uses integration by parts only. Therefore, just the existence of
a weak derivative for f suffices. In particular, the result would hold for |x| and Relu functions.

The proof of Theorem 1 is quite long and technical, so it’s deferred to the Supplementary Material.
The basic idea underlying the proof is very similar to that utilized in [13]. The calculation of the
moments is divided into two sub-problems, one of enumerating certain connected outer-planar graphs,
and another of evaluating certain high-dimensional integrals that correspond to walks in those graphs.

Fig. 1 shows the excellent agreement of the predicted spectrum with empirical simulations of finite-
width networks. Fig. 2 highlights the region of the spectrum for which the asymptotic behavior
is slow to set in and suggests that empirical simulations with small networks may not provide an
accurate portrayal of the behavior of large networks. Fig. 2a shows the predicted spectra for a variety
of nonlinearities.

3.2 Features of the spectrum

Owing to eqn. (6), the branch points and poles of G(z) encode information about the delta function
peaks, spectral edges, and discontinuities in the derivative of p(A). These special points can be
determined directly from the integral representation for G(z) in eqn. (20) by examining the zeros
of the denominator of the integrand. In particular, the following six values of z are locations of the
poles at the integration endpoints and determine the salient features of the spectral density:

(n+n' +6¢— /(1 —n)2 +64C?) (23)
(n+n"+6C+/(n —n)?+64¢?). (24)

In the Supplementary Material, we establish the relative ordering of constants 0 < ¢ < n < 7/, which
implies that the minimum and maximum eigenvalues of H(?) are given by,

21:77_() Z2:TI+3C7 z3 =

24:’0/_() 25:77/—’—3(7 26 =

N = N

Amin = 21, and  Apax = 26 - (25)



Table 1: Properties of nonlinearities

Locations of spectral features

n n ¢ 21 22 Z3 24 25 Z6
T 1 1 1 0 4 0 0 4 8
erfq(x) 1 1226 0.914 0.086 3.741 0.198 0.312 3966 7.51
sreluo(m) 1 1467 0.733 0.267 3.200 0491 0.733 3.667 6.377
fopt 1 1.923 0.077 0.923 1.231 1.138 1.846 2.154 2247

The Supplementary Material also shows that the equality = ( only holds for linear networks, which
implies that the minimum eigenvalue is nonzero for every nonlinear activation function. There are
two delta function peaks in spectrum, which are located at,

ek = Amin =21, and A = 1. (26)

These peaks indicate specific eigenvalues that have nonvanishing probability of occurrence. These
peaks coalesce when 1 = 7/, which can only happen for linear activation functions, in which case
n =1’ = (, so the peaks occur at A = 0, as illustrated in Fig. 2a. That figure also shows that the
spectrum may consist of two disconnected components, in which case z; is the location of the right
edge of the left component. Finally, the derivative of the spectrum is discontinuous at z3 and z5.
These predictions can be verified in Fig. 2a by consulting Table 1, which provides numerical values
for these special points for the various nonlinearities appearing in the figure.

4 Empirical analysis

4.1 A measure of conditioning

Using the results from Section 4.1, the first two moments can be given explicitly as,

1 1
= lim - 0 = = !
my nhm - tr[H'"Y) 5 (n+7")

1 (27)
| = 5(772 + 1 +4¢%)

A scale-invariant measure of conditioning of the Fisher is just ms/m?, which is lower-bounded
by 1, and which quantifies how tightly concentrated the spectrum is around its mean. Ideally, this
quantity should be as small as possible to avoid pathological curvature and to enable fast first-order
optimization. One advantage of ms / m% compared to other condition numbers such as Apax / Amin OF
Amax 18 that it is scale-invariant and well-defined even in the presence of degeneracy in the spectrum.

By expanding f in a basis of Hermite polynomials, we show in the Supplementary Material that
among the functions with zero Gaussian mean that

1
IRVE]

minimizes the ratio mo/m?. Note that we have removed the freedom to rescale fopt by a constant by
enforcing 7 = 1. Curiously, a linear activation function actually maximizes the ratio, implying that
nonlinearity invariably improves conditioning, at least by this measure. The relative conditioning of
spectra resulting from various activation functions can be observed in Fig. 2a.

fopt(x) (SC + \/6(51/'2 — 1)) (28)

The function fp () grows quickly for large |x| and may be too unstable to use in actual neural
networks. Alternative functions could be found by solving the optimization problem,

. Mo
[« = arg ming o (29)
1
subject to some constraints, for example that f be monotone increasing, have zero Gaussian mean, and
saturate for large |x|. Such a problem could be solved via variational calculus; see the Supplementary
Material.
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Figure 3: Comparison of the conditioning measure ms,/m? and single-step loss reduction AL
(eqn. (33)) as the activation function changes for (a) srelu, and (b) erf, (eqn. (30)). The curves are
highly correlated, suggesting the possibility of improved first-order optimization performance by
tuning the spectrum of the Fisher through the choice of activation function.

4.2 Efficiency of gradient descent

Another way to investigate the ratio mo/m? is to see how well it correlates with the efficiency of
first-order optimization. For this purpose, we examine two one-parameter classes of well-behaved
activation functions related to ReLLU and the error function,

1+«

Ty +oa|—x|p — = 2
srelug(z) = e . erfu(z) = erf(a’z) . 30)
\/%(14—042)—%(1—1—002 2tan~t V1 +4at -1

Here srelu, is the shifted leaky ReLLU function studied in [13]. Both srelu, and erf, have zero
Gaussian mean and are normalized such that n = 1 for all . Changing « does affect 7', ¢ and the
ratio mo /m?, which implies that different functions within these one-parameter families may behave
quite differently under gradient descent.

We designed a simple and controlled experiment to explore these differences in the context of
neural network training. The setup is a modified student-teacher framework, in which the student
is initialized with the teacher’s parameters, but the regression targets are perturbed so that student’s
parameters are suboptimal. Then we ask by how much can the student decrease the loss by one
optimally-chosen step in the gradient direction. Concretely, we define

Yi=WPrwX) +e, i=1,...,M, 31)
for teacher weights [Wt(l)]ij ~N(0,1), X; ~ N(0,1,), and ¢; ~ N(0,21,), with width n = 27,

n

number of samples M = 2'7, and perturbation size ¢ = 1073, The loss is defined as,
M
LWs) =D 5 lI¥e = W W X3 (32)
i=1

We are interested in the maximal single-step loss decrease when W is initialized at W4, i.e.,

AL = min [L(W, ~nVLw,) = L(Wy)] . (33)

For the two classes of activation functions in eqn. (30), we empirically measured AL as a function
of a.. In Fig. 3 we compare the results with our theoretical predictions for mg/m? as a function of
«. The agreement is excellent, suggesting that our theory may be able to make practical predictions
regarding training efficiency of actual neural networks.

5 Conclusions

In this work, we computed the spectrum of the Fisher information matrix of a single-hidden-layer
neural network with squared loss and Gaussian weights and Gaussian data in the limit of large
network width. Our explicit results indicate that linear networks suffer worse conditioning than



nonlinear networks and that although nonlinear networks may have numerous small eigenvalues they
are generically non-degenerate. We also showed that by tuning the nonlinearity it is possible to adjust
the spectrum in such a way that the efficiency of first-order optimization methods can be improved.
By undertaking this analysis, we demonstrated how to extend the techniques developed in [13] for
studying random matrices with nonlinear dependencies to the block-structured curvature matrices
that are relevant for optimization in deep learning. The techniques presented here pave the way for
future work studying deep learning via random matrix theory.
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