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Abstract

In this paper we have examined the spectra of the operator D(r, 0, 0, s)
on sequence spaces `p and bvp.
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1. Introduction

Spectral theory is an important branch of mathematics due to its application in
other branches of science. It has been proved to be a standard tool of mathematical
sciences because of its usefulness and application oriented scope in different fields.
In numerical analysis, the spectral values may determine whether a discretization
of a differential equation will get the right answer or how fast a conjugate gra-
dient iteration will converge. In aeronautics, the spectral values may determine
whether the flow over a wing is laminar or turbulent. In electrical engineering, it
may determine the frequency response of an amplifier or the reliability of a power
system. In quantum mechanics, it may determine atomic energy levels and thus,
the frequency of a laser or the spectral signature of a star. In structural mechanics,
it may determine whether an automobile is too noisy or whether a building will
collapse in an earthquake. In ecology, the spectral values may determine whether
a food web will settle into a steady equilibrium. In probability theory, they may
determine the rate of convergence of a Markov process.

In summability theory, different classes of matrices have been investigated.
Characterizations of matrix classes are found in Tripathy and Sen [29], Tripa-
thy [30], Rath and Tripathy [21] and many others. There are particular types of
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summability methods like Nörlund mean, Riesz mean, Euler mean, Abel transfor-
mation etc. Matrix methods have been studied from different aspects recently by
Altin et.al [10], Tripathy and Baruah [31] and others.

Spectral theory is a thrust area of research in Functional analysis. The spec-
tra of different operators have been studied. There are different types of matrix
operators on sequence spaces. The spectra of only a few of the matrix operators
have been studied so far that to on some particular type of sequence spaces. The
works those exist are mainly on cesàro, Schur, Hausdorff and some difference ma-
trix operators.

Wenger [33] examined the fine spectrum of the integer power of the Cesàro
operator in c and Rhoades [26, 27] generalized this result to the weighted mean
methods and proposed a conjecture for their fine spectra on B(`p) respectively.
Reade [23] worked the spectrum of the Cesàro operator in the sequence space c0
and Rhoades [24] extended it to the fine spectrum of the weighted mean operators.
The fine spectrum of the Cesàro operator on the sequence space `p has been stud-
ied by Gonzalez [17], where 1 < p <∞. Okutyi [19, 20] computed the spectrum of
the Cesàro operator on the sequence spaces bv and bv0 = bv∩ c0 and Rhoades [27]
extended that result to weighted mean methods over the space bv0. Akhmedov
and Basar [4, 5] have recently determined, independently than that of Gonalez
[17], the fine spectrum of the Cesàro operator in the sequence spaces c0, `∞ and
`p, by the different way respectively, where 1 < p <∞ .

The spectrum and the fine spectrum of the Rhally operators on the sequence
spaces c0 and c, under assumption that lim

n→∞ (n+ 1)an = L 6= 0, have been exam-
ined by Yildirim [32]. Furthermore, Coskun [12] has studied the spectrum and fine
spectrum for p-Cesàro operator acting on the space c0. More recently, Malafosse
[18] and Altay and Basar [8] and Akhmedov and Basar [4] have respectively stud-
ied the spectrum and the fine spectrum of the difference operator on the sequence
spaces sr and c0, c and `p, p ≥ 1; where sr denotes the Banach space of all se-

quences x = (xk) normed by ||x||sr = sup
k∈N

|xk|
rk
, (r > 0).

Also, Akhmedov and Basar [3], and Altay and Basar [8] have determined the
fine spectrum with respect to Goldberg’s classification [16] of the difference oper-
ator 4 and the generalized difference operator B(r, s) over the sequence spaces
`p, bvp and c0 and c; respectively where the sequence space bvp is defined in [7] by
bvp = {x = (xk) ∈ w :

∑
|xk − xk−1|p <∞} , (1 ≤ p <∞).

Furthermore, the fine spectrum of the generalized difference operator B(r, s)
over the sequence spaces `1 and bv has been studied by Furkan, Bilgic and Kayad-
uman [13]. Recently the fine spectrum of the operator B(r, s) over `p and bvp
has been studied by Bilgiç and Furkan [11]. More recently, the fine spectrum of
B(r, s, t) over the sequence spaces c0 and c and `p and bvp have been studied
by Furkan et al. [14, 15]. Srivastava and Kumar [28] have determined the spec-
trum and fine spectrum of the operator 4a over the sequence space c0, where



4a : c0 → c0 is defined by

4ax = 4a(xn) = (anxn − an−1xn−1)∞n=0 with x−1 = 0,

where (ak) is either constant or strictly decreasing sequence of positive real

numbers satisfying lim
k→∞ak = a > 0 and a0 ≤ 2a.

The same problem, in the case when the sequence (ak) is assumed to be constant
except for finitely many elements was investigated by Akhmedov [2]. Ahmadov
and Shabrawy [1] have studied the spectrum of the operator ∆a,b over the sequence
space c. Spectra of some particular type of matrix operator have been investigated
from different aspects by Rath and Tripathy [22].

2. Preliminaries and Definition

Let X be a linear space. By B(X), we denote the set of all bounded linear
operators on X into itself. If T ∈ B(X), where X is a Banach space then the
adjoint operator T ∗ of T is a bounded linear operator on the dual X∗ of X defined
by (T ∗φ)(x) = φ(Tx) for all φ ∈ X∗ and x ∈ X.

Let T : D(T )→ X be a linear operator, defined on D(T ) ⊂ X, where D(T ) de-
note the domain of T and X is a complex normed linear space. For T ∈ B(X) we
associate a complex number α with the operator (T−αI) denoted by Tα defined on
the same domain D(T ), where I is the identity operator. The inverse (T − αI)−1,
denoted by T−1α is known as the resolvent operator of T .

A regular value is a complex number α of T such that
(R1) T−1α exists,
(R2) T−1α is bounded and
(R3) T−1α is defined on a set which is dense in X.

The resolvent set of T is the set of all such regular values α of T , denoted by
ρ(T ). Its complement is given by C \ ρ(T ) in the complex plane C is called the
spectrum of T , denoted by σ(T ). Thus the spectrum σ(T ) consist of those values
of α ∈ C, for which Tα is not invertible.

Classification of spectrum:

The spectrum σ(T ) is partitioned into three disjoint sets as follows:

(i) The point(discrete) spectrum σpt(T ) is the set such that T−1α does not exist.
Further α ∈ σpt(T ) is called the eigen value of T.

(ii) The continuous spectrum σc(T ) is the set such that T−1α exists and satisfies
(R3) but not (R2) that is T−1α is unbounded.



(iii) The residual spectrum σr(T ) is the set such that T−1α exists (may be
bounded or not) but not satisfy (R3), that is, the domain of T−1α is not dense in
X .

This is to note that in finite dimensional case, continuous spectrum coincides
with the residual spectrum and equal to the empty set and the spectrum consists
of only the point spectrum.

Let E and F be two sequence spaces and A = (ank) be an infinite matrix of real
or complex numbers ank, where n, k ∈ N = {0, 1, 2, ...}. Then, we say that A de-
fines a matrix mapping from E into F , denote by A : E → F , if for every sequence

x = (xn) ∈ E the sequence Ax = {(Ax)n} is in F where (Ax)n =
∞∑
k=0

ankxk, pro-

vided the right hand side converges for every n ∈ N and x ∈ E.

Our main focus in this paper is on the operator D(r, 0, 0, s), where

D(r, 0, 0, s) =


r 0 0 0 0 ...
0 r 0 0 0 ...
0 0 r 0 0 ...
s 0 0 r 0 ...
0 s 0 0 r ...
. . . . ...

 ,

Here we assume that r and s are complex parameters and s 6= 0.
Remark: In particular if we consider r = −1 and s = 1 then D(−1, 0, 0, 1) = 43

2.1. Lemma. The matrix A = (ank) gives rise to a bounded linear operator
T ∈ B(`1) from `1 to itself if and only if the supremum of `1 norms of the columns
of A is bounded.

2.2. Lemma. The matrix A = (ank) gives rise to a bounded linear operator
T ∈ B(`∞) from `∞ to itself if and only if the supremum of `1 norms of the rows
of A is bounded.

2.3. Lemma. T has a dense range if and only if T ∗ is one to one, where T ∗

denote the adjoint operator of T .

3. The spectrum of the operator D(r, 0, 0, s) on the sequence space
`p, (1 < p <∞).

3.1. Theorem. D(r, 0, 0, s) : `p → `p is a bounded linear operator satisfying the

inequalities (|r|p + |s|p)
1
p ≤ ||D(r, 0, 0, s)||`p ≤ |r|+ |s|.

Proof. The linearity of D(r, 0, 0, s) is trivial and so is omitted. Let us consider

e = (1, 0, 0, ...) ∈ `p. Then D(r, 0, 0, s)e = (r, 0, 0, s, 0, ...) and
||D(r,0,0,s)e||`p

||e||`p
=

(|r|p + |s|p)
1
p which give us (|r|p + |s|p)

1
p ≤ ||D(r, 0, 0, s)||`p , for any p > 1.

Next let x = (xk) ∈ `p then by using Minkowski’s inequality and taking x−3 =
x−2 = x−1 = 0, we have,



||D(r, 0, 0, s)x||`p = (

∞∑
k=0

|sxk−3 + rxk|p)
1
p

≤ (
∞∑
k=0

|sxk−3|p)
1
p +(

∞∑
k=0

|rxk|p)
1
p = (|r|+|s|)||x||`p

This implies ||D(r, 0, 0, s)||`p ≤ |r|+ |s|. This completes the proof. �

3.2. Lemma. Let 1 < p <∞ and let A ∈ (`∞, `∞) ∩ (`1, `1) then A ∈ (`p, `p).

3.3. Theorem. σ(D(r, 0, 0, s), `p) = {λ ∈ C : |r − λ| ≤ |s|}.

Proof. First, we prove that (D(r, 0, 0, s)−αI)−1 exists and is in (`p, `p) for |r−α| >
|s| and then we have to show that the operator (D(r, 0, 0, s)−αI) is not invertible
for |r − α| ≤ |s|.
Let α 6∈ {λ ∈ C : |r − λ| ≤ |s|}. Since s 6= 0 we have α 6= r and so (D(r, 0, 0, s)−
αI) is triangle, hence (D(r, 0, 0, s)− αI)−1 exists.
Let,
r − α 0 0 0 0 ...

0 r − α 0 0 0 ...
0 0 r − α 0 0 ...
s 0 0 r − α 0 ...
0 s 0 0 r − α ...
. . . . . ...




p0 0 0 0 0 ...
p1 p0 0 0 0 ...
p2 p1 p0 0 0 ...
p3 p2 p1 p0 0 ...
p4 p3 p2 p1 p0 ...
. . . . . ...

 =


1 0 0 0 0 ...
0 1 0 0 0 ...
0 0 1 0 0 ...
0 0 0 1 0 ...
0 0 0 0 1 ...
. . . . . ...


Then we have

p0 = 1
r−α

p1 = 0
p2 = 0
p3 = − s

(r−α)2
p4 = 0
p5 = 0

p6 = s2

(r−α)3
- - -
we obtain
p3k = (−s)k

(r−α)k+1 , (k ≥ 0)

and
p3k+1 = 0, (k ≥ 0)
and
p3k+2 = 0, (k ≥ 0).



Hence, we get

(D(r, 0, 0, s)− αI)−1 =



1
r−α 0 0 0 0 ...

0 1
r−α 0 0 0 ...

0 0 1
r−α 0 0 ...

− s
(r−α)2 0 0 1

r−α 0 ...

0 − s
(r−α)2 0 0 1

r−α ...

. . . . ...



Now, ||(D(r, 0, 0, s)−αI)−1||(`1,`1) = sup
k

∞∑
n=k

∣∣∣ s
r−α

∣∣∣n−k ∣∣∣ 1
r−α

∣∣∣ =
∣∣∣ 1
r−α

∣∣∣ ∞∑
k=0

∣∣∣ 1
r−α

∣∣∣n <
∞.
Similarly it can be verified that ||(D(r, 0, 0, s)− αI)−1||(`∞,`∞) <∞.

This shows that (D(r, 0, s)− αI)−1 ∈ (`∞, `∞)∩ (`1, `1) and hence by Lemma 3.2
(D(r, 0, 0, s)− αI)−1 ∈ (`p, `p) i.e. α 6∈ σ(D(r, 0, 0, s), `p). This shows that
σ(D(r, 0, 0, s), `p) ⊆ {λ ∈ C : |r − λ| ≤ |s|} .
Conversely, let α ∈ {λ ∈ C : |r − λ| ≤ |s|}
Case 1: Let α 6= r.
Then (D(r, 0, 0, s) − αI) is triangle, and hence (D(r, 0, 0, s) − αI)−1 exists but

for y = (1, 0, 0, ...) ∈ `p, (D(r, 0, 0, s) − αI)−1y = (xk) gives x3k = (−s)k
(r−α)k+1 , for

(k ≥ 0) and x3k+1 = 0, x3k+2 = 0 for (k ≥ 0) therefore (xk) 6∈ `p since |s| ≥ |r−α|
i.e. (D(r, 0, 0, s)− αI)−1 6∈ B(`p) which implies α ∈ σ(D(r, 0, 0, s), `p).
Therefore {λ ∈ C : |r − λ| ≤ |s|} ⊆ σ(D(r, 0, 0, s), `p).
Case 2: Let α = r.
Then the operator (D(r, 0, 0, s)− αI) = D(0, 0, 0, s) is represented by the matrix

(D(r, 0, 0, s)− αI) =


0 0 0 0 0 ...
0 0 0 0 0 ...
s 0 0 0 0 ...
0 s 0 0 0 ...
. . . . ...

 = D(0, 0, 0, s).

Since D(0, 0, 0, s)x = θ implies x = θ, D(0, 0, 0, s) : `p → `p is injective but not
onto. Hence D(0, 0, 0, s) is not invertible and so α ∈ σ(D(r, 0, 0, s), `p). Therefore
in this case also {λ ∈ C : |r − λ| ≤ |s|} ⊆ σ(D(r, 0, 0, s), `p). This completes the
proof. �

3.4. Theorem. σpt(D(r, 0, 0, s), `p) = Ø.

Proof. Suppose that D(r, 0, 0, s)x = αx for x 6= θ = (0, 0, 0, ...) in `p. Then by
solving the system of linear equations we have
rx0 = αx0
rx1 = αx1
rx2 = αx2
sx0 + rx3 = αx3
sx1 + rx4 = αx4
- - -
sxk + rxk+3 = αxk+3



If xn0
6= 0 is the first non-zero entry of the sequence x = (xn), then α = r and

from the equation sxn0 + rxn0+3 = αxn0+3 we get sxn0 = 0. Since s 6= 0. we must
have xn0 = 0 , contradicting the fact that xn0 6= 0. This complete the proof.

If T : `p → `p is a bounded linear operator with matrix A, then it is known that
the adjoint operator T ∗ : `∗p → `∗p is defined by the transpose of the matrix A. It is

well-known that the dual space `∗p of `p is isomorphic to `q with p−1+q−1 = 1. �

3.5. Theorem. σpt(D(r, 0, 0, s)∗, `∗p) = {λ ∈ C : |r − λ| < |s|}.

Proof. Suppose that D(r, 0, 0, s)∗x = αx for x 6= θ in `∗p
∼= `q with p−1 + q−1 = 1.

Then by solving the system of linear equations we have
rx0 + sx3 = αx0
rx1 + sx4 = αx1
rx2 + sx5 = αx2
−−−
rxk + sxk+3 = αxk
−−−
we obtain that
x3n =

(
α−r
s

)n
x0 ,(n ≥ 1)

and
x3n+1 =

(
α−r
s

)n
x1 ,(n ≥ 1)

and
x3n+2 =

(
α−r
s

)n
x2 ,(n ≥ 1)

From the above system of equations we have,
∞∑
n=1
|xn|q = (|x0|+ |x1|+ |x2|)

∞∑
n=0
|α−rs |

qn this shows that (xn) ∈ `q if and only if

|α− r| < |s|. This completes the proof. �

3.6. Theorem. σr(D(r, 0, 0, s), `p) = {λ ∈ C : |r − λ| < |s|}.

Proof. We show that the operator D(r, 0, 0, s) − αI) has an inverse and

R(D(r, 0, 0, s)− αI)) 6= `p for α ∈ {λ ∈ C : |r − λ| < |s|}. For α 6= r the oper-
ator (D(r, 0, 0, s) − αI) is triangle and has an inverse. For α = r, the operator
(D(r, 0, 0, s) − αI) is one to one and hence has an inverse. But by Theorem 3.5
implies that (D(r, 0, 0, s)∗ − αI) is not one to one for |r − α| < |s|. Now using the
Lemma 2.3 we can conclude that the range of (D(r, 0, 0, s) − αI) is not dense in

`p, i.e. R(D(r, 0, 0, s)− αI)) 6= `p. This completes the proof. �

3.7. Theorem. σc(D(r, 0, 0, s), `p) = {λ ∈ C : |r − λ| = |s|}.

Proof. The proof immediately follows from the fact that the set of spectrum is the
disjoint union of the point spectrum, residual spectrum and continuous spectrum,
that is
σ(D(r, 0, 0, s), `p) = σpt(D(r, 0, 0, s), `p) ∪ σr(D(r, 0, 0, s), `p) ∪ σc(D(r, 0, 0, s), `p).

�



4. The Spectrum of the operator D(r, 0, 0, s) on the sequence space
bvp

4.1. Theorem. D(r, 0, 0, s) ∈ B(bvp).

Proof. The linearity of D(r, 0, 0, s) is trivial and so is omitted. Let us take x =
(xk) ∈ bvp then by using Minkowski’s inequality and taking the negative indices
x−k = 0, we have

||D(r, 0, 0, s)x||bvp = (
∞∑
k=0

|(rxk + sxk−3)− (rxk−1 + sxk−4)|p)
1
p

≤ (|r|p
∞∑
k=0

|xk − xk−1|p)
1
p + (|s|p

∞∑
k=0

|xk−3 − xk−4|p)
1
p = (|r|+ |s|)||x||bvp

This gives ||D(r, 0, 0, s)||bvp ≤ |r|+ |s|. �

4.2. Theorem. σ(D(r, 0, 0, s), bvp) = {λ ∈ C : |r − λ| ≤ |s|} .

Proof. First, we prove that (D(r, 0, 0, s) − αI)−1 exists and is in (bvp, bvp) for
|r−α| > |s| and then we have to show that the operator (D(r, 0, 0, s)−αI) is not
invertible for |r − α| ≤ |s|.
Let α 6∈ {λ ∈ C : |r − λ| ≤ |s|} . Since s 6= 0 we have α 6= r and so (D(r, 0, 0, s)−
αI) is triangle, hence (D(r, 0, 0, s)− αI)−1 exists.
Let y = (yk) ∈ bvp.This implies that (yk − yk−1) ∈ `p . Solving the system of
equations (D(r, 0, 0, s)− αI)x = y we have as in the proof of Theorem 3.3 that

xk − xk−1 =
k∑
j=0

pk−j+1(yj − yj−1); (k ∈ N), where x−1 = y−1 = 0

i.e.(xk − xk−1) = (D(r, 0, 0, s) − αI)−1(yk − yk−1). Since (D(r, 0, 0, s) − αI)−1 ∈
(bvp, bvp) by Theorem 3.3, (xk − xk−1) ∈ `p. This implies that x = (xk) ∈ bvp
and hence (D(r, 0, 0, s)−αI)−1 ∈ (bvp, bvp) this shows that α 6∈ σ(D(r, 0, 0, s), bvp).
Hence σ(D(r, 0, 0, s), bvp) ⊆ {λ ∈ C : |r − λ| ≤ |s|} .

Conversely, let α ∈ {λ ∈ C : |r − λ| ≤ |s|}. If r 6= α, then (D(r, 0, 0, s) − αI)
is triangle, hence (D(r, 0, 0, s) − αI)−1 exists, but y = (1, 0, 0, ...) ∈ bvp gives

x = (xk) with x3k = (−s)k
(r−α)k+1 , for (k ≥ 0) and x3k = x3k+1 = 0, for (k ≥ 0).

Clearly, (xk) 6∈ bvp for |s| ≥ |r − α|. This shows that α ∈ (D(r, 0, 0, s), bvp).
Next let, r = α, then similar arguments as in the proof of Theorem 3.3. shows that
the operator D(r, 0, 0, s)−αI = D(0, 0, 0, s) is not invertible, therefore in this case
also α ∈ σ(D(r, 0, 0, s), bvp). Thus, {λ ∈ C : |r − λ| ≤ |s|} ⊆ σ(D(r, 0, 0, s), bvp).
This completes the proof. �

Since the spectrum and fine spectrum of the matrix D(r, 0, 0, s) as an operator
on the sequence space bvp are similar to that of the space `p in Section 3, to avoid
the repetition of the similar statements we give the results in the following theorem
without proof.

4.3. Theorem. (i) σpt(D(r, 0, 0, s), bvp) = Ø.
(ii) σpt(D(r, 0, 0, s)∗, bv∗p) = {λ ∈ C : |r − λ| < |s|} .
(iii)σr(D(r, 0, 0, s), bvp) = {λ ∈ C : |r − λ| < |s|} .
(iv)σc(D(r, 0, 0, s), bvp) = {λ ∈ C : |r − λ| = |s|} .



5. Conclusion

We can generalize our operator

(D(r, 0, 0, ..(n− 1)times, s) =



r 0 0 0 0 0 . . .
0 r 0 0 0 0 . . .
. . . . . . . . .
. . . . . . . . .
s 0 . . r 0 . . .
0 s 0 . . r . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .


If we take r = −1 and s = 1, then the operator (D(r, 0, 0, ..(n− 1)times, s) will

be the same as the generalized difference operator 4n. Further on considering the
operator (D(r, 0, 0, ..(n − 1)times, s) in place of D(r, 0, 0, s), one can get parallel
all our results obtained in this paper.
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